301
|
Zeng Q, Klein C, Caruso S, Maille P, Allende DS, Mínguez B, Iavarone M, Ningarhari M, Casadei-Gardini A, Pedica F, Rimini M, Perbellini R, Boulagnon-Rombi C, Heurgué A, Maggioni M, Rela M, Vij M, Baulande S, Legoix P, Lameiras S, Bruges L, Gnemmi V, Nault JC, Campani C, Rhee H, Park YN, Iñarrairaegui M, Garcia-Porrero G, Argemi J, Sangro B, D'Alessio A, Scheiner B, Pinato DJ, Pinter M, Paradis V, Beaufrère A, Peter S, Rimassa L, Di Tommaso L, Vogel A, Michalak S, Boursier J, Loménie N, Ziol M, Calderaro J. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study. Lancet Oncol 2023; 24:1411-1422. [PMID: 37951222 DOI: 10.1016/s1470-2045(23)00468-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Clinical benefits of atezolizumab plus bevacizumab (atezolizumab-bevacizumab) are observed only in a subset of patients with hepatocellular carcinoma and the development of biomarkers is needed to improve therapeutic strategies. The atezolizumab-bevacizumab response signature (ABRS), assessed by molecular biology profiling techniques, has been shown to be associated with progression-free survival after treatment initiation. The primary objective of our study was to develop an artificial intelligence (AI) model able to estimate ABRS expression directly from histological slides, and to evaluate if model predictions were associated with progression-free survival. METHODS In this multicentre retrospective study, we developed a model (ABRS-prediction; ABRS-P), which was derived from the previously published clustering-constrained attention multiple instance learning (or CLAM) pipeline. We trained the model fit for regression analysis using a multicentre dataset from The Cancer Genome Atlas (patients treated by surgical resection, n=336). The ABRS-P model was externally validated on two independent series of samples from patients with hepatocellular carcinoma (a surgical resection series, n=225; and a biopsy series, n=157). The predictive value of the model was further tested in a series of biopsy samples from a multicentre cohort of patients with hepatocellular carcinoma treated with atezolizumab-bevacizumab (n=122). All samples in the study were from adults (aged ≥18 years). The validation sets were sampled between Jan 1, 2008, to Jan 1, 2023. For the multicentre validation set, the primary objective was to assess the association of high versus low ABRS-P values, defined relative to cross-validation median split thresholds in the first biopsy series, with progression-free survival after treatment initiation. Finally, we performed spatial transcriptomics and matched prediction heatmaps with in situ expression profiles. FINDINGS Of the 840 patients sampled, 641 (76%) were male and 199 (24%) were female. Across the development and validation datasets, hepatocellular carcinoma risk factors included alcohol intake, hepatitis B and C virus infections, and non-alcoholic steatohepatitis. Using cross-validation in the development series, the mean Pearson's correlation between ABRS-P values and ABRS score (mean expression of ABRS genes) was r=0·62 (SD 0·09; mean p<0·0001, SD<0·0001). The ABRS-P generalised well on the external validation series (surgical resection series, r=0·60 [95% CI 0·51-0·68], p<0·0001; biopsy series, r=0·53 [0·40-0·63], p<0·0001). In the 122 patients treated with atezolizumab-bevacizumab, those with ABRS-P-high tumours (n=74) showed significantly longer median progression-free survival than those with ABRS-P-low tumours (n=48) after treatment initiation (12 months [95% CI 7-not reached] vs 7 months [4-9]; p=0·014). Spatial transcriptomics showed significantly higher ABRS score, along with upregulation of various other immune effectors, in tumour areas with high ABRS-P values versus areas with low ABRS-P values. INTERPRETATION Our study indicates that AI applied on hepatocellular carcinoma digital slides is able to serve as a biomarker for progression-free survival in patients treated with atezolizumab-bevacizumab. This approach could be used in the development of inexpensive and fast biomarkers for targeted therapies. The combination of AI heatmaps with spatial transcriptomics provides insight on the molecular features associated with predictions. This methodology could be applied to other cancers or diseases and improve understanding of the biological mechanisms that drive responses to treatments. FUNDING Institut National du Cancer, Fondation ARC, China Scholarship Council, Ligue Contre le Cancer du Val de Marne, Fondation de l'Avenir, Ipsen, and Fondation Bristol Myers Squibb Pour la Recherche en Immuno-Oncologie.
Collapse
Affiliation(s)
- Qinghe Zeng
- Centre d'Histologie, d'Imagerie et de Cytométrie, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France; Laboratoire d'Informatique Paris Descartes, Université Paris Cité, Paris, France
| | - Christophe Klein
- Centre d'Histologie, d'Imagerie et de Cytométrie, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Stefano Caruso
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France; Department of Pathology, Henri Mondor-Albert Chenevier University Hospital, AP-HP, Créteil, France
| | - Pascale Maille
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France; Department of Pathology, Henri Mondor-Albert Chenevier University Hospital, AP-HP, Créteil, France
| | - Daniela S Allende
- Pathology Department and Robert J Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Beatriz Mínguez
- Liver Unit, Hospital Universitario Vall d'Hebron, Barcelona, Spain; Liver Cancer Research Group, Liver Diseases, Vall d'Hebron Institut de Recerca, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Massimo Iavarone
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massih Ningarhari
- Centre Hospitalier Universitaire de Lille, Hôpital Huriez, Maladies de l'Appareil Digestif, Lille, France; Université de Lille, INSERM, INFINITE, Lille, France
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | | | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Riccardo Perbellini
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Camille Boulagnon-Rombi
- Reims University Hospital, Department of Pathology, Reims, France; Research Unit CNRS UMR 7369 MEDyC, Université de Reims Champagne-Ardenne, Faculté de Médecine de Reims, Reims, France
| | | | - Marco Maggioni
- Department of Pathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mohamed Rela
- The Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence NGS Platform, Institut Curie, Paris, France
| | - Patricia Legoix
- Institut Curie Genomics of Excellence NGS Platform, Institut Curie, Paris, France
| | - Sonia Lameiras
- Institut Curie Genomics of Excellence NGS Platform, Institut Curie, Paris, France
| | - Léa Bruges
- Centre Hospitalier Universitaire de Lille, Hôpital Huriez, Maladies de l'Appareil Digestif, Lille, France; Université de Lille, INSERM, INFINITE, Lille, France
| | - Viviane Gnemmi
- Service d'Anatomie Pathologique, Centre de Biologie Pathologique, CHU Lille, Lille, France; JPARC-Jean-Pierre Aubert Research Center, Lille, France
| | - Jean-Charles Nault
- AP-HP Paris Nord, Hôpital Universitaire Avicenne, Service d'Hépatologie, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France; INSERM, Université de Paris Cité, Functional Genomics of Solid Tumors, Paris, France
| | - Claudia Campani
- Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France; INSERM, Université de Paris Cité, Functional Genomics of Solid Tumors, Paris, France
| | - Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Nyun Park
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Mercedes Iñarrairaegui
- Liver Unit, Clínica Universidad de Navarra, Pamplona, Spain; Department of Internal Medicine, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Centro de Investigación Sanitaria en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | | | - Josepmaria Argemi
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra and CIBEREHD, Pamplona, Spain; Hepatology Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Bruno Sangro
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra and CIBEREHD, Pamplona, Spain; Hepatology Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Antonio D'Alessio
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - David James Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale "A Avogadro", Novara, Italy
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Valérie Paradis
- Centre de Recherche sur l'Inflammation, INSERM 1149, Université Paris Cité, Paris, France; Pathology Department, Beaujon Hospital, AP-HP Nord, Clichy, France
| | - Aurélie Beaufrère
- Centre de Recherche sur l'Inflammation, INSERM 1149, Université Paris Cité, Paris, France; Pathology Department, Beaujon Hospital, AP-HP Nord, Clichy, France
| | - Simon Peter
- Department of Gastroenterology, Hepatology and Endocrinology and Center for Personalized Medicine, Hannover Medical School, Hannover, Germany
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Pathology Unit, Humanitas Cancer Center IRCCS Humanitas Research Hospital, Milan, Italy
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology and Center for Personalized Medicine, Hannover Medical School, Hannover, Germany
| | - Sophie Michalak
- Laboratoire HIFIH, EA 3859, Université d'Angers, Angers, France; Angers University Hospital, Department of Pathology, Angers, France
| | - Jérôme Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France; Laboratoire Hémodynamique, Interaction Fibrose et Invasivité Tumorales Hépatiques, University Paris Research, Structure Fédérative de Recherche, Interactions Cellulaires et Applications Thérapeutiques 4208, University of Angers, Angers, France
| | - Nicolas Loménie
- Laboratoire d'Informatique Paris Descartes, Université Paris Cité, Paris, France
| | - Marianne Ziol
- Centre de Ressources Biologiques (BB-0033-00027) Hôpitaux Universitaires Paris-Seine-Saint-Denis, AP-HP, Bobigny, France; Service d'Anatomie Pathologique, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, AP-HP, Bobigny, France
| | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France; Department of Pathology, Henri Mondor-Albert Chenevier University Hospital, AP-HP, Créteil, France.
| |
Collapse
|
302
|
Öztürk B. Genomic Variations Between Fibrolamellar and Conventional Hepatocellular Carcinomas. Cureus 2023; 15:e50795. [PMID: 38116022 PMCID: PMC10730026 DOI: 10.7759/cureus.50795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
Aim The aim of this study is to define genomic variations between fibrolamellar hepatocellular carcinoma (FL-HCC) and conventional hepatocellular carcinoma (HCC) Methods This study used the American Association for Cancer Research (AACR) Project GENIE data as a foundational element. Specifically, information about both fibrolamellar and conventional hepatocellular carcinoma was retrieved from this database. Results A total of 719 patients diagnosed with HCC and 52 individuals presenting with FL-HCC underwent thorough analysis. Notably, distinct variances in gene alterations were observed between the two cohorts. Predominantly, the HCC group exhibited frequent occurrences of mutations within the TP53 and CTNNB1 genes. Conversely, DNAJB1 fusion was uniquely identified in FL-HCC cases. Conclusion This study significantly broadens our understanding of the genetic makeup associated with FL-HCC and HCC. It is particularly notable because it reveals clear disparities in gene modifications between FL-HCC and HCC. Further investigation is essential to unravel the functional consequences of these genetic variances. This exploration will aid in the development of targeted therapeutic approaches to enhance the prognosis of patients diagnosed with diverse subtypes of HCC.
Collapse
Affiliation(s)
- Bengi Öztürk
- Gastroenterology Department, Hacettepe University Faculty of Medicine, Ankara, TUR
| |
Collapse
|
303
|
Wu H, Kren BT, Lane AN, Cassel TA, Higashi RM, Fan TWM, Scaria GS, Shekels LL, Klein MA, Albrecht JH. Cyclin D1 extensively reprograms metabolism to support biosynthetic pathways in hepatocytes. J Biol Chem 2023; 299:105407. [PMID: 38152849 PMCID: PMC10687208 DOI: 10.1016/j.jbc.2023.105407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 12/29/2023] Open
Abstract
Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.
Collapse
Affiliation(s)
- Heng Wu
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Teresa A Cassel
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Teresa W M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - George S Scaria
- Hematology and Oncology Division, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Laurie L Shekels
- Research Service, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Mark A Klein
- Hematology and Oncology Division, Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - Jeffrey H Albrecht
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
304
|
Cheng TC, Wu JH, Zhu B, Gao HY, Zheng L, Chen WX. Identification of a novel five ferroptosis-related gene signature as a promising prognostic model for breast cancer. J Cancer Res Clin Oncol 2023; 149:16779-16795. [PMID: 37728703 PMCID: PMC10645672 DOI: 10.1007/s00432-023-05423-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Breast cancer (BCa) is a major challenge for women's health worldwide. Ferroptosis is closely related to tumorigenesis and cancer progression. However, the prognostic value of ferroptosis-related genes in BCa remains unclear, and more accurate prognostic models are urgently needed. METHODS Gene expression profiles and clinical information of BCa patients were collected from public databases. LASSO and multivariate Cox regression analysis were utilized to construct the prognostic gene signature. Kaplan-Meier plotter, receiver operating characteristic (ROC) curves, and nomogram were used to validate the prognostic value of the gene signature. Gene set enrichment analysis was performed to explore the molecular functions and signaling pathways. RESULTS Differentially expressed ferroptosis-related genes between BCa samples and normal tissues were obtained. A novel five-gene signature including BCL2, SLC40A1, TFF1, APOOL, and PRAME was established for prognosis prediction. Patients stratified into high-risk or low-risk group displayed significantly different survival. Kaplan-Meier and ROC curves showed a good performance for survival prediction in different cohorts. Biological function analysis revealed that the five-gene signature was associated with cancer progression, immune infiltration, immune response, and drug resistance. Nomogram including the five-gene signature was established. CONCLUSION A novel five ferroptosis-related gene signature and nomogram could be used for prognostic prediction in BCa.
Collapse
Affiliation(s)
- Tian- Cheng Cheng
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
- Graduate School, Bengbu Medical College, Bengbu, 233000, Anhui Province, China
| | - Jia-Hao Wu
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
- Graduate School, Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Bei Zhu
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
| | - Hai-Yan Gao
- Department of Breast Surgery, The Affiliated Changzhou Tumor Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, China
| | - Lin Zheng
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China.
| | - Wei-Xian Chen
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China.
- Post-Doctoral Working Station, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, ChangzhouJiangsu Province, 213000, China.
| |
Collapse
|
305
|
Wu R, Gao Y, Zhao X, Guo S, Zhou H, Zhang Y, Hou Y, Mei L, Zhi H, Wang P, Li X, Ning S, Zhang Y. Tumor biology, immune infiltration and liver function define seven hepatocellular carcinoma subtypes linked to distinct drivers, survival and drug response. Comput Biol Med 2023; 167:107593. [PMID: 37883849 DOI: 10.1016/j.compbiomed.2023.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND & AIMS Tumor heterogeneity is jointly determined by the components of the tumor ecosystem (TES) including tumor cells, immune cells, stromal cells, and non-cellular components. We aimed to identify subtypes using TES-related genes and determine subtype specific drivers and treatments for hepatocellular carcinoma (HCC). METHODS We collected 68 genesets depicting tumor biology, immune infiltration, and liver function, totaling 2831 genes, and collected mRNA profiles and clinical data for over 6000 tumors from 65 datasets in the GEO, TCGA, ICGC, and several other databases. We designed a three-step clustering pipeline to identify subtypes. The microenvironment, genomic alteration, and drug response differences were systematically compared among subtypes. RESULTS Seven subtypes (TES-1/2/3/4/5/6/7) were revealed in 159 tumors from the CHCC-HBV cohort. We constructed a single sample classifier using paired genes (sscpgsTES). TES subtypes were significantly associated with multiple clinical variables including etiology, and survival in 14 of 17 cohorts and the meta-cohort. TES-1 had the poorest prognosis and highest proliferation level. Both TES-2 and TES-7 were immune-enriched, however, TES-2 had a significantly worse prognosis, and hypoxic and immunosuppressive microenvironment. TES-4 had activated Wnt pathway, driven by CTNNB1 mutation. Good prognosis TES-6 exhibited the best differentiation. TES-5 and TES-3 were considered as novel subclasses by comparing with ten previous subtyping systems. TES-5 tumors had high AFP but good overall survival, and ∼45% of them harbored AXIN1 mutation. TES-3 was immune and stromal desert, may be driven by high copy number alteration burden, and had the poorest response to immune checkpoint inhibitor. TES-1 and TES-2 had significantly lower response to transarterial chemoembolization, but they showed significantly higher sensitivity to compound YM-155. CONCLUSIONS Tumor ecosystem subtypes expand existing HCC subtyping systems, have distinct drivers, prognosis, and treatment vulnerabilities.
Collapse
Affiliation(s)
- Ruihong Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China; Phase I Clinical Research Center, First Hospital of Jilin University, Chang chun, Jilin, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoxi Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yakun Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yaopan Hou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lan Mei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
306
|
Wang S, Wang YF, Yang G, Zhang HH, Yuan HF, Hou CY, Zhao LN, Suo YH, Sun J, Sun LL, Lv P, Sun Y, Zhang NN, Zhang XD, Lu W. Heat shock protein family A member 8 serving as a co-activator of transcriptional factor ETV4 up-regulates PHLDA2 to promote the growth of liver cancer. Acta Pharmacol Sin 2023; 44:2525-2536. [PMID: 37474643 PMCID: PMC10692233 DOI: 10.1038/s41401-023-01133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Heat shock protein family A member 8 (HSPA8) participates in the folding or degradation of misfolded proteins under stress and plays critical roles in cancer. In this study, we investigated the function of HSPA8 in the development of liver cancer. By analyzing the TCGA transcriptome dataset, we found that HSPA8 was upregulated in 134 clinical liver cancer tissue samples, and positively correlated with poor prognosis. IHC staining showed the nuclear and cytoplasmic localization of HSPA8 in liver cancer cells. Knockdown of HSPA8 resulted in a decrease in the proliferation of HepG2 and Huh-7 cells. ChIP-seq and RNA-seq analysis revealed that HSPA8 bound to the promoter of pleckstrin homology-like domain family A member 2 (PHLDA2) and regulated its expression. The transcription factor ETV4 in HepG2 cells activated PHLDA2 transcription. HSPA8 and ETV4 could interact with each other in the cells and colocalize in the nucleus. From a functional perspective, we demonstrated that HSPA8 upregulated PHDLA2 through the coactivating transcription factor ETV4 to enhance the growth of liver cancer in vitro and in vivo. From a therapeutic perspective, we identified both HSPA8 and PHDLA2 as novel targets in the treatment of HCC. In conclusion, this study demonstrates that HSPA8 serves as a coactivator of ETV4 and upregulates PHLDA2, leading to the growth of HCC, and is a potential therapeutic target in HCC treatment.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Yu-Fei Wang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui-Hui Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong-Feng Yuan
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chun-Yu Hou
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Li-Na Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu-Hong Suo
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Jiao Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Lin-Lin Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Pan Lv
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yan Sun
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
| | - Ning-Ning Zhang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China.
| | - Xiao-Dong Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China.
| |
Collapse
|
307
|
Zhang Z, Hui L. Progress in patient-derived liver cancer cell models: a step forward for precision medicine. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1707-1717. [PMID: 37766458 PMCID: PMC10679880 DOI: 10.3724/abbs.2023224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
The development of effective precision treatments for liver cancers has been hindered by the scarcity of preclinical models that accurately reflect the heterogeneity of this disease. Recent progress in developing patient-derived liver cancer cell lines and organoids has paved the way for precision medicine research. These expandable resources of liver cancer cell models enable a full spectrum of pharmacogenomic analysis for liver cancers. Moreover, patient-derived and short-term cultured two-dimensional tumor cells or three-dimensional organoids can serve as patient avatars, allowing for the prediction of patients' response to drugs and facilitating personalized treatment for liver cancer patients. Furthermore, the current novel techniques have expanded the scope of cancer research, including innovative organoid culture, gene editing and bioengineering. In this review, we provide an overview of the progress in patient-derived liver cancer cell models, focusing on their applications in precision and personalized medicine research. We also discuss the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Zhengtao Zhang
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Lijian Hui
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai200031China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
308
|
Wen DS, Huang LC, Bu XY, He MK, Lai ZC, Du ZF, Huang YX, Kan A, Shi M. DNA methylation-activated full-length EMX1 facilitates metastasis through EMX1-EGFR-ERK axis in hepatocellular carcinoma. Cell Death Dis 2023; 14:769. [PMID: 38007497 PMCID: PMC10676392 DOI: 10.1038/s41419-023-06293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Altered DNA methylation is a crucial epigenetic event in hepatocellular carcinoma (HCC) development and progression. Through methylation-transcriptomic analysis, we identified a set of sixty potential DNA methylation-based epidriver genes. In this set of genes, we focused on the hypermethylation of EMX1, which is frequently observed in hepatobiliary tumors. Despite of its frequent occurrence, the function of EMX1 remains largely unknown. By utilizing bisulfite-next-generation sequencing, we have detected EMX1 DNA hypermethylation on the gene body, which is positively correlated with EMX1 mRNA expression. Further analysis revealed that EMX1 mRNA terminal exon splicing in HCC generated two protein isoforms: EMX1 full length (EMX1-FL) and alternative terminal exon splicing isoform (EMX1-X1). Cellular functional assays demonstrated that gain-of-function EMX1-FL, but not EMX1-X1, induced HCC cells migration and invasion while silencing EMX1-FL inhibited HCC cells motility. This result was further validated by in vivo tumor metastasis models. Mechanistically, EMX1-FL bound to EGFR promoter, promoting EGFR transcription and activating EGFR-ERK signaling to trigger tumor metastasis. Therefore, EGFR may be a potential therapeutic target for EMX1-high expression HCC. Our work illuminated the crucial role of gene body hypermethylation-activated EMX1-FL in promoting tumorigenesis and metastasis in HCC. These findings pave the way for targeting the EMX1-EGFR axis in HCC tumorigenicity and metastasis.
Collapse
Affiliation(s)
- Dong-Sheng Wen
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Li-Chang Huang
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Xiao-Yun Bu
- Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P. R. China
| | - Min-Ke He
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Zhi-Cheng Lai
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Ze-Feng Du
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Ye-Xing Huang
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Anna Kan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China.
| | - Ming Shi
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China.
| |
Collapse
|
309
|
Zhou PY, Zhou C, Gan W, Tang Z, Sun BY, Huang JL, Liu G, Liu WR, Tian MX, Jiang XF, Wang H, Tao CY, Fang Y, Qu WF, Huang R, Zhu GQ, Huang C, Fu XT, Ding ZB, Gao Q, Zhou J, Shi YH, Yi Y, Fan J, Qiu SJ. Single-cell and spatial architecture of primary liver cancer. Commun Biol 2023; 6:1181. [PMID: 37985711 PMCID: PMC10661180 DOI: 10.1038/s42003-023-05455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/12/2023] [Indexed: 11/22/2023] Open
Abstract
Primary liver cancer (PLC) poses a leading threat to human health, and its treatment options are limited. Meanwhile, the investigation of homogeneity and heterogeneity among PLCs remains challenging. Here, using single-cell RNA sequencing, spatial transcriptomic and bulk multi-omics, we elaborated a molecular architecture of 3 PLC types, namely hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and combined hepatocellular-cholangiocarcinoma (CHC). Taking a high-resolution perspective, our observations revealed that CHC cells exhibit internally discordant phenotypes, whereas ICC and HCC exhibit distinct tumor-specific features. Specifically, ICC was found to be the primary source of cancer-associated fibroblasts, while HCC exhibited disrupted metabolism and greater individual heterogeneity of T cells. We further revealed a diversity of intermediate-state cells residing in the tumor-peritumor junctional zone, including a congregation of CPE+ intermediate-state endothelial cells (ECs), which harbored the molecular characteristics of tumor-associated ECs and normal ECs. This architecture offers insights into molecular characteristics of PLC microenvironment, and hints that the tumor-peritumor junctional zone could serve as a targeted region for precise therapeutical strategies.
Collapse
Affiliation(s)
- Pei-Yun Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.
- Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Wei Gan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Jin-Long Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Gao Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Meng-Xin Tian
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Xi-Fei Jiang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Han Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Chen-Yang Tao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Yuan Fang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Wei-Feng Qu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Run Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Gui-Qi Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Xiu-Tao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
310
|
Du Z, Zhang Q, Yang J. Prognostic related gene index for predicting survival and immunotherapeutic effect of hepatocellular carcinoma. Medicine (Baltimore) 2023; 102:e35820. [PMID: 37933057 PMCID: PMC10627638 DOI: 10.1097/md.0000000000035820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignant liver tumor. It is an aggressive disease with high mortality rate. In this study, we investigated a new prognosis-related gene index (PRGI) that can predict the survival and efficacy of immunotherapy in patients with HCC. RNA-seq data and clinical data of HCC samples were obtained from the cancer genome atlas and ICGC databases. Prognosis-related genes were obtained using log-rank tests and univariate Cox proportional hazards regression. Univariate and multivariate analyses were performed on the overall survival rate of patients with prognosis-related genes and multiple clinicopathological factors, and a nomogram was constructed. A PRGI was then constructed based on least absolute shrinkage and selection operator or multivariate Cox Iterative Regression. The possible correlation between PRGI and immune cell infiltration or immunotherapy efficacy was discussed. Eight genes were identified to construct the PRGI. PRGI can predict the infiltration of immune cells into the tumor microenvironment of HCC and the response to immunotherapy. PRGI can accurately predict the survival rate of patients with HCC, reflect the immune microenvironment, and predict the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zhongxiang Du
- Clinical Laboratory, Danyang People’s Hospital of Jiangsu Province, Danyang Hospital Affiliated to Nantong University, Danyang, Jiangsu, China
| | - Qi Zhang
- Clinical Laboratory, Danyang People’s Hospital of Jiangsu Province, Danyang Hospital Affiliated to Nantong University, Danyang, Jiangsu, China
| | - Jie Yang
- Clinical Laboratory, Danyang People’s Hospital of Jiangsu Province, Danyang Hospital Affiliated to Nantong University, Danyang, Jiangsu, China
| |
Collapse
|
311
|
Xu LB, Qin YF, Su L, Huang C, Xu Q, Zhang R, Shi XD, Sun R, Chen J, Song Z, Jiang X, Shang L, Xiao G, Kong X, Liu C, Wong PP. Cathepsin-facilitated invasion of BMI1-high hepatocellular carcinoma cells drives bile duct tumor thrombi formation. Nat Commun 2023; 14:7033. [PMID: 37923799 PMCID: PMC10624910 DOI: 10.1038/s41467-023-42930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Bile duct tumor thrombosis (BDTT) is a complication mostly observed in patients with advanced hepatocellular carcinoma (HCC), causing jaundice and associated with poor clinical outcome. However, its underlying molecular mechanism is unclear. Here, we develop spontaneous preclinical HCC animal models with BDTT to identify the role of BMI1 expressing tumor initiating cells (BMI1high TICs) in inducing BDTT. BMI1 overexpression transforms liver progenitor cells into BMI1high TICs, which possess strong tumorigenicity and increased trans-intrahepatic biliary epithelial migration ability by secreting lysosomal cathepsin B (CTSB). Orthotopic liver implantation of BMI1high TICs into mice generates tumors and triggers CTSB mediated bile duct invasion to form tumor thrombus, while CTSB inhibitor treatment prohibits BDTT and extends mouse survival. Clinically, the elevated serum CTSB level determines BDTT incidence in HCC patients. Mechanistically, BMI1 epigenetically up-regulates CTSB secretion in TICs by repressing miR-218-1-3p expression. These findings identify a potential diagnostic and therapeutic target for HCC patients with BDTT.
Collapse
Affiliation(s)
- Lei-Bo Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yu-Fei Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Liangping Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiang-De Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ruipu Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiali Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhixiao Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lihuan Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Gang Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
312
|
Wei X, Michelakos T, He Q, Wang X, Chen Y, Kontos F, Wang H, Liu X, Liu H, Zheng W, Ferrone S, Zhang Y, Ferrone CR, Li X, Cai L. Association of Tumor Cell Metabolic Subtype and Immune Response With the Clinical Course of Hepatocellular Carcinoma. Oncologist 2023; 28:e1031-e1042. [PMID: 37159555 PMCID: PMC10628596 DOI: 10.1093/oncolo/oyad113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/15/2023] [Indexed: 05/11/2023] Open
Abstract
AIM Tumor metabolism plays an important role in tumorigenesis and tumor progression. This study evaluated the potential association of tumor cell metabolism and immune cell tumor infiltration with the clinical course of hepatocellular carcinoma (HCC). METHODS Gene-wise normalization and principal component analysis were performed to evaluate the metabolic system. A tumor microenvironment score system of tumor immune cell infiltration was constructed to evaluate its association with metabolic subtypes. Finally, we analyzed the impact of metabolism and immune cell infiltration on the clinical course of HCC. RESULTS A total of 673 HCC patients were categorized into cholesterogenic (25.3%), glycolytic (14.6%), mixed (10.4%), and quiescent (49.8%) types based on glycolysis and cholesterol biosynthesis gene expression. The subgroups including the glycolytic genotyping expression (glycolytic and mixed types) showed a higher mortality rate. The glycolytic, cholesterogenic, and mixed types were positively correlated with M0 macrophage, resting mast cell, and naïve B-cell infiltration (P = .013, P = .019, and P = .006, respectively). In TCGA database, high CD8+ T cell and low M0 macrophage infiltration were associated with prolonged overall survival (OS, P = .0017 and P < .0001, respectively). Furthermore, in glycolytic and mixed types, patients with high M0 macrophage infiltration had a shorter OS (P = .03 and P = .013, respectively), and in quiescent type, patients with low naïve B-cell infiltration had a longer OS (P = .007). CONCLUSIONS Tumor metabolism plays a prognostic role and correlates with immune cell infiltration in HCC. M0 macrophage and CD8+ T cell appear to be promising prognostic biomarker for HCC. Finally, M0 macrophages may represent a useful immunotherapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Xiaolin Wei
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qian He
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Yu Chen
- Department of Digestive Diseases, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai, People’s Republic of China
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Xiangde Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Wenjing Zheng
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yun Zhang
- Department of Foreign Languages, Army Medical University, Chongqing, People’s Republic of China
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Cedar-Sinai Health System, Los Angeles, CA, USA
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Lei Cai
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| |
Collapse
|
313
|
Sun B, Ji WD, Wang WC, Chen L, Ma JY, Tang EJ, Lin MB, Zhang XF. Circulating tumor cells participate in the formation of microvascular invasion and impact on clinical outcomes in hepatocellular carcinoma. Front Genet 2023; 14:1265866. [PMID: 38028589 PMCID: PMC10652898 DOI: 10.3389/fgene.2023.1265866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide. Although the treatment strategies have been improved in recent years, the long-term prognosis of HCC is far from satisfactory mainly due to high postoperative recurrence and metastasis rate. Vascular tumor thrombus, including microvascular invasion (MVI) and portal vein tumor thrombus (PVTT), affects the outcome of hepatectomy and liver transplantation. If vascular invasion could be found preoperatively, especially the risk of MVI, more reasonable surgical selection will be chosen to reduce the risk of postoperative recurrence and metastasis. However, there is a lack of reliable prediction methods, and the formation mechanism of MVI/PVTT is still unclear. At present, there is no study to explore the possibility of tumor thrombus formation from a single circulating tumor cell (CTC) of HCC, nor any related study to describe the possible leading role and molecular mechanism of HCC CTCs as an important component of MVI/PVTT. In this study, we review the current understanding of MVI and possible mechanisms, discuss the function of CTCs in the formation of MVI and interaction with immune cells in the circulation. In conclusion, we discuss implications for potential therapeutic targets and the prospect of clinical treatment of HCC.
Collapse
Affiliation(s)
- Bin Sun
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei-Dan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Navy Military Medical University, Shanghai, China
| | - Wen-Chao Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun-Yong Ma
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, China
| | - Er-Jiang Tang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mou-Bin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Feng Zhang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, China
| |
Collapse
|
314
|
Adugna A. Histomolecular characterisation of hepatitis B virus induced liver cancer. Rev Med Virol 2023; 33:e2485. [PMID: 37902197 DOI: 10.1002/rmv.2485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/06/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Hepatitis B virus (HBV)-associated liver cancer is the third most prevalent cancer-related cause of death worldwide. Different studies have been done on the histomolecular analysis of HBV induced-liver cancer including epigenetics which are dynamic molecular mechanisms to control gene expression without altering the host deoxyribonucleic acid, genomics characterise the integration of the viral genome with host genome, proteomics characterise how gene modifies and results overexpression of proteins, glycoproteomics discover different glyco-biomarker candidates and show glycosylation in malignant hepatocytes, metabolomics characterise how HBV impairs a variety of metabolic functions during hepatocyte immortalisation, exosomes characterise immortalised liver cells in terms of their differentiation and proliferation, and autophagy plays a role in the development of hepatocarcinogenesis linked to HBV infection.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Microbiology, Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
315
|
Dekky B, Azar F, Bonnier D, Monseur C, Kalebić C, Arpigny E, Colige A, Legagneux V, Théret N. ADAMTS12 is a stromal modulator in chronic liver disease. FASEB J 2023; 37:e23237. [PMID: 37819632 DOI: 10.1096/fj.202200692rrrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Adamalysins, a family of metalloproteinases containing a disintegrin and metalloproteinases (ADAMs) and ADAM with thrombospondin motifs (ADAMTSs), belong to the matrisome and play important roles in various biological and pathological processes, such as development, immunity and cancer. Using a liver cancer dataset from the International Cancer Genome Consortium, we developed an extensive in silico screening that identified a cluster of adamalysins co-expressed in livers from patients with hepatocellular carcinoma (HCC). Within this cluster, ADAMTS12 expression was highly associated with recurrence risk and poorly differentiated HCC signatures. We showed that ADAMTS12 was expressed in the stromal cells of the tumor and adjacent fibrotic tissues of HCC patients, and more specifically in activated stellate cells. Using a mouse model of carbon tetrachloride-induced liver injury, we showed that Adamts12 was strongly and transiently expressed after a 24 h acute treatment, and that fibrosis was exacerbated in Adamts12-null mice submitted to carbon tetrachloride-induced chronic liver injury. Using the HSC-derived LX-2 cell line, we showed that silencing of ADAMTS12 resulted in profound changes of the gene expression program. In particular, genes previously reported to be induced upon HSC activation, such as PAI-1, were mostly down-regulated following ADAMTS12 knock-down. The phenotype of these cells was changed to a less differentiated state, showing an altered actin network and decreased nuclear spreading. These phenotypic changes, together with the down-regulation of PAI-1, were offset by TGF-β treatment. The present study thus identifies ADAMTS12 as a modulator of HSC differentiation, and a new player in chronic liver disease.
Collapse
Affiliation(s)
- Bassil Dekky
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Fida Azar
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Dominique Bonnier
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Christine Monseur
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Chiara Kalebić
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Esther Arpigny
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Vincent Legagneux
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Nathalie Théret
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| |
Collapse
|
316
|
Zhang Y, Liu Z, Li J, Wu B, Li X, Duo M, Xu H, Liu L, Su X, Duan X, Luo P, Zhang J, Li Z. Oncogenic pathways refine a new perspective on the classification of hepatocellular carcinoma. Cell Signal 2023; 111:110890. [PMID: 37714446 DOI: 10.1016/j.cellsig.2023.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Genetic alterations in oncogenic pathways are critical for cancer initiation, development, and treatment resistance. However, studies are limited regarding pathways correlated with prognosis, sorafenib, and transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC). METHODS In this study, 1928 patients from 11 independent datasets and a clinical in-house cohort were screened to explore the relationships among canonical pathway alterations in HCC patients. The molecular mechanisms, biological functions, immune landscape, and clinical outcomes among three heterogeneous phenotypes were further explored. RESULTS We charted the detailed landscape of pathway alterations in the TCGA-LIHC cohort, screened three pivotal pathways (p53, PI3K, and WNT), identified co-occurrence patterns and mutual exclusively, and stratified patients into three altered-pathway dominant phenotypes (ADPs). P53|PI3K ADP characterized by genomic instability (e.g., highest TMB, FGA, FGG, and FGL) indicated an unfavorable prognosis. While, patients in WNT ADP suggested a median prognosis, enhanced immune activation, and sensitivity to PD-L1 therapy. Remarkably, sorafenib and TACE exhibited efficacy for patients in WNT ADP and low frequent alteration phenotype (LFP). Additionally, ADP could work independently of common clinical traits (e.g., AJCC stage) and previous molecular classifications (e.g., iCluster, serum biomarkers). CONCLUSIONS ADP provides a new perspective for identifying patients at high risk of recurrence and could optimize precision treatment to improve the clinical outcomes in HCC.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100730, China
| | - Jie Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Bailu Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Mengjie Duo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Xuhua Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
317
|
Greten TF, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, Ruppin E, Wang XW. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat Rev Clin Oncol 2023; 20:780-798. [PMID: 37726418 DOI: 10.1038/s41571-023-00816-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Immune-checkpoint inhibitors (ICIs) are now widely used for the treatment of patients with advanced-stage hepatocellular carcinoma (HCC). Two different ICI-containing regimens, atezolizumab plus bevacizumab and tremelimumab plus durvalumab, are now approved standard-of-care first-line therapies in this setting. However, and despite substantial improvements in survival outcomes relative to sorafenib, most patients with advanced-stage HCC do not derive durable benefit from these regimens. Advances in genome sequencing including the use of single-cell RNA sequencing (both of tumour material and blood samples), as well as immune cell identification strategies and other techniques such as radiomics and analysis of the microbiota, have created considerable potential for the identification of novel predictive biomarkers enabling the accurate selection of patients who are most likely to derive benefit from ICIs. In this Review, we summarize data on the immunology of HCC and the outcomes in patients receiving ICIs for the treatment of this disease. We then provide an overview of current biomarker use and developments in the past 5 years, including gene signatures, circulating tumour cells, high-dimensional flow cytometry, single-cell RNA sequencing as well as approaches involving the microbiome, radiomics and clinical markers. Novel concepts for further biomarker development in HCC are then discussed including biomarker-driven trials, spatial transcriptomics and integrated 'big data' analysis approaches. These concepts all have the potential to better identify patients who are most likely to benefit from ICIs and to promote the development of new treatment approaches.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Augusto Villanueva
- Divisions of Liver Disease and Hematology/Medical Oncology, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Yarchoan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xin W Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
318
|
Liu F, Liao Z, Zhang Z. MYC in liver cancer: mechanisms and targeted therapy opportunities. Oncogene 2023; 42:3303-3318. [PMID: 37833558 DOI: 10.1038/s41388-023-02861-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
MYC, a major oncogenic transcription factor, regulates target genes involved in various pathways such as cell proliferation, metabolism and immune evasion, playing a critical role in the tumor initiation and development in multiple types of cancer. In liver cancer, MYC and its signaling pathways undergo significant changes, exerting a profound impact on liver cancer progression, including tumor proliferation, metastasis, dedifferentiation, metabolism, immune microenvironment, and resistance to comprehensive therapies. This makes MYC an appealing target, despite it being previously considered an undruggable protein. In this review, we discuss the role and mechanisms of MYC in liver physiology, chronic liver diseases, hepatocarcinogenesis, and liver cancer progression, providing a theoretical basis for targeting MYC as an ideal therapeutic target for liver cancer. We also summarize and prospect the strategies for targeting MYC, including direct and indirect approaches to abolish the oncogenic function of MYC in liver cancer.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
319
|
Tsutsui K, Nakayama M, Ogasawara S, Akiba J, Kondo R, Mihara Y, Yano Y, Mizuochi S, Kinjo Y, Murotani K, Yano H. Clinicopathological characteristics and molecular analysis of lymphocyte-rich hepatocellular carcinoma. Hum Pathol 2023; 141:43-53. [PMID: 37742944 DOI: 10.1016/j.humpath.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Lymphocyte-rich hepatocellular carcinoma (LR-HCC), a newly proposed subtype of HCC, is characterized with abundant lymphocyte infiltration in the tumor. LR-HCC has a relatively good prognosis and is quite rare (<1% of all HCC). We examined LR-HCC clinicopathological and molecular characteristics by analyzing 451 surgically resected HCC cases without any prior treatment history at our hospital between 2012 and 2021. Clinicopathological features of LR-HCC and other HCCs (non-LR-HCC) were compared. Neoplastic and nonneoplastic hepatocytes from LR-HCC (n = 4) were collected with a laser microdissection system; RNA was extracted, followed by microarray analysis to examine lymphocytic infiltration-related molecular targets. Immunohistochemical staining of identified molecular target was performed in LR-HCC and non-LR-HCC. CD3, CD20, and CD8 immunostaining was also performed in LR-HCCs. There were 28 cases of LR-HCC (6%). No statistically significant differences were found in clinicopathological features, except for gross type, between LR-HCC and non-LR-HCC cases. The LR-HCC 5-year survival rate was >90%. Microarray analysis revealed high CCL20 expression in LR-HCC cases; immunohistochemical study showed significantly higher CCL20 expression in LR-HCC (P < 0.01) than in non-LR-HCC. CCR6, the only CCL20 receptor, was observed in infiltrating lymphocytes and HCC cells in LR-HCC. There were significantly more CD3-positive cells than CD20-positive cells (P < 0.0001) in tumor-infiltrating lymphocytes, most of which were CD8-positive T cells. In conclusion, there were no significant differences in clinicopathological characteristics between LR-HCC and non-LR-HCC, except for gross and LR microscopic features. CCL20 expression in LR-HCC may contribute to infiltration of large numbers of CD8-positive lymphocytes.
Collapse
Affiliation(s)
- Kana Tsutsui
- Department of Pathology, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Masamichi Nakayama
- Department of Pathology, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan.
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Yutaro Mihara
- Department of Pathology, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Yuta Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Shinji Mizuochi
- Department of Pathology, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Yoshinao Kinjo
- Department of Pathology, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Kenta Murotani
- Biostatistics Center, Kurume University, Kurume, 830-0011, Japan.
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| |
Collapse
|
320
|
Hung MH, Wang XW. Targeting WNT/β-Catenin via Modulating EZH2 Function: A New Chapter in the Treatment of β-Catenin Mutant Hepatocellular Carcinoma? Cancer Res 2023; 83:3498-3500. [PMID: 37747420 DOI: 10.1158/0008-5472.can-23-2921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
In a recent study, Rialdi and colleagues identified a specific vulnerability in β-catenin mutant hepatocellular carcinoma (HCC) via EZH2-mediated suppression of WNT signaling and revealed the selective anti-HCC activity of WNTinib, a chemical derivative of regorafenib and sorafenib in targeting this vulnerability. Their discoveries highlight the role of EZH2 in modulating WNT signaling and suggest an implication of WNTinihb as a small-molecule inhibitor for the treatment of HCC with activated WNT/β-catenin.
Collapse
Affiliation(s)
- Man Hsin Hung
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, Bethesda, Maryland
- Liver Cancer Program, Center for Cancer Research, NCI, Bethesda, Maryland
| |
Collapse
|
321
|
Kikuchi AT, Umetsu S, Joseph N, Kakar S. Genomic Analysis in the Categorization of Poorly Differentiated Primary Liver Carcinomas. Am J Surg Pathol 2023; 47:1207-1218. [PMID: 37661782 DOI: 10.1097/pas.0000000000002116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
A subset of primary liver carcinomas (PLCs) cannot be classified as hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (iCCA) based on morphology and immunohistochemistry (IHC). This includes tumors with morphology suggestive of HCC but lacking hepatocellular marker expression, tumors with ambiguous morphology characterized by co-expression of hepatocellular and cholangiocytic markers, and undifferentiated pleomorphic carcinomas with no discernible line of differentiation on morphology or IHC. This study examines the role of genomic analysis in the categorization of these tumors. Genomic analysis was performed on 16 PLCs that could not be definitely classified as HCC or iCCA based on morphology and IHC using a capture-based next-generation sequencing assay (n=15) or single gene mutational analysis (n=1). Genomic alterations in TERT promoter were seen in 9/16 cases (56%) and strongly favored HCC. Genomic alterations favoring iCCA were seen in 5/16 cases (31%) and included mutations in IDH1 , PBRM1 , BAP1 , and ERBB2 , as well as FGFR2 fusion. Genomic changes were helpful in classifying 14/16 (87%) PLCs. Though not specific, these genomic alterations can provide valuable diagnostic clues in selected morphologically and immunohistochemically unclassifiable cases. Given the important differences in management between HCC and iCCA, routine use of genomic analysis in diagnostically challenging settings should be considered.
Collapse
Affiliation(s)
- Alexander T Kikuchi
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | | | | | | |
Collapse
|
322
|
Liu F, Liao Z, Qin L, Zhang Z, Zhang Q, Han S, Zeng W, Zhang H, Liu Y, Song J, Chen W, Zhu H, Liang H, Chen X, Zhang B, Zhang Z. Targeting VPS72 inhibits ACTL6A/MYC axis activity in HCC progression. Hepatology 2023; 78:1384-1401. [PMID: 36631007 PMCID: PMC10581431 DOI: 10.1097/hep.0000000000000268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS HCC is a highly heterogeneous disease that is caused largely by genomic copy number variations. Herein, the mechanistic and therapeutically targeted role of vacuolar protein sorting 72 homologue (VPS72), a novel copy number variation cis-driven gained gene identified by genome-wide copy number variation and transcriptome analyses in HCC, is not well understood. APPROACH AND RESULTS First, overexpression of VPS72 enhanced the initiation and progression of HCC in vitro and in vivo . Mechanistically, VPS72 interacted with the oncoproteins MYC and actin-like 6A (ACTL6A) and promoted the formation of the ACTL6A/MYC complex. Furthermore, ACTL6A regulated VPS72 protein stability by weakening the interaction between tripartite motif containing 21 (TRIM21) and VPS72. Thus, the interaction between VPS72 and ACTL6A enhanced the affinity of MYC for its target gene promoters and promoted their transcription, thereby contributing to HCC progression, which was inhibited by adeno-associated virus serotype 8 (AAV8)-mediated short hairpin RNA (shRNA) against VPS72. CONCLUSIONS This study reveals the molecular mechanism of ACTL6A/VPS72/MYC in HCC, providing a theoretical basis and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Qiaofeng Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Weifeng Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Wei Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| |
Collapse
|
323
|
Desai S. Influence of pathogens on host genome and epigenome in development of head and neck cancer. Cancer Rep (Hoboken) 2023; 6:e1846. [PMID: 37322598 PMCID: PMC10644332 DOI: 10.1002/cnr2.1846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Head and neck cancer (HNSCC) is a heterogeneous group of cancers, affecting multiple regions such as oral cavity, pharynx, larynx, and nasal region, each showing a distinct molecular profile. HNSCC accounts for more than 6 million cases worldwide, soaring mainly in the developing countries. RECENT FINDINGS The aetiology of HNSCC is complex and multifactorial, involving both genetic and environmental factors. The critical role of microbiome, which includes bacteria, viruses, and fungi, is under spotlight due to the recent reports on their contribution in the development and progression of HNSCC. This review focuses on the effect of opportunistic pathogens on the host genome and epigenome, which contributes to the disease progression. Drawing parallels from the host-pathogen interactions observed in other tumour types arising from the epithelial tissue such as colorectal cancer, the review also calls attention to the potential explorations of the role of pathogens in HNSCC biology and discusses the clinical implications of microbiome research in detection and treatment of HNSCC. CONCLUSION Our understanding of the genomic effects of the microbes on the disease progression and the mechanistic insights of the host-pathogen interaction will pave way to novel treatment and preventive approaches in HNSCC.
Collapse
|
324
|
Nakatsuka T, Nakagawa H, Uchino K, Rokutan H, Tanaka M, Moriyama M, Fukumoto T, Yamada T, Wake T, Nakagomi R, Sato M, Minami T, Kudo Y, Ushiku T, Fujishiro M, Tateishi R. Clinical utility of postablation liver tumor biopsy and possibility of gene mutation analysis. Hepatol Res 2023; 53:1117-1125. [PMID: 37486025 DOI: 10.1111/hepr.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
AIM Radiofrequency ablation (RFA) is regarded as a first-line treatment for hepatocellular carcinoma (HCC) at an early stage. When treated with RFA, tumor biopsy may not be performed due to the risk of neoplastic seeding. We previously revealed that the risk of neoplastic seeding is significantly reduced by performing biopsies after RFA. In this study, we investigated the possibility of pathological evaluation and gene mutation analysis of post-RFA tumor specimens. METHODS Radiofrequency ablation was undertaken on diethylnitrosamine-induced mouse liver tumor, and tumor samples with or without RFA were subjected to whole exome sequencing. Post-RFA human liver tumor specimens were used for detection of TERT promoter mutations and pathological assessment. RESULTS The average somatic mutation rate, sites of mutation, and small indels and base transition patterns were comparable between the nontreated and post-RFA tumors. We identified 684 sites of nonsynonymous somatic substitutions in the nontreated tumor and 704 sites of nonsynonymous somatic substitutions in the post-RFA tumor, with approximately 85% in common. In the human post-RFA samples, the TERT promoter mutations were successfully detected in 40% of the cases. Pathological evaluation was possible with post-RFA specimens, and in one case, the diagnosis of adenocarcinoma was made. CONCLUSION Our findings suggest that post-RFA liver tumor biopsy is a useful and safe method for obtaining tumor samples that can be used for gene mutation analysis and for pathological assessment.
Collapse
Affiliation(s)
- Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Koji Uchino
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Gastroenterology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Hirofumi Rokutan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Moriyama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Fukumoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoharu Yamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taijiro Wake
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Nakagomi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Gastroenterology, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Tokyo, Japan
| | - Masaya Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Minami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yotaro Kudo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
325
|
Qiu C, Wu H, Shi W. Characterization of stem cell subtypes and prognostic signature in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:14081-14100. [PMID: 37548770 DOI: 10.1007/s00432-023-05239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) were linked to cancer aggressiveness and poor prognosis in patients with hepatocellular carcinoma (HCC). METHODS We integrated two external HCC cohorts to develop the stem cell subtypes according to unsupervised clustering with 26 stem cell gene sets. Between the subtypes, differences in prognosis, clinical characteristics, recognized HCC subtypes, metabolic profile, immune-related features, somatic mutation, and drug sensitivity were examined. The prognostic signature was created, and validated by numerous cohorts, and used to assess the efficacy of immunotherapy and transcatheter arterial chemoembolization (TACE) treatment. The nomogram was developed based on the signature and clinical features. We further examined the function of KIF20A in HCC and proved that KIF20A had the potential to regulate the stemness of HCC cells through western blot. RESULTS Low stem cell patterns, a good prognosis, positive clinical features, specific molecular subtypes, low metastatic characteristics, and an abundance of metabolic and immunological aspects were associated with Cluster 1, whereas Cluster 2 was the reverse. Chemotherapy and immunotherapy were more effective in Cluster 1. Cluster 1 and CTNNB1 and ALB mutation were more closely. Additionally, the prognosis, immunotherapeutic, and TACE therapy responses were all worse in the high-risk group. The nomogram could predict the survival probability of HCC patients. KIF20A was discovered to be overexpressed in HCC and was revealed to be connected to the stemness of the HepG2 cell line. CONCLUSIONS Two stem cell subgroups with different prognoses, metabolic, and immunological characteristics in HCC patients were identified. We also created a 7-gene prognostic signature and a nomogram to estimate the survival probability. The function of KIF20A in HCC stemness was initially examined.
Collapse
Affiliation(s)
- Chenjie Qiu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China.
| | - Huili Wu
- Department of Endodontics, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
326
|
Chai JW, Hu XW, Zhang MM, Dong YN. Seven chromatin regulators as immune cell infiltration characteristics, potential diagnostic biomarkers and drugs prediction in hepatocellular carcinoma. Sci Rep 2023; 13:18643. [PMID: 37903974 PMCID: PMC10616163 DOI: 10.1038/s41598-023-46107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/27/2023] [Indexed: 11/01/2023] Open
Abstract
Treatment is challenging due to the heterogeneity of hepatocellular carcinoma (HCC). Chromatin regulators (CRs) are important in epigenetics and are closely associated with HCC. We obtained HCC-related expression data and relevant clinical data from The Cancer Genome Atlas (TCGA) databases. Then, we crossed the differentially expressed genes (DEGs), immune-related genes and CRs to obtain immune-related chromatin regulators differentially expressed genes (IRCR DEGs). Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to select the prognostic gene and construct a risk model for predicting prognosis in HCC, followed by a correlation analysis of risk scores with clinical characteristics. Finally, we also carried out immune microenvironment analysis and drug sensitivity analysis, the correlation between risk score and clinical characteristics was analyzed. In addition, we carried out immune microenvironment analysis and drug sensitivity analysis. Functional analysis suggested that IRCR DEGs was mainly enriched in chromatin-related biological processes. We identified and validated PPARGC1A, DUSP1, APOBEC3A, AIRE, HDAC11, HMGB2 and APOBEC3B as prognostic biomarkers for the risk model construction. The model was also related to immune cell infiltration, and the expression of CD48, CTLA4, HHLA2, TNFSF9 and TNFSF15 was higher in high-risk group. HCC patients in the high-risk group were more sensitive to Axitinib, Docetaxel, Erlotinib, and Metformin. In this study, we construct a prognostic model of immune-associated chromatin regulators, which provides new ideas and research directions for the accurate treatment of HCC.
Collapse
Affiliation(s)
- Jin-Wen Chai
- Department of Oncology, Laizhou Traditional Chinese Medicine Hospital, Laizhou, Shandong, China
| | - Xi-Wen Hu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Miao-Miao Zhang
- Department of Oncology, Laizhou Traditional Chinese Medicine Hospital, Laizhou, Shandong, China
| | - Yu-Na Dong
- Department of Gastroenterology, Laizhou People's Hospital, No.1718 Wuli Street, Laizhou, Shandong, China.
| |
Collapse
|
327
|
Anh NH, Long NP, Min YJ, Ki Y, Kim SJ, Jung CW, Park S, Kwon SW, Lee SJ. Molecular and Metabolic Phenotyping of Hepatocellular Carcinoma for Biomarker Discovery: A Meta-Analysis. Metabolites 2023; 13:1112. [PMID: 37999208 PMCID: PMC10672761 DOI: 10.3390/metabo13111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Identifying and translating hepatocellular carcinoma (HCC) biomarkers from bench to bedside using mass spectrometry-based metabolomics and lipidomics is hampered by inconsistent findings. Here, we investigated HCC at systemic and metabolism-centric multiomics levels by conducting a meta-analysis of quantitative evidence from 68 cohorts. Blood transcript biomarkers linked to the HCC metabolic phenotype were externally validated and prioritized. In the studies under investigation, about 600 metabolites were reported as putative HCC-associated biomarkers; 39, 20, and 10 metabolites and 52, 12, and 12 lipids were reported in three or more studies in HCC vs. Control, HCC vs. liver cirrhosis (LC), and LC vs. Control groups, respectively. Amino acids, fatty acids (increased 18:1), bile acids, and lysophosphatidylcholine were the most frequently reported biomarkers in HCC. BAX and RAC1 showed a good correlation and were associated with poor prognosis. Our study proposes robust HCC biomarkers across diverse cohorts using a data-driven knowledge-based approach that is versatile and affordable for studying other diseases.
Collapse
Affiliation(s)
- Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (N.H.A.); (Y.J.M.); (S.J.K.); (C.W.J.); (S.W.K.)
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Young Jin Min
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (N.H.A.); (Y.J.M.); (S.J.K.); (C.W.J.); (S.W.K.)
| | - Yujin Ki
- School of Mathematics, Statistics and Data Science, Sungshin Women’s University, Seoul 08826, Republic of Korea; (Y.K.); (S.P.)
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (N.H.A.); (Y.J.M.); (S.J.K.); (C.W.J.); (S.W.K.)
| | - Cheol Woon Jung
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (N.H.A.); (Y.J.M.); (S.J.K.); (C.W.J.); (S.W.K.)
| | - Seongoh Park
- School of Mathematics, Statistics and Data Science, Sungshin Women’s University, Seoul 08826, Republic of Korea; (Y.K.); (S.P.)
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (N.H.A.); (Y.J.M.); (S.J.K.); (C.W.J.); (S.W.K.)
| | - Seul Ji Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
328
|
VanSant-Webb C, Low HK, Kuramoto J, Stanley CE, Qiang H, Su A, Ross AN, Cooper CG, Cox JE, Summers SA, Evason KJ, Ducker GS. Phospholipid isotope tracing reveals β-catenin-driven suppression of phosphatidylcholine metabolism in hepatocellular carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562134. [PMID: 37904922 PMCID: PMC10614757 DOI: 10.1101/2023.10.12.562134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Background and Aims Activating mutations in the CTNNB1 gene encoding β-catenin are among the most frequently observed oncogenic alterations in hepatocellular carcinoma (HCC). HCC with CTNNB1 mutations show profound alterations in lipid metabolism including increases in fatty acid oxidation and transformation of the phospholipidome, but it is unclear how these changes arise and whether they contribute to the oncogenic program in HCC. Methods We employed untargeted lipidomics and targeted isotope tracing to quantify phospholipid production fluxes in an inducible human liver cell line expressing mutant β-catenin, as well as in transgenic zebrafish with activated β-catenin-driven HCC. Results In both models, activated β-catenin expression was associated with large changes in the lipidome including conserved increases in acylcarnitines and ceramides and decreases in triglycerides. Lipid flux analysis in human cells revealed a large reduction in phosphatidylcholine (PC) production rates as assayed by choline tracer incorporation. We developed isotope tracing lipid flux analysis for zebrafish and observed similar reductions in phosphatidylcholine synthesis flux accomplished by sex-specific mechanisms. Conclusions The integration of isotope tracing with lipid abundances highlights specific lipid class transformations downstream of β-catenin signaling in HCC and suggests future HCC-specific lipid metabolic targets.
Collapse
Affiliation(s)
- Chad VanSant-Webb
- Department of Pathology, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Hayden K Low
- Department of Biochemistry, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Junko Kuramoto
- Department of Pathology, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Claire E Stanley
- Department of Biochemistry, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Hantao Qiang
- Department of Biochemistry, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Audrey Su
- Department of Pathology, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Alexis N Ross
- Department of Pathology, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Chad G Cooper
- Department of Biochemistry, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health. Salt Lake City, UT 84112 USA
| | - Kimberley J Evason
- Department of Pathology, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
- Huntsman Cancer Institute, University of Utah. Salt Lake City UT, 84112 USA
| | - Gregory S Ducker
- Department of Biochemistry, University of Utah School of Medicine. Salt Lake City UT, 84112, USA
- Huntsman Cancer Institute, University of Utah. Salt Lake City UT, 84112 USA
| |
Collapse
|
329
|
Gillman R, Field MA, Schmitz U, Karamatic R, Hebbard L. Identifying cancer driver genes in individual tumours. Comput Struct Biotechnol J 2023; 21:5028-5038. [PMID: 37867967 PMCID: PMC10589724 DOI: 10.1016/j.csbj.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Cancer is a heterogeneous disease with a strong genetic component making it suitable for precision medicine approaches aimed at identifying the underlying molecular drivers within a tumour. Large scale population-level cancer sequencing consortia have identified many actionable mutations common across both cancer types and sub-types, resulting in an increasing number of successful precision medicine programs. Nonetheless, such approaches fail to consider the effects of mutations unique to an individual patient and may miss rare driver mutations, necessitating personalised approaches to driver-gene prioritisation. One approach is to quantify the functional importance of individual mutations in a single tumour based on how they affect the expression of genes in a gene interaction network (GIN). These GIN-based approaches can be broadly divided into those that utilise an existing reference GIN and those that construct de novo patient-specific GINs. These single-tumour approaches have several limitations that likely influence their results, such as use of reference cohort data, network choice, and approaches to mathematical approximation, and more research is required to evaluate the in vitro and in vivo applicability of their predictions. This review examines the current state of the art methods that identify driver genes in single tumours with a focus on GIN-based driver prioritisation.
Collapse
Affiliation(s)
- Rhys Gillman
- Department of Biomedical Sciences and Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
| | - Matt A. Field
- Department of Biomedical Sciences and Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ulf Schmitz
- Department of Biomedical Sciences and Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
| | - Rozemary Karamatic
- Gastroenterology and Hepatology, Townsville University Hospital, PO Box 670, Townsville, Queensland 4810, Australia
- College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Lionel Hebbard
- Department of Biomedical Sciences and Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
- Australian Institute for Tropical Health and Medicine, Townsville, Queensland, Australia
| |
Collapse
|
330
|
Wang H, Hu S, Nie J, Qin X, Zhang X, Wang Q, Li JZ. Comprehensive Analysis of METTLs (METTL1/13/18/21A/23/25/2A/2B/5/6/9) and Associated mRNA Risk Signature in Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2023; 2023:6007431. [PMID: 38130905 PMCID: PMC10735724 DOI: 10.1155/2023/6007431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 12/23/2023] Open
Abstract
Currently, 80%-90% of liver cancers are hepatocellular carcinomas (HCC). HCC patients develop insidiously and have an inferior prognosis. The methyltransferase-like (METTL) family principal members are strongly associated with epigenetic and tumor progression. The present study mainly analyzed the value of METTLs (METTL1/13/18/21A/23/25/2A/2B/5/6/9) and associated mRNA risk signature for HCC. METTLs expression is upregulated in HCC and is a poor prognostic factor in HCC. METTLs were upregulated in patients older than 60 and associated with grade. Except for METTL25, the remaining 10 genes were associated with the HCC stage, invasion depth (T). In addition, METTLs showed an overall alteration rate of 50%. Except for METTL13/2A/25/9, the expression of the other seven genes was significantly associated with overall survival, disease-specific survival, and progression-free survival. Multivariate studies have shown that METTL21A/6 can be an independent prognostic marker in HCC. A total of 664 mRNAs were selected based on Pearson correlation coefficient (R > 0.5), unsupervised consensus clustering, weighted coexpression network analysis, and univariate Cox analysis. These mRNAs were significantly associated with METTLs and were poor prognostic factors in HCC patients. The least absolute shrinkage and selection operator (lasso) was used to construct the best METTLs associated with mRNA risk signature. The mRNA risk signature was significantly associated with age, stage, and t grade. The mRNA high-risk group had higher TP53 and RB1 mutations. This study constructed a nomogram with the mRNA risk profile and clinicopathological features, which could better predict the OS of individuals with HCC. We also analyzed associations between METTLs and mRNA risk signatures in epithelial-mesenchymal transition, immune checkpoints, immune cell infiltration, tumor mutational burden, microsatellite instability, cancer stem cells, tumor pathways, and drug sensitivity. In addition, this study constructed a protein interaction network network including METTLs and mRNA risk signature genes related to tumor microenvironment remodeling based on single-cell sequencing. In conclusion, this study provides a theoretical basis for the mechanism, biomarker screening, and treatment of HCC.
Collapse
Affiliation(s)
- Haoyu Wang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Shangshang Hu
- Department of Clinical Laboratory Diagnostics, School of Medicine, Southeast University, Nanjing 210009, China
| | - Junjie Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaodan Qin
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Qian Wang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
331
|
Zhang P, Zhao JH, Yuan LX, Ju LL, Wang HX, Wang F, Chen L, Cai WH. DLAT is a promising prognostic marker and therapeutic target for hepatocellular carcinoma: a comprehensive study based on public databases. Sci Rep 2023; 13:17295. [PMID: 37828099 PMCID: PMC10570290 DOI: 10.1038/s41598-023-43835-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Cuproptosis is a new mechanism of cell death that differs from previously identified regulatory cell death mechanisms. Cuproptosis induction holds promise as a new tumour treatment. Therefore, we investigated the value of cuproptosis-related genes in the management of hepatocellular carcinoma (HCC). The cuproptosis-related gene Dihydrolipoamide S-Acetyltransferase (DLAT) were significantly upregulated in liver cancer tissues. High levels of DLAT were an independent prognostic factor for shorter overallsurvival (OS) time. DLAT and its related genes were mainly involved in cell metabolism, tumor progression and immune regulation. DLAT was significantly associated with the level of immune cell infiltration and immune checkpoints in HCC. HCC with high DLAT expression was predicted to be more sensitive to sorafenib treatment. The risk prognostic signature established based on DLAT and its related genes had a good prognostic value. The cuproptosis-related gene DLAT is a promising independent prognostic marker and therapeutic target in HCC. The new prognostic signature can effectively predict the prognosis of HCC patients.
Collapse
Affiliation(s)
- Peng Zhang
- Nantong Institute of Liver Disease, Department of Hepatobiliary Surgery, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Jiang-Hua Zhao
- Medical School of Nantong University, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Liu-Xia Yuan
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Lin-Ling Ju
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Hui-Xuan Wang
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Lin Chen
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China.
| | - Wei-Hua Cai
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China.
| |
Collapse
|
332
|
Xi C, Pang J, Barrett A, Horuzsko A, Ande S, Mivechi NF, Zhu X. Nrf2 Drives Hepatocellular Carcinoma Progression through Acetyl-CoA-Mediated Metabolic and Epigenetic Regulatory Networks. Mol Cancer Res 2023; 21:1079-1092. [PMID: 37364049 PMCID: PMC10592407 DOI: 10.1158/1541-7786.mcr-22-0935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Correlations between the oxidative stress response and metabolic reprogramming have been observed during malignant tumor formation; however, the detailed mechanism remains elusive. The transcription factor Nrf2, a master regulator of the oxidative stress response, mediates metabolic reprogramming in multiple cancers. In a mouse model of hepatocellular carcinoma (HCC), through metabolic profiling, genome-wide gene expression, and chromatin structure analyses, we present new evidence showing that in addition to altering antioxidative stress response signaling, Nrf2 ablation impairs multiple metabolic pathways to reduce the generation of acetyl-CoA and suppress histone acetylation in tumors, but not in tumor-adjacent normal tissue. Nrf2 ablation and dysregulated histone acetylation impair transcription complex assembly on downstream target antioxidant and metabolic regulatory genes for expression regulation. Mechanistic studies indicate that the regulatory function of Nrf2 is low glucose dependent, the effect of which is demolished under energy refeeding. Together, our results implicate an unexpected effect of Nrf2 on acetyl-CoA generation, in addition to its classic antioxidative stress response regulatory activity, integrates metabolic and epigenetic programs to drive HCC progression. IMPLICATIONS This study highlights that Nrf2 integrates metabolic and epigenetic regulatory networks to dictate tumor progression and that Nrf2 targeting is therapeutically exploitable in HCC treatment.
Collapse
Affiliation(s)
- Caixia Xi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Junfeng Pang
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Amanda Barrett
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | | | - Nahid F. Mivechi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Department of Radiation Oncology, Augusta University, Augusta, GA 30912, USA
| | - Xingguo Zhu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
333
|
Romualdo GR, Heidor R, Bacil GP, Moreno FS, Barbisan LF. Past, present, and future of chemically induced hepatocarcinogenesis rodent models: Perspectives concerning classic and new cancer hallmarks. Life Sci 2023; 330:121994. [PMID: 37543357 DOI: 10.1016/j.lfs.2023.121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the main primary liver cancer, accounts for 5 % of all incident cases and 8.4 % of all cancer-related deaths worldwide. HCC displays a spectrum of environmental risk factors (viral chronic infections, aflatoxin exposure, alcoholic- and nonalcoholic fatty liver diseases) that result in molecular complexity and heterogeneity, contributing to a rising epidemiological burden, poor prognosis, and non-satisfactory treatment options. The emergence of HCC (i.e., hepatocarcinogenesis) is a multistep and complex process that addresses many (epi)genetic alterations and phenotypic traits, the so-called cancer hallmarks. "Polymorphic microbiomes", "epigenetic reprogramming", "senescent cells" and "unlocking phenotypic plasticity" are trending hallmarks/enabling features in cancer biology. As the main molecular drivers of HCC are still undruggable, chemically induced in vivo models of hepatocarcinogenesis are useful tools in preclinical research. Thus, this narrative review aimed at recapitulating the basic features of chemically induced rodent models of hepatocarcinogenesis, eliciting their permanent translational value regarding the "classic" and the "new" cancer hallmarks/enabling features. We gathered state-of-art preclinical evidence on non-cirrhotic, inflammation-, alcoholic liver disease- and nonalcoholic fatty liver-associated HCC models, demonstrating that these bioassays indeed express the recently added hallmarks, as well as reflect the interplay between classical and new cancer traits. Our review demonstrated that these protocols remain valuable for translational preclinical application, as they recapitulate trending features of cancer science. Further "omics-based" approaches are warranted while multimodel investigations are encouraged in order to avoid "model-biased" responses.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Renato Heidor
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Gabriel Prata Bacil
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Fernando Salvador Moreno
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil.
| |
Collapse
|
334
|
Ren H, Chen X, Wang J, Chen Y, Hafiz A, Xiao Q, Fu S, Madireddy A, Li WV, Shi X, Cao J. Temporal and structural patterns of hepatitis B virus integrations in hepatocellular carcinoma. J Med Virol 2023; 95:e29187. [PMID: 37877809 PMCID: PMC11131385 DOI: 10.1002/jmv.29187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Chronic infection of hepatitis B virus (HBV) is the major cause of hepatocellular carcinoma (HCC). Notably, 90% of HBV-positive HCC cases exhibit detectable HBV integrations, hinting at the potential early entanglement of these viral integrations in tumorigenesis and their subsequent oncogenic implications. Nevertheless, the precise chronology of integration events during HCC tumorigenesis, alongside their sequential structural patterns, has remained elusive thus far. In this study, we applied whole-genome sequencing to multiple biopsies extracted from six HBV-positive HCC cases. Through this approach, we identified point mutations and viral integrations, offering a blueprint for the intricate tumor phylogeny of these samples. The emergent narrative paints a rich tapestry of diverse evolutionary trajectories characterizing the analyzed tumors. We uncovered oncogenic integration events in some samples that appear to happen before and during the initiation stage of tumor development based on their locations in reconstituted trajectories. Furthermore, we conducted additional long-read sequencing of selected samples and unveiled integration-bridged chromosome rearrangements and tandem repeats of the HBV sequence within integrations. In summary, this study revealed premalignant oncogenic and sequential complex integrations and highlighted the contributions of HBV integrations to HCC development and genome instability.
Collapse
Affiliation(s)
- Haozhen Ren
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Xun Chen
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Ying Chen
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Alex Hafiz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Qian Xiao
- Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Shiwei Fu
- Department of Statistics, University of California, Riverside, Riverside, CA
| | - Advaitha Madireddy
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Wei Vivian Li
- Department of Statistics, University of California, Riverside, Riverside, CA
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| |
Collapse
|
335
|
Zheng C, Snow BE, Elia AJ, Nechanitzky R, Dominguez-Brauer C, Liu S, Tong Y, Cox MA, Focaccia E, Wakeham AC, Haight J, Tobin C, Hodgson K, Gill KT, Ma W, Berger T, Heikenwälder M, Saunders ME, Fortin J, Leung SY, Mak TW. Tumor-specific cholinergic CD4 + T lymphocytes guide immunosurveillance of hepatocellular carcinoma. NATURE CANCER 2023; 4:1437-1454. [PMID: 37640929 PMCID: PMC10597839 DOI: 10.1038/s43018-023-00624-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Cholinergic nerves are involved in tumor progression and dissemination. In contrast to other visceral tissues, cholinergic innervation in the hepatic parenchyma is poorly detected. It remains unclear whether there is any form of cholinergic regulation of liver cancer. Here, we show that cholinergic T cells curtail the development of liver cancer by supporting antitumor immune responses. In a mouse multihit model of hepatocellular carcinoma (HCC), we observed activation of the adaptive immune response and induction of two populations of CD4+ T cells expressing choline acetyltransferase (ChAT), including regulatory T cells and dysfunctional PD-1+ T cells. Tumor antigens drove the clonal expansion of these cholinergic T cells in HCC. Genetic ablation of Chat in T cells led to an increased prevalence of preneoplastic cells and exacerbated liver cancer due to compromised antitumor immunity. Mechanistically, the cholinergic activity intrinsic in T cells constrained Ca2+-NFAT signaling induced by T cell antigen receptor engagement. Without this cholinergic modulation, hyperactivated CD25+ T regulatory cells and dysregulated PD-1+ T cells impaired HCC immunosurveillance. Our results unveil a previously unappreciated role for cholinergic T cells in liver cancer immunobiology.
Collapse
Affiliation(s)
- Chunxing Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Bryan E Snow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew J Elia
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Robert Nechanitzky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Shaofeng Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yin Tong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Maureen A Cox
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chantal Tobin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kelsey Hodgson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kyle T Gill
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei Ma
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Thorsten Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- The M3 Research Center, Medical Faculty Tübingen, Tübingen, Germany
| | - Mary E Saunders
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Suet Yi Leung
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
336
|
Cogliati B, Yashaswini CN, Wang S, Sia D, Friedman SL. Friend or foe? The elusive role of hepatic stellate cells in liver cancer. Nat Rev Gastroenterol Hepatol 2023; 20:647-661. [PMID: 37550577 PMCID: PMC10671228 DOI: 10.1038/s41575-023-00821-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
Liver fibrosis is a substantial risk factor for the development and progression of liver cancer, which includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Studies utilizing cell fate mapping and single-cell transcriptomics techniques have identified quiescent perisinusoidal hepatic stellate cells (HSCs) as the primary source of activated collagen-producing HSCs and liver cancer-associated fibroblasts (CAFs) in HCC and liver metastasis, complemented in iCCA by contributions from portal fibroblasts. At the same time, integrative computational analysis of single-cell, single-nucleus and spatial RNA sequencing data have revealed marked heterogeneity among HSCs and CAFs, with distinct subpopulations displaying unique gene expression signatures and functions. Some of these subpopulations have divergent roles in promoting or inhibiting liver fibrogenesis and carcinogenesis. In this Review, we discuss the dual roles of HSC subpopulations in liver fibrogenesis and their contribution to liver cancer promotion, progression and metastasis. We review the transcriptomic and functional similarities between HSC and CAF subpopulations, highlighting the pathways that either promote or prevent fibrosis and cancer, and the immunological landscape from which these pathways emerge. Insights from ongoing studies will yield novel strategies for developing biomarkers, assessing prognosis and generating new therapies for both HCC and iCCA prevention and treatment.
Collapse
Affiliation(s)
- Bruno Cogliati
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | | - Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniela Sia
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
337
|
Huang K, Wu Y, Fan W, Zhao Y, Xue M, Liu H, Tang Y, Li J. Identification of BRD7 by whole-exome sequencing as a predictor for intermediate-stage hepatocellular carcinoma in patients undergoing TACE. J Cancer Res Clin Oncol 2023; 149:11247-11261. [PMID: 37365429 DOI: 10.1007/s00432-023-04883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE In the present study, we aimed to identify potential predictors of intermediate-stage hepatocellular carcinoma (HCC) using whole-exome sequencing (WES) in patients undergoing transarterial chemoembolization (TACE). MATERIALS AND METHODS In A total of 51 patients, newly diagnosed with intermediate-stage HCC between January 2013 and December 2020, were enrolled. Prior to treatment, histological samples were collected for western blotting and immunohistochemistry. The predictive roles of clinical indicators and genes in patient prognosis were analyzed using univariate and multivariate analyses. Finally, the correlation between imaging features and gene signatures was examined. RESULTS Using WES, we identified that bromodomain-containing protein 7 (BRD7) was significantly mutated in patients with different TACE responses. No significant difference in BRD7 expression was observed between patients with and without BRD7 mutations. HCC tumors exhibited higher BRD7 than normal liver tissues. Multivariate analysis revealed that alpha-fetoprotein (AFP), BRD7 expression, and BRD7 mutations were independent risk factors for progression-free survival (PFS). In addition, Child-Pugh class, BRD7 expression, and BRD7 mutations were independent risk factors for overall survival (OS). Patients with wild-type BRD7 and high BRD7 expression had worse PFS and OS, whereas those with mutated BRD7 and low BRD7 expression exhibited the best PFS and OS. The Kruskal-Wallis test revealed that wash-in enhancement on computed tomography might be an independent risk factor for high BRD7 expression. CONCLUSION BRD7 expression may be an independent risk factor for prognosis in patients with HCC undergoing TACE. Imaging features such as wash-in enhancement are closely related to BRD7 expression.
Collapse
Affiliation(s)
- Kun Huang
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
- Department of Radiology, Guizhou Provincial People's Hospital, No. 83 East Zhongshan Road, Guiyang, 550002, Guizhou, China
| | - Yanqin Wu
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wenzhe Fan
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yue Zhao
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Miao Xue
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Haikuan Liu
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yiyang Tang
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
338
|
Fujiwara N, Nakagawa H. Clinico-histological and molecular features of hepatocellular carcinoma from nonalcoholic fatty liver disease. Cancer Sci 2023; 114:3825-3833. [PMID: 37545384 PMCID: PMC10551597 DOI: 10.1111/cas.15925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Patients with nonalcoholic fatty liver disease (NAFLD) continue to increase with the epidemics of obesity, and NAFLD is estimated to become the most prevalent etiology of hepatocellular carcinoma (HCC). Recently, NAFLD-HCC has been recognized to have clinico-histologically and molecularly distinct features from those from other etiologies, including a lower incidence rate of HCC and less therapeutic efficacy to immune checkpoint inhibitors (ICIs). Consistent with the clinical observations that up to 50% of NAFLD-HCC occurs in the absence of cirrhosis, the imbalance of pro- and antitumorigenic hepatic stellate cells termed as myHSC and cyHSC can contribute to the creation of an HCC-prone hepatic environment, independent of the absolute fibrosis abundance. Immune deregulations by accumulated metabolites in NAFLD-affected livers, such as a fatty-acid-induced loss of cytotoxic CD4 T cells serving for immune surveillance and "auto-aggressive" CXCR6+ CD8 T cells, may promote hepatocarcinogenesis and diminish therapeutic response to ICIs. Steatohepatitic HCC (SH-HCC), characterized by the presence of fat accumulation in tumor cells, ballooned tumor cells, Mallory-Denk body, interstitial fibrosis, and intratumor immune cell infiltration, may represent a metabolic reprogramming for adapting to a lipid-rich tumor microenvironment by downregulating CPT2 and leveraging its intermediates as an "oncometabolite." Genome-wide analyses suggested that SH-HCC may be more responsive to ICIs given its mutual exclusiveness with β-catenin mutation/activation that promotes immune evasion. Thus, further understanding of NAFLD-specific hepatocarcinogenesis and HCC would enable us to improve the current daily practice and eventually the prognoses of patients with NAFLD.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Gastroenterology and HepatologyGraduate School of Medicine, Mie UniversityTsu cityJapan
| | - Hayato Nakagawa
- Department of Gastroenterology and HepatologyGraduate School of Medicine, Mie UniversityTsu cityJapan
| |
Collapse
|
339
|
Wen Y, Ma L, Ju C. Recent insights into the pathogenesis and therapeutic targets of chronic liver diseases. EGASTROENTEROLOGY 2023; 1:e100020. [PMID: 38074919 PMCID: PMC10704956 DOI: 10.1136/egastro-2023-100020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 01/03/2025]
Abstract
Viral hepatitis, alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the three major causes of chronic liver diseases, which account for approximately 2 million deaths per year worldwide. The current direct-acting antiviral drugs and vaccinations have effectively reduced and ameliorated viral hepatitis infection, but there are still no effective drug treatments for ALD, NAFLD and liver cancer due to the poor understanding of their pathogenesis. To better understand the pathogenesis, the fifth Chinese American Liver Society/Society of Chinese Bioscientists in America Hepatology Division Annual Symposium, which was held virtually on 21-22 October 2022, focused on the topics related to ALD, NAFLD and liver cancer. Here, we briefly highlight the presentations that focus on the current progress in basic and translational research in ALD, NAFLD and liver cancer. The roles of non-coding RNA, autophagy, extrahepatic signalling, macrophages, etc in liver diseases are deliberated, and the application of single-cell RNA sequencing in the study of liver disease is also discussed.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
- Liver Cancer Program, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
340
|
Naderi Yeganeh P, Teo YY, Karagkouni D, Pita-Juárez Y, Morgan SL, Slack FJ, Vlachos IS, Hide WA. PanomiR: a systems biology framework for analysis of multi-pathway targeting by miRNAs. Brief Bioinform 2023; 24:bbad418. [PMID: 37985452 PMCID: PMC10661971 DOI: 10.1093/bib/bbad418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
Charting microRNA (miRNA) regulation across pathways is key to characterizing their function. Yet, no method currently exists that can quantify how miRNAs regulate multiple interconnected pathways or prioritize them for their ability to regulate coordinate transcriptional programs. Existing methods primarily infer one-to-one relationships between miRNAs and pathways using differentially expressed genes. We introduce PanomiR, an in silico framework for studying the interplay of miRNAs and disease functions. PanomiR integrates gene expression, mRNA-miRNA interactions and known biological pathways to reveal coordinated multi-pathway targeting by miRNAs. PanomiR utilizes pathway-activity profiling approaches, a pathway co-expression network and network clustering algorithms to prioritize miRNAs that target broad-scale transcriptional disease phenotypes. It directly resolves differential regulation of pathways, irrespective of their differential gene expression, and captures co-activity to establish functional pathway groupings and the miRNAs that may regulate them. PanomiR uses a systems biology approach to provide broad but precise insights into miRNA-regulated functional programs. It is available at https://bioconductor.org/packages/PanomiR.
Collapse
Affiliation(s)
- Pourya Naderi Yeganeh
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
| | - Yue Y Teo
- National University of Singapore, Singapore
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dimitra Karagkouni
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yered Pita-Juárez
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah L Morgan
- Harvard Medical School, Boston, MA, USA
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Frank J Slack
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
| | - Ioannis S Vlachos
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Winston A Hide
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
| |
Collapse
|
341
|
Krajnović M, Kožik B, Božović A, Jovanović-Ćupić S. Multiple Roles of the RUNX Gene Family in Hepatocellular Carcinoma and Their Potential Clinical Implications. Cells 2023; 12:2303. [PMID: 37759525 PMCID: PMC10527445 DOI: 10.3390/cells12182303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers in humans, characterised by a high resistance to conventional chemotherapy, late diagnosis, and a high mortality rate. It is necessary to elucidate the molecular mechanisms involved in hepatocarcinogenesis to improve diagnosis and treatment outcomes. The Runt-related (RUNX) family of transcription factors (RUNX1, RUNX2, and RUNX3) participates in cardinal biological processes and plays paramount roles in the pathogenesis of numerous human malignancies. Their role is often controversial as they can act as oncogenes or tumour suppressors and depends on cellular context. Evidence shows that deregulated RUNX genes may be involved in hepatocarcinogenesis from the earliest to the latest stages. In this review, we summarise the topical evidence on the roles of RUNX gene family members in HCC. We discuss their possible application as non-invasive molecular markers for early diagnosis, prognosis, and development of novel treatment strategies in HCC patients.
Collapse
Affiliation(s)
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia; (M.K.); (A.B.); (S.J.-Ć.)
| | | | | |
Collapse
|
342
|
Liu K, Chen J, Zhao Y, Boland J, Ting KK, Lockwood G, McKenzie C, Kench J, Vadas MA, Gamble JR, McCaughan GW. Novel miRNA-based drug CD5-2 reduces liver tumor growth in diethylnitrosamine-treated mice by normalizing tumor vasculature and altering immune infiltrate. Front Immunol 2023; 14:1245708. [PMID: 37795103 PMCID: PMC10545841 DOI: 10.3389/fimmu.2023.1245708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Liver cancers exhibit abnormal (leaky) vasculature, hypoxia and an immunosuppressive microenvironment. Normalization of tumor vasculature is an emerging approach to treat many cancers. Blockmir CD5-2 is a novel oligonucleotide-based inhibitor of the miR-27a interaction with VE-Cadherin, the endothelial-specific cadherin. The combination of a vasoactive medication with inhibition of immune checkpoints such as programmed cell death protein 1 (PD1) has been shown to be effective in treating liver cancer in humans. We aimed to study the effect of CD5-2 combined with checkpoint inhibition (using an antibody against PD1) on liver tumor growth, vasculature and immune infiltrate in the diethylnitrosamine (DEN)-induced liver tumor mouse model. Methods We first analyzed human miR-27a and VE-Cadherin expression data from The Cancer Genome Atlas for hepatocellular carcinoma. CD5-2 and/or anti-PD1 antibody were given to the DEN-treated mice from age 7-months until harvest at age 9-months. Tumor and non-tumor liver tissues were analyzed using histology, immunohistochemistry, immunofluorescence and scanning electron microscopy. Results Human data showed high miR-27a and low VE-Cadherin were both significantly associated with poorer prognosis. Mice treated with CD5-2 plus anti-PD1 antibody had significantly smaller liver tumors (50% reduction) compared to mice treated with either agent alone, controls, or untreated mice. There was no difference in tumor number. Histologically, tumors in CD5-2-treated mice had less leaky vessels with higher VE-Cadherin expression and less tumor hypoxia compared to non-CD5-2-treated mice. Only tumors in the combination CD5-2 plus anti-PD1 antibody group exhibited a more favorable immune infiltrate (significantly higher CD3+ and CD8+ T cells and lower Ly6G+ neutrophils) compared to tumors from other groups. Discussion CD5-2 normalized tumor vasculature and reduced hypoxia in DEN-induced liver tumors. CD5-2 plus anti-PD1 antibody reduced liver tumor size possibly by altering the immune infiltrate to a more immunosupportive one.
Collapse
Affiliation(s)
- Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Jinbiao Chen
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Yang Zhao
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Jade Boland
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Ka Ka Ting
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Glen Lockwood
- Biogerontology Group, ANZAC Research Institute, Sydney, NSW, Australia
| | - Catriona McKenzie
- New South Wales Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - James Kench
- New South Wales Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Mathew A. Vadas
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Jennifer R. Gamble
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Geoffrey W. McCaughan
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
343
|
Kim JH, Mun SJ, Kim JH, Son MJ, Kim SY. Integrative analysis of single-cell RNA-seq and ATAC-seq reveals heterogeneity of induced pluripotent stem cell-derived hepatic organoids. iScience 2023; 26:107675. [PMID: 37680467 PMCID: PMC10481365 DOI: 10.1016/j.isci.2023.107675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
To gain deeper insights into transcriptomes and epigenomes of organoids, liver organoids from two states (expandable and more differentiated) were subjected to single-cell RNA-seq (scRNA-seq) and single-cell ATAC-seq (scATAC-seq) analyses. Mitochondrial gene expression was higher in differentiated than in non-differentiated hepatocytes, with ATAC-seq peaks increasing near the mitochondrial control region. Differentiation of liver organoids resulted in the expression of transcription factors that act as enhancers and repressors. In addition, epigenetic mechanisms regulating the expression of alpha-fetoprotein (AFP) and albumin (ALB) differed in liver organoids and adult liver. Knockdown of PDX1, an essential transcription factor for pancreas development, led to the hepatic maturation of liver organoids through regulation of AFP and ALB expression. This integrative analysis of the transcriptomes and epigenomes of liver organoids at the single-cell level may contribute to a better understanding of the regulatory networks during liver development and the further development of mature in vitro human liver models.
Collapse
Affiliation(s)
| | - Seon Ju Mun
- Stem Cell Convergence Research Center, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Jeong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seon-Young Kim
- Korean Bioinformation Center, Daejeon, Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
344
|
Zheng HC, Xue H, Yun WJ. An overview of mouse models of hepatocellular carcinoma. Infect Agent Cancer 2023; 18:49. [PMID: 37670307 PMCID: PMC10481604 DOI: 10.1186/s13027-023-00524-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become a severe burden on global health due to its high morbidity and mortality rates. However, effective treatments for HCC are limited. The lack of suitable preclinical models may contribute to a major failure of drug development for HCC. Here, we overview several well-established mouse models of HCC, including genetically engineered mice, chemically-induced models, implantation models, and humanized mice. Immunotherapy studies of HCC have been a hot topic. Therefore, we will introduce the application of mouse models of HCC in immunotherapy. This is followed by a discussion of some other models of HCC-related liver diseases, including non-alcoholic fatty liver disease (NAFLD), hepatitis B and C virus infection, and liver fibrosis and cirrhosis. Together these provide researchers with a current overview of the mouse models of HCC and assist in the application of appropriate models for their research.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China.
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Wen-Jing Yun
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| |
Collapse
|
345
|
Shao M, Tao Q, Xu Y, Xu Q, Shu Y, Chen Y, Shen J, Zhou Y, Wu Z, Chen M, Yang J, Shi Y, Wen T, Bu H. Glutamine synthetase-negative hepatocellular carcinoma has better prognosis and response to sorafenib treatment after hepatectomy. Chin Med J (Engl) 2023; 136:2066-2076. [PMID: 37249521 PMCID: PMC10476731 DOI: 10.1097/cm9.0000000000002380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Glutamine synthetase (GS) and arginase 1 (Arg1) are widely used pathological markers that discriminate hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma; however, their clinical significance in HCC remains unclear. METHODS We retrospectively analyzed 431 HCC patients: 251 received hepatectomy alone, and the other 180 received sorafenib as adjuvant treatment after hepatectomy. Expression of GS and Arg1 in tumor specimens was evaluated using immunostaining. mRNA sequencing and immunostaining to detect progenitor markers (cytokeratin 19 [CK19] and epithelial cell adhesion molecule [EpCAM]) and mutant TP53 were also conducted. RESULTS Up to 72.4% (312/431) of HCC tumors were GS positive (GS+). Of the patients receiving hepatectomy alone, GS negative (GS-) patients had significantly better overall survival (OS) and recurrence-free survival (RFS) than GS+ patients; negative expression of Arg1, which is exclusively expressed in GS- hepatocytes in the healthy liver, had a negative effect on prognosis. Of the patients with a high risk of recurrence who received additional sorafenib treatment, GS- patients tended to have better RFS than GS+ patients, regardless of the expression status of Arg1. GS+ HCC tumors exhibit many features of the established proliferation molecular stratification subtype, including poor differentiation, high alpha-fetoprotein levels, increased progenitor tumor cells, TP53 mutation, and upregulation of multiple tumor-related signaling pathways. CONCLUSIONS GS- HCC patients have a better prognosis and are more likely to benefit from sorafenib treatment after hepatectomy. Immunostaining of GS may provide a simple and applicable approach for HCC molecular stratification to predict prognosis and guide targeted therapy.
Collapse
Affiliation(s)
- Mingyang Shao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing Tao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yahong Xu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing Xu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuke Shu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuwei Chen
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyi Shen
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongjie Zhou
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenru Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Menglin Chen
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiayin Yang
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yujun Shi
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianfu Wen
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Bu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
346
|
Shapiro D, Lee K, Asmussen J, Bourquard T, Lichtarge O. Evolutionary Action-Machine Learning Model Identifies Candidate Genes Associated With Early-Onset Coronary Artery Disease. J Am Heart Assoc 2023; 12:e029103. [PMID: 37642027 PMCID: PMC10547338 DOI: 10.1161/jaha.122.029103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/11/2023] [Indexed: 08/31/2023]
Abstract
Background Coronary artery disease is a primary cause of death around the world, with both genetic and environmental risk factors. Although genome-wide association studies have linked >100 unique loci to its genetic basis, these only explain a fraction of disease heritability. Methods and Results To find additional gene drivers of coronary artery disease, we applied machine learning to quantitative evolutionary information on the impact of coding variants in whole exomes from the Myocardial Infarction Genetics Consortium. Using ensemble-based supervised learning, the Evolutionary Action-Machine Learning framework ranked each gene's ability to classify case and control samples and identified 79 significant associations. These were connected to known risk loci; enriched in cardiovascular processes like lipid metabolism, blood clotting, and inflammation; and enriched for cardiovascular phenotypes in knockout mouse models. Among them, INPP5F and MST1R are examples of potentially novel coronary artery disease risk genes that modulate immune signaling in response to cardiac stress. Conclusions We concluded that machine learning on the functional impact of coding variants, based on a massive amount of evolutionary information, has the power to suggest novel coronary artery disease risk genes for mechanistic and therapeutic discoveries in cardiovascular biology, and should also apply in other complex polygenic diseases.
Collapse
Affiliation(s)
- Dillon Shapiro
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Kwanghyuk Lee
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Jennifer Asmussen
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Thomas Bourquard
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Olivier Lichtarge
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Computational & Integrative Biomedical Research CenterBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
347
|
Xu Q, Feng M, Ren Y, Liu X, Gao H, Li Z, Su X, Wang Q, Wang Y. From NAFLD to HCC: Advances in noninvasive diagnosis. Biomed Pharmacother 2023; 165:115028. [PMID: 37331252 DOI: 10.1016/j.biopha.2023.115028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has gradually become one of the major liver health problems in the world. The dynamic course of the disease goes through steatosis, inflammation, fibrosis, and carcinoma. Before progressing to carcinoma, timely and effective intervention will make the condition better, which highlights the importance of early diagnosis. With the further study of the biological mechanism in the pathogenesis and progression of NAFLD, some potential biomarkers have been discovered, and the possibility of their clinical application is gradually being discussed. At the same time, the progress of imaging technology and the emergence of new materials and methods also provide more possibilities for the diagnosis of NAFLD. This article reviews the diagnostic markers and advanced diagnostic methods of NAFLD in recent years.
Collapse
Affiliation(s)
- Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| |
Collapse
|
348
|
Fu S, Debes JD, Boonstra A. DNA methylation markers in the detection of hepatocellular carcinoma. Eur J Cancer 2023; 191:112960. [PMID: 37473464 DOI: 10.1016/j.ejca.2023.112960] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and has a poor prognosis. Epigenetic modification has been shown to be deregulated during HCC development by dramatically impacting the differentiation, proliferation, and function of cells. One important epigenetic modification is DNA methylation during which methyl groups are added to cytosines without changing the DNA sequence itself. Studies found that methylated DNA markers can be specific for detection of HCC. On the basis of these findings, the utility of methylated DNA markers as novel biomarkers for early-stage HCC has been measured in blood, and indeed superior sensitivity and specificity have been found in several studies when compared to current surveillance methods. However, a variety of factors currently limit the immediate application of these exciting biomarkers. In this review, we provide a detailed rationalisation of the approach and basis for the use of methylation biomarkers for HCC detection and summarise recent studies on methylated DNA markers in HCC focusing on the importance of the aetiological cause of liver disease in the mechanisms leading to cancer.
Collapse
Affiliation(s)
- Siyu Fu
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands
| | - José D Debes
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands; Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - André Boonstra
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands.
| |
Collapse
|
349
|
Wang Y, Deng B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev 2023; 42:629-652. [PMID: 36729264 DOI: 10.1007/s10555-023-10084-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy and one of the leading causes of cancer-related death. The biological process of HCC is complex, with multiple factors leading to the broken of the balance of inactivation and activation of tumor suppressor genes and oncogenes, the abnormal activation of molecular signaling pathways, the differentiation of HCC cells, and the regulation of angiogenesis. Due to the insidious onset of HCC, at the time of first diagnosis, less than 30% of HCC patients are candidates for radical treatment. Systematic antitumor therapy is the hope for the treatment of patients with middle-advanced HCC. Despite the emergence of new systemic therapies, survival rates for advanced HCC patients remain low. The complex pathogenesis of HCC has inspired researchers to explore a variety of biomolecular targeted therapeutics targeting specific targets. Correct understanding of the molecular mechanism of HCC occurrence is key to seeking effective targeted therapy. Research on biomarkers for HCC treatment is also advancing. Here, we explore the molecular mechanism that are associated with HCC development, summarize targeted therapies for HCC, and discuss potential biomarkers that may drive therapies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Baocheng Deng
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
350
|
Cowzer D, White JB, Chou JF, Chen PJ, Kim TH, Khalil DN, El Dika IH, Columna K, Yaqubie A, Light JS, Shia J, Yarmohammadi H, Erinjeri JP, Wei AC, Jarnagin W, Do RK, Solit DB, Capanu M, Shah RH, Berger MF, Abou-Alfa GK, Harding JJ. Targeted Molecular Profiling of Circulating Cell-Free DNA in Patients With Advanced Hepatocellular Carcinoma. JCO Precis Oncol 2023; 7:e2300272. [PMID: 37769223 PMCID: PMC10581608 DOI: 10.1200/po.23.00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 09/30/2023] Open
Abstract
PURPOSE Next-generation sequencing (NGS) of tumor-derived, circulating cell-free DNA (cfDNA) may aid in diagnosis, prognostication, and treatment of patients with hepatocellular carcinoma (HCC). The operating characteristics of cfDNA mutational profiling must be determined before routine clinical implementation. METHODS This was a single-center, retrospective study with the primary objective of defining genomic alterations in circulating cfDNA along with plasma-tissue genotype agreement between NGS of matched tumor samples in patients with advanced HCC. cfDNA was analyzed using a clinically validated 129-gene NGS assay; matched tissue-based NGS was analyzed with a US Food and Drug Administration-authorized NGS tumor assay. RESULTS Fifty-three plasma samples from 51 patients with histologically confirmed HCC underwent NGS-based cfDNA analysis. Genomic alterations were detected in 92.2% of patients, with the most commonly mutated genes including TERT promoter (57%), TP53 (47%), CTNNB1 (37%), ARID1A (18%), and TSC2 (14%). In total, 37 (73%) patients underwent paired tumor NGS, and concordance was high for mutations observed in patient-matched plasma samples: TERT (83%), TP53 (94%), CTNNB1 (92%), ARID1A (100%), and TSC2 (71%). In 10 (27%) of 37 tumor-plasma samples, alterations were detected by cfDNA analysis that were not detected in the patient-matched tumors. Potentially actionable mutations were identified in 37% of all cases including oncogenic/likely oncogenic alterations in TSC1/2 (18%), BRCA1/2 (8%), and PIK3CA (8%). Higher average variant allele fraction was associated with elevated alpha-fetoprotein, increased tumor volume, and no previous systemic therapy, but did not correlate with overall survival in treatment-naïve patients. CONCLUSION Tumor mutation profiling of cfDNA in HCC represents an alternative to tissue-based genomic profiling, given the high degree of tumor-plasma NGS concordance; however, genotyping of both blood and tumor may be required to detect all clinically actionable genomic alterations.
Collapse
Affiliation(s)
- Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jessica B. White
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joanne F. Chou
- Weill Medical College of Cornell University, New York, NY
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pin-Jung Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tae-Hyung Kim
- Weill Medical College of Cornell University, New York, NY
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Danny N. Khalil
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College of Cornell University, New York, NY
| | - Imane H. El Dika
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College of Cornell University, New York, NY
| | - Katrina Columna
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Amin Yaqubie
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joseph S. Light
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jinru Shia
- Weill Medical College of Cornell University, New York, NY
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hooman Yarmohammadi
- Weill Medical College of Cornell University, New York, NY
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joseph Patrick Erinjeri
- Weill Medical College of Cornell University, New York, NY
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alice C. Wei
- Weill Medical College of Cornell University, New York, NY
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William Jarnagin
- Weill Medical College of Cornell University, New York, NY
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard K.G. Do
- Weill Medical College of Cornell University, New York, NY
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David B. Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College of Cornell University, New York, NY
| | - Marinela Capanu
- Weill Medical College of Cornell University, New York, NY
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ronak H. Shah
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael F. Berger
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College of Cornell University, New York, NY
| | - Ghassan K. Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College of Cornell University, New York, NY
| | - James J. Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College of Cornell University, New York, NY
| |
Collapse
|