301
|
Wang N, Yuan Y, Bai X, Han W, Han L, Qing B. Association of cathepsin B and cystatin C with an age-related pulmonary subclinical state in a healthy Chinese population. Ther Adv Respir Dis 2020; 14:1753466620921751. [PMID: 32401159 PMCID: PMC7223214 DOI: 10.1177/1753466620921751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Cathepsin B (CTSB) and cystatin C (CYSC) are new biomarkers for several physiological and pathological processes as their activities increase with age. The aim of this study was to explore population-level associations between serum CTSB and CYSC with an age-related pulmonary subclinical state. Methods: We examined 401 healthy participants (aged 36–87 years, of which 44.3% were male) in northern Chinese cities. We used a standard spirometer to determine lung function. Serum CTSB and CYSC levels were measured by enzyme-linked immunosorbent assay (ELISA). Results: For all participants, serum CTSB was related to maximum vital capacity (VC MAX), forced vital capacity (FVC), forced expiratory volume in 1 s, peak expiratory flow, forced expiratory flow at 25% of FVC, forced expiratory volume in 3 s (FEV3), and inspiratory vital capacity (VC IN). These associations were lost after full adjustment. CYSC remained significantly associated with inspiratory capacity (IC), breath frequency (BF; p < 0.001), minute ventilation (MV), the ratio of FEV3 and FVC (FEV3%FVC), and expiratory reserve volume (p < 0.05) after adjusting for all other possible confounders. In males, serum CYSC levels exhibited significant and independent associations with FVC, FEV3 (p < 0.05), and IC (p < 0.001) and serum CTSB levels exhibited significant and independent associations with BF (p < 0.05). Conclusions: Our results confirmed serum CYSC concentration associations with an age-related lung function in healthy people. However, the association between serum CTSB and lung function was not well confirmed. Serum measurements of CYSC may provide valuable predictors of pulmonary function in healthy people, especially healthy elderly adults. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
| | - Yajun Yuan
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaojuan Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Wen Han
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lulu Han
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bijuan Qing
- Department of Gerontology and Geriatrics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
302
|
Cellular Senescence in the Lung: The Central Role of Senescent Epithelial Cells. Int J Mol Sci 2020; 21:ijms21093279. [PMID: 32384619 PMCID: PMC7247355 DOI: 10.3390/ijms21093279] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a key process in physiological dysfunction developing upon aging or following diverse stressors including ionizing radiation. It describes the state of a permanent cell cycle arrest, in which proliferating cells become resistant to growth-stimulating factors. Senescent cells differ from quiescent cells, which can re-enter the cell cycle and from finally differentiated cells: morphological and metabolic changes, restructuring of chromatin, changes in gene expressions and the appropriation of an inflammation-promoting phenotype, called the senescence-associated secretory phenotype (SASP), characterize cellular senescence. The biological role of senescence is complex, since both protective and harmful effects have been described for senescent cells. While initially described as a mechanism to avoid malignant transformation of damaged cells, senescence can even contribute to many age-related diseases, including cancer, tissue degeneration, and inflammatory diseases, particularly when senescent cells persist in damaged tissues. Due to overwhelming evidence about the important contribution of cellular senescence to the pathogenesis of different lung diseases, specific targeting of senescent cells or of pathology-promoting SASP factors has been suggested as a potential therapeutic approach. In this review, we summarize recent advances regarding the role of cellular (fibroblastic, endothelial, and epithelial) senescence in lung pathologies, with a focus on radiation-induced senescence. Among the different cells here, a central role of epithelial senescence is suggested.
Collapse
|
303
|
Pignolo RJ, Passos JF, Khosla S, Tchkonia T, Kirkland JL. Reducing Senescent Cell Burden in Aging and Disease. Trends Mol Med 2020; 26:630-638. [PMID: 32589933 DOI: 10.1016/j.molmed.2020.03.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/27/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
Cellular senescence is a primary aging process and tumor suppressive mechanism characterized by irreversible growth arrest, apoptosis resistance, production of a senescence-associated secretory phenotype (SASP), mitochondrial dysfunction, and alterations in DNA and chromatin. In preclinical aging models, accumulation of senescent cells is associated with multiple chronic diseases and disorders, geriatric syndromes, multimorbidity, and accelerated aging phenotypes. In animals, genetic and pharmacologic reduction of senescent cell burden results in the prevention, delay, and/or alleviation of a variety of aging-related diseases and sequelae. Early clinical trials have thus far focused on safety and target engagement of senolytic agents that clear senescent cells. We hypothesize that these pharmacologic interventions may have transformative effects on geriatric medicine.
Collapse
Affiliation(s)
- Robert J Pignolo
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA.
| | - João F Passos
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA
| | - Sundeep Khosla
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA
| | - Tamara Tchkonia
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA
| | - James L Kirkland
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
304
|
Bral M, Shapiro AMJ. Normothermic Preservation of Liver – What Does the Future Hold? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1288:13-31. [DOI: 10.1007/5584_2020_517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
305
|
Malavolta M, Giacconi R, Brunetti D, Provinciali M, Maggi F. Exploring the Relevance of Senotherapeutics for the Current SARS-CoV-2 Emergency and Similar Future Global Health Threats. Cells 2020; 9:909. [PMID: 32276453 PMCID: PMC7226793 DOI: 10.3390/cells9040909] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
The higher death rate caused by COVID-19 in older people, especially those with comorbidities, is a challenge for biomedical aging research. Here we explore the idea that an exacerbated inflammatory response, in particular that mediated by IL-6, may drive the deleterious consequences of the infection. Data shows that other RNA viruses, such as influenza virus, can display enhanced replication efficiency in senescent cells, suggesting that the accumulation of senescent cells with aging and age-related diseases may play a role in this phenomenon. However, at present, we are completely unaware of the response to SARS-CoV and SARS-COV-2 occurring in senescent cells. We deem that this is a priority area of research because it could lead to the development of several therapeutic strategies based on senotherapeutics or prevent unsuccessful attempts. Two of these senotherapeutics, azithromycin and ruxolitinib, are currently undergoing testing for their efficacy in treating COVID-19. The potential of these strategies is not only for ameliorating the consequences of the current emergence of SARS-CoV-2, but also for the future emergence of new viruses or mutated ones for which we are completely unprepared and for which no vaccines are available.
Collapse
Affiliation(s)
- Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (R.G.); (M.P.)
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (R.G.); (M.P.)
| | - Dario Brunetti
- Mitochondrial Medicine Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy;
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (R.G.); (M.P.)
| | - Fabrizio Maggi
- Department of Translational Research, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
306
|
Abstract
Life expectancy has increased substantially over the last few decades, leading to a worldwide increase in the prevalence and burden of aging-associated diseases. Recent evidence has proven that cellular senescence contributes substantially to the development of these disorders. Cellular senescence is a state of cell cycle arrest with suppressed apoptosis and concomitant secretion of multiple bioactive factors (the senescence-associated secretory phenotype-SASP) that plays a physiological role in embryonic development and healing processes. However, DNA damage and oxidative stress that occur during aging cause the accumulation of senescent cells, which through their SASP bring about deleterious effects on multiple organ and systemic functions. Ablation of senescent cells through genetic or pharmacological means leads to improved life span and health span in animal models, and preliminary evidence suggests it may also have a positive impact on human health. Thus, strategies to reduce or eliminate the burden of senescent cells or their products have the potential to impact multiple clinical outcomes with a single intervention. In this review, we touch upon the basics of cell senescence and summarize the current state of development of therapies against cell senescence for human use.
Collapse
|
307
|
Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Discovery, development, and future application of senolytics: theories and predictions. FEBS J 2020; 287:2418-2427. [PMID: 32112672 PMCID: PMC7302972 DOI: 10.1111/febs.15264] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022]
Abstract
Senescent cells accumulate with aging and at etiological sites of multiple diseases, including those accounting for most morbidity, mortality, and health costs. Senescent cells do not replicate, can release factors that cause tissue dysfunction, and yet remain viable. The discovery of senolytic drugs, agents that selectively eliminate senescent cells, created a new route for alleviating age‐related dysfunction and diseases. As anticipated for agents targeting fundamental aging mechanisms that are ‘root cause’ contributors to multiple disorders, potential applications of senolytics are protean. We review the discovery of senolytics, strategies for translation into clinical application, and promising early signals from clinical trials.
Collapse
Affiliation(s)
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
308
|
Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases. Cells 2020; 9:cells9030671. [PMID: 32164335 PMCID: PMC7140645 DOI: 10.3390/cells9030671] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Senescent cells are generally characterized by permanent cell cycle arrest, metabolic alteration and activation, and apoptotic resistance in multiple organs due to various stressors. Excessive accumulation of senescent cells in numerous tissues leads to multiple chronic diseases, tissue dysfunction, age-related diseases and organ ageing. Immune cells can remove senescent cells. Immunaging or impaired innate and adaptive immune responses by senescent cells result in persistent accumulation of various senescent cells. Although senolytics-drugs that selectively remove senescent cells by inducing their apoptosis-are recent hot topics and are making significant research progress, senescence immunotherapies using immune cell-mediated clearance of senescent cells are emerging and promising strategies to fight ageing and multiple chronic diseases. This short review provides an overview of the research progress to date concerning senescent cell-caused chronic diseases and tissue ageing, as well as the regulation of senescence by small-molecule drugs in clinical trials and different roles and regulation of immune cells in the elimination of senescent cells. Mounting evidence indicates that immunotherapy targeting senescent cells combats ageing and chronic diseases and subsequently extends the healthy lifespan.
Collapse
|
309
|
Kang MJ. Recent Advances in Molecular Basis of Lung Aging and Its Associated Diseases. Tuberc Respir Dis (Seoul) 2020; 83:107-115. [PMID: 32185913 PMCID: PMC7105435 DOI: 10.4046/trd.2020.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
Aging is often viewed as a progressive decline in fitness due to cumulative deleterious alterations of biological functions in the living system. Recently, our understanding of the molecular mechanisms underlying aging biology has significantly advanced. Interestingly, many of the pivotal molecular features of aging biology are also found to contribute to the pathogenesis of chronic lung disorders such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis, for which advanced age is the most crucial risk factor. Thus, an enhanced understanding of how molecular features of aging biology are intertwined with the pathobiology of these aging-related lung disorders has paramount significance and may provide an opportunity for the development of novel therapeutics for these major unmet medical needs. To serve the purpose of integrating molecular understanding of aging biology with pulmonary medicine, in this review, recent findings obtained from the studies of aging-associated lung disorders are summarized and interpreted through the perspective of molecular biology of aging.
Collapse
Affiliation(s)
- Min Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
310
|
Mensà E, Guescini M, Giuliani A, Bacalini MG, Ramini D, Corleone G, Ferracin M, Fulgenzi G, Graciotti L, Prattichizzo F, Sorci L, Battistelli M, Monsurrò V, Bonfigli AR, Cardelli M, Recchioni R, Marcheselli F, Latini S, Maggio S, Fanelli M, Amatori S, Storci G, Ceriello A, Stocchi V, De Luca M, Magnani L, Rippo MR, Procopio AD, Sala C, Budimir I, Bassi C, Negrini M, Garagnani P, Franceschi C, Sabbatinelli J, Bonafè M, Olivieri F. Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells. J Extracell Vesicles 2020; 9:1725285. [PMID: 32158519 PMCID: PMC7048230 DOI: 10.1080/20013078.2020.1725285] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
The role of epigenetics in endothelial cell senescence is a cutting-edge topic in ageing research. However, little is known of the relative contribution to pro-senescence signal propagation provided by microRNAs shuttled by extracellular vesicles (EVs) released from senescent cells. Analysis of microRNA and DNA methylation profiles in non-senescent (control) and senescent (SEN) human umbilical vein endothelial cells (HUVECs), and microRNA profiling of their cognate small EVs (sEVs) and large EVs demonstrated that SEN cells released a significantly greater sEV number than control cells. sEVs were enriched in miR-21-5p and miR-217, which target DNMT1 and SIRT1. Treatment of control cells with SEN sEVs induced a miR-21/miR-217-related impairment of DNMT1-SIRT1 expression, the reduction of proliferation markers, the acquisition of a senescent phenotype and a partial demethylation of the locus encoding for miR-21. MicroRNA profiling of sEVs from plasma of healthy subjects aged 40-100 years showed an inverse U-shaped age-related trend for miR-21-5p, consistent with senescence-associated biomarker profiles. Our findings suggest that miR-21-5p/miR-217 carried by SEN sEVs spread pro-senescence signals, affecting DNA methylation and cell replication.
Collapse
Affiliation(s)
- Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Deborah Ramini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giacomo Corleone
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Manuela Ferracin
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Leonardo Sorci
- Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, Ancona, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | | | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | | | - Silvia Latini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Serena Maggio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory “Paola”, University of Urbino Carlo Bo, Fano, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory “Paola”, University of Urbino Carlo Bo, Fano, Italy
| | - Gianluca Storci
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Iva Budimir
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery & Experimental Medicine, and Laboratory for the Technologies of Advanced Therapies, Tecnopolo, University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery & Experimental Medicine, and Laboratory for the Technologies of Advanced Therapies, Tecnopolo, University of Ferrara, Ferrara, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
- Personal Genomics S.r.l., Verona, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
311
|
Regulatory Mechanisms of Mitochondrial Function and Cardiac Aging. Int J Mol Sci 2020; 21:ijms21041359. [PMID: 32085438 PMCID: PMC7072955 DOI: 10.3390/ijms21041359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/10/2023] Open
Abstract
Aging is a major risk factor for cardiovascular diseases (CVDs), the major cause of death worldwide. Cardiac myocytes, which hold the most abundant mitochondrial population, are terminally differentiated cells with diminished regenerative capacity in the adult. Cardiomyocyte mitochondrial dysfunction is a characteristic feature of the aging heart and one out of the nine features of cellular aging. Aging and cardiac pathologies are also associated with increased senescence in the heart. However, the cause and consequences of cardiac senescence during aging or in cardiac pathologies are mostly unrecognized. Further, despite recent advancement in anti-senescence therapy, the targeted cell type and the effect on cardiac structure and function have been largely overlooked. The unique cellular composition of the heart, and especially the functional properties of cardiomyocytes, need to be considered when designing therapeutics to target cardiac aging. Here we review recent findings regarding key factors regulating cell senescence, mitochondrial health as well as cardiomyocyte rejuvenation.
Collapse
|
312
|
Abstract
During aging, deterioration in cardiac structure and function leads to increased susceptibility to heart failure. The need for interventions to combat this age-related cardiac decline is becoming increasingly urgent as the elderly population continues to grow. Our understanding of cardiac aging, and aging in general, is limited. However, recent studies of age-related decline and its prevention through interventions like exercise have revealed novel pathological and cardioprotective pathways. In this review, we summarize recent findings concerning the molecular mechanisms of age-related heart failure and highlight exercise as a valuable experimental platform for the discovery of much-needed novel therapeutic targets in this chronic disease.
Collapse
Affiliation(s)
- Haobo Li
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - Margaret H Hastings
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - James Rhee
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.).,Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston (J.R.)
| | - Lena E Trager
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - Jason D Roh
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - Anthony Rosenzweig
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| |
Collapse
|
313
|
Thomas R, Wang W, Su DM. Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging. IMMUNITY & AGEING 2020; 17:2. [PMID: 31988649 PMCID: PMC6971920 DOI: 10.1186/s12979-020-0173-8] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 01/10/2023]
Abstract
Immune system aging is characterized by the paradox of immunosenescence (insufficiency) and inflammaging (over-reaction), which incorporate two sides of the same coin, resulting in immune disorder. Immunosenescence refers to disruption in the structural architecture of immune organs and dysfunction in immune responses, resulting from both aged innate and adaptive immunity. Inflammaging, described as a chronic, sterile, systemic inflammatory condition associated with advanced age, is mainly attributed to somatic cellular senescence-associated secretory phenotype (SASP) and age-related autoimmune predisposition. However, the inability to reduce senescent somatic cells (SSCs), because of immunosenescence, exacerbates inflammaging. Age-related adaptive immune system deviations, particularly altered T cell function, are derived from age-related thymic atrophy or involution, a hallmark of thymic aging. Recently, there have been major developments in understanding how age-related thymic involution contributes to inflammaging and immunosenescence at the cellular and molecular levels, including genetic and epigenetic regulation, as well as developments of many potential rejuvenation strategies. Herein, we discuss the research progress uncovering how age-related thymic involution contributes to immunosenescence and inflammaging, as well as their intersection. We also describe how T cell adaptive immunity mediates inflammaging and plays a crucial role in the progression of age-related neurological and cardiovascular diseases, as well as cancer. We then briefly outline the underlying cellular and molecular mechanisms of age-related thymic involution, and finally summarize potential rejuvenation strategies to restore aged thymic function.
Collapse
Affiliation(s)
- Rachel Thomas
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Weikan Wang
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Dong-Ming Su
- 2Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107 USA
| |
Collapse
|
314
|
Livshits G, Kalinkovich A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res Rev 2019; 56:100980. [PMID: 31726228 DOI: 10.1016/j.arr.2019.100980] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Sarcopenia, obesity and their coexistence, obese sarcopenia (OBSP) as well as atherosclerosis-related cardio-vascular diseases (ACVDs), including chronic heart failure (CHF), are among the greatest public health concerns in the ageing population. A clear age-dependent increased prevalence of sarcopenia and OBSP has been registered in CHF patients, suggesting mechanistic relationships. Development of OBSP could be mediated by a crosstalk between the visceral and subcutaneous adipose tissue (AT) and the skeletal muscle under conditions of low-grade local and systemic inflammation, inflammaging. The present review summarizes the emerging data supporting the idea that inflammaging may serve as a mutual mechanism governing the development of sarcopenia, OBSP and ACVDs. In support of this hypothesis, various immune cells release pro-inflammatory mediators in the skeletal muscle and myocardium. Subsequently, the endothelial structure is disrupted, and cellular processes, such as mitochondrial activity, mitophagy, and autophagy are impaired. Inflamed myocytes lose their contractile properties, which is characteristic of sarcopenia and CHF. Inflammation may increase the risk of ACVD events in a hyperlipidemia-independent manner. Significant reduction of ACVD event rates, without the lowering of plasma lipids, following a specific targeting of key pro-inflammatory cytokines confirms a key role of inflammation in ACVD pathogenesis. Gut dysbiosis, an imbalanced gut microbial community, is known to be deeply involved in the pathogenesis of age-associated sarcopenia and ACVDs by inducing and supporting inflammaging. Dysbiosis induces the production of trimethylamine-N-oxide (TMAO), which is implicated in atherosclerosis, thrombosis, metabolic syndrome, hypertension and poor CHF prognosis. In OBSP, AT dysfunction and inflammation induce, in concert with dysbiosis, lipotoxicity and other pathophysiological processes, thus exacerbating sarcopenia and CHF. Administration of specialized, inflammation pro-resolving mediators has been shown to ameliorate the inflammatory manifestations. Considering all these findings, we hypothesize that sarcopenia, OBSP, CHF and dysbiosis are inflammaging-oriented disorders, whereby inflammaging is common and most probably the causative mechanism driving their pathogenesis.
Collapse
Affiliation(s)
- Gregory Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.; Adelson School of Medicine, Ariel University, Ariel, Israel..
| | - Alexander Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
315
|
Schmeer C, Kretz A, Wengerodt D, Stojiljkovic M, Witte OW. Dissecting Aging and Senescence-Current Concepts and Open Lessons. Cells 2019; 8:cells8111446. [PMID: 31731770 PMCID: PMC6912776 DOI: 10.3390/cells8111446] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023] Open
Abstract
In contrast to the programmed nature of development, it is still a matter of debate whether aging is an adaptive and regulated process, or merely a consequence arising from a stochastic accumulation of harmful events that culminate in a global state of reduced fitness, risk for disease acquisition, and death. Similarly unanswered are the questions of whether aging is reversible and can be turned into rejuvenation as well as how aging is distinguishable from and influenced by cellular senescence. With the discovery of beneficial aspects of cellular senescence and evidence of senescence being not limited to replicative cellular states, a redefinition of our comprehension of aging and senescence appears scientifically overdue. Here, we provide a factor-based comparison of current knowledge on aging and senescence, which we converge on four suggested concepts, thereby implementing the newly emerging cellular and molecular aspects of geroconversion and amitosenescence, and the signatures of a genetic state termed genosenium. We also address the possibility of an aging-associated secretory phenotype in analogy to the well-characterized senescence-associated secretory phenotype and delineate the impact of epigenetic regulation in aging and senescence. Future advances will elucidate the biological and molecular fingerprints intrinsic to either process.
Collapse
Affiliation(s)
- Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
- Correspondence:
| | - Alexandra Kretz
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Diane Wengerodt
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
| | - Milan Stojiljkovic
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| |
Collapse
|