301
|
Li X, Huang X. Good's buffer ionic liquid tunes the phase behavior of an anionic surfactant SDBS-stabilized n-octane-water microemulsion and the stability of the solubilized horseradish peroxidase. SOFT MATTER 2021; 17:8086-8094. [PMID: 34387296 DOI: 10.1039/d1sm00783a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A Good's buffer ionic liquid (GB-IL) composed of quaternary ammonium cations and Good's buffer anions is first introduced into a microemulsion system as a self-buffering and biocompatible electrolyte. The effects of the constituting ions of a GB-IL and their concentrations on the phase behavior of the anionic surfactant SDBS stabilized n-octane-H2O microemulsion system were studied for the first time using the ε-β fish-like phase diagram method. The result indicates that the phase behavior of the above microemulsion system is greatly affected by GB-IL cations with a longer alkyl chain on the cation being more favorable for phase inversion. Compared with NaCl, a GB-IL of the same concentration is more efficient for achieving phase inversion, due to the dual role of an electrolyte and a co-alcohol. In addition to the phase behavior, the stability of horseradish peroxidase (HRP) solubilized in an SDBS stabilized bicontinuous microemulsion is also affected by a GB-IL. It is found that the variation of the cationic alkyl chain has a negligible effect on the microemulsion microstructure, but has a significant influence on the stability of the solubilized HRP. At a fixed concentration of the GB-IL, the quaternary ammonium cation with a longer alkyl chain is better for the stabilization of the HRP activity. For a given GB-IL, a higher level of the GB-IL results in a better HRP stability. More importantly, the GB-IL-buffered microemulsion, at the same level of the buffering salt, is more advantageous than the phosphate-buffered one for the stabilization of the HRP activity. This advantage is more pronounced for higher concentrations of the GB-IL. This difference in the HRP stability, caused by the buffering salts, should be ascribed to the microemulsion microstructure effect as well as the Hofmeister effect. The present study provides a guideline for the construction of a bicontinuous microemulsion with a simplified composition and stabilizing effect on the solubilized enzyme.
Collapse
Affiliation(s)
- Xiaonan Li
- Key Laboratory of Colloid and Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, China.
| | - Xirong Huang
- Key Laboratory of Colloid and Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, China.
| |
Collapse
|
302
|
Tellez-Cruz MM, Escorihuela J, Solorza-Feria O, Compañ V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers (Basel) 2021; 13:3064. [PMID: 34577965 PMCID: PMC8468942 DOI: 10.3390/polym13183064] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle, where chemical fuels, such as hydrogen, are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and stability in order to reduce the platinum group metal applied as a cathode to build stacks of proton exchange membrane fuel cells (PEMFCs) to work at low and moderate temperatures. The design of new conductive membranes and nanoparticles (NPs) whose morphology directly affects their catalytic properties is of utmost importance. Nanoparticle morphologies, like cubes, octahedrons, icosahedrons, bipyramids, plates, and polyhedrons, among others, are widely studied for catalysis applications. The recent progress around the high catalytic activity has focused on the stabilizing agents and their potential impact on nanomaterial synthesis to induce changes in the morphology of NPs.
Collapse
Affiliation(s)
- Miriam M. Tellez-Cruz
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Omar Solorza-Feria
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
303
|
Pletnev IV, Smirnova SV, Sharov AV, Zolotov YA. New generation extraction solvents: from ionic liquids and aqueous biphasic systems to deep eutectic solvents. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
304
|
Sehrawat H, Kumar N, Sood D, Kumar L, Tomar R, Chandra R. Unraveling the interaction of an opium poppy alkaloid noscapine ionic liquid with human hemoglobin: Biophysical and computational studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
305
|
Gano M, Klebeko J, Pełech R. Efficient esterification of curcumin in bis(trifluoromethylsulfonyl)imide-based ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
306
|
Nablo GR, Dela Pena EM. A black chrome plating process using trivalent chromium and water-tolerant, ethaline-based ionic liquid baths. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
307
|
Ozola-Davidane R, Burlakovs J, Tamm T, Zeltkalne S, Krauklis AE, Klavins M. Bentonite-ionic liquid composites for Congo red removal from aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
308
|
Harsági N, Henyecz R, Ábrányi-Balogh P, Drahos L, Keglevich G. Microwave-Assisted Ionic Liquid-Catalyzed Selective Monoesterification of Alkylphosphonic Acids-An Experimental and a Theoretical Study. Molecules 2021; 26:5303. [PMID: 34500735 PMCID: PMC8434145 DOI: 10.3390/molecules26175303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
It is well-known that the P-acids including phosphonic acids resist undergoing direct esterification. However, it was found that a series of alkylphoshonic acids could be involved in monoesterification with C2-C4 alcohols under microwave (MW) irradiation in the presence of [bmim][BF4] as an additive. The selectivity amounted to 80-98%, while the isolated yields fell in the range of 61-79%. The method developed is a green method for P-acid esterification. DFT calculations at the M062X/6-311+G (d,p) level of theory (performed considering the solvent effect of the corresponding alcohol) explored the three-step mechanism, and justified a higher enthalpy of activation (160.6-194.1 kJ·mol-1) that may be overcome only by MW irradiation. The major role of the [bmim][BF4] additive is to increase the absorption of MW energy. The specific chemical role of the [BF4] anion of the ionic liquid in an alternative mechanism was also raised by the computations.
Collapse
Affiliation(s)
- Nikoletta Harsági
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (N.H.); (R.H.)
| | - Réka Henyecz
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (N.H.); (R.H.)
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, 1117 Budapest, Hungary;
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, 1117 Budapest, Hungary;
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (N.H.); (R.H.)
| |
Collapse
|
309
|
Czaplicka N, Grzegórska A, Wajs J, Sobczak J, Rogala A. Promising Nanoparticle-Based Heat Transfer Fluids-Environmental and Techno-Economic Analysis Compared to Conventional Fluids. Int J Mol Sci 2021; 22:9201. [PMID: 34502109 PMCID: PMC8431053 DOI: 10.3390/ijms22179201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022] Open
Abstract
Providing optimal operating conditions is one of the major challenges for effective heating or cooling systems. Moreover, proper adjustment of the heat transfer fluid is also important from the viewpoint of the correct operation, maintenance, and cost efficiency of these systems. Therefore, in this paper, a detailed review of recent work on the subject of conventional and novel heat transfer fluid applications is presented. Particular attention is paid to the novel nanoparticle-based materials used as heat transfer fluids. In-depth comparison of environmental, technical, and economic characteristics is discussed. Thermophysical properties including thermal conductivity, specific heat, density, viscosity, and Prandtl number are compared. Furthermore, the possible benefits and limitations of various transfer fluids in the fields of application are taken into account.
Collapse
Affiliation(s)
- Natalia Czaplicka
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (A.G.); (A.R.)
| | - Anna Grzegórska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (A.G.); (A.R.)
| | - Jan Wajs
- Institute of Energy, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Joanna Sobczak
- Research and Development Joanna Sobczak, Różnowo 8, 14-240 Susz, Poland;
| | - Andrzej Rogala
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (A.G.); (A.R.)
| |
Collapse
|
310
|
Jiang S, Zhou S, Du B. A Method for Preparing Superhydrophobic Paper with High Stability and Ionic Liquid-Induced Wettability Transition. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4638. [PMID: 34443161 PMCID: PMC8399005 DOI: 10.3390/ma14164638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
In this study, the polymer PTSPM-PMETAC with anion adsorption properties was prepared by a one-step method, then the amino-modified nano-SiO2 was grafted onto the polymer to improve the roughness of the surface and enhance the stability of superhydrophobic properties, and a high-stability superhydrophobic paper with ion-induced wettability transition properties was successfully prepared. The study found that the paper can realize the reversible control of surface wettability through the exchange between the anions PF6- and Cl- adsorbed on the surface of PMETAC, and further investigation of the effect of different solvents on the ion exchange properties found that water was the poor solvent for ion exchange, while the mixtures of methanol, acetone, and methanol & water were the good solvent. On the whole, the preparation of superhydrophobic paper by this method not only simple in preparation process, low in cost and strong in universality, but also the prepared superhydrophobic paper has high transparency and good stability, which has great application potential in industrial production.
Collapse
Affiliation(s)
- Shangjie Jiang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (S.Z.); (B.D.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Shisheng Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (S.Z.); (B.D.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Bin Du
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (S.Z.); (B.D.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
311
|
Zhong H, Deng J. Preparation and Chiral Applications of Optically Active Polyamides. Macromol Rapid Commun 2021; 42:e2100341. [PMID: 34347330 DOI: 10.1002/marc.202100341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Chirality is omnipresent in nature and plays vital roles in living organism, and has become a hot research topic across multidisciplinary fields including chemistry, biology, physics, and material science. Meanwhile, polyamides constitute an important class of polymers and have received significant attention owing to their outstanding properties and wide-ranging applications in many areas. Judiciously introducing chirality into polyamides will undoubtedly obtain attractive chiral polymers, namely, optically active polyamides. This review describes the preparation methods of chiral polyamides, including solution polycondensation, interfacial polycondensation, ring-open polymerization, and others; the newly emerging categories of chiral polyamides, i.e., helical polyamides, chiral polyamide-imides, are also presented. The applications of optically active polyamides in chiral research fields including asymmetric catalysis, membrane separation, and enantioselective crystallization are also summarized. In addition, current challenges in chiral polyamides are further presented and future perspectives in the field are proposed.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
312
|
Yoshii K, Uto T, Onishi T, Kosuga D, Tachikawa N, Katayama Y. Ether-Functionalized Pyrrolidinium-Based Room Temperature Ionic Liquids: Physicochemical Properties, Molecular Dynamics, and the Lithium Ion Coordination Environment. Chemphyschem 2021; 22:1584-1594. [PMID: 34129270 DOI: 10.1002/cphc.202100380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/14/2021] [Indexed: 11/09/2022]
Abstract
The physicochemical properties of room temperature ionic liquids (RTILs) consisting of bis(trifluoromethanesulfonyl)amide (TFSA- ) combined with 1-hexyl-1-methylpyrrolidinium (Pyr1,6 + ), 1-(butoxymethyl)-1-methylpyrrolidinium (Pyr1,1O4 + ), 1-(4-methoxybutyl)-1-methyl pyrrolidinium (Pyr1,4O1 + ), and 1-((2-methoxyethoxy)methyl)-1-methylpyrrolidinium (Pyr1,1O2O1 + ) were investigated using both experimental and computational approaches. Pyr1,1O2O1 TFSA, which contains two ether oxygen atoms, showed the lowest viscosity, and the relationship between its physicochemical properties and the position and number of the ether oxygen atoms was discussed by a careful comparison with Pyr1,1O4 TFSA and Pyr1,4O1 TFSA. Ab initio calculations revealed the conformational flexibility of the side chain containing the ether oxygen atoms. In addition, molecular dynamics (MD) calculations suggested that the ion distributions have a significant impact on the transport properties. Furthermore, the coordination environments of the Li ions in the RTILs were evaluated using Raman spectroscopy, which was supported by MD calculations using 1000 ion pairs. The presented results will be valuable for the design of functionalized RTILs for various applications.
Collapse
Affiliation(s)
- Kazuki Yoshii
- Department of Energy and Environment, Research Institute of Electrochemical Energy (REICEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.,Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Takuya Uto
- Organization for Promotion of Tenure Track, University of Miyazaki, Nishi 1-1 Gakuen-Kibanadai, Miyazaki, 889-2192, Japan
| | - Takakazu Onishi
- Graduate School of Engineering, University of Miyazaki, Nishi 1-1 Gakuen-Kibanadai, Miyazaki, 889-2192, Japan
| | - Daichi Kosuga
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Naoki Tachikawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yasushi Katayama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
313
|
Sastry NV, Trivedi PA. Drug anion based surface active ionic liquids: Molecular interactions, surface activity and micellization behavior in aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
314
|
Azevedo AMO, Vilaranda AG, Neves AFDC, Sousa MJ, Santos JLM, Saraiva MLMFS. Development of an automated yeast-based spectrophotometric method for toxicity screening: Application to ionic liquids, GUMBOS, and deep eutectic solvents. CHEMOSPHERE 2021; 277:130227. [PMID: 33794429 DOI: 10.1016/j.chemosphere.2021.130227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Saccharomyces cerevisiae has been used as a eukaryotic model organism for studying the toxic effects of various compounds. In this context, an automated spectrophotometric method based on the enzymatic reduction of methylene blue dye to a colorless product by living yeast cells was implemented in a sequential injection analysis system. Loss of yeast viability/impaired metabolic activity was monitored by an increase in optical density at 664 nm. To prove the usefulness of this approach, the toxicity of ILs (ionic liquids), GUMBOS (group of uniform materials based on organic salts), and DESs (deep eutectic solvents) was examined. Differences obtained between IC50 values confirmed the impact of structural elements on each compounds' toxicity. While DESs appeared to be less toxic than ILs, GUMBOS were found to be among the most toxic compounds to yeast cells and thus can be viewed as promising antimicrobial candidates. The automated methodology showed satisfactory repeatability and reproducibility (RSD < 9%), which is in good agreement with Green Chemistry principles. In fact, the method required consumption of only 40 μL of reagents and produced less than 2 mL of effluents per cycle. Thus, the developed assay can be used as an alternative tool for toxicity screening.
Collapse
Affiliation(s)
- Ana M O Azevedo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - André G Vilaranda
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana F D C Neves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria João Sousa
- CBMA, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - João L M Santos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
315
|
Efficient sorption of perfluoroalkyl acids by ionic liquid-modified natural clay. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
316
|
Alkylimidazolium ionic liquids for biofilm control: Experimental studies on controlling multispecies biofilms in natural waters. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
317
|
Durga G, Kalra P, Kumar Verma V, Wangdi K, Mishra A. Ionic liquids: From a solvent for polymeric reactions to the monomers for poly(ionic liquids). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
318
|
Lim XB, Ong WJ. A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: from materials design to catalysis for clean energy. NANOSCALE HORIZONS 2021; 6:588-633. [PMID: 34018529 DOI: 10.1039/d1nh00127b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The ceaseless increase of pollution cases due to the tremendous consumption of fossil fuels has steered the world towards an environmental crisis and necessitated urgency to curtail noxious sulfur oxide emissions. Since the world is moving toward green chemistry, a fuel desulfurization process driven by clean technology is of paramount significance in the field of environmental remediation. Among the novel desulfurization techniques, the oxidative desulfurization (ODS) process has been intensively studied and is highlighted as the rising star to effectuate sulfur-free fuels due to its mild reaction conditions and remarkable desulfurization performances in the past decade. This critical review emphasizes the latest advances in thermal catalytic ODS and photocatalytic ODS related to the design and synthesis routes of myriad materials. This encompasses the engineering of metal oxides, ionic liquids, deep eutectic solvents, polyoxometalates, metal-organic frameworks, metal-free materials and their hybrids in the customization of advantageous properties in terms of morphology, topography, composition and electronic states. The essential connection between catalyst characteristics and performances in ODS will be critically discussed along with corresponding reaction mechanisms to provide thorough insight for shaping future research directions. The impacts of oxidant type, solvent type, temperature and other pivotal factors on the effectiveness of ODS are outlined. Finally, a summary of confronted challenges and future outlooks in the journey to ODS application is presented.
Collapse
Affiliation(s)
- Xian Bin Lim
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia. and Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia. and Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
319
|
SABAH AA. Synthesis and Characterization of Some Transition Metals Complex Salts of Pyridinium Iodide Ionic Liquids: Application on Extractive Desulfurization. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.942318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
320
|
de Souza Mesquita LM, Casagrande BP, Santamarina AB, Sertorio MN, de Souza DV, Mennitti LV, Jucá A, Jamar G, Estadella D, Ribeiro DA, Ventura SPM, de Rosso VV, Pisani LP. Carotenoids obtained from an ionic liquid-mediated process display anti-inflammatory response in the adipose tissue-liver axis. Food Funct 2021; 12:8478-8491. [PMID: 34297028 DOI: 10.1039/d1fo01429c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ionic liquids (ILs) have been proposed as more efficient and sustainable solvents to replace volatile organic solvents (VOSs). However, the drawbacks associated with their use are still limiting the regular application of bioactive compounds obtained from the processes they mediate as food ingredients. It is true that the number of ILs approved by the Food and Drug Administration for food applications is still low and mainly focused on the ones from the quaternary ammonium family. However, this trend is changing, judging from the evidence that industries are surpassing overgeneralization about ILs (on price and toxicity) and starting to consider the potential and performance of ILs as solvents. Despite the examples of industries applying ILs in their processes, the use of bioactive compounds obtained from IL-based processes as ingredients in food formulations is still a big challenge. The positive influence of carotenoids on diseases associated or originating from the inflammatory scenario including, among others, obesity, is not new. Moreover, it is also well known that the poorest population worldwide does not have the recommended intake of carotenoids, especially those pro-vitaminic A. In an attempt to help answer this issue, dietary supplements containing adequate doses of natural carotenoids are expected to be the solution, or at least, part of the solution for a healthier life, but also, to reduce hunger. Thus, complete studies evaluating the toxicological potential and the real viability of adding these bioactive compounds in food formulations proving (or not!) their safety to consumers and handlers are highly demanded. This work proposes to investigate the potential of carotenoids extracted from Bactris gasipaes feedstocks mediated by an ethanolic solution of an imidazolium-based IL. Thus, male Wistar rats were randomized in six different groups, supplemented or not by carotenoids extracted by IL or VOS, and fed by control- and/or high-fat-diets (HFD). The adipose tissue-liver axis was studied as a model to investigate the influence of the carotenoids on the levels of inflammation and oxidative stress markers. The main results showed that animals supplemented with carotenoids extracted with IL displayed improvements in serum parameters, besides lower metabolic efficiency, and antioxidant response on the liver, even when fed with HFD. However, animals supplemented with carotenoids extracted by VOS showed higher levels of pro-inflammatory markers and huge oxidative stress on the liver.
Collapse
Affiliation(s)
- Leonardo M de Souza Mesquita
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, 11015-020, Santos, SP, Brazil. and CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Breno P Casagrande
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, 11015-020, Santos, SP, Brazil.
| | - Aline B Santamarina
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, 11015-020, Santos, SP, Brazil.
| | - Marcela N Sertorio
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, 11015-020, Santos, SP, Brazil.
| | - Daniel Vitor de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, 11015-020, Santos, SP, Brazil.
| | - Laís V Mennitti
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, 11015-020, Santos, SP, Brazil.
| | - Andrea Jucá
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, 11015-020, Santos, SP, Brazil.
| | - Giovana Jamar
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, 11015-020, Santos, SP, Brazil.
| | - Debora Estadella
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, 11015-020, Santos, SP, Brazil.
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, 11015-020, Santos, SP, Brazil.
| | - Sónia P M Ventura
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Veridiana V de Rosso
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, 11015-020, Santos, SP, Brazil.
| | - Luciana P Pisani
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, 11015-020, Santos, SP, Brazil.
| |
Collapse
|
321
|
Schrage BR, Zhang B, Petrochko SC, Zhao Z, Frkonja-Kuczin A, Boika A, Ziegler CJ. Highly Soluble Imidazolium Ferrocene Bis(sulfonate) Salts for Redox Flow Battery Applications. Inorg Chem 2021; 60:10764-10771. [PMID: 34210136 DOI: 10.1021/acs.inorgchem.1c01473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Redox flow batteries (RFBs) are scalable devices that employ solution-based redox active components for scalable energy storage. To maximize energy density, new highly soluble catholytes and anolytes need to be synthesized and evaluated for their electrochemical performance. To that end, we synthesized a series of imidazolium ferrocene bis(sulfonate) salts as highly soluble catholytes for RFB applications. Six salts with differing alkyl chain lengths on the imidazolium cation were synthesized, characterized, and electrochemically analyzed. While aqueous solubility was significantly improved, the reactivity of the imidazolium cation and the increased viscosities of the salt solutions in water (which increase with increasing imidazolium chain length) limit the applicability of these materials to RFB design.
Collapse
Affiliation(s)
- Briana R Schrage
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States
| | - Baosen Zhang
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States
| | - Stephen C Petrochko
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States
| | - Zhiling Zhao
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States
| | | | - Aliaksei Boika
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States
| | | |
Collapse
|
322
|
Abstract
Rare earth elements (REEs) are becoming more and more significant as they play crucial roles in many advanced technologies. Therefore, the development of optimized processes for their recovery, whether from primary resources or from secondary sources, has become necessary, including recovery from mine tailings, recycling of end-of-life products and urban and industrial waste. Ionic solvents, including ionic liquids (ILs) and deep-eutectic solvents (DESs), have attracted much attention since they represent an alternative to conventional processes for metal recovery. These systems are used as reactive agents in leaching and extraction processes. The most significant studies reported in the last decade regarding the recovery of REEs are presented in this review.
Collapse
|
323
|
Mezzetta A, Guglielmero L, Mero A, Tofani G, D’Andrea F, Pomelli CS, Guazzelli L. Expanding the Chemical Space of Benzimidazole Dicationic Ionic Liquids. Molecules 2021; 26:4211. [PMID: 34299487 PMCID: PMC8303995 DOI: 10.3390/molecules26144211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Benzimidazole dicationic ionic liquids (BDILs) have not yet been widely explored in spite of their potential. Therefore, two structurally related families of BDILs, paired with either bromide or bistriflimide anions and bearing alkyl spacers ranging from C3 to C6, have been prepared. Their thermal properties have been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), while their electrical properties have been assessed by cyclic voltammetry (CV). TG analysis confirmed the higher stability of the bistriflimide BDILs over the bromide BDILs, with minor variation within the two families. Conversely, DSC and CV allowed for ascertaining the role played by the spacer length. In particular, the thermal behavior changed dramatically among the members of the bistriflimide family, and all three possible thermal behavior types of ILs were observed. Furthermore, cyclic voltammetry showed different electrochemical window (C3(C1BenzIm)2/2Tf2N < C4(C1BenzIm)2/2Tf2N, C5(C1BenzIm)2/2Tf2N < C6(C1BenzIm)2/2Tf2N) as well as a reduction peak potential, shape, and intensity as a function of the spacer length. The results obtained highlight the benefit of accessing a more structurally diverse pool of compounds offered by dicationic ILs when compared to the parent monocationic ILs. In particular, gains are to be found in the ease of fine-tuning their properties, which translates in facilitating further investigations toward BDILs as designer solvents and catalysts.
Collapse
Affiliation(s)
- Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Luca Guglielmero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
- DESTEC, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy
| | - Angelica Mero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Giorgio Tofani
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Felicia D’Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Christian Silvio Pomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| |
Collapse
|
324
|
Evaporation thermodynamics of the tetraoctylphosphonium bis(trifluoromethansulfonyl)imide([P8888]NTf2) and tetraoctylphosphonium nonafluorobutane-1-sulfonate ([P8888]NFBS) ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
325
|
|
326
|
Oke EA, Ijardar SP. Insights into the separation of metals, dyes and pesticides using ionic liquid based aqueous biphasic systems. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
327
|
Ma J, Zhu M, Yang X, Wang Y, Wang B. Different cation-anion interaction mechanisms of diamino protic ionic liquids: A density functional theory study. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
328
|
de Souza Mesquita LM, Murador DC, Neves BV, Braga ARC, Pisani LP, de Rosso VV. Bioaccessibility and Cellular Uptake of Carotenoids Extracted from Bactris gasipaes Fruit: Differences between Conventional and Ionic Liquid-Mediated Extraction. Molecules 2021; 26:3989. [PMID: 34208810 PMCID: PMC8272118 DOI: 10.3390/molecules26133989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Currently, on an industrial scale, synthetic colorants are used in many fields, as well as those extracted with conventional organic solvents (COSs), leading to several environmental issues. Therefore, we developed a sustainable extraction and purification method mediated by ionic liquids (IL), which is considered an alternative high-performance replacement for COSs. Carotenoids are natural pigments with low bioaccessibility (BCT) and bioavailability (BV) but with huge importance to health. To investigate if the BCT and cellular uptake of the carotenoids are modified by the extraction method, we conducted a comparison assay between both extraction procedures (IL vs. COS). For this, we used the Amazonian fruit Bactris gasipaes, a rich source of pro-vitamin A carotenoids, to obtain the extract, which was emulsified and subjected to an in vitro digestion model followed by the Caco-2 cell absorption assay. The bioaccessibility of carotenoids using IL was better than those using COS (33.25%, and 26.84%, respectively). The cellular uptake of the carotenoids extracted with IL was 1.4-fold higher than those extracted using COS. Thus, IL may be a feasible alternative as extraction solvent in the food industry, replacing COS, since, in this study, no IL was present in the final extract.
Collapse
Affiliation(s)
- Leonardo M. de Souza Mesquita
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Daniella Carisa Murador
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Bruna Vitória Neves
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
- Department of Exact and Earth Sciences, Campus Diadema, Federal University of São Paulo (UNIFESP), Diadema, SP 09972-270, Brazil
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Veridiana Vera de Rosso
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
- Nutrition and Food Service Research Center, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, SP 11015-020, Brazil
| |
Collapse
|
329
|
Zuo H, Chen X, Ding Y, Cui L, Fan B, Pan L, Zhang K. Novel Designed
PEG‐Dicationic Imidazolium‐Based
Ionic Liquids as Effective Plasticizers for Sustainable Polylactide. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Huijie Zuo
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
| | - Xiangjian Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University Tianjin 300350 China
| | - Yingli Ding
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
| | - Liang Cui
- Polyolefin Research Department Petrochina Petrochemical Research Institute Beijing 102206 China
| | - Baomin Fan
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing 100048 China
| | - Li Pan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University Tianjin 300350 China
| | - Kunyu Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
| |
Collapse
|
330
|
Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ionic liquids are attractive and safe electrolytes for diverse electrochemical applications such as advanced rechargeable batteries with high energy densities. Their properties that are beneficial for energy storage and conversion include negligible vapor-pressure, intrinsic conductivity as well as high stability. To explore the suitability of a series of ionic liquids with small ammonium cations for potential battery applications, we investigated their thermal and transport properties. We studied the influence of the symmetrical imide-type anions bis(trifluoromethanesulfonyl)imide ([TFSI]−) and bis(fluorosulfonyl)imide ([FSI]−), side chain length and functionalization, as well as lithium salt content on the properties of the electrolytes. Many of the samples are liquid at ambient temperature, but their solidification temperatures show disparate behavior. The transport properties showed clear trends: the dynamics are accelerated for samples with the [FSI]− anion, shorter side chains, ether functionalization and lower amounts of lithium salts. Detailed insight was obtained from the diffusion coefficients of the different ions in the electrolytes, which revealed the formation of aggregates of lithium cations coordinated by anions. The ionic liquid electrolytes exhibit sufficient stability in NMC/Li half-cells at elevated temperatures with small current rates without the need of additional liquid electrolytes, although Li-plating was observed. Electrolytes containing [TFSI]− anions showed superior stability compared to those with [FSI]− anions in battery tests.
Collapse
|
331
|
Abstract
Electropolishing of metal surfaces is a benign alternative to mechanical treatment. Ionic liquids are considered as green electrolytes for the electropolishing of metals. They demonstrate a number of advantages in comparison with acid aqueous solutions and other methods of producing smooth or mirror-like surfaces that are required by diverse applications (medical instruments, special equipment, implants and prostheses, etc.). A wide window of electrochemical stability, recyclability, stability and tunability are just a few benefits provided by ionic liquids in the title application. An overview of the literature data on electropolishing of such metals as Ti, Ni, Pt, Cu, Al, U, Sn, Ag, Nb, stainless steel and other alloys in ionic liquids is presented.
Collapse
|
332
|
Vereycken W, Riaño S, Van Gerven T, Binnemans K. Determination of Chlorides in Ionic Liquids by Wavelength Dispersive X-ray Fluorescence Spectrometry. ACS OMEGA 2021; 6:13620-13625. [PMID: 34095656 PMCID: PMC8173560 DOI: 10.1021/acsomega.1c00586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The synthesis of ionic liquids (ILs) usually involves two steps: (i) quaternization of a precursor followed by (ii) a salt metathesis reaction to introduce the desired anion. A consequence of the second step is that most ILs still contain some amount of the initial anion, often chloride. In this work, wavelength dispersive X-ray fluorescence (WDXRF) spectrometry is presented for the direct measurement of chlorides in ILs. The WDXRF settings were optimized, and the system was calibrated for the detection of chloride in several analogues of the commercially available IL Aliquat 336, [A336][X] (with X = I-, Br-, NO3 -, or SCN-). The Cl Kα intensity showed excellent linearity for samples with a conversion >0.80 (approximately Cl < 8000 ppm). Synthetic quality control samples showed that the instrumental error and deviations induced by the calibration procedure were small with maximum values of 1 and 5%, respectively. Detection and quantification limits depended strongly on the matrix (i.e., anion system and dilution) but were relatively low: 42-191 and 127-578 ppm Cl, respectively. Compared with other analytical techniques used for this purpose, the strengths of WDXRF include its ease of use, rapid measurements, the near absence of sample preparation steps, and versatility in terms of anion systems and chloride concentration range.
Collapse
Affiliation(s)
- Willem Vereycken
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, P. O. box 2404, B-3001 Leuven, Belgium
| | - Sofía Riaño
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, P. O. box 2404, B-3001 Leuven, Belgium
| | - Tom Van Gerven
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, P. O. box 2424, B-3001 Leuven, Belgium
| | - Koen Binnemans
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, P. O. box 2404, B-3001 Leuven, Belgium
| |
Collapse
|
333
|
Synthesis, thermal behavior and kinetic study of N-morpholinium dicationic ionic liquids by thermogravimetry. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
334
|
He Q, Guo Z, Cao Y, Yang M, Yao S. Selective separation of main flavonoids by combinational use of ionic liquid-loaded microcapsules from crude extract of Tartary buckwheat. Food Chem 2021; 362:130255. [PMID: 34111694 DOI: 10.1016/j.foodchem.2021.130255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
For selective adsorption of main flavonoids from crude Tartary buckwheat extract (rutin, 0.021 mg/mL; quercetin, 0.030 mg/mL; and kaempferol, 0.011 mg/mL), new ionic liquid-based sorbents were successfully prepared by encapsulating [Bmim]Br and [Bmim]Pro in regular spherical non-magnetic and magnetic microcapsules with polysulfone content of 8%, respectively. After appropriate loading process, the microcapsules were comprehensively characterized by infrared spectroscopy, thermogravimetry analysis and scanning electron microscopy. Then the separation strategy was designed to separate rutin and quercetin from kaempferol by combinational use of two kinds of IL-loaded microcapsules (ILLMs). The effects of solid-liquid ratio of ILLMs and extract, pH, time and adsorption temperature were all investigated. The experimental data fit well with the quasi-second-order kinetics model and Langmuir model. After desorption, target flavonoids were well recovered and the ILLMs showed good stability. As the result, a new IL-based separation technology for main flavonoids from food crop was developed for the first time.
Collapse
Affiliation(s)
- Qing He
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zhangxing Guo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yu Cao
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, PR China
| | - Min Yang
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
335
|
Ray A, Saruhan B. Application of Ionic Liquids for Batteries and Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2942. [PMID: 34072536 PMCID: PMC8197857 DOI: 10.3390/ma14112942] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
Nowadays, the rapid development and demand of high-performance, lightweight, low cost, portable/wearable electronic devices in electrical vehicles, aerospace, medical systems, etc., strongly motivates researchers towards advanced electrochemical energy storage (EES) devices and technologies. The electrolyte is also one of the most significant components of EES devices, such as batteries and supercapacitors. In addition to rapid ion transport and the stable electrochemical performance of electrolytes, great efforts are required to overcome safety issues due to flammability, leakage and thermal instability. A lot of research has already been completed on solid polymer electrolytes, but they are still lagging for practical application. Over the past few decades, ionic liquids (ILs) as electrolytes have been of considerable interest in Li-ion batteries and supercapacitor applications and could be an important way to make breakthroughs for the next-generation EES systems. The high ionic conductivity, low melting point (lower than 100 °C), wide electrochemical potential window (up to 5-6 V vs. Li+/Li), good thermal stability, non-flammability, low volatility due to cation-anion combinations and the promising self-healing ability of ILs make them superior as "green" solvents for industrial EES applications. In this short review, we try to provide an overview of the recent research on ILs electrolytes, their advantages and challenges for next-generation Li-ion battery and supercapacitor applications.
Collapse
Affiliation(s)
| | - Bilge Saruhan
- German Aerospace Center (DLR), Department of High-Temperature and Functional Coatings, Institute of Materials Research, 51147 Cologne, Germany;
| |
Collapse
|
336
|
Acidic ionic liquid-mediated preparation of shaped electrically conductive poly(p-phenylenediamine). JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02590-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
337
|
Ebrahimi M, Kujawski W, Fatyeyeva K, Kujawa J. A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs). Int J Mol Sci 2021; 22:5430. [PMID: 34063925 PMCID: PMC8196583 DOI: 10.3390/ijms22115430] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Today, the use of polymer electrolyte membranes (PEMs) possessing ionic liquids (ILs) in middle and high temperature polymer electrolyte membrane fuel cells (MT-PEMFCs and HT-PEMFCs) have been increased. ILs are the organic salts, and they are typically liquid at the temperature lower than 100 °C with high conductivity and thermal stability. The membranes containing ILs can conduct protons through the PEMs at elevated temperatures (more than 80 °C), unlike the Nafion-based membranes. A wide range of ILs have been identified, including chiral ILs, bio-ILs, basic ILs, energetic ILs, metallic ILs, and neutral ILs, that, from among them, functionalized ionic liquids (FILs) include a lot of ion exchange groups in their structure that improve and accelerate proton conduction through the polymeric membrane. In spite of positive features of using ILs, the leaching of ILs from the membranes during the operation of fuel cell is the main downside of these organic salts, which leads to reducing the performance of the membranes; however, there are some ways to diminish leaching from the membranes. The aim of this review is to provide an overview of these issues by evaluating key studies that have been undertaken in the last years in order to present objective and comprehensive updated information that presents the progress that has been made in this field. Significant information regarding the utilization of ILs in MT-PEMFCs and HT-PEMFCs, ILs structure, properties, and synthesis is given. Moreover, leaching of ILs as a challenging demerit and the possible methods to tackle this problem are approached in this paper. The present review will be of interest to chemists, electrochemists, environmentalists, and any other researchers working on sustainable energy production field.
Collapse
Affiliation(s)
- Mohammad Ebrahimi
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland; (M.E.); (J.K.)
- Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), 76000 Rouen, France;
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland; (M.E.); (J.K.)
| | - Kateryna Fatyeyeva
- Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), 76000 Rouen, France;
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland; (M.E.); (J.K.)
| |
Collapse
|
338
|
Ionic Liquid-Derived Carbon-Supported Metal Electrocatalysts as Anodes in Direct Borohydride-Peroxide Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11050632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Three different carbon-supported metal (gold, platinum, nickel) nanoparticle (M/c-IL) electrocatalysts are prepared by template-free carbonization of the corresponding ionic liquids, namely [Hmim][AuCl4], [Hmim]2[PtCl4], and [C16mim]2[NiCl4], as confirmed by X-ray diffraction analysis, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and Raman spectroscopy. The electrochemical investigation of borohydride oxidation reaction (BOR) at the three electrocatalysts by cyclic voltammetry reveals different behavior for each material. BOR is found to be a first-order reaction at the three electrocatalysts, with an apparent activation energy of 10.6 and 13.8 kJ mol−1 for Pt/c-IL and Au/c-IL electrocatalysts, respectively. A number of exchanged electrons of 5.0, 2.4, and 2.0 is obtained for BOR at Pt/c-IL, Au/c-IL, and Ni/c-IL electrodes, respectively. Direct borohydride-peroxide fuel cell (DBPFC) tests done at temperatures in the 25–65 °C range show ca. four times higher power density when using a Pt/c-IL anode than with an Au/c-IL anode. Peak power densities of 40.6 and 120.5 mW cm−2 are achieved at 25 and 65 °C, respectively, for DBPFC with a Pt/c-IL anode electrocatalyst.
Collapse
|
339
|
Comparisons of NH…O and OH…O hydrogen bonds in various ethanolammonium–based protic ionic liquids. Struct Chem 2021. [DOI: 10.1007/s11224-021-01792-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
340
|
|
341
|
Boosting the extraction of rare earth elements from chloride medium by novel carboxylic acid based ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
342
|
Patil KR, Surwade AD, Rajput PJ, Shaikh VR. Investigations of solute–solvent interactions in aqueous solutions of amino acids ionic liquids having the common nitrate as anion at different temperatures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
343
|
Darwish AS, Abu Hatab F, Lemaoui T, A. Z. Ibrahim O, Almustafa G, Zhuman B, E. E. Warrag S, Hadj-Kali MK, Benguerba Y, Alnashef IM. Multicomponent Extraction of Aromatics and Heteroaromatics from Diesel Using Acidic Eutectic Solvents: Experimental and COSMO-RS Predictions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116575] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
344
|
Cui G, Liu J, Lyu S, Wang H, Li Z, Zhang R, Wang J. SO2 absorption in highly efficient chemical solvent AChBr + Gly compared with physical solvent ChBr + Gly. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
345
|
Ferrofluids-based microextraction systems to process organic and inorganic targets: The state-of-the-art advances and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
346
|
Zhang L, Dong H, Zeng S, Hu Z, Hussain S, Zhang X. An Overview of Ammonia Separation by Ionic Liquids. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lu Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifeng Dong
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Huizhou Institute of Green Energy and Advanced Materials, Huizhou, Guangdong, 516081, China
| | - Shaojuan Zeng
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zongyuan Hu
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shahid Hussain
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangping Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong 516003, China
| |
Collapse
|
347
|
Grecchi S, Ferdeghini C, Longhi M, Mezzetta A, Guazzelli L, Khawthong S, Arduini F, Chiappe C, Iuliano A, Mussini PR. Chiral Biobased Ionic Liquids with Cations or Anions including Bile Acid Building Blocks as Chiral Selectors in Voltammetry. ChemElectroChem 2021. [DOI: 10.1002/celc.202100200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sara Grecchi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Claudio Ferdeghini
- Dipartimento di Farmacia Università degli Studi di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Mariangela Longhi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Andrea Mezzetta
- Dipartimento di Farmacia Università degli Studi di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia Università degli Studi di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Siriwat Khawthong
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Fabiana Arduini
- Dipartimento di Scienze e Tecnologie Chimiche Università di Roma Tor Vergata Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Cinzia Chiappe
- Dipartimento di Farmacia Università degli Studi di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Anna Iuliano
- Dipartimento di Chimica e Chimica Industriale Università degli Studi di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | | |
Collapse
|
348
|
Karimi-Maleh H, Ranjbari S, Tanhaei B, Ayati A, Orooji Y, Alizadeh M, Karimi F, Salmanpour S, Rouhi J, Sillanpää M, Sen F. Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study. ENVIRONMENTAL RESEARCH 2021; 195:110809. [PMID: 33515581 DOI: 10.1016/j.envres.2021.110809] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
In the present study, a novel 1-butyl-3-methylimidazolium bromide (BmImBr) impregnated chitosan beads were prepared and characterized using different methods, including XRD, FT-IR, EDX, SEM and BET. The FTIR analysis revealed that the BmImBr was successfully conjugated with the chitosan in the beads structure. The prepared beads were used as an efficient sorbent for the fast removal of methylene blue, as cationic dye model, from aqueous solution, whereas just 25 min was required to reach 86% removal efficiency. The increasing of BmImBr amount improved the adsorption performance of prepared beads. Also, it was found that the dye can be higher adsorbed on the beads surface by increasing the sorbent dosage and pH of solution, while the optimum dosage and pH were obtained 3 mg/L and 11, respectively. The kinetic study showed that the MB adsorption onto the CS-BmImBr beads follows the pseudo-fist order model and the intrinsic penetration controls the adsorption process. The properties of prepared chitosan- BmImBr IL conjugation confirmed that it can be exploited as an efficient adsorbent in the wastewater treatment.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa.
| | - Sara Ranjbari
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ali Ayati
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University 159 Longpan Road, Nanjing, 210037, China.
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari, Iran
| | - Jalal Rouhi
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran, 19839, Iran
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| |
Collapse
|
349
|
Ferreira VC, Zanchet L, Monteiro WF, da Trindade LG, de Souza MO, Correia RRB. Theoretical and experimental comparative study of nonlinear properties of imidazolium cation based ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
350
|
Vrancianu CO, Dobre EG, Gheorghe I, Barbu I, Cristian RE, Chifiriuc MC. Present and Future Perspectives on Therapeutic Options for Carbapenemase-Producing Enterobacterales Infections. Microorganisms 2021; 9:730. [PMID: 33807464 PMCID: PMC8065494 DOI: 10.3390/microorganisms9040730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) are included in the list of the most threatening antibiotic resistance microorganisms, being responsible for often insurmountable therapeutic issues, especially in hospitalized patients and immunocompromised individuals and patients in intensive care units. The enzymatic resistance to carbapenems is encoded by different β-lactamases belonging to A, B or D Ambler class. Besides compromising the activity of last-resort antibiotics, CRE have spread from the clinical to the environmental sectors, in all geographic regions. The purpose of this review is to present present and future perspectives on CRE-associated infections treatment.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Elena Georgiana Dobre
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
| | - Irina Gheorghe
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Ilda Barbu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Roxana Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|