301
|
Albannay MM, Vinther JMO, Capozzi A, Zhurbenko V, Ardenkjaer-Larsen JH. Optimized microwave delivery in dDNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:58-65. [PMID: 31220776 DOI: 10.1016/j.jmr.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Dissolution dynamic nuclear polarization (dDNP) has permitted the production of highly polarized liquid-state samples, enabling real-time imaging of metabolic processes non-invasively in vivo. The desire for higher magnetic resonance sensitivity has led to the development of multiple home-built and commercial dDNP polarizers employing solid-state microwave sources. Providing efficient microwave delivery that avoids unwanted heating of the sample is a crucial step to achieve high nuclear polarization. Consequently, a process is described to reduce waveguide attenuation due to resistive loss thereby doubling the delivered power. A mirror and reflector are designed and tested to increase the microwave field density across the sample volume resulting in a 2.3 dB increase of delivered power. Thermal considerations with regards to waveguide geometry and dDNP probe design are discussed. A thermal model of the dDNP probe is computed and experimentally verified.
Collapse
Affiliation(s)
- Mohammed M Albannay
- Center for Hyperpolarization in Magnetic Resonance, Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark
| | - Joachim M O Vinther
- Center for Hyperpolarization in Magnetic Resonance, Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark
| | - Andrea Capozzi
- Center for Hyperpolarization in Magnetic Resonance, Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark
| | - Vitaliy Zhurbenko
- Center for Hyperpolarization in Magnetic Resonance, Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark
| | - Jan Henrik Ardenkjaer-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark; GE Healthcare, Brøndby, Denmark.
| |
Collapse
|
302
|
Stødkilde‐Jørgensen H, Laustsen C, Hansen ESS, Schulte R, Ardenkjaer‐Larsen JH, Comment A, Frøkiær J, Ringgaard S, Bertelsen LB, Ladekarl M, Weber B. Pilot Study Experiences With Hyperpolarized [1‐
13
C]pyruvate MRI in Pancreatic Cancer Patients. J Magn Reson Imaging 2019; 51:961-963. [DOI: 10.1002/jmri.26888] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical MedicineAarhus University Aarhus Denmark
| | | | | | - Jan Henrik Ardenkjaer‐Larsen
- Department of Health TechnologyTechnical University of Denmark Kgs Lyngby Denmark
- General Electric Healthcare Brøndby Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical MedicineAarhus University Aarhus Denmark
| | - Steffen Ringgaard
- MR Research Centre, Department of Clinical MedicineAarhus University Aarhus Denmark
| | | | - Morten Ladekarl
- Department of OncologyClinical Cancer Research Center, Aalborg University Hospital Denmark
| | - Britta Weber
- Danish Centre for Particle TherapyAarhus University Hospital Denmark
- Department of OncologyAarhus University Hospital Denmark
| |
Collapse
|
303
|
Hansen RB, Sánchez‐Heredia JD, Bøgh N, Hansen ESS, Laustsen C, Hanson LG, Ardenkjær‐Larsen JH. Coil profile estimation strategies for parallel imaging with hyperpolarized
13
C MRI. Magn Reson Med 2019; 82:2104-2117. [DOI: 10.1002/mrm.27892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Rie B. Hansen
- Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
| | | | - Nikolaj Bøgh
- MR Research Centre Aarhus University Aarhus Denmark
| | | | | | - Lars G. Hanson
- Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research Copenhagen University Hospital Hvidovre Copenhagen Denmark
| | - Jan H. Ardenkjær‐Larsen
- Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
- GE Healthcare Brøndby Denmark
| |
Collapse
|
304
|
Shchepin RV, Birchall JR, Chukanov NV, Kovtunov KV, Koptyug IV, Theis T, Warren WS, Gelovani JG, Goodson BM, Shokouhi S, Rosen MS, Yen YF, Pham W, Chekmenev EY. Hyperpolarizing Concentrated Metronidazole 15 NO 2 Group over Six Chemical Bonds with More than 15 % Polarization and a 20 Minute Lifetime. Chemistry 2019; 25:8829-8836. [PMID: 30964568 PMCID: PMC6658333 DOI: 10.1002/chem.201901192] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/04/2019] [Indexed: 12/17/2022]
Abstract
The NMR hyperpolarization of uniformly 15 N-labeled [15 N3 ]metronidazole is demonstrated by using SABRE-SHEATH. In this antibiotic, the 15 NO2 group is hyperpolarized through spin relays created by 15 N spins in [15 N3 ]metronidazole, and the polarization is transferred from parahydrogen-derived hydrides over six chemical bonds. In less than a minute of parahydrogen bubbling at approximately 0.4 μT, a high level of nuclear spin polarization (P15N ) of around 16 % is achieved on all three 15 N sites. This product of 15 N polarization and concentration of 15 N spins is around six-fold better than any previous value determined for 15 N SABRE-derived hyperpolarization. At 1.4 T, the hyperpolarized state persists for tens of minutes (relaxation time, T1 ≈10 min). A novel synthesis of uniformly 15 N-enriched metronidazole is reported with a yield of 15 %. This approach can potentially be used for synthesis of a wide variety of in vivo metabolic probes with potential uses ranging from hypoxia sensing to theranostic imaging.
Collapse
Affiliation(s)
- Roman V Shchepin
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, 37232-2310, USA
| | - Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Nikita V Chukanov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Kirill V Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Warren S Warren
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry and Materials Technology Center, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Sepideh Shokouhi
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, 37232-2310, USA
| | - Matthew S Rosen
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, 02129, USA
| | - Yi-Fen Yen
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, 02129, USA
| | - Wellington Pham
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, 37232-2310, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
305
|
Allami AJ, Concilio MG, Lally P, Kuprov I. Quantum mechanical MRI simulations: Solving the matrix dimension problem. SCIENCE ADVANCES 2019; 5:eaaw8962. [PMID: 31334352 PMCID: PMC6641938 DOI: 10.1126/sciadv.aaw8962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/14/2019] [Indexed: 05/25/2023]
Abstract
We propose a solution to the matrix dimension problem in quantum mechanical simulations of MRI (magnetic resonance imaging) experiments on complex molecules. This problem is very old; it arises when Kronecker products of spin operators and spatial dynamics generators are taken-the resulting matrices are far too large for any current or future computer. However, spin and spatial operators individually have manageable dimensions, and we note here that the action by their Kronecker products on any vector may be computed without opening those products. This eliminates large matrices from the simulation process. MRI simulations for coupled spin systems of complex metabolites in three dimensions with diffusion, flow, chemical kinetics, and quantum mechanical treatment of spin relaxation are now possible. The methods described in this paper are implemented in versions 2.4 and later of the Spinach library.
Collapse
Affiliation(s)
- Ahmed J. Allami
- School of of Medicine, University of Al-Ameed, Karbala, PO No: 198, Iraq
| | | | - Pavan Lally
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
306
|
Dutta P, Perez MR, Lee J, Kang Y, Pratt M, Salzillo TC, Weygand J, Zacharias NM, Gammon ST, Koay EJ, Kim M, McAllister F, Sen S, Maitra A, Piwnica-Worms D, Fleming JB, Bhattacharya PK. Combining Hyperpolarized Real-Time Metabolic Imaging and NMR Spectroscopy To Identify Metabolic Biomarkers in Pancreatic Cancer. J Proteome Res 2019; 18:2826-2834. [PMID: 31120258 DOI: 10.1021/acs.jproteome.9b00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer that progresses without any symptom, and oftentimes, it is detected at an advanced stage. The lack of prior symptoms and effective treatments have created a knowledge gap in the management of this lethal disease. This issue can be addressed by developing novel noninvasive imaging-based biomarkers in PDAC. We explored in vivo hyperpolarized (HP) 13C MRS of pyruvate to lactate conversion and ex vivo 1H NMR spectroscopy in a panel of well-annotated patient-derived PDAC xenograft (PDXs) model and investigated the correlation between aberrant glycolytic metabolism and aggressiveness of the tumor. Real-time metabolic imaging data demonstrate the immediate intracellular conversion of HP 13C pyruvate to lactate after intravenous injection interrogating upregulated lactate dehydrogenase (LDH) activity in aggressive PDXs. Total ex vivo lactate measurement by 1H NMR spectroscopy showed a direct correlation with in vivo dynamic pyruvate-to-lactate conversion and demonstrated the potential of dynamic metabolic flux as a biomarker of total lactate concentration and aggressiveness of the tumor. Furthermore, the metabolite concentrations were very distinct among all four tumor types analyzed in this study. Overexpression of LDH-A and hypoxia-inducible factor (HIF-1α) plays a significant role in the conversion kinetics of HP pyruvate-to-lactate in tumors. Collectively, these data identified aberrant metabolic characteristics of pancreatic cancer PDXs and could potentially delineate metabolic targets for therapeutic intervention. Metabolic imaging with HP pyruvate and NMR metabolomics may enable identification and classification of aggressive subtypes of patient-derived xenografts. Translation of this real-time metabolic technique to the clinic may have the potential to improve the management of patients at high risk of developing pancreatic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jason B Fleming
- Department of Gastrointestinal Oncology , H. Lee Moffitt Cancer Center , Tampa , Florida 33612 , United States
| | | |
Collapse
|
307
|
Jähnig F, Himmler A, Kwiatkowski G, Däpp A, Hunkeler A, Kozerke S, Ernst M. A spin-thermodynamic approach to characterize spin dynamics in TEMPO-based samples for dissolution DNP at 7 T field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 303:91-104. [PMID: 31030064 DOI: 10.1016/j.jmr.2019.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
The spin dynamics of dissolution DNP samples consisting of 4.5 M [13C]urea in a mixture of (1/1)Vol glycerol/water using 4-Oxo-TEMPO as a radical was investigated. We analyzed the DNP dynamics as function of radical concentration at 7 T and 3.4 T static magnetic field as well as function of deuteration of the solvent matrix at the high field. The spin dynamics could be reproduced in all cases, at least qualitatively, by a thermodynamic model based on spin temperatures of the nuclear Zeeman baths and an electron non-Zeeman (dipolar) bath. We find, however, that at high field (7 T) and low radical concentrations (25 mM) the nuclear spins do not reach the same spin temperature indicating a weak coupling of the two baths. At higher radical concentrations, as well as for all radical concentrations at low field (3.4 T), the two nuclear Zeeman baths reach the same spin temperature within experimental errors. Additionally, the spin system was prepared with different initial conditions. For these cases, the thermodynamic model was able to predict the time evolution of the system well. While the DNP profiles do not give clear indications to a specific polarization transfer mechanism, at high field (7 T) increased coupling is seen. The EPR line shapes cannot clarify this in absence of ELDOR type experiments, nevertheless DNP profiles and dynamics under frequency-modulated microwave irradiation illustrate the expected increase in coupling between electrons with increasing radical concentration.
Collapse
Affiliation(s)
- Fabian Jähnig
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Aaron Himmler
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Grzegorz Kwiatkowski
- Institute for Biomedical Engineering, University and ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - Alexander Däpp
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Andreas Hunkeler
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|
308
|
Salnikov OG, Chukanov NV, Shchepin RV, Manzanera Esteve IV, Kovtunov KV, Koptyug IV, Chekmenev EY. Parahydrogen-Induced Polarization of 1- 13C-Acetates and 1- 13C-Pyruvates Using Sidearm Hydrogenation of Vinyl, Allyl, and Propargyl Esters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:12827-12840. [PMID: 31363383 PMCID: PMC6664436 DOI: 10.1021/acs.jpcc.9b02041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
13C-hyperpolarized carboxylates, such as pyruvate and acetate, are emerging molecular contrast agents for MRI visualization of various diseases, including cancer. Here we present a systematic study of 1H and 13C parahydrogen-induced polarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties. It was found that allyl pyruvate is the most efficiently hyperpolarized compound from those under study, yielding 21% and 5.4% polarization of 1H and 13C nuclei, respectively, in CD3OD solutions. Allyl pyruvate and ethyl acetate were also hyperpolarized in aqueous phase using homogeneous hydrogenation with parahydrogen over water-soluble rhodium catalyst. 13C polarization of 0.82% and 2.1% was obtained for allyl pyruvate and ethyl acetate, respectively. 13C-hyperpolarized methanolic and aqueous solutions of allyl pyruvate and ethyl acetate were employed for in vitro MRI visualization, demonstrating the prospects for translation of the presented approach to biomedical in vivo studies.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
| | - Isaac V. Manzanera Esteve
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
- Department of Biomedical Engineering, and Vanderbilt
University, Nashville, Tennessee 37232-2310, United States
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt
University, Nashville, Tennessee 37232-2310, United States
- Department of Chemistry, Integrative Biosciences (Ibio),
Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202,
United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow
119991, Russia
| |
Collapse
|
309
|
Tran M, Latifoltojar A, Neves JB, Papoutsaki MV, Gong F, Comment A, Costa ASH, Glaser M, Tran-Dang MA, El Sheikh S, Piga W, Bainbridge A, Barnes A, Young T, Jeraj H, Awais R, Adeleke S, Holt C, O’Callaghan J, Twyman F, Atkinson D, Frezza C, Årstad E, Gadian D, Emberton M, Punwani S. First-in-human in vivo non-invasive assessment of intra-tumoral metabolic heterogeneity in renal cell carcinoma. BJR Case Rep 2019; 5:20190003. [PMID: 31428445 PMCID: PMC6699984 DOI: 10.1259/bjrcr.20190003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Intratumoral genetic heterogeneity and the role of metabolic reprogramming in renal cell carcinoma (RCC) have been extensively documented. However, the distribution of these metabolic changes within the tissue has not been explored. We report on the first-in-human in vivo non-invasive metabolic interrogation of RCC using hyperpolarized carbon-13 (13C) magnetic resonance imaging (HP-MRI) and describe the validation of in vivo lactate metabolic heterogeneity against multi-regional ex vivo mass spectrometry. HP-MRI provides an in vivo assessment of metabolism and provides a novel opportunity to safely and non-invasively assess cancer heterogeneity.
Collapse
Affiliation(s)
| | - Arash Latifoltojar
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | | | | | - Fiona Gong
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | | | - Ana S. H. Costa
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| | | | - My-Anh Tran-Dang
- Department of Histopathology, Royal Free London NHS Foundation Trust, London, UK
| | - Soha El Sheikh
- Department of Histopathology, Royal Free London NHS Foundation Trust, London, UK
| | - Wivijin Piga
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | - Alan Bainbridge
- Department of Medical Physics and Biomedical Engineering, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Tim Young
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| | - Hassan Jeraj
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | | | - Sola Adeleke
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | - Christopher Holt
- Pharmacy Department, University College London Hospitals NHS Foundation Trust, London, UK
| | - James O’Callaghan
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | - Frazer Twyman
- Institute of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - David Atkinson
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| | | | - David Gadian
- Institute of Child Health, University College London, London, UK
| | | | | |
Collapse
|
310
|
Shenderova OA, Shames AI, Nunn NA, Torelli MD, Vlasov I, Zaitsev A. Review Article: Synthesis, properties, and applications of fluorescent diamond particles. JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY. B, NANOTECHNOLOGY & MICROELECTRONICS : MATERIALS, PROCESSING, MEASUREMENT, & PHENOMENA : JVST B 2019; 37:030802. [PMID: 31032146 PMCID: PMC6461556 DOI: 10.1116/1.5089898] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 05/21/2023]
Abstract
Diamond particles containing color centers-fluorescent crystallographic defects embedded within the diamond lattice-outperform other classes of fluorophores by providing a combination of unmatched photostability, intriguing coupled magneto-optical properties, intrinsic biocompatibility, and outstanding mechanical and chemical robustness. This exceptional combination of properties positions fluorescent diamond particles as unique fluorophores with emerging applications in a variety of fields, including bioimaging, ultrasensitive metrology at the nanoscale, fluorescent tags in industrial applications, and even potentially as magnetic resonance imaging contrast agents. However, production of fluorescent nanodiamond (FND) is nontrivial, since it requires irradiation with high-energy particles to displace carbon atoms and create vacancies-a primary constituent in the majority color centers. In this review, centrally focused on material developments, major steps of FND production are discussed with emphasis on current challenges in the field and possible solutions. The authors demonstrate how the combination of fluorescent spectroscopy and electron paramagnetic resonance provides valuable insight into the types of radiation-induced defects formed and their evolution upon thermal annealing, thereby guiding FND performance optimization. A recent breakthrough process allowing for production of fluorescent diamond particles with vibrant blue, green, and red fluorescence is also discussed. Finally, the authors conclude with demonstrations of a few FND applications in the life science arena and in industry.
Collapse
Affiliation(s)
- Olga A Shenderova
- Adámas Nanotechnologies, 8100 Brownleigh Dr., Raleigh, North California 27617
| | - Alexander I Shames
- Department of Physics, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel
| | - Nicholas A Nunn
- Adámas Nanotechnologies, 8100 Brownleigh Dr., Raleigh, North California 27617
| | - Marco D Torelli
- Adámas Nanotechnologies, 8100 Brownleigh Dr., Raleigh, North California 27617
| | - Igor Vlasov
- General Physics Institute, RAS, Vavilov Street 38, 119991 Moscow, Russia
| | - Alexander Zaitsev
- College of Staten Island, CUNY, 2800 Victory Blvd., Staten Island, New York 10312
| |
Collapse
|
311
|
Dutta P, Salzillo TC, Pudakalakatti S, Gammon ST, Kaipparettu BA, McAllister F, Wagner S, Frigo DE, Logothetis CJ, Zacharias NM, Bhattacharya PK. Assessing Therapeutic Efficacy in Real-time by Hyperpolarized Magnetic Resonance Metabolic Imaging. Cells 2019; 8:E340. [PMID: 30978984 PMCID: PMC6523855 DOI: 10.3390/cells8040340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/30/2019] [Accepted: 04/06/2019] [Indexed: 01/22/2023] Open
Abstract
Precisely measuring tumor-associated alterations in metabolism clinically will enable the efficient assessment of therapeutic responses. Advances in imaging technologies can exploit the differences in cancer-associated cell metabolism as compared to normal tissue metabolism, linking changes in target metabolism to therapeutic efficacy. Metabolic imaging by Positron Emission Tomography (PET) employing 2-fluoro-deoxy-glucose ([18F]FDG) has been used as a routine diagnostic tool in the clinic. Recently developed hyperpolarized Magnetic Resonance (HP-MR), which radically increases the sensitivity of conventional MRI, has created a renewed interest in functional and metabolic imaging. The successful translation of this technique to the clinic was achieved recently with measurements of 13C-pyruvate metabolism. Here, we review the potential clinical roles for metabolic imaging with hyperpolarized MRI as applied in assessing therapeutic intervention in different cancer systems.
Collapse
Affiliation(s)
- Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Travis C Salzillo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Seth T Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Benny A Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Shawn Wagner
- Biomedical Imaging Research Institute Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Clinical Therapeutics, University of Athens, 11527 Athens, Greece.
| | - Niki M Zacharias
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
312
|
Wang ZJ, Ohliger MA, Larson PEZ, Gordon JW, Bok RA, Slater J, Villanueva-Meyer JE, Hess CP, Kurhanewicz J, Vigneron DB. Hyperpolarized 13C MRI: State of the Art and Future Directions. Radiology 2019; 291:273-284. [PMID: 30835184 DOI: 10.1148/radiol.2019182391] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hyperpolarized (HP) carbon 13 (13C) MRI is an emerging molecular imaging method that allows rapid, noninvasive, and pathway-specific investigation of dynamic metabolic and physiologic processes that were previously inaccessible to imaging. This technique has enabled real-time in vivo investigations of metabolism that are central to a variety of diseases, including cancer, cardiovascular disease, and metabolic diseases of the liver and kidney. This review provides an overview of the methods of hyperpolarization and 13C probes investigated to date in preclinical models of disease. The article then discusses the progress that has been made in translating this technology for clinical investigation. In particular, the potential roles and emerging clinical applications of HP [1-13C]pyruvate MRI will be highlighted. The future directions to enable the adoption of this technology to advance the basic understanding of metabolism, to improve disease diagnosis, and to accelerate treatment assessment are also detailed.
Collapse
Affiliation(s)
- Zhen J Wang
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Michael A Ohliger
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Peder E Z Larson
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Jeremy W Gordon
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Robert A Bok
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - James Slater
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Javier E Villanueva-Meyer
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Christopher P Hess
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - John Kurhanewicz
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Daniel B Vigneron
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
313
|
Wang Z, Nielsen PM, Laustsen C, Bertelsen LB. Metabolic consequences of lactate dehydrogenase inhibition by oxamate in hyperglycemic proximal tubular cells. Exp Cell Res 2019; 378:51-56. [PMID: 30836064 DOI: 10.1016/j.yexcr.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
Diabetic kidney disease (DKD) is associated with altered metabolic patterns, leading to increased lactate production even in the presence of sufficient oxygen supply. Studies have shown hyperglycemia to be an important factor in determining development of DKD. Here we explore the metabolic consequences of lactate dehydrogenase (LDH) inhibition exerted by the LDH inhibitor, oxamate, in the isolated rat renal proximal tubular cells (NRK-52E) under hyperglycemic conditions. Cells treated with oxamate (100 mM) for 24 h, with or without high D-glucose (25 mM) load, were investigated with hyperpolarized [1-13C]pyruvate in a 1T NMR system. Respiratory measurements using an oxygen microsensor system was conducted. Oxamate treatment of cells with or without the presences of high D-glucose, reduced the lactate production/accumulation with 36.5% or 22.5% respectively. Reduced proliferation, hypertrophic effects, as well as elevated vascular endothelial growth factor (VEGF) expression in the NRK-52E cells were found. The increased glycolytic flux in high D-glucose cultured NRK-52E cells resulted in an upregulation of the cellular oxygen consumption rate upon treatment with oxamate. Our findings suggested that in vitro cultured NRK-52E cells exposed to hyperglycemic conditions, could redirect the glycolytic flux towards oxidative phosphorylation by LDH inhibition. This link between aerobic and anaerobic metabolism may be determined by the redox balance (NAD+/NADH ratio). In conclusion, hyperglycemic conditions and oxamate treatment alters the metabolic phenotype of NRK-52E cells towards increased oxygen utilization mediated by a decreased NAD+/NADH ratio, which in turn decreases cell proliferation/survival.
Collapse
Affiliation(s)
- Zhimin Wang
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
314
|
Walker CM, Fuentes D, Larson PEZ, Kundra V, Vigneron DB, Bankson JA. Effects of excitation angle strategy on quantitative analysis of hyperpolarized pyruvate. Magn Reson Med 2019; 81:3754-3762. [PMID: 30793791 DOI: 10.1002/mrm.27687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Various excitation strategies have been proposed for dynamic imaging of hyperpolarized agents such as [1-13 C]-pyruvate, but the impact of these strategies on quantitative evaluation of signal evolution remains unclear. To better understand their relative performance, we compared the accuracy and repeatability of measurements made using variable excitation angle strategies and conventional constant excitation angle strategies. METHODS Signal evolution for constant and variable excitation angle schedules was simulated using a pharmacokinetic model of hyperpolarized pyruvate with 2 chemical pools and 2 physical compartments. Noisy synthetic data were then fit using the same pharmacokinetic model with the apparent chemical exchange term as an unknown, and fit results were compared with simulation parameters to determine accuracy and reproducibility. RESULTS Constant excitations and a variable excitation strategy that maximizes the HP lactate signal yielded data that supported quantitative analyses with similar accuracy and repeatability. Variable excitation angle strategies that were designed to produce a constant signal level resulted in lower signal and worse quantitative accuracy and repeatability, particularly for longer acquisition times. CONCLUSIONS These results suggest that either constant excitation angle or variable excitation angles that attempt to maximize total signal, as opposed to maintaining a constant signal level, are preferred for metabolic quantification using hyperpolarized pyruvate.
Collapse
Affiliation(s)
- Christopher M Walker
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California
| | - Vikas Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|