301
|
Nikinmaa M, Rytkönen KT. From genomes to functions in aquatic biology. Mar Genomics 2012; 5:1-6. [DOI: 10.1016/j.margen.2011.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 11/25/2022]
|
302
|
Barolo S. Shadow enhancers: frequently asked questions about distributed cis-regulatory information and enhancer redundancy. Bioessays 2012; 34:135-41. [PMID: 22083793 PMCID: PMC3517143 DOI: 10.1002/bies.201100121] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper, in the form of a frequently asked questions page (FAQ), addresses outstanding questions about "shadow enhancers", quasi-redundant cis-regulatory elements, and their proposed roles in transcriptional control. Questions include: What exactly are shadow enhancers? How many genes have shadow/redundant/distributed enhancers? How redundant are these elements? What is the function of distributed enhancers? How modular are enhancers? Is it useful to study a single enhancer in isolation? In addition, a revised definition of "shadow enhancers" is proposed, and possible mechanisms of shadow enhancer function and evolution are discussed.
Collapse
Affiliation(s)
- Scott Barolo
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
303
|
Guebel DV, Schmitz U, Wolkenhauer O, Vera J. Analysis of cell adhesion during early stages of colon cancer based on an extended multi-valued logic approach. MOLECULAR BIOSYSTEMS 2012; 8:1230-42. [PMID: 22298312 DOI: 10.1039/c2mb05277f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell adhesion in the normal colon is typically associated with differentiated cells, whereas in cancerous colon it is associated with advanced tumors. For advanced tumors growing evidence supports the existence of stem-like cells that have originated from transdifferentiation. Because stem cells can also be transformed in their own niche, at the base of the Lieberkühn's crypts, we conjectured that cell adhesion can also be critical in early tumorigenesis. To assess this hypothesis we built an annotated, multi-valued logic model addressing cell adhesion of normal and tumorigenic stem cells in the human colon. The model accounts for (i) events involving intercellular adhesion structures, (ii) interactions involving cytoskeleton-related structures, (iii) compartmental distribution of α/β/γ/δ-catenins, and (iv) variations in critical cell adhesion regulators (e.g., ILK, FAK, IQGAP, SNAIL, Caveolin). We developed a method that can deal with graded multiple inhibitions, something which is not possible with conventional logical approaches. The model comprises 315 species (including 26 genes), interconnected by 269 reactions. Simulations of the model covered six scenarios, which considered two types of colonic cells (stem vs. differentiated cells), under three conditions (normal, stressed and tumor). Each condition results from the combination of 92 inputs. We compared our multi-valued logic approach with the conventional Boolean approach for one specific example and validated the predictions against published data. Our analysis suggests that stem cells in their niche synthesize high levels of cytoplasmatic E-cadherin and CdhEP(Ser684,686,692), even under normal-mitogenic stimulus or tumorigenic conditions. Under these conditions, E-cadherin would be incorporated into the plasmatic membrane, but only as a non-adhesive CdhE_β-catenin_IQGAP complex. Under stress conditions, however, this complex could be displaced, yielding adhesive CdhE_β-catenin((cis/trans)) complexes. In the three scenarios tested with stem cells, desmosomes or tight junctions were not assembled. Other model predictions include expected levels of the nuclear complex β-catenin_TCF4 and the anti-apoptotic protein Survivin for both normal and tumorigenic colonic stem cells.
Collapse
Affiliation(s)
- Daniel V Guebel
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany.
| | | | | | | |
Collapse
|
304
|
Shima Y, Miyabayashi K, Baba T, Otake H, Katsura Y, Oka S, Zubair M, Morohashi KI. Identification of an enhancer in the Ad4BP/SF-1 gene specific for fetal Leydig cells. Endocrinology 2012; 153:417-25. [PMID: 22128023 DOI: 10.1210/en.2011-1407] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenal 4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1) (Nr5a1) is a nuclear receptor essential for reproductive tissue development and endocrine regulation. This factor is expressed in steroidogenic tissues (e.g. adrenal glands and gonads), and expression of this factor is tightly regulated in a tissue and cell type-specific manner. Our previous studies have identified tissue and cell type-specific enhancers in the introns of the Ad4BP/SF-1 gene in fetal adrenal glands, ventromedial hypothalamus, and pituitary gonadotrope. Characterization of the enhancers had provided new insights into tissue and cell development. However, these studies have failed to identify any gonad-specific enhancer. Here, we identified a fetal Leydig cell-specific enhancer in the upstream region of the mouse Ad4BP/SF-1 gene using transgenic mouse assays. Alignment of the upstream regions among vertebrate animal species demonstrated that the enhancer consisted of three conserved regions, whereby the most highly conserved region contained an Ad4BP/SF-1 binding sequence and an E-box. Mutation of each sequence abolished the enhancer activity and led to a loss of reporter gene expression. These results suggested that Ad4BP/SF-1 gene expression in the fetal Leydig cell is regulated by a yet unidentified E-box binding protein(s) and by an autoregulatory loop formed by Ad4BP/SF-1. Although fetal Leydig cells have been thought to play crucial roles for masculinization of various fetal tissues through androgen production, other functions have remained elusive. Our identification of a fetal Leydig cell-specific enhancer in the Ad4BP/SF-1 gene would be a powerful tool to address these gaps in the knowledge base.
Collapse
Affiliation(s)
- Yuichi Shima
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
305
|
Abstract
The study of cis-regulatory DNAs that control developmental gene expression is integral to the modeling of comprehensive genomic regulatory networks for embryogenesis. Ascidian embryos provide a unique opportunity for the analysis of cis-regulatory DNAs with cellular resolution in the context of a simple but typical chordate body plan. Here, we review landmark studies that have laid the foundations for the study of transcriptional enhancers, among other cis-regulatory DNAs, and their roles in ascidian development. The studies using ascidians of the Ciona genus have capitalized on a unique electroporation technique that permits the simultaneous transfection of hundreds of fertilized eggs, which develop rapidly and express transgenes with little mosaicism. Current studies using the ascidian embryo benefit from extensively annotated genomic resources to characterize transcript models in silico. The search for functional noncoding sequences can be guided by bioinformatic analyses combining evolutionary conservation, gene coexpression, and combinations of overrepresented short-sequence motifs. The power of the transient transfection assays has allowed thorough dissection of numerous cis-regulatory modules, which provided insights into the functional constraints that shape enhancer architecture and diversification. Future studies will benefit from pioneering stable transgenic lines and the analysis of chromatin states. Whole genome expression, functional and DNA binding data are being integrated into comprehensive genomic regulatory network models of early ascidian cell specification with a single-cell resolution that is unique among chordate model systems.
Collapse
|
306
|
Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev 2011; 25:2227-41. [PMID: 22056668 DOI: 10.1101/gad.176826.111] [Citation(s) in RCA: 1145] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcription factors are adaptor molecules that detect regulatory sequences in the DNA and target the assembly of protein complexes that control gene expression. Yet much of the DNA in the eukaryotic cell is in nucleosomes and thereby occluded by histones, and can be further occluded by higher-order chromatin structures and repressor complexes. Indeed, genome-wide location analyses have revealed that, for all transcription factors tested, the vast majority of potential DNA-binding sites are unoccupied, demonstrating the inaccessibility of most of the nuclear DNA. This raises the question of how target sites at silent genes become bound de novo by transcription factors, thereby initiating regulatory events in chromatin. Binding cooperativity can be sufficient for many kinds of factors to simultaneously engage a target site in chromatin and activate gene expression. However, in cases in which the binding of a series of factors is sequential in time and thus not initially cooperative, special "pioneer transcription factors" can be the first to engage target sites in chromatin. Such initial binding can passively enhance transcription by reducing the number of additional factors that are needed to bind the DNA, culminating in activation. In addition, pioneer factor binding can actively open up the local chromatin and directly make it competent for other factors to bind. Passive and active roles for the pioneer factor FoxA occur in embryonic development, steroid hormone induction, and human cancers. Herein we review the field and describe how pioneer factors may enable cellular reprogramming.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Epigenetics Program, Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, USA.
| | | |
Collapse
|
307
|
Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 2011; 13:59-69. [DOI: 10.1038/nrg3095] [Citation(s) in RCA: 682] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
308
|
Franchini LF, López-Leal R, Nasif S, Beati P, Gelman DM, Low MJ, de Souza FJS, Rubinstein M. Convergent evolution of two mammalian neuronal enhancers by sequential exaptation of unrelated retroposons. Proc Natl Acad Sci U S A 2011; 108:15270-5. [PMID: 21876128 PMCID: PMC3174587 DOI: 10.1073/pnas.1104997108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The proopiomelanocortin gene (POMC) is expressed in a group of neurons present in the arcuate nucleus of the hypothalamus. Neuron-specific POMC expression in mammals is conveyed by two distal enhancers, named nPE1 and nPE2. Previous transgenic mouse studies showed that nPE1 and nPE2 independently drive reporter gene expression to POMC neurons. Here, we investigated the evolutionary mechanisms that shaped not one but two neuron-specific POMC enhancers and tested whether nPE1 and nPE2 drive identical or complementary spatiotemporal expression patterns. Sequence comparison among representative genomes of most vertebrate classes and mammalian orders showed that nPE1 is a placental novelty. Using in silico paleogenomics we found that nPE1 originated from the exaptation of a mammalian-apparent LTR retrotransposon sometime between the metatherian/eutherian split (147 Mya) and the placental mammal radiation (≈ 90 Mya). Thus, the evolutionary origin of nPE1 differs, in kind and time, from that previously demonstrated for nPE2, which was exapted from a CORE-short interspersed nucleotide element (SINE) retroposon before the origin of prototherians, 166 Mya. Transgenic mice expressing the fluorescent markers tomato and EGFP driven by nPE1 or nPE2, respectively, demonstrated coexpression of both reporter genes along the entire arcuate nucleus. The onset of reporter gene expression guided by nPE1 and nPE2 was also identical and coincidental with the onset of Pomc expression in the presumptive mouse diencephalon. Thus, the independent exaptation of two unrelated retroposons into functional analogs regulating neuronal POMC expression constitutes an authentic example of convergent molecular evolution of cell-specific enhancers.
Collapse
Affiliation(s)
- Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
| | - Rodrigo López-Leal
- Centro de Estudios Científicos and Universidad Austral de Chile, Valdivia 5110466, Chile
| | - Sofía Nasif
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
| | - Paula Beati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
| | - Diego M. Gelman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105; and
| | - Flávio J. S. de Souza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
309
|
Abstract
Cells integrate physicochemical signals on the nanoscale from the local microenvironment, resulting in altered functional nuclear landscape and gene expression. These alterations regulate diverse biological processes including stem cell differentiation, establishing robust developmental genetic programs and cellular homeostatic control systems. The mechanisms by which these signals are integrated into the 3D spatiotemporal organization of the cell nucleus to elicit differential gene expression programs are poorly understood. In this review I analyze our current understanding of mechanosignal transduction mechanisms to the cell nucleus to induce differential gene regulation. A description of both physical and chemical coupling, resulting in a prestressed nuclear organization, is emphasized. I also highlight the importance of spatial dimension in chromosome assembly, as well as the temporal filtering and stochastic processes at gene promoters that may be important in understanding the biophysical design principles underlying mechanoregulation of gene transcription.
Collapse
Affiliation(s)
- G V Shivashankar
- Mechanobiology Institute & Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
310
|
Pioneer factors: directing transcriptional regulators within the chromatin environment. Trends Genet 2011; 27:465-74. [PMID: 21885149 DOI: 10.1016/j.tig.2011.07.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/09/2011] [Accepted: 07/11/2011] [Indexed: 11/20/2022]
Abstract
Chromatin is a well-known obstacle to transcription as it controls DNA accessibility, which directly impacts the recruitment of the transcriptional machinery. The recent burst of functional genomic studies provides new clues as to how transcriptional competency is regulated in this context. In this review, we discuss how these studies have shed light on a specialized subset of transcription factors, defined as pioneer factors, which direct recruitment of downstream transcription factors to establish lineage-specific transcriptional programs. In particular, we present evidence of an interplay between pioneer factors and the epigenome that could be central to this process. Finally, we discuss how pioneer factors, whose expression and function are altered in tumors, are also being considered for their prognostic value and should therefore be regarded as potential therapeutic targets. Thus, pioneer factors emerge as key players that connect the epigenome and transcription in health and disease.
Collapse
|
311
|
Swanson CI, Schwimmer DB, Barolo S. Rapid evolutionary rewiring of a structurally constrained eye enhancer. Curr Biol 2011; 21:1186-96. [PMID: 21737276 DOI: 10.1016/j.cub.2011.05.056] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/18/2011] [Accepted: 05/27/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Enhancers are genomic cis-regulatory sequences that integrate spatiotemporal signals to control gene expression. Enhancer activity depends on the combination of bound transcription factors as well as-in some cases-the arrangement and spacing of binding sites for these factors. Here, we examine evolutionary changes to the sequence and structure of sparkling, a Notch/EGFR/Runx-regulated enhancer that activates the dPax2 gene in cone cells of the developing Drosophila eye. RESULTS Despite functional and structural constraints on its sequence, sparkling has undergone major reorganization in its recent evolutionary history. Our data suggest that the relative strengths of the various regulatory inputs into sparkling change rapidly over evolutionary time, such that reduced input from some factors is compensated by increased input from different regulators. These gains and losses are at least partly responsible for the changes in enhancer structure that we observe. Furthermore, stereotypical spatial relationships between certain binding sites ("grammar elements") can be identified in all sparkling orthologs-although the sites themselves are often recently derived. We also find that low binding affinity for the Notch-regulated transcription factor Su(H), a conserved property of sparkling, is required to prevent ectopic responses to Notch in noncone cells. CONCLUSIONS Rapid DNA sequence turnover does not imply either the absence of critical cis-regulatory information or the absence of structural rules. Our findings demonstrate that even a severely constrained cis-regulatory sequence can be significantly rewired over a short evolutionary timescale.
Collapse
Affiliation(s)
- Christina I Swanson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | | | |
Collapse
|
312
|
Pérez L, Barrio L, Cano D, Fiuza UM, Muzzopappa M, Milán M. Enhancer-PRE communication contributes to the expansion of gene expression domains in proliferating primordia. Development 2011; 138:3125-34. [PMID: 21715425 DOI: 10.1242/dev.065599] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trithorax-group and Polycomb-group proteins interact with chromosomal elements, termed PRE/TREs, to ensure stable heritable maintenance of the transcriptional state of nearby genes. Regulatory elements that bind both groups of proteins are termed maintenance elements (MEs). Some of these MEs maintain the initial activated transcriptional state of a nearby reporter gene through several rounds of mitosis during development. Here, we show that expression of hedgehog in the posterior compartment of the Drosophila wing results from the communication between a previously defined ME and a nearby cis-regulatory element termed the C enhancer. The C enhancer integrates the activities of the Notch and Hedgehog signalling pathways and, from the early wing primordium stage, drives expression to a thin stripe in the posterior compartment that corresponds to the dorsal-ventral compartment boundary. The ME maintains the initial activated transcriptional state conferred by the C enhancer and contributes to the expansion, by growth, of its expression domain throughout the posterior compartment. Communication between the ME and the C enhancer also contributes to repression of gene expression in anterior cells. Most interestingly, we present evidence that enhancers and MEs of different genes are interchangeable modules whose communication is involved in restricting and expanding the domains of gene expression. Our results emphasize the modular role of MEs in regulation of gene expression within growing tissues.
Collapse
Affiliation(s)
- Lidia Pérez
- Institute for Research in Biomedicine (IRB Barcelon), Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
313
|
Abstract
Cell differentiation during development is controlled by extracellular morphogens, which induce responding cells to differentiate into distinct cell fates based on the dose of morphogen they receive. Genes that specify the distinct cell fates are differentially responsive to morphogens, and the extracellular morphogen gradient is converted in responding cells to graded activity of transcription factors. In the case of Hedgehog, the gradient is converted to opposing gradients of transcriptional activator and repressor forms of the transcription factor Cubitus interruptus (Ci). It has been generally assumed that the balance between activator and repressor determines target gene responses within this gradient. However, new evidence shows that enhancers can respond selectively to the activator and repressor forms of Ci, and that this selectivity is determined by the affinity of Ci sites within the enhancers.
Collapse
Affiliation(s)
- Thomas Whitington
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Stockholm, Sweden
| | | | | |
Collapse
|
314
|
Rada-Iglesias A, Wysocka J. Epigenomics of human embryonic stem cells and induced pluripotent stem cells: insights into pluripotency and implications for disease. Genome Med 2011; 3:36. [PMID: 21658297 PMCID: PMC3218810 DOI: 10.1186/gm252] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent cells such as human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) and their in vitro differentiation models hold great promise for regenerative medicine as they provide both a model for investigating mechanisms underlying human development and disease and a potential source of replacement cells in cellular transplantation approaches. The remarkable developmental plasticity of pluripotent cells is reflected in their unique chromatin marking and organization patterns, or epigenomes. Pluripotent cell epigenomes must organize genetic information in a way that is compatible with both the maintenance of self-renewal programs and the retention of multilineage differentiation potential. In this review, we give a brief overview of the recent technological advances in genomics that are allowing scientists to characterize and compare epigenomes of different cell types at an unprecedented scale and resolution. We then discuss how utilizing these technologies for studies of hESCs has demonstrated that certain chromatin features, including bivalent promoters, poised enhancers, and unique DNA modification patterns, are particularly pervasive in hESCs compared with differentiated cell types. We outline these unique characteristics and discuss the extent to which they are recapitulated in iPSCs. Finally, we envision broad applications of epigenomics in characterizing the quality and differentiation potential of individual pluripotent lines, and we discuss how epigenomic profiling of regulatory elements in hESCs, iPSCs and their derivatives can improve our understanding of complex human diseases and their underlying genetic variants.
Collapse
Affiliation(s)
- Alvaro Rada-Iglesias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
315
|
Mattick JS. The central role of RNA in human development and cognition. FEBS Lett 2011; 585:1600-16. [DOI: 10.1016/j.febslet.2011.05.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/03/2011] [Indexed: 12/22/2022]
|
316
|
Bulger M, Groudine M. Functional and mechanistic diversity of distal transcription enhancers. Cell 2011; 144:327-39. [PMID: 21295696 DOI: 10.1016/j.cell.2011.01.024] [Citation(s) in RCA: 625] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/20/2010] [Accepted: 01/18/2011] [Indexed: 12/28/2022]
Abstract
Biological differences among metazoans and between cell types in a given organism arise in large part due to differences in gene expression patterns. Gene-distal enhancers are key contributors to these expression patterns, exhibiting both sequence diversity and cell type specificity. Studies of long-range interactions indicate that enhancers are often important determinants of nuclear organization, contributing to a general model for enhancer function that involves direct enhancer-promoter contact. However, mechanisms for enhancer function are emerging that do not fit solely within such a model, suggesting that enhancers as a class of DNA regulatory element may be functionally and mechanistically diverse.
Collapse
Affiliation(s)
- Michael Bulger
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, NY 14627, USA.
| | | |
Collapse
|
317
|
Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 2011; 12:283-93. [PMID: 21358745 DOI: 10.1038/nrg2957] [Citation(s) in RCA: 644] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enhancer function underlies regulatory processes by which cells establish patterns of gene expression. Recent results suggest that many enhancers are specified by particular chromatin marks in pluripotent cells, which may be modified later in development to alter patterns of gene expression and cell differentiation choices. These marks may contribute to the repertoire of epigenetic mechanisms responsible for cellular memory and determine the timing of transcription factor accessibility to the enhancer. Mechanistically, cohesin and non-coding RNAs are emerging as crucial players responsible for facilitating enhancer-promoter interactions at some genes. Surprisingly, these interactions may be required not only to facilitate initiation of transcription but also to activate the release of RNA polymerase II (RNAPII) from promoter-proximal pausing.
Collapse
|
318
|
Waxman JS, Yelon D. Zebrafish retinoic acid receptors function as context-dependent transcriptional activators. Dev Biol 2011; 352:128-40. [PMID: 21276787 DOI: 10.1016/j.ydbio.2011.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 11/17/2022]
Abstract
RA receptors (RARs) have been thought to function through a binary repressor-activator mechanism: in the absence of ligand, they function as transcriptional repressors, and, in the presence of ligand, they function as transcriptional activators. This prevailing model of RAR mechanism has been derived mostly from in vitro studies and has not been widely tested in developmental contexts. Here, we investigate whether zebrafish RARs function as transcriptional activators or repressors during early embryonic anterior-posterior patterning. Ectopic expression of wild-type zebrafish RARs does not disrupt embryonic patterning and does not sensitize embryos to RA treatment, indicating that RAR availability is not limiting in the embryo. In contrast, ectopic expression of hyperactive zebrafish RARs induces expression of a RA-responsive reporter transgene as well as ectopic expression of endogenous RA-responsive target genes. However, ectopic expression of dominant negative zebrafish RARs fails to induce embryonic phenotypes that are consistent with loss of RA signaling, despite their ability to function as transcriptional repressors in heterologous cell culture assays. Together, our studies suggest that zebrafish RAR function is context-dependent and that, during early patterning, zebrafish RARs function primarily as transcriptional activators and may only have minimal ability to act as transcriptional repressors. Thus, it seems that the binary model for RAR function does not apply to all in vivo scenarios. Taking into account studies of RA signaling in tunicates and tetrapods, we propose a parsimonious model of the evolution of RAR function during chordate anterior-posterior patterning.
Collapse
Affiliation(s)
- Joshua S Waxman
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | | |
Collapse
|
319
|
VanderMeer JE, Ahituv N. cis-regulatory mutations are a genetic cause of human limb malformations. Dev Dyn 2011; 240:920-30. [PMID: 21509892 DOI: 10.1002/dvdy.22535] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 01/04/2023] Open
Abstract
The underlying mutations that cause human limb malformations are often difficult to determine, particularly for limb malformations that occur as isolated traits. Evidence from a variety of studies shows that cis-regulatory mutations, specifically in enhancers, can lead to some of these isolated limb malformations. Here, we provide a review of human limb malformations that have been shown to be caused by enhancer mutations and propose that cis-regulatory mutations will continue to be identified as the cause of additional human malformations as our understanding of regulatory sequences improves.
Collapse
Affiliation(s)
- Julia E VanderMeer
- Department of Bioengineering and Therapeutic Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
320
|
Schnable JC, Pedersen BS, Subramaniam S, Freeling M. Dose-sensitivity, conserved non-coding sequences, and duplicate gene retention through multiple tetraploidies in the grasses. FRONTIERS IN PLANT SCIENCE 2011; 2:2. [PMID: 22645525 PMCID: PMC3355796 DOI: 10.3389/fpls.2011.00002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/19/2011] [Indexed: 05/08/2023]
Abstract
Whole genome duplications, or tetraploidies, are an important source of increased gene content. Following whole genome duplication, duplicate copies of many genes are lost from the genome. This loss of genes is biased both in the classes of genes deleted and the subgenome from which they are lost. Many or all classes are genes preferentially retained as duplicate copies are engaged in dose sensitive protein-protein interactions, such that deletion of any one duplicate upsets the status quo of subunit concentrations, and presumably lowers fitness as a result. Transcription factors are also preferentially retained following every whole genome duplications studied. This has been explained as a consequence of protein-protein interactions, just as for other highly retained classes of genes. We show that the quantity of conserved noncoding sequences (CNSs) associated with genes predicts the likelihood of their retention as duplicate pairs following whole genome duplication. As many CNSs likely represent binding sites for transcriptional regulators, we propose that the likelihood of gene retention following tetraploidy may also be influenced by dose-sensitive protein-DNA interactions between the regulatory regions of CNS-rich genes - nicknamed bigfoot genes - and the proteins that bind to them. Using grass genomes, we show that differential loss of CNSs from one member of a pair following the pre-grass tetraploidy reduces its chance of retention in the subsequent maize lineage tetraploidy.
Collapse
Affiliation(s)
- James C. Schnable
- Department of Plant and Microbial Biology, University of California BerkeleyBerkeley, CA, USA
| | - Brent S. Pedersen
- Department of Plant and Microbial Biology, University of California BerkeleyBerkeley, CA, USA
| | - Sabarinath Subramaniam
- Department of Plant and Microbial Biology, University of California BerkeleyBerkeley, CA, USA
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California BerkeleyBerkeley, CA, USA
- *Correspondence: Michael Freeling, Department of Plant and Microbial Biology, University of California-Berkeley, 111 Koshland Hall, Berkeley, CA 94720, United States of America e-mail:
| |
Collapse
|
321
|
Birchler JA, Veitia RA. Protein-Protein and Protein-DNA Dosage Balance and Differential Paralog Transcription Factor Retention in Polyploids. FRONTIERS IN PLANT SCIENCE 2011; 2:64. [PMID: 22645545 PMCID: PMC3355771 DOI: 10.3389/fpls.2011.00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/22/2011] [Indexed: 05/08/2023]
Affiliation(s)
- James A. Birchler
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
| | - Reiner A. Veitia
- CNRS UMR7592, Institut Jacques MonodParis, France
- Université Paris DiderotParis, France
- *Correspondence to:
| |
Collapse
|
322
|
Chromosomal organization at the level of gene complexes. Cell Mol Life Sci 2010; 68:977-90. [PMID: 21080026 PMCID: PMC3043239 DOI: 10.1007/s00018-010-0585-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/17/2010] [Accepted: 10/26/2010] [Indexed: 01/10/2023]
Abstract
Metazoan genomes primarily consist of non-coding DNA in comparison to coding regions. Non-coding fraction of the genome contains cis-regulatory elements, which ensure that the genetic code is read properly at the right time and space during development. Regulatory elements and their target genes define functional landscapes within the genome, and some developmentally important genes evolve by keeping the genes involved in specification of common organs/tissues in clusters and are termed gene complex. The clustering of genes involved in a common function may help in robust spatio-temporal gene expression. Gene complexes are often found to be evolutionarily conserved, and the classic example is the hox complex. The evolutionary constraints seen among gene complexes provide an ideal model system to understand cis and trans-regulation of gene function. This review will discuss the various characteristics of gene regulatory modules found within gene complexes and how they can be characterized.
Collapse
|
323
|
|