301
|
König S, Juhas M, Jäger S, Kottke T, Büchel C. The cryptochrome-photolyase protein family in diatoms. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:15-19. [PMID: 28720252 DOI: 10.1016/j.jplph.2017.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
The cryptochrome - photolyase family (CPF) consists of homologous flavoproteins having completely different functions involving DNA repair, circadian rhythm and/or photoreception. From the original photolyases, working either as (6-4) or cyclobutane pyrimidine dimer photolyases, the animal- and plant-type cryptochromes, respectively, evolved and also the more intermediate DASH cryptochromes. Whereas animal cryptochromes work mostly in clock-related functions, plant cryptochromes are also directly involved in developmental processes such as hypocotyl elongation or flower induction. In diatoms, all types of cryptochromes and photolyases were predicted from genome sequences. However, up to now only two proteins have been characterised in more detail, CPF1 and CryP. CPF1 is related to animal-type cryptochromes, but works as a (6-4) photolyase in addition to having photoreceptor functions. It was shown to interact with the CLOCK:Bmal1 heterodimer in a heterologous system, and thus is probably involved in clock-related processes. Moreover, CPF1 directly influences transcription. The latter was also true for CryP, which is a cryptochrome distantly related to plant-type cryptochromes. In addition, CryP influences light-harvesting protein accumulation. For all diatom cryptochromes, down-stream signalling has to proceed via interaction partners different from the classical proteins involved in cryptochrome signalling in higher plants, because these candidates are missing in diatoms.
Collapse
Affiliation(s)
- Sarah König
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Matthias Juhas
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Stefanie Jäger
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany.
| |
Collapse
|
302
|
EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proc Natl Acad Sci U S A 2017; 114:10274-10279. [PMID: 28874528 DOI: 10.1073/pnas.1707937114] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ethylene gas is essential for developmental processes and stress responses in plants. Although the membrane-bound protein EIN2 is critical for ethylene signaling, the mechanism by which the ethylene signal is transduced remains largely unknown. Here we show the levels of H3K14Ac and H3K23Ac are correlated with the levels of EIN2 protein and demonstrate EIN2 C terminus (EIN2-C) is sufficient to rescue the levels of H3K14/23Ac of ein2-5 at the target loci, using CRISPR/dCas9-EIN2-C. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) and ChIP-reChIP-seq analyses revealed that EIN2-C associates with histone partially through an interaction with EIN2 nuclear-associated protein1 (ENAP1), which preferentially binds to the genome regions that are associated with actively expressed genes both with and without ethylene treatments. Specifically, in the presence of ethylene, ENAP1-binding regions are more accessible upon the interaction with EIN2, and more EIN3 proteins bind to the loci where ENAP1 is enriched for a quick response. Together, these results reveal EIN2-C is the key factor regulating H3K14Ac and H3K23Ac in response to ethylene and uncover a unique mechanism by which ENAP1 interacts with chromatin, potentially preserving the open chromatin regions in the absence of ethylene; in the presence of ethylene, EIN2 interacts with ENAP1, elevating the levels of H3K14Ac and H3K23Ac, promoting more EIN3 binding to the targets shared with ENAP1 and resulting in a rapid transcriptional regulation.
Collapse
|
303
|
|
304
|
Lee HJ, Park YJ, Ha JH, Baldwin IT, Park CM. Multiple Routes of Light Signaling during Root Photomorphogenesis. TRENDS IN PLANT SCIENCE 2017; 22:803-812. [PMID: 28705537 DOI: 10.1016/j.tplants.2017.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 05/06/2023]
Abstract
Plants dynamically adjust their architecture to optimize growth and performance under fluctuating light environments, a process termed photomorphogenesis. A variety of photomorphogenic responses have been studied extensively in the shoots, where diverse photoreceptors and signaling molecules have been functionally characterized. Notably, accumulating evidence demonstrates that the underground roots also undergo photomorphogenesis, raising the question of how roots perceive and respond to aboveground light. Recent findings indicate that root photomorphogenesis is mediated by multiple signaling routes, including shoot-to-root transmission of mobile signaling molecules, direct sensing of light by the roots, and light channeling through the plant body. In this review we discuss recent advances in how light signals are transmitted to the roots to trigger photomorphogenic responses.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; These authors contributed equally to this work
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; These authors contributed equally to this work
| | - Jun-Ho Ha
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
305
|
Zhang B, Holmlund M, Lorrain S, Norberg M, Bakó L, Fankhauser C, Nilsson O. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. eLife 2017; 6:26759. [PMID: 28826468 PMCID: PMC5582868 DOI: 10.7554/elife.26759] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022] Open
Abstract
Both light and temperature have dramatic effects on plant development. Phytochrome photoreceptors regulate plant responses to the environment in large part by controlling the abundance of PHYTOCHROME INTERACTING FACTOR (PIF) transcription factors. However, the molecular determinants of this essential signaling mechanism still remain largely unknown. Here, we present evidence that the BLADE-ON-PETIOLE (BOP) genes, which have previously been shown to control leaf and flower development in Arabidopsis, are involved in controlling the abundance of PIF4. Genetic analysis shows that BOP2 promotes photo-morphogenesis and modulates thermomorphogenesis by suppressing PIF4 activity, through a reduction in PIF4 protein level. In red-light-grown seedlings PIF4 ubiquitination was reduced in the bop2 mutant. Moreover, we found that BOP proteins physically interact with both PIF4 and CULLIN3A and that a CULLIN3-BOP2 complex ubiquitinates PIF4 in vitro. This shows that BOP proteins act as substrate adaptors in a CUL3BOP1/BOP2 E3 ubiquitin ligase complex, targeting PIF4 proteins for ubiquitination and subsequent degradation.
Collapse
Affiliation(s)
- Bo Zhang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mattias Holmlund
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Severine Lorrain
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mikael Norberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - László Bakó
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
306
|
Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat Commun 2017; 8:309. [PMID: 28827608 PMCID: PMC5567177 DOI: 10.1038/s41467-017-00355-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 06/16/2017] [Indexed: 01/09/2023] Open
Abstract
Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.
Collapse
|
307
|
Zhang X, Huai J, Shang F, Xu G, Tang W, Jing Y, Lin R. A PIF1/PIF3-HY5-BBX23 Transcription Factor Cascade Affects Photomorphogenesis. PLANT PHYSIOLOGY 2017; 174:2487-2500. [PMID: 28687557 PMCID: PMC5543951 DOI: 10.1104/pp.17.00418] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/01/2017] [Indexed: 05/18/2023]
Abstract
Light signaling plays an essential role in controlling higher plants' early developmental process termed as photomorphogenesis. Transcriptional regulation is a vital mechanism that is orchestrated by transcription factors and other regulatory proteins working in concert to finely tune gene expression. Although many transcription factors/regulators have been characterized in the light-signaling pathway, their interregulation remains largely unknown. Here, we show that PHYTOCHROME-INTERACTING FACTOR3 (PIF3) and PIF1 transcription factors directly bind to the regulatory regions of ELONGATED HYPOCOTYL5 (HY5) and a B-box gene BBX23 and activate their expression in Arabidopsis (Arabidopsis thaliana). We found that BBX23 and its close homolog gene BBX22 play a redundant role in regulating hypocotyl growth, and that plants overexpressing BBX23 display reduced hypocotyl elongation under red, far-red, and blue light conditions. Intriguingly, BBX23 transcription is inhibited by light, whereas its protein is degraded in darkness. Furthermore, we demonstrate that HY5 physically interacts with BBX23, and these two proteins coordinately regulate the expression of both light-induced and light-repressed genes. BBX23 is also recruited to the promoter sequences of the light-responsive genes in a partial HY5-dependent manner. Taken together, our study reveals that the transcriptional cascade consisting of PIF1/PIF3, HY5, and BBX23 controls photomorphogenesis, providing a transcriptional regulatory layer by which plants fine-tune their growth in response to changing light environment.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Huai
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fangfang Shang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Xu
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijiang Tang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
308
|
Wang L, Zhang F, Rode S, Chin KK, Ko EE, Kim J, Iyer VR, Qiao H. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis. BMC Genomics 2017; 18:538. [PMID: 28716006 PMCID: PMC5512946 DOI: 10.1186/s12864-017-3929-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. RESULTS Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. CONCLUSIONS Our study reveals that the plant hormone ethylene induces combinatorial effects of H3K9Ac, K14Ac and K23Ac histone acetylation in gene expression genome widely. Further, for a group of ethylene regulated genes, in the absence of ethylene the levels and the covered breadths of H3K9Ac are the preexist markers for distinguishing up- and down- regulated genes, the change in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expression in the presence of ethylene.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, 78712, Texas, USA.,The Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, 78712, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Fan Zhang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, 78712, Texas, USA.,The Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, 78712, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Siddharth Rode
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Kevin K Chin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Eun Esther Ko
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Vishwanath R Iyer
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, 78712, Texas, USA.,The Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, 78712, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, 78712, Texas, USA. .,The Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, 78712, Texas, USA. .,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
309
|
Mawphlang OIL, Kharshiing EV. Photoreceptor Mediated Plant Growth Responses: Implications for Photoreceptor Engineering toward Improved Performance in Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1181. [PMID: 28744290 PMCID: PMC5504655 DOI: 10.3389/fpls.2017.01181] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 05/18/2023]
Abstract
Rising temperatures during growing seasons coupled with altered precipitation rates presents a challenging task of improving crop productivity for overcoming such altered weather patterns and cater to a growing population. Light is a critical environmental factor that exerts a powerful influence on plant growth and development ranging from seed germination to flowering and fruiting. Higher plants utilize a suite of complex photoreceptor proteins to perceive surrounding red/far-red (phytochromes), blue/UV-A (cryptochromes, phototropins, ZTL/FKF1/LKP2), and UV-B light (UVR8). While genomic studies have also shown that light induces extensive reprogramming of gene expression patterns in plants, molecular genetic studies have shown that manipulation of one or more photoreceptors can result in modification of agronomically beneficial traits. Such information can assist researchers to engineer photoreceptors via genome editing technologies to alter expression or even sensitivity thresholds of native photoreceptors for targeting aspects of plant growth that can confer superior agronomic value to the engineered crops. Here we summarize the agronomically important plant growth processes influenced by photoreceptors in crop species, alongwith the functional interactions between different photoreceptors and phytohormones in regulating these responses. We also discuss the potential utility of synthetic biology approaches in photobiology for improving agronomically beneficial traits of crop plants by engineering designer photoreceptors.
Collapse
|
310
|
Michaud O, Fiorucci AS, Xenarios I, Fankhauser C. Local auxin production underlies a spatially restricted neighbor-detection response in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:7444-7449. [PMID: 28652343 PMCID: PMC5514730 DOI: 10.1073/pnas.1702276114] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Competition for light triggers numerous developmental adaptations known as the "shade-avoidance syndrome" (SAS). Important molecular events underlying specific SAS responses have been identified. However, in natural environments light is often heterogeneous, and it is currently unknown how shading affecting part of a plant leads to local responses. To study this question, we analyzed upwards leaf movement (hyponasty), a rapid adaptation to neighbor proximity, in Arabidopsis We show that manipulation of the light environment at the leaf tip triggers a hyponastic response that is restricted to the treated leaf. This response is mediated by auxin synthesized in the blade and transported to the petiole. Our results suggest that a strong auxin response in the vasculature of the treated leaf and auxin signaling in the epidermis mediate leaf elevation. Moreover, the analysis of an auxin-signaling mutant reveals signaling bifurcation in the control of petiole elongation versus hyponasty. Our work identifies a mechanism for a local shade response that may pertain to other plant adaptations to heterogeneous environments.
Collapse
Affiliation(s)
- Olivier Michaud
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Anne-Sophie Fiorucci
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Ioannis Xenarios
- Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland;
| |
Collapse
|
311
|
Orth C, Niemann N, Hennig L, Essen LO, Batschauer A. Hyperactivity of the Arabidopsis cryptochrome (cry1) L407F mutant is caused by a structural alteration close to the cry1 ATP-binding site. J Biol Chem 2017. [PMID: 28634231 DOI: 10.1074/jbc.m117.788869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant cryptochromes (cry) act as UV-A/blue light receptors. The prototype, Arabidopsis thaliana cry1, regulates several light responses during the life cycle, including de-etiolation, and is also involved in regulating flowering time. The cry1 photocycle is initiated by light absorption by its FAD chromophore, which is most likely fully oxidized (FADox) in the dark state and photoreduced to the neutral flavin semiquinone (FADH°) in its lit state. Cryptochromes lack the DNA-repair activity of the closely related DNA photolyases, but they retain the ability to bind nucleotides such as ATP. The previously characterized L407F mutant allele of Arabidopsis cry1 is biologically hyperactive and seems to mimic the ATP-bound state of cry1, but the reason for this phenotypic change is unclear. Here, we show that cry1L407F can still bind ATP, has less pronounced photoreduction and formation of FADH° than wild-type cry1, and has a dark reversion rate 1.7 times lower than that of the wild type. The hyperactivity of cry1L407F is not related to a higher FADH° occupancy of the photoreceptor but is caused by a structural alteration close to the ATP-binding site. Moreover, we show that ATP binds to cry1 in both the dark and the lit states. This binding was not affected by cry1's C-terminal extension, which is important for signal transduction. Finally, we show that a recently discovered chemical inhibitor of cry1, 3-bromo-7-nitroindazole, competes for ATP binding and thereby diminishes FADH° formation, which demonstrates that both processes are important for cry1 function.
Collapse
Affiliation(s)
- Christian Orth
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-Universität, 35032 Marburg, Germany
| | - Nils Niemann
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-Universität, 35032 Marburg, Germany
| | - Lars Hennig
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Lars-Oliver Essen
- Faculty of Chemistry, Department of Biochemistry, Philipps-Universität, 35032 Marburg, Germany
| | - Alfred Batschauer
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-Universität, 35032 Marburg, Germany.
| |
Collapse
|
312
|
Jégu T, Veluchamy A, Ramirez-Prado JS, Rizzi-Paillet C, Perez M, Lhomme A, Latrasse D, Coleno E, Vicaire S, Legras S, Jost B, Rougée M, Barneche F, Bergounioux C, Crespi M, Mahfouz MM, Hirt H, Raynaud C, Benhamed M. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility. Genome Biol 2017; 18:114. [PMID: 28619072 PMCID: PMC5471679 DOI: 10.1186/s13059-017-1246-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Plant adaptive responses to changing environments involve complex molecular interplays between intrinsic and external signals. Whilst much is known on the signaling components mediating diurnal, light, and temperature controls on plant development, their influence on chromatin-based transcriptional controls remains poorly explored. RESULTS In this study we show that a SWI/SNF chromatin remodeler subunit, BAF60, represses seedling growth by modulating DNA accessibility of hypocotyl cell size regulatory genes. BAF60 binds nucleosome-free regions of multiple G box-containing genes, opposing in cis the promoting effect of the photomorphogenic and thermomorphogenic regulator Phytochrome Interacting Factor 4 (PIF4) on hypocotyl elongation. Furthermore, BAF60 expression level is regulated in response to light and daily rhythms. CONCLUSIONS These results unveil a short path between a chromatin remodeler and a signaling component to fine-tune plant morphogenesis in response to environmental conditions.
Collapse
Affiliation(s)
- Teddy Jégu
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
- Present address: Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Present address: Department of Genetics, Harvard Medical School, Boston, MA, 02114, USA
| | - Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Juan S Ramirez-Prado
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Charley Rizzi-Paillet
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Magalie Perez
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Anaïs Lhomme
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - David Latrasse
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Emeline Coleno
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Serge Vicaire
- Plateforme Biopuces et séquençage, IGBMC, 1 rue Laurent Fries Parc d'Innovation, 67400, Illkirch, France
| | - Stéphanie Legras
- Plateforme Biopuces et séquençage, IGBMC, 1 rue Laurent Fries Parc d'Innovation, 67400, Illkirch, France
| | - Bernard Jost
- Plateforme Biopuces et séquençage, IGBMC, 1 rue Laurent Fries Parc d'Innovation, 67400, Illkirch, France
| | - Martin Rougée
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| | - Fredy Barneche
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| | - Catherine Bergounioux
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Martin Crespi
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Magdy M Mahfouz
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Heribert Hirt
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Cécile Raynaud
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Moussa Benhamed
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France.
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
313
|
Song J, Liu Q, Hu B, Wu W. Photoreceptor PhyB Involved in Arabidopsis Temperature Perception and Heat-Tolerance Formation. Int J Mol Sci 2017; 18:ijms18061194. [PMID: 28587227 PMCID: PMC5486017 DOI: 10.3390/ijms18061194] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023] Open
Abstract
The influence of temperature on plants is essential. However, our knowledge on the intricate regulation process underlying heat stress (HS) response in plants is limited. Recently, information about thermal sensors in vivo has begun to emerge. In this study, another primary environmental stimulus, light, was verified once again to work with temperature synergistically on plants, through the modulation of numerous biological processes. With the application of transcriptomic analysis, a substantial number of heat-responsive genes were detected involved in both light- and phytohormone-mediated pathways in Arabidopsis. During this process, phytoreceptor phyB acts as a molecular switch to turn on or turn off several other genes HS response, under different light conditions. Furthermore, a morphological study showed the afunction of phyB enhanced plants thermal tolerance, confirming the important role of this phytochrome in temperature perception and response in plants. This study adds data to the picture of light and temperature signaling cross-talk in plants, which is important for the exploration of complicated HS responses or light-mediated mechanisms. Furthermore, based on its influence on Arabidopsis thermal response in both morphological and physiological levels, phyB is a photoreceptor, as revealed before, as well as an essential thermal sensor in plants.
Collapse
Affiliation(s)
- Junyi Song
- College of Science, National University of Defense Technology, Changsha 410073, China.
| | - Qijun Liu
- College of Science, National University of Defense Technology, Changsha 410073, China.
| | - Biru Hu
- College of Science, National University of Defense Technology, Changsha 410073, China.
| | - Wenjian Wu
- College of Science, National University of Defense Technology, Changsha 410073, China.
- State Key Lab of Nuclear, Biological and Chemical Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
314
|
Sellaro R, Pacín M, Casal JJ. Meta-Analysis of the Transcriptome Reveals a Core Set of Shade-Avoidance Genes in Arabidopsis. Photochem Photobiol 2017; 93:692-702. [DOI: 10.1111/php.12729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Romina Sellaro
- IFEVA; Facultad de Agronomía; Universidad de Buenos Aires and CONICET; Buenos Aires Argentina
| | - Manuel Pacín
- IFEVA; Facultad de Agronomía; Universidad de Buenos Aires and CONICET; Buenos Aires Argentina
| | - Jorge J. Casal
- IFEVA; Facultad de Agronomía; Universidad de Buenos Aires and CONICET; Buenos Aires Argentina
- Fundación Instituto Leloir; Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET; Buenos Aires Argentina
| |
Collapse
|
315
|
Liu Q, Wang Q, Deng W, Wang X, Piao M, Cai D, Li Y, Barshop WD, Yu X, Zhou T, Liu B, Oka Y, Wohlschlegel J, Zuo Z, Lin C. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nat Commun 2017; 8:15234. [PMID: 28492234 PMCID: PMC5437284 DOI: 10.1038/ncomms15234] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/03/2017] [Indexed: 12/16/2022] Open
Abstract
Plant cryptochromes undergo blue light-dependent phosphorylation to regulate their activity and abundance, but the protein kinases that phosphorylate plant cryptochromes have remained unclear. Here we show that photoexcited Arabidopsis cryptochrome 2 (CRY2) is phosphorylated in vivo on as many as 24 different residues, including 7 major phosphoserines. We demonstrate that four closely related Photoregulatory Protein Kinases (previously referred to as MUT9-like kinases) interact with and phosphorylate photoexcited CRY2. Analyses of the ppk123 and ppk124 triple mutants and amiR4k artificial microRNA-expressing lines demonstrate that PPKs catalyse blue light-dependent CRY2 phosphorylation to both activate and destabilize the photoreceptor. Phenotypic analyses of these mutant lines indicate that PPKs may have additional substrates, including those involved in the phytochrome signal transduction pathway. These results reveal a mechanism underlying the co-action of cryptochromes and phytochromes to coordinate plant growth and development in response to different wavelengths of solar radiation in nature. Plant cryptochromes are regulated by blue-light dependent phosphorylation. Here the authors map the in vivo phosphorylation sites of Arabidopsis cryptochrome 2 and identify four closely related kinases that act to both activate and destabilize the receptor in response to blue light.
Collapse
Affiliation(s)
- Qing Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China.,Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Weixian Deng
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Xu Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Mingxin Piao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Dawei Cai
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - William D Barshop
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | - Xiaolan Yu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Zhou
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Chentao Lin
- Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
316
|
Wang Q, Zuo Z, Wang X, Gu L, Yoshizumi T, Yang Z, Yang L, Liu Q, Liu W, Han YJ, Kim JI, Liu B, Wohlschlegel JA, Matsui M, Oka Y, Lin C. Photoactivation and inactivation of Arabidopsis cryptochrome 2. Science 2017; 354:343-347. [PMID: 27846570 DOI: 10.1126/science.aaf9030] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/29/2016] [Indexed: 01/25/2023]
Abstract
Cryptochromes are blue-light receptors that regulate development and the circadian clock in plants and animals. We found that Arabidopsis cryptochrome 2 (CRY2) undergoes blue light-dependent homodimerization to become physiologically active. We identified BIC1 (blue-light inhibitor of cryptochromes 1) as an inhibitor of plant cryptochromes that binds to CRY2 to suppress the blue light-dependent dimerization, photobody formation, phosphorylation, degradation, and physiological activities of CRY2. We hypothesize that regulated dimerization governs homeostasis of the active cryptochromes in plants and other evolutionary lineages.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Xu Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Takeshi Yoshizumi
- Biomass Engineering Research Division, RIKEN, Kanagawa 230-0045, Japan
| | - Zhaohe Yang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liang Yang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Qing Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Wei Liu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | - Minami Matsui
- Biomass Engineering Research Division, RIKEN, Kanagawa 230-0045, Japan
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. .,Biomass Engineering Research Division, RIKEN, Kanagawa 230-0045, Japan
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. .,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
317
|
Tattini M, Sebastiani F, Brunetti C, Fini A, Torre S, Gori A, Centritto M, Ferrini F, Landi M, Guidi L. Dissecting molecular and physiological response mechanisms to high solar radiation in cyanic and acyanic leaves: a case study on red and green basil. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2425-2437. [PMID: 28419325 DOI: 10.1093/jxb/erx123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photosynthetic performance and the expression of genes involved in light signaling and the biosynthesis of isoprenoids and phenylpropanoids were analysed in green ('Tigullio', TIG) and red ('Red Rubin', RR) basil. The aim was to detect the physiological and molecular response mechanisms to high sunlight. The attenuation of blue-green light by epidermal anthocyanins was shown to evoke shade-avoidance responses with consequential effects on leaf morpho-anatomical traits and gas exchange performance. Red basil had a lower mesophyll conductance, partially compensated by the less effective control of stomatal movements, in comparison with TIG. Photosynthesis decreased more in TIG than in RR in high sunlight, because of larger stomatal limitations and the transient impairment of PSII photochemistry. The methylerythritol 4-phosphate pathway promoted above all the synthesis and de-epoxidation of violaxanthin-cycle pigments in TIG and of neoxanthin and lutein in RR. This enabled the green leaves to process the excess radiant energy effectively, and the red leaves to optimize light harvesting and photoprotection. The greater stomatal closure observed in TIG than in RR was due to enhanced abscisic acid (ABA) glucose ester deglucosylation and reduced ABA oxidation, rather than to superior de novo ABA synthesis. This study shows a strong competition between anthocyanin and flavonol biosynthesis, which occurs at the level of genes regulating the oxidation of the C2-C3 bond in the dihydro-flavonoid skeleton.
Collapse
Affiliation(s)
- Massimiliano Tattini
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Federico Sebastiani
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Cecilia Brunetti
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Fini
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, via Celoria 2, I-20122 Milan, Italy
| | - Sara Torre
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Mauro Centritto
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy
| | - Francesco Ferrini
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Viale delle Idee 30, I-50019, Sesto Fiorentino, Florence, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| |
Collapse
|
318
|
Coordination of Cryptochrome and Phytochrome Signals in the Regulation of Plant Light Responses. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
319
|
The Role of Specialized Photoreceptors in the Protection of Energy‐Rich Tissues. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
320
|
Favero DS, Le KN, Neff MM. Brassinosteroid signaling converges with SUPPRESSOR OF PHYTOCHROME B4-#3 to influence the expression of SMALL AUXIN UP RNA genes and hypocotyl growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1133-1145. [PMID: 27984677 PMCID: PMC5665367 DOI: 10.1111/tpj.13451] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 05/20/2023]
Abstract
Interactions between signaling pathways help guide plant development. In this study, we found that brassinosteroid (BR) signaling converges with SUPPRESSOR OF PHYTOCHROME B4-#3 (SOB3) to influence both the transcription of genes involved in cell elongation and hypocotyl growth. Specifically, SOB3 mutant hypocotyl phenotypes, which are readily apparent when the seedlings are grown in dim white light, were attenuated by treatment with either brassinolide (BL) or the BR biosynthesis inhibitor brassinazole (BRZ). Hypocotyls of SOB3 mutant seedlings grown in white light with a higher fluence rate also exhibited altered sensitivities to BL, further suggesting a connection to BR signaling. However, the impact of BL treatment on SOB3 mutants grown in moderate-intensity white light was reduced when polar auxin transport was inhibited. BL treatment enhanced transcript accumulation for all six members of the SMALL AUXIN UP RNA19 (SAUR19) subfamily, which promote cell expansion, are repressed by SOB3 and light, and are induced by auxin. Conversely, BRZ inhibited the expression of SAUR19 and its homologs. Expression of these SAURs was also enhanced in lines expressing a constitutively active form of the BR signaling component BZR1, further indicating that the transcription of SAUR19 subfamily members are influenced by this hormone signaling pathway. Taken together, these results indicate that SOB3 and BR signaling converge to influence the transcription of hypocotyl growth-promoting SAUR19 subfamily members.
Collapse
Affiliation(s)
- David S. Favero
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Kimberly Ngan Le
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Michael M. Neff
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- For correspondence ()
| |
Collapse
|
321
|
Fragoso V, Oh Y, Kim SG, Gase K, Baldwin IT. Functional specialization of Nicotiana attenuata phytochromes in leaf development and flowering time. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:205-224. [PMID: 28009482 DOI: 10.1111/jipb.12516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Phytochromes mainly function in photoautotrophic organisms to adjust growth in response to fluctuating light signals. The different isoforms of plant phytochromes often display both conserved and divergent roles, presumably to fine-tune plant responses to environmental signals and optimize fitness. Here we describe the distinct, yet partially redundant, roles of phytochromes NaPHYA, NaPHYB1 and NaPHYB2 in a wild tobacco species, Nicotiana attenuata using RNAi-silenced phytochrome lines. Consistent with results reported from other species, silencing the expression of NaPHYA or NaPHYB2 in N. attenuata had mild or no influence on plant development as long as NaPHYB1 was functional; whereas silencing the expression of NaPHYB1 alone strongly altered flowering time and leaf morphology. The contribution of NaPHYB2 became significant only in the absence of NaPHYB1; plants silenced for both NaPHYB1 and NaPHYB2 largely skipped the rosette-stage of growth to rapidly produce long, slender stalks that bore flowers early: hallmarks of the shade-avoidance responses. The phenotyping of phytochrome-silenced lines, combined with sequence and transcript accumulation analysis, suggest the independent functional diversification of the phytochromes, and a dominant role of NaPHYB1 and NaPHYB2 in N. attenuata's vegetative and reproductive development.
Collapse
Affiliation(s)
- Variluska Fragoso
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Ian Thomas Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
322
|
Tang Y, Liu X, Liu X, Li Y, Wu K, Hou X. Arabidopsis NF-YCs Mediate the Light-Controlled Hypocotyl Elongation via Modulating Histone Acetylation. MOLECULAR PLANT 2017; 10:260-273. [PMID: 27876642 DOI: 10.1016/j.molp.2016.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 05/20/2023]
Abstract
Light is a crucial environmental signal that promotes photomorphogenesis, the developmental process with a series of light-dependent alterations for plants to adapt various external challenges. Chromatin modification has been proposed to be involved in such light-mediated growth, but the underlying mechanism is still elusive. In this study, we identified four Arabidopsis thaliana Nuclear Factor-YC homologs, NF-YC1, NF-YC3, NF-YC4, and NF-YC9 (NF-YCs), which function redundantly as repressors of light-controlled hypocotyl elongation via histone deacetylation. Obvious etiolation phenotypes are observed in NF-YCs loss-of-function mutant seedlings grown under light conditions, including significant elongated hypocotyls and fewer opened cotyledons. We found that NF-YCs interact with histone deacetylase HDA15 in the light, co-target the promoters of a set of hypocotyl elongation-related genes, and modulate the levels of histone H4 acetylation on the associated chromatins, thus repressing gene expression. In contrast, NF-YC-HDA15 complex is dismissed from the target genes in the dark, resulting in increased level of H4 acetylation and consequent etiolated growth. Further analyses revealed that transcriptional repression activity of NF-YCs on the light-controlled hypocotyl elongation partially depends on the deacetylation activity of HDA15, and loss of HDA15 function could rescue the short-hypocotyl phenotype of NF-YCs overexpression plants. Taken together, our results indicate that NF-YC1, NF-YC3, NF-YC4, and NF-YC9 function as transcriptional co-repressors by interacting with HDA15 to inhibit hypocotyl elongation in photomorphogenesis during the early seedling stage. Our findings highlight that NF-YCs can modulate plant development in response to environmental cues via epigenetic regulation.
Collapse
Affiliation(s)
- Yang Tang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Keqiang Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
323
|
Lee N, Choi G. Phytochrome-interacting factor from Arabidopsis to liverwort. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:54-60. [PMID: 27875778 DOI: 10.1016/j.pbi.2016.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 05/08/2023]
Abstract
Phytochromes are red and far-red light photoreceptors that regulate the responses of plants to light throughout their life cycles. Phytochromes do this in part by inhibiting the function of a group of basic helix-loop-helix transcription factors called phytochrome-interacting factors (PIFs). Arabidopsis has eight PIFs that function sometimes redundantly and sometimes distinctively depending on their expression patterns and protein stability, as well as on variations in the promoters they target in vivo. PIF-like proteins exist in other seed plants and non-vascular plants where they also regulate light responses. The mechanism by which phytochrome regulates light responses by promoting the degradation of the PIFs is conserved in liverwort, suggesting it must have evolved some time before the last common ancestor shared by seed plants and non-vascular plants.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
324
|
Approaches to Study Light Effects on Brassinosteroid Sensitivity. Methods Mol Biol 2017; 1564:39-47. [PMID: 28124245 DOI: 10.1007/978-1-4939-6813-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Light perception and hormone signaling in plants are likely connected at multiple points. Light conditions, perceived by photoreceptors, control plant responses by altering hormone concentration, tissue sensitivity, or a combination of both. Whereas it is relatively straightforward to assess the light effects on hormone levels, hormone sensitivity is subjected to interpretation. In Arabidopsis thaliana seedlings, hypocotyl length is strongly affected by light conditions. As hypocotyl elongation also depends on brassinosteroids (BRs), assaying this response provides a valuable and easy way to measure the responsiveness of seedlings to BRs and the impact of light. We describe a simple protocol to evaluate the responsiveness of hypocotyls to commercial BRs and/or BR inhibitors under a range of light conditions. These assays can be used to establish whether light affects BR sensitivity or whether BRs affect light sensitivity. Overall, our protocol can be easily applied for deetiolation (under polychromatic or monochromatic light) and simulated shade treatments combined with BR treatments.
Collapse
|
325
|
Yang Z, Liu B, Su J, Liao J, Lin C, Oka Y. Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants. Photochem Photobiol 2017; 93:112-127. [PMID: 27861972 DOI: 10.1111/php.12663] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
Blue light affects many aspects of plant growth and development throughout the plant lifecycle. Plant cryptochromes (CRYs) are UV-A/blue light photoreceptors that play pivotal roles in regulating blue light-mediated physiological responses via the regulated expression of more than one thousand genes. Photoactivated CRYs regulate transcription via two distinct mechanisms: indirect promotion of the activity of transcription factors by inactivation of the COP1/SPA E3 ligase complex or direct activation or inactivation of at least two sets of basic helix-loop-helix transcription factor families by physical interaction. Hence, CRYs govern intricate mechanisms that modulate activities of transcription factors to regulate multiple aspects of blue light-responsive photomorphogenesis. Here, we review recent progress in dissecting the pathways of CRY signaling and discuss accumulating evidence that shows how CRYs regulate broad physiological responses to blue light.
Collapse
Affiliation(s)
- Zhaohe Yang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bobin Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiakai Liao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
326
|
Kavakli IH, Baris I, Tardu M, Gül Ş, Öner H, Çal S, Bulut S, Yarparvar D, Berkel Ç, Ustaoğlu P, Aydın C. The Photolyase/Cryptochrome Family of Proteins as DNA Repair Enzymes and Transcriptional Repressors. Photochem Photobiol 2017; 93:93-103. [DOI: 10.1111/php.12669] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Ibrahim Halil Kavakli
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
- Department of Computational Science and Engineering; Koc University; Sariyer Istanbul Turkey
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
| | - Mehmet Tardu
- Department of Computational Science and Engineering; Koc University; Sariyer Istanbul Turkey
| | - Şeref Gül
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
| | - Haşimcan Öner
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
| | - Sibel Çal
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
| | - Selma Bulut
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
| | - Darya Yarparvar
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
| | - Çağlar Berkel
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
| | - Pınar Ustaoğlu
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
| | - Cihan Aydın
- Department of Molecular Biology and Genetics; Istanbul Medeniyet University; Uskudar Istanbul
| |
Collapse
|
327
|
Abstract
Plants use context-dependent information to calibrate growth responses to temperature signals. A new study shows that plants modulate their sensitivity to temperature depending on whether or not they are in direct sunlight. This enables them to make adaptive decisions in a complex natural environment.
Collapse
|
328
|
Gao Y, Wu Y, Du J, Zhan Y, Sun D, Zhao J, Zhang S, Li J, He K. Both Light-Induced SA Accumulation and ETI Mediators Contribute to the Cell Death Regulated by BAK1 and BKK1. FRONTIERS IN PLANT SCIENCE 2017; 8:622. [PMID: 28487714 PMCID: PMC5403931 DOI: 10.3389/fpls.2017.00622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/06/2017] [Indexed: 05/10/2023]
Abstract
Receptor-like kinases BAK1 and BKK1 modulate multiple cellular processes including brassinosteroid signaling and PRR-mediated PTI in Arabidopsis. Our previous reports also demonstrated that bak1 bkk1 double mutants exhibit a spontaneous cell death phenotype under normal growth condition. With an unknown mechanism, the cell death in bak1 bkk1 is significantly suppressed when grown in dark but can be quickly induced by light. Furthermore, little is known about intrinsic components involved in BAK1 and BKK1-regulated cell death pathway. In this study, we analyzed how light functions as an initiator of cell death and identified ETI components to act as mediators of cell death signaling in bak1 bkk1. Cell death suppressed in bak1 bkk1 by growing in dark condition recurred upon exogenously treated SA. SA biosynthesis-related genes SID2 and EDS5, which encode chloroplast-localized proteins, were highly expressed in bak1-4 bkk1-1. When crossed to bak1-3 bkk1-1, sid2 or eds5 was capable of efficiently suppressing the cell death. It suggested that overly produced SA is crucial for inducing cell death in bak1 bkk1 grown in light. Notably, bak1-3 or bkk1-1 single mutant was shown to be more susceptible but bak1-3 bkk1-1 double mutant exhibited enhanced resistance to bacterial pathogen, suggesting immune signaling other than PTI is activated in bak1 bkk1. Moreover, genetic analyses showed that mutation in EDS1 or PAD4, key ETI mediator, significantly suppressed the cell death in bak1-3 bkk1-1. In this study, we revealed that light-triggered SA accumulation plays major role in inducing the cell death in bak1 bkk1, mediated by ETI components.
Collapse
|
329
|
Yang C, Li L. Hormonal Regulation in Shade Avoidance. FRONTIERS IN PLANT SCIENCE 2017; 8:1527. [PMID: 28928761 PMCID: PMC5591575 DOI: 10.3389/fpls.2017.01527] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/21/2017] [Indexed: 05/10/2023]
Abstract
At high vegetation density, shade-intolerant plants sense a reduction in the red (660 nm) to far-red (730 nm) light ratio (R/FR) in addition to a general reduction in light intensity. These light signals trigger a spectrum of morphological changes manifested by growth of stem-like tissue (hypocotyl, petiole, etc.) instead of harvestable organs (leaves, fruits, seeds, etc.)-namely, shade avoidance syndrome (SAS). Common phenotypical changes related to SAS are changes in leaf hyponasty, an increase in hypocotyl and internode elongation and extended petioles. Prolonged shade exposure leads to early flowering, less branching, increased susceptibility to insect herbivory, and decreased seed yield. Thus, shade avoidance significantly impacts on agronomic traits. Many genetic and molecular studies have revealed that phytochromes, cryptochromes and UVR8 (UV-B photoreceptor protein) monitor the changes in light intensity under shade and regulate the stability or activity of phytochrome-interacting factors (PIFs). PIF-governed modulation of the expression of auxin biosynthesis, transporter and signaling genes is the major driver for shade-induced hypocotyl elongation. Besides auxin, gibberellins, brassinosteroids, and ethylene are also required for shade-induced hypocotyl or petiole elongation growth. In leaves, accumulated auxin stimulates cytokinin oxidase expression to break down cytokinins and inhibit leaf growth. In the young buds, shade light promotes the accumulation of abscisic acid to repress branching. Shade light also represses jasmonate- and salicylic acid-induced defense responses to balance resource allocation between growth and defense. Here we will summarize recent findings relating to such hormonal regulation in SAS in Arabidopsis thaliana, Brassica rapa, and certain crops.
Collapse
|
330
|
Hwang G, Zhu JY, Lee YK, Kim S, Nguyen TT, Kim J, Oh E. PIF4 Promotes Expression of LNG1 and LNG2 to Induce Thermomorphogenic Growth in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1320. [PMID: 28791042 PMCID: PMC5524824 DOI: 10.3389/fpls.2017.01320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/13/2017] [Indexed: 05/19/2023]
Abstract
Arabidopsis plants adapt to high ambient temperature by a suite of morphological changes including elongation of hypocotyls and petioles and leaf hyponastic growth. These morphological changes are collectively called thermomorphogenesis and are believed to increase leaf cooling capacity by enhancing transpiration efficiency, thereby increasing tolerance to heat stress. The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) has been identified as a major regulator of thermomorphogenic growth. Here, we show that PIF4 promotes the expression of two homologous genes LONGIFOLIA1 (LNG1) and LONGIFOLIA2 (LNG2) that have been reported to regulate leaf morphology. ChIP-Seq analyses and ChIP assays showed that PIF4 directly binds to the promoters of both LNG1 and LNG2. The expression of LNG1 and LNG2 is induced by high temperature in wild type plants. However, the high temperature activation of LNG1 and LNG2 is compromised in the pif4 mutant, indicating that PIF4 directly regulates LNG1 and LNG2 expression in response to high ambient temperatures. We further show that the activities of LNGs support thermomorphogenic growth. The expression of auxin biosynthetic and responsive genes is decreased in the lng quadruple mutant, implying that LNGs promote thermomorphogenic growth by activating the auxin pathway. Together, our results demonstrate that LNG1 and LNG2 are directly regulated by PIF4 and are new components for the regulation of thermomorphogenesis.
Collapse
Affiliation(s)
- Geonhee Hwang
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, StanfordCA, United States
| | - Young K. Lee
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, United States
- Division of Biological Sciences and Institute for Basic Science, Wonkwang UniversityIksan, South Korea
| | - Sara Kim
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Thom T. Nguyen
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Eunkyoo Oh
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
- *Correspondence: Eunkyoo Oh,
| |
Collapse
|
331
|
Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK, Tavridou E, Fankhauser C, Jenkins GI, Franklin KA. UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis. Curr Biol 2016; 27:120-127. [PMID: 27989670 PMCID: PMC5226890 DOI: 10.1016/j.cub.2016.11.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/07/2016] [Accepted: 11/01/2016] [Indexed: 11/26/2022]
Abstract
Small increases in ambient temperature can elicit striking effects on plant architecture, collectively termed thermomorphogenesis [1]. In Arabidopsis thaliana, these include marked stem elongation and leaf elevation, responses that have been predicted to enhance leaf cooling [2-5]. Thermomorphogenesis requires increased auxin biosynthesis, mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) [6-8], and enhanced stability of the auxin co-receptor TIR1, involving HEAT SHOCK PROTEIN 90 (HSP90) [9]. High-temperature-mediated hypocotyl elongation additionally involves localized changes in auxin metabolism, mediated by the indole-3-acetic acid (IAA)-amido synthetase Gretchen Hagen 3 (GH3).17 [10]. Here we show that ultraviolet-B light (UV-B) perceived by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8) [11] strongly attenuates thermomorphogenesis via multiple mechanisms inhibiting PIF4 activity. Suppression of thermomorphogenesis involves UVR8 and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1)-mediated repression of PIF4 transcript accumulation, reducing PIF4 abundance. UV-B also stabilizes the bHLH protein LONG HYPOCOTYL IN FAR RED (HFR1), which can bind to and inhibit PIF4 function. Collectively, our results demonstrate complex crosstalk between UV-B and high-temperature signaling. As plants grown in sunlight would most likely experience concomitant elevations in UV-B and ambient temperature, elucidating how these pathways are integrated is of key importance to the understanding of plant development in natural environments.
Collapse
Affiliation(s)
- Scott Hayes
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK; Plant Ecophysiology, Institute of Environmental Biology (IEB), Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ashutosh Sharma
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Donald P Fraser
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Martine Trevisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - C Kester Cragg-Barber
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Eleni Tavridou
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Keara A Franklin
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
332
|
Zhu JY, Oh E, Wang T, Wang ZY. TOC1-PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis. Nat Commun 2016; 7:13692. [PMID: 27966533 PMCID: PMC5171658 DOI: 10.1038/ncomms13692] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022] Open
Abstract
Arabidopsis adapts to elevated temperature by promoting stem elongation and hyponastic growth through a temperature-responsive transcription factor PIF4. Here we show that the evening-expressed clock component TOC1 interacts with and inactivates PIF4, thereby suppressing thermoresponsive growth in the evening. We find that the expression of PIF4 target genes show circadian rhythms of thermosensitivity, with minimum responsiveness in the evening when TOC1 level is high. Loss of function of TOC1 and its close homologue PRR5 restores thermosensitivity in the evening, whereas TOC1 overexpression causes thermo insensitivity, demonstrating that TOC1 mediates the evening-specific inhibition of thermoresponses. We further show that PIF4 is required for thermoadaptation mediated by moderately elevated temperature. Our results demonstrate that the interaction between TOC1 and PIF4 mediates the circadian gating of thermoresponsive growth, which may serve to increase fitness by matching thermoresponsiveness with the day–night cycles of fluctuating temperature and light conditions.
The PIF4 transcription factor mediates the response of Arabidopsis seedlings to elevated temperature. Here the authors show that PIF4 interacts with the circadian clock component TOC1 which acts to suppress the PIF4-mediated temperature response in the evening.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA.,Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Tina Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| |
Collapse
|
333
|
Zhu JY, Oh E, Wang T, Wang ZY. TOC1-PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis. Nat Commun 2016; 7:13692. [PMID: 27966533 DOI: 10.1038/ncomms13692a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/25/2016] [Indexed: 05/29/2023] Open
Abstract
Arabidopsis adapts to elevated temperature by promoting stem elongation and hyponastic growth through a temperature-responsive transcription factor PIF4. Here we show that the evening-expressed clock component TOC1 interacts with and inactivates PIF4, thereby suppressing thermoresponsive growth in the evening. We find that the expression of PIF4 target genes show circadian rhythms of thermosensitivity, with minimum responsiveness in the evening when TOC1 level is high. Loss of function of TOC1 and its close homologue PRR5 restores thermosensitivity in the evening, whereas TOC1 overexpression causes thermo insensitivity, demonstrating that TOC1 mediates the evening-specific inhibition of thermoresponses. We further show that PIF4 is required for thermoadaptation mediated by moderately elevated temperature. Our results demonstrate that the interaction between TOC1 and PIF4 mediates the circadian gating of thermoresponsive growth, which may serve to increase fitness by matching thermoresponsiveness with the day-night cycles of fluctuating temperature and light conditions.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Tina Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| |
Collapse
|
334
|
Shade Promotes Phototropism through Phytochrome B-Controlled Auxin Production. Curr Biol 2016; 26:3280-3287. [DOI: 10.1016/j.cub.2016.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/25/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022]
|
335
|
de Wit M, Keuskamp DH, Bongers FJ, Hornitschek P, Gommers CM, Reinen E, Martínez-Cerón C, Fankhauser C, Pierik R. Integration of Phytochrome and Cryptochrome Signals Determines Plant Growth during Competition for Light. Curr Biol 2016; 26:3320-3326. [DOI: 10.1016/j.cub.2016.10.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/07/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
|
336
|
|
337
|
Kohnen MV, Schmid-Siegert E, Trevisan M, Petrolati LA, Sénéchal F, Müller-Moulé P, Maloof J, Xenarios I, Fankhauser C. Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth. THE PLANT CELL 2016; 28:2889-2904. [PMID: 27923878 PMCID: PMC5240736 DOI: 10.1105/tpc.16.00463] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/20/2016] [Accepted: 12/05/2016] [Indexed: 05/18/2023]
Abstract
In response to neighbor proximity, plants increase the growth of specific organs (e.g., hypocotyls) to enhance access to sunlight. Shade enhances the activity of Phytochrome Interacting Factors (PIFs) by releasing these bHLH transcription factors from phytochrome B-mediated inhibition. PIFs promote elongation by inducing auxin production in cotyledons. In order to elucidate spatiotemporal aspects of the neighbor proximity response, we separately analyzed gene expression patterns in the major light-sensing organ (cotyledons) and in rapidly elongating hypocotyls of Arabidopsis thaliana PIFs initiate transcriptional reprogramming in both organs within 15 min, comprising regulated expression of several early auxin response genes. This suggests that hypocotyl growth is elicited by both local and distal auxin signals. We show that cotyledon-derived auxin is both necessary and sufficient to initiate hypocotyl growth, but we also provide evidence for the functional importance of the local PIF-induced response. With time, the transcriptional response diverges increasingly between organs. We identify genes whose differential expression may underlie organ-specific elongation. Finally, we uncover a growth promotion gene expression signature shared between different developmentally regulated growth processes and responses to the environment in different organs.
Collapse
Affiliation(s)
- Markus V Kohnen
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Emanuel Schmid-Siegert
- SIB Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Martine Trevisan
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laure Allenbach Petrolati
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Fabien Sénéchal
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Patricia Müller-Moulé
- Section of Plant Biology, Division of Biological Sciences, University of California, Davis, California 95616
| | - Julin Maloof
- Section of Plant Biology, Division of Biological Sciences, University of California, Davis, California 95616
| | - Ioannis Xenarios
- SIB Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
338
|
Functional roles of Arabidopsis CKRC2/YUCCA8 gene and the involvement of PIF4 in the regulation of auxin biosynthesis by cytokinin. Sci Rep 2016; 6:36866. [PMID: 27827441 PMCID: PMC5101810 DOI: 10.1038/srep36866] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 10/21/2016] [Indexed: 11/09/2022] Open
Abstract
Auxin and cytokinin (CK) are both important hormones involved in many aspects of plant growth and development. However, the details of auxin biosynthesis and the interaction between auxin and CK are still unclear. Isolation and characterization of an auxin deficient mutant cytokinin induced root curling 2 (ckrc2) in this work reveal that CKRC2 encodes a previously identified member of YUCCA (YUC) flavin monooxygenase-like proteins (YUC8). Our results show that, like other YUCs, CKRC2/YUC8 is a rate-limiting enzyme for catalyzing the conversion of indole-3-pyruvic acid (IPyA) to indole-3-acetic acid (IAA), acting downstream of CKRC1/TAA1 in the IPyA pathway. Here we show that the transcription of both CKRC1/TAA and CKRC2/YUC8 can be induced by CK and that the phytochrome-interacting factor 4 (PIF4) is required for this upregulation. Transcription of PIF4 itself is induced by CK via the AHKs-ARR1/12 signalling pathway. These results indicate that PIF4 plays an essential role in mediating the regulatory effect of CK on the transcriptions of CKRC1 and CKRC2 genes in the IPyA pathway of auxin biosynthesis.
Collapse
|
339
|
Rosado D, Gramegna G, Cruz A, Lira BS, Freschi L, de Setta N, Rossi M. Phytochrome Interacting Factors (PIFs) in Solanum lycopersicum: Diversity, Evolutionary History and Expression Profiling during Different Developmental Processes. PLoS One 2016; 11:e0165929. [PMID: 27802334 PMCID: PMC5089782 DOI: 10.1371/journal.pone.0165929] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/19/2016] [Indexed: 02/02/2023] Open
Abstract
Although the importance of light for tomato plant yield and edible fruit quality is well known, the PHYTOCHROME INTERACTING FACTORS (PIFs), main components of phytochrome-mediated light signal transduction, have been studied almost exclusively in Arabidopsis thaliana. Here, the diversity, evolution and expression profile of PIF gene subfamily in Solanum lycopersicum was characterized. Eight tomato PIF loci were identified, named SlPIF1a, SlPIF1b, SlPIF3, SlPIF4, SlPIF7a, SlPIF7b, SlPIF8a and SlPIF8b. The duplication of SlPIF1, SlPIF7 and SlPIF8 genes were dated and temporally coincided with the whole-genome triplication event that preceded tomato and potato divergence. Different patterns of mRNA accumulation in response to light treatments were observed during seedling deetiolation, dark-induced senescence, diel cycle and fruit ripening. SlPIF4 showed similar expression profile as that reported for A. thaliana homologs, indicating an evolutionary conserved function of PIF4 clade. A comprehensive analysis of the evolutionary and transcriptional data allowed proposing that duplicated SlPIFs have undergone sub- and neofunctionalization at mRNA level, pinpointing the importance of transcriptional regulation for the maintenance of duplicated genes. Altogether, the results indicate that genome polyploidization and functional divergence have played a major role in diversification of the Solanum PIF gene subfamily.
Collapse
Affiliation(s)
- Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Giovanna Gramegna
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Aline Cruz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
340
|
Holtkotte X, Dieterle S, Kokkelink L, Artz O, Leson L, Fittinghoff K, Hayama R, Ahmad M, Hoecker U. Mutations in the N-terminal kinase-like domain of the repressor of photomorphogenesis SPA1 severely impair SPA1 function but not light responsiveness in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:205-218. [PMID: 27310313 DOI: 10.1111/tpj.13241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 05/23/2023]
Abstract
The COP1/SPA complex is an E3 ubiquitin ligase that acts as a key repressor of photomorphogenesis in dark-grown plants. While both COP1 and the four SPA proteins contain coiled-coil and WD-repeat domains, SPA proteins differ from COP1 in carrying an N-terminal kinase-like domain that is not present in COP1. Here, we have analyzed the effects of deletions and missense mutations in the N-terminus of SPA1 when expressed in a spa quadruple mutant background devoid of any other SPA proteins. Deletion of the large N-terminus of SPA1 severely impaired SPA1 activity in transgenic plants with respect to seedling etiolation, leaf expansion and flowering time. This ΔN SPA1 protein showed a strongly reduced affinity for COP1 in vitro and in vivo, indicating that the N-terminus contributes to COP1/SPA complex formation. Deletion of only the highly conserved 95 amino acids of the kinase-like domain did not severely affect SPA1 function nor interactions with COP1 or cryptochromes. In contrast, missense mutations in this part of the kinase-like domain severely abrogated SPA1 function, suggesting an overriding negative effect of these mutations on SPA1 activity. We therefore hypothesize that the sequence of the kinase-like domain has been conserved during evolution because it carries structural information important for the activity of SPA1 in darkness. The N-terminus of SPA1 was not essential for light responsiveness of seedlings, suggesting that photoreceptors can inhibit the COP1/SPA complex in the absence of the SPA1 N-terminal domain. Together, these results uncover an important, but complex role of the SPA1 N-terminus in the suppression of photomorphogenesis.
Collapse
Affiliation(s)
- Xu Holtkotte
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Stefan Dieterle
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Leonie Kokkelink
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Oliver Artz
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Lisa Leson
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Kirsten Fittinghoff
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Ryosuke Hayama
- Max Planck Institute of Plant Breeding Research and Cluster of Excellence on Plant Sciences (CEPLAS), Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Margaret Ahmad
- UMR 8256 (B2A) CNRS - UPMC, IBPS, Université Pierre et Marie Curie, Bat C 3éme étage, 9 quai Saint-Bernard, 75252, Paris, Cedex 05, France
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
341
|
Choi H, Oh E. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis. Mol Cells 2016; 39:587-93. [PMID: 27432188 PMCID: PMC4990750 DOI: 10.14348/molcells.2016.0126] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/27/2022] Open
Abstract
As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth.
Collapse
Affiliation(s)
- Hyunmo Choi
- Forest Biotechnology Division, National Institute of Forest Science, Suwon 16631,
Korea
| | - Eunkyoo Oh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
342
|
Chaiwanon J, Wang W, Zhu JY, Oh E, Wang ZY. Information Integration and Communication in Plant Growth Regulation. Cell 2016; 164:1257-1268. [PMID: 26967291 DOI: 10.1016/j.cell.2016.01.044] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 12/20/2022]
Abstract
Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth.
Collapse
Affiliation(s)
- Juthamas Chaiwanon
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wenfei Wang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Zhi-Yong Wang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
343
|
Pacín M, Semmoloni M, Legris M, Finlayson SA, Casal JJ. Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance. THE NEW PHYTOLOGIST 2016; 211:967-79. [PMID: 27105120 DOI: 10.1111/nph.13965] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/04/2016] [Indexed: 05/22/2023]
Abstract
Shade-avoidance responses require CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) but the mechanisms of action of COP1 under shade have not been elucidated. Using simulated shade and control conditions, we analysed: the transcriptome and the auxin levels of cop1 and phytochrome interacting factor 1 (pif1) pif3 pif4 pif5 (pifq) mutants; the dynamics of ELONGATED HYPOCOTYL 5 (HY5) and LONG HYPOCOTYL IN FAR-RED (HFR1) proteins; and the epistatic relationships between cop1 and pif3, pif4, pif5, hy5 and hfr1 mutations in Arabidopsis thaliana. Despite severely impaired shade-avoidance responses, only a few genes that responded to shade in the wild-type failed to do so in cop1. Shade enhanced the convergence between cop1 and pifq transcriptomes, mainly on shade-avoidance marker genes. Shade failed to increase auxin levels in cop1. Residual shade avoidance in cop1 was not further reduced by the pif3, pif4 or pif5 mutations, suggesting convergent pathways. HFR1 stability decreased under shade in a COP1-dependent manner but shade increased HY5 stability. The cop1 mutant retains responses to shade and is more specifically impaired in shade avoidance. COP1 promotes the degradation of HFR1 under shade, thus increasing the ability of PIFs to control gene expression, increase auxin levels and promote stem growth.
Collapse
Affiliation(s)
- Manuel Pacín
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martın 4453, 1417, Buenos Aires, Argentina
| | - Mariana Semmoloni
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martın 4453, 1417, Buenos Aires, Argentina
| | - Martina Legris
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, 1405, Buenos Aires, Argentina
| | - Scott A Finlayson
- Department of Soil and Crop Sciences, Texas A & M University, College Station, TX, 77843, USA
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jorge J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martın 4453, 1417, Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, 1405, Buenos Aires, Argentina
| |
Collapse
|
344
|
Abstract
The light spectrum perceived by plants is affected by crowding, which results in the shade avoidance syndrome (SAS). Findings presented by Pedmale et al. bring cryptochromes to the forefront of SAS and elucidate a fascinating molecular crosstalk between photoreceptor systems operating in different wavebands.
Collapse
Affiliation(s)
- Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Alfred Batschauer
- Faculty of Biology, Department of Molecular Plant Physiology and Photobiology, Philipps-Universität, 35043 Marburg, Germany.
| |
Collapse
|
345
|
Overexpression of the bacterial tryptophan oxidase RebO affects auxin biosynthesis and Arabidopsis development. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1066-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
346
|
Xu PB, Lian HL, Wang WX, Xu F, Yang HQ. Pivotal Roles of the Phytochrome-Interacting Factors in Cryptochrome Signaling. MOLECULAR PLANT 2016; 9:496-497. [PMID: 26921621 DOI: 10.1016/j.molp.2016.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 01/25/2016] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Peng-Bo Xu
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hong-Li Lian
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Wen-Xiu Wang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Feng Xu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hong-Quan Yang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
347
|
Zhu L, Xin R, Bu Q, Shen H, Dang J, Huq E. A Negative Feedback Loop between PHYTOCHROME INTERACTING FACTORs and HECATE Proteins Fine-Tunes Photomorphogenesis in Arabidopsis. THE PLANT CELL 2016; 28:855-74. [PMID: 27073231 PMCID: PMC4863390 DOI: 10.1105/tpc.16.00122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 05/20/2023]
Abstract
The phytochrome interacting factors (PIFs), a small group of basic helix-loop-helix transcription factors, repress photomorphogenesis both in the dark and light. Light signals perceived by the phytochrome family of photoreceptors induce rapid degradation of PIFs to promote photomorphogenesis. Here, we show that HECATE (HEC) proteins, another small group of HLH proteins, antagonistically regulate PIFs to promote photomorphogenesis. HEC1 and HEC2 heterodimerize with PIF family members. PIF1, HEC1, and HEC2 genes are spatially and temporally coexpressed, and HEC2 is localized in the nucleus. hec1, hec2, and hec3 single mutants and the hec1 hec2 double mutant showed hyposensitivity to light-induced seed germination and accumulation of chlorophyll and carotenoids, hallmark processes oppositely regulated by PIF1. HEC2 inhibits PIF1 target gene expression by directly heterodimerizing with PIF1 and preventing DNA binding and transcriptional activation activity of PIF1. Conversely, PIFs directly activate the expression of HEC1 and HEC2 in the dark, and light reduces the expression of these HECs possibly by degrading PIFs. HEC2 is partially degraded in the dark through the ubiquitin/26S-proteasome pathway and is stabilized by light. HEC2 overexpression also reduces the light-induced degradation of PIF1. Taken together, these data suggest that PIFs and HECs constitute a negative feedback loop to fine-tune photomorphogenesis in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Ruijiao Xin
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Qingyun Bu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Hui Shen
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Jonathan Dang
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
348
|
Affiliation(s)
- Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
349
|
Kong SG, Okajima K. Diverse photoreceptors and light responses in plants. JOURNAL OF PLANT RESEARCH 2016; 129:111-4. [PMID: 26860414 DOI: 10.1007/s10265-016-0792-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Sam-Geun Kong
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
- Research Center for Live-Protein Dynamics, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Koji Okajima
- Department of Physics, Keio University, Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
- RIKEN Harima Institute, Spring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| |
Collapse
|
350
|
Yang L, Wang X, Deng W, Mo W, Gao J, Liu Q, Zhang C, Wang Q, Lin C, Zuo Z. Using HEK293T Expression System to Study Photoactive Plant Cryptochromes. FRONTIERS IN PLANT SCIENCE 2016; 7:940. [PMID: 27446167 PMCID: PMC4921486 DOI: 10.3389/fpls.2016.00940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 05/08/2023]
Abstract
Cryptochromes are photolyase-like blue light receptors that are conserved in plants and animals. Although the light-dependent catalytic mechanism of photolyase is well studied, the photochemical mechanism of cryptochromes remains largely unknown. Lack of an appropriate protein expression system to obtain photochemically active cryptochrome holoproteins is a technical obstacle for the study of plant cryptochromes. We report here an easy-to-use method to express and study Arabidopsis cryptochrome in HEK293T cells. Our results indicate that Arabidopsis cryptochromes expressed in HEK293T are photochemically active. We envision a broad use of this method in the functional investigation of plant proteins, especially in the large-scale analyses of photochemical activities of cryptochromes such as blue light-dependent protein-protein interactions.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin UniversityChangchun, China
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xu Wang
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesCA, USA
| | - Weixian Deng
- Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin UniversityChangchun, China
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Weiliang Mo
- Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin UniversityChangchun, China
| | - Jie Gao
- Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin UniversityChangchun, China
| | - Qing Liu
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Chuanyu Zhang
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Qin Wang
- Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin UniversityChangchun, China
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesCA, USA
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesCA, USA
| | - Zecheng Zuo
- Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin UniversityChangchun, China
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Zecheng Zuo,
| |
Collapse
|