301
|
Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat Immunol 2017; 18:1160-1172. [PMID: 28783152 PMCID: PMC5912503 DOI: 10.1038/ni.3799] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Treg) perform two distinct functions: they maintain self-tolerance and support organ homeostasis by differentiation into specialized tissue Treg cells. We now report that epigenetic modifications define molecular characteristics of tissue Treg cells. Tagmentation-based whole-genome bisulfite sequencing of tissue and lymphoid T cells revealed more than 11,000 differentially methylated regions. Similarities of the epigenetic landscape led to the identification of a common tissue Treg population, present in many organs and characterized by gain and loss of DNA methylation, including many TH2-associated sites such as the IL-33 receptor ST2, and the production of tissue-regenerative factors. Furthermore, this ST2-expressing population (which we term here tisTregST2) was dependent on the transcriptional regulator BATF and could be expanded by IL-33. Thus, tissue Treg cells integrate different waves of epigenetic reprogramming which define their tissue-restricted specializations.
Collapse
|
302
|
DNA damage tolerance in hematopoietic stem and progenitor cells in mice. Proc Natl Acad Sci U S A 2017; 114:E6875-E6883. [PMID: 28761001 DOI: 10.1073/pnas.1706508114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA damage tolerance (DDT) enables bypassing of DNA lesions during replication, thereby preventing fork stalling, replication stress, and secondary DNA damage related to fork stalling. Three modes of DDT have been documented: translesion synthesis (TLS), template switching (TS), and repriming. TLS and TS depend on site-specific PCNA K164 monoubiquitination and polyubiquitination, respectively. To investigate the role of DDT in maintaining hematopoietic stem cells (HSCs) and progenitors, we used PcnaK164R/K164R mice as a unique DDT-defective mouse model. Analysis of the composition of HSCs and HSC-derived multipotent progenitors (MPPs) revealed a significantly reduced number of HSCs, likely owing to increased differentiation of HSCs toward myeloid/erythroid-associated MPP2s. This skewing came at the expense of the number of lymphoid-primed MPP4s, which appeared to be compensated for by increased MPP4 proliferation. Furthermore, defective DDT decreased the numbers of MPP-derived common lymphoid progenitor (CLP), common myeloid progenitor (CMP), megakaryocyte-erythroid progenitor (MEP), and granulocyte-macrophage progenitor (GMP) cells, accompanied by increased cell cycle arrest in CMPs. The HSC and MPP phenotypes are reminiscent of premature aging and stressed hematopoiesis, and indeed progressed with age and were exacerbated on cisplatin exposure. Bone marrow transplantations revealed a strong cell intrinsic defect of DDT-deficient HSCs in reconstituting lethally irradiated mice and a strong competitive disadvantage when cotransplanted with wild-type HSCs. These findings indicate a critical role of DDT in maintaining HSCs and progenitor cells, and in preventing premature aging.
Collapse
|
303
|
Comprehensive transcriptomics and proteomics analyses of pollinated and parthenocarpic litchi (Litchi chinensis Sonn.) fruits during early development. Sci Rep 2017; 7:5401. [PMID: 28710486 PMCID: PMC5511223 DOI: 10.1038/s41598-017-05724-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022] Open
Abstract
Litchi (Litchi chinensis Sonn.) is an important fruit that is widely cultivated in tropical and subtropical areas. In this study, we used RNA-Seq and iTRAQ technologies to compare the transcriptomes and proteomes of pollinated (polLFs) and parthenocarpic (parLFs) litchi fruits during early development (1 day, 2 days, 4 days and 6 days). We identified 4,864 DEGs in polLFs and 3,672 in parLFs, of which 2,835 were shared and 1,051 were specifically identified in parLFs. Compared to po1LFs, 768 DEGs were identified in parLFs. iTRAQ analysis identified 551 DEPs in polLFs and 1,021 in parLFs, of which 305 were shared and 526 were exclusively identified in parLFs. We found 1,127 DEPs in parLFs compared to polLFs at different stages. Further analysis revealed some DEGs/DEPs associated with abscisic acid, auxin, ethylene, gibberellin, heat shock protein (HSP), histone, ribosomal protein, transcription factor and zinc finger protein (ZFP). WGCNA identified a large set of co-expressed genes/proteins in polLFs and parLFs. In addition, a cross-comparison of transcriptomic and proteomic data identified 357 consistent DEGs/DEPs in polLFs and parLFs. This is the first time that protein/gene changes have been studied in polLFs and parLFs, and the findings improve our understanding of litchi parthenocarpy.
Collapse
|
304
|
Kurkewich JL, Hansen J, Klopfenstein N, Zhang H, Wood C, Boucher A, Hickman J, Muench DE, Grimes HL, Dahl R. The miR-23a~27a~24-2 microRNA cluster buffers transcription and signaling pathways during hematopoiesis. PLoS Genet 2017; 13:e1006887. [PMID: 28704388 PMCID: PMC5531666 DOI: 10.1371/journal.pgen.1006887] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 07/27/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNA cluster mirn23a has previously been shown to promote myeloid development at the expense of lymphoid development in overexpression and knockout mouse models. This polarization is observed early in hematopoietic development, with an increase in common lymphoid progenitors (CLPs) and a decrease in all myeloid progenitor subsets in adult bone marrow. The pool size of multipotential progenitors (MPPs) is unchanged; however, in this report we observe by flow cytometry that polarized subsets of MPPs are changed in the absence of mirn23a. Additionally, in vitro culture of MPPs and sorted MPP transplants showed that these cells have decreased myeloid and increased lymphoid potential in vitro and in vivo. We investigated the mechanism by which mirn23a regulates hematopoietic differentiation and observed that mirn23a promotes myeloid development of hematopoietic progenitors through regulation of hematopoietic transcription factors and signaling pathways. Early transcription factors that direct the commitment of MPPs to CLPs (Ikzf1, Runx1, Satb1, Bach1 and Bach2) are increased in the absence of mirn23a miRNAs as well as factors that commit the CLP to the B cell lineage (FoxO1, Ebf1, and Pax5). Mirn23a appears to buffer transcription factor levels so that they do not stochastically reach a threshold level to direct differentiation. Intriguingly, mirn23a also inversely regulates the PI3 kinase (PI3K)/Akt and BMP/Smad signaling pathways. Pharmacological inhibitor studies, coupled with dominant active/dominant negative biochemical experiments, show that both signaling pathways are critical to mirn23a’s regulation of hematopoietic differentiation. Lastly, consistent with mirn23a being a physiological inhibitor of B cell development, we observed that the essential B cell transcription factor EBF1 represses expression of mirn23a. In summary, our data demonstrates that mirn23a regulates a complex array of transcription and signaling pathways to modulate adult hematopoiesis. MicroRNAs (miRNAs) are small ~22 nucleotide long RNA molecules that are involved in regulating multiple cellular processes through inhibiting the expression of target proteins. We previously identified a gene (mirn23a) that codes for 3 miRNAs that control the development of immune cells in the bone marrow. The miRNAs promote the development of innate immune cells, macrophages and granulocytes, while repressing the development of B cells. Here we show that mirn23a miRNAs negatively affect the expression of multiple proteins that are involved in directing blood progenitor cells to become B cells. Additionally, we observed that modulation of FoxO1 and Smad proteins, downstream effectors of two signaling pathways (PI3 kinase/ Akt and BMP/ Smad), is critical to direct immune cell development. This is the first observation that these pathways are potentially coregulated during the commitment of blood progenitors to mature cells of the immune system. Consistent with mirn23a being a critical gene for committing progenitors to innate immune cells at the expense of B cells, we observed that a critical B cell protein represses the expression of mirn23a. In conclusion, we demonstrate the mirn23a regulation of blood development is due to a complex regulation of both transcription factors and signaling pathways.
Collapse
Affiliation(s)
- Jeffrey L. Kurkewich
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Justin Hansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Nathan Klopfenstein
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, United States of America
| | - Helen Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Christian Wood
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Austin Boucher
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Joseph Hickman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - David E. Muench
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - H. Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Richard Dahl
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, United States of America
- * E-mail:
| |
Collapse
|
305
|
Zhang B, Hsu YC. Emerging roles of transit-amplifying cells in tissue regeneration and cancer. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28670819 DOI: 10.1002/wdev.282] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 11/08/2022]
Abstract
Most regenerative tissues employ transit-amplifying cells (TACs) that are positioned in between stem cells and differentiated progeny. In a classical hierarchical model, stem cells undergo limited divisions to produce TACs, which then proliferate rapidly to expand the system and produce diverse differentiated cell types. Although TACs are indispensable for generating tissues, they have been largely viewed as a transit point between stem cells and downstream lineages. Studies in the past few years, however, have revealed some fascinating biology and unanticipated functions of TACs. In the hair follicle, recent findings have placed TACs as key players in tissue regeneration by coordinating tissue production, governing stem cell behaviors, and instructing niche remodeling. In the hematopoietic system, rather than being transient, some TACs may participate in long-term hematopoiesis under steady state. Here, we compare and summarize recent discoveries about TACs in the hair follicle and the hematopoietic system. We also discuss how TACs of these two tissues contribute to the formation of cancer. WIREs Dev Biol 2017, 6:e282. doi: 10.1002/wdev.282 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
306
|
Delás MJ, Hannon GJ. lncRNAs in development and disease: from functions to mechanisms. Open Biol 2017; 7:170121. [PMID: 28747406 PMCID: PMC5541349 DOI: 10.1098/rsob.170121] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Differential expression of long non-coding RNAs (lncRNAs) during differentiation and their misregulation in cancer highlight their potential as cell fate regulators. While some example lncRNAs have been characterized in great detail, the functional in vivo relevance of others has been called into question. Finding functional lncRNAs will most probably require a combination of complementary approaches that will greatly vary depending on their mode of action. In this review, we discuss the different tools available to dissect genetically lncRNA requirements and how each is best suited to studies in particular contexts. Moreover, we review different strategies used to select candidate lncRNAs and give an overview of lncRNAs described to regulate development and cancer through different mechanisms.
Collapse
Affiliation(s)
- M Joaquina Delás
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY 11724, USA
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY 11724, USA
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
- New York Genome Center, 101 6th Ave, New York, NY 10013, USA
| |
Collapse
|
307
|
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators of haematopoietic cell fate decisions. They act by negatively regulating the expression of key immune development genes, thus contributing important logic elements to the regulatory circuitry. Deletion studies have made it increasingly apparent that they confer robustness to immune cell development, especially under conditions of environmental stress such as infectious challenge and ageing. Aberrant expression of certain miRNAs can lead to pathological consequences, such as autoimmunity and haematological cancers. In this Review, we discuss the mechanisms by which several miRNAs influence immune development and buffer normal haematopoietic output, first at the level of haematopoietic stem cells, then in innate and adaptive immune cells. We then discuss the pathological consequences of dysregulation of these miRNAs.
Collapse
|
308
|
Tormo A, Khodayarian F, Cui Y, Al-Chami E, Kanjarawi R, Noé B, Wang H, Rafei M. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation. J Hematol Oncol 2017; 10:120. [PMID: 28615039 PMCID: PMC5471903 DOI: 10.1186/s13045-017-0490-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Impaired T cell reconstitution remains a major deterrent in the field of bone marrow (BM) transplantation (BMT) due to pre-conditioning-induced damages inflicted to the thymi of recipient hosts. Given the previously reported thymo-stimulatory property of interleukin (IL)-21, we reasoned that its use post-BMT could have a profound effect on de novo T cell development. METHODS To evaluate the effect of IL-21 on de novo T cell development in vivo, BM derived from RAG2p-GFP mice was transplanted into LP/J mice. Lymphocyte reconstitution was first assessed using a hematological analyzer and a flow cytometer on collected blood samples. Detailed flow cytometry analysis was then performed on the BM, thymus, and spleen of transplanted animals. Finally, the effect of human IL-21 on thymopoiesis was validated in humanized mice. RESULTS Using a major histocompatibility complex (MHC)-matched allogeneic BMT model, we found that IL-21 administration improves immune reconstitution by triggering the proliferation of BM Lin-Sca1+c-kit+ (LSK) subsets. The pharmacological effect of IL-21 also culminates in the recovery of both hematopoietic (thymocytes) and non-hematopoietic (stromal) cells within the thymi of IL-21-treated recipient animals. Although T cells derived from all transplanted groups proliferate, secrete various cytokines, and express granzyme B similarly in response to T cell receptor (TCR) stimulation, full regeneration of peripheral naïve CD4+ and CD8+ T cells and normal TCRvβ distribution could only be detected in IL-21-treated recipient mice. Astonishingly, none of the recipient mice who underwent IL-21 treatment developed graft-versus-host disease (GVHD) in the MHC-matched allogeneic setting while the graft-versus-tumor (GVT) effect was strongly retained. Inhibition of GVHD onset could also be attributed to the enhanced generation of regulatory B cells (B10) observed in the IL-21, but not PBS, recipient mice. We also tested the thymopoiesis-stimulating property of human IL-21 in NSG mice transplanted with cord blood (CB) and found significant improvement in de novo human CD3+ T cell development. CONCLUSIONS In sum, our study indicates that IL-21 represents a new class of unforeseen thymopoietin capable of restoring thymic function following BMT.
Collapse
Affiliation(s)
- Aurélie Tormo
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Fatemeh Khodayarian
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Yun Cui
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Edouard Al-Chami
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Reem Kanjarawi
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Beatriz Noé
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Huijie Wang
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Moutih Rafei
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada. .,The Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada. .,The Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Québec, H3A 2B4, Canada.
| |
Collapse
|
309
|
How nutrition and the maternal microbiota shape the neonatal immune system. Nat Rev Immunol 2017; 17:508-517. [PMID: 28604736 DOI: 10.1038/nri.2017.58] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mucosal surfaces of mammals are densely colonized with microorganisms that are commonly referred to as the commensal microbiota. It is believed that the fetus in utero is sterile and that colonization with microorganisms starts only after birth. Nevertheless, the unborn fetus is exposed to a multitude of metabolites that originate from the commensal microbiota of the mother that reach systemic sites of the maternal body. The intestinal microbiota is strongly personalized and influenced by environmental factors, including nutrition. Members of the maternal microbiota can metabolize dietary components, pharmaceuticals and toxins, which can subsequently be passed to the developing fetus or the breast-feeding neonate. In this Review, we discuss the complex interplay between nutrition, the maternal microbiota and ingested chemicals, and summarize their effects on immunity in the offspring.
Collapse
|
310
|
Geis FK, Galla M, Hoffmann D, Kuehle J, Zychlinski D, Maetzig T, Schott JW, Schwarzer A, Goffinet C, Goff SP, Schambach A. Potent and reversible lentiviral vector restriction in murine induced pluripotent stem cells. Retrovirology 2017; 14:34. [PMID: 28569216 PMCID: PMC5452410 DOI: 10.1186/s12977-017-0358-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/23/2017] [Indexed: 12/12/2022] Open
Abstract
Background Retroviral vectors are derived from wild-type retroviruses, can be used to study retrovirus-host interactions and are effective tools in gene and cell therapy. However, numerous cell types are resistant or less permissive to retrovirus infection due to the presence of active defense mechanisms, or the absence of important cellular host co-factors. In contrast to multipotent stem cells, pluripotent stem cells (PSC) have potential to differentiate into all three germ layers. Much remains to be elucidated in the field of anti-viral immunity in stem cells, especially in PSC. Results In this study, we report that transduction with HIV-1-based, lentiviral vectors (LV) is impaired in murine PSC. Analyses of early retroviral events in induced pluripotent stem cells (iPSC) revealed that the restriction is independent of envelope choice and does not affect reverse transcription, but perturbs nuclear entry and proviral integration. Proteasomal inhibition by MG132 could not circumvent the restriction. However, prevention of cyclophilin A (CypA) binding to the HIV-1 capsid via use of either a CypA inhibitor (cyclosporine A) or CypA-independent capsid mutants improved transduction. In addition, application of higher vector doses also increased transduction. Our data revealed a CypA mediated restriction in iPSC, which was acquired during reprogramming, associated with pluripotency and relieved upon subsequent differentiation. Conclusions We showed that murine PSC and iPSC are less susceptible to LV. The block observed in iPSC was CypA-dependent and resulted in reduced nuclear entry of viral DNA and proviral integration. Our study helps to improve transduction of murine pluripotent cells with HIV-1-based vectors and contributes to our understanding of retrovirus-host interactions in PSC. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0358-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Franziska K Geis
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Johannes Kuehle
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Daniela Zychlinski
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Christine Goffinet
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infections Research, Hannover, Germany
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany. .,Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
311
|
Impact of inflammation on early hematopoiesis and the microenvironment. Int J Hematol 2017; 106:27-33. [PMID: 28560577 DOI: 10.1007/s12185-017-2266-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022]
Abstract
Steady-state hematopoiesis is maintained by slowly dividing, self-renewing hematopoietic stem cells (HSCs) and their offspring, lineage-specified downstream progenitors in bone marrow (BM). It was previously thought that hematopoietic stresses such as infection or other inflammatory stimuli, are mostly recognized by terminally differentiated immune cells, i.e., front-line defenders at the local site of reaction, and that they produce factors that directly act on hematopoietic stem and progenitors (HSPCs) in BM and subsequently stimulate them to rebuild and sustain the hemato-lymphatic system. However, accumulating evidence now indicates that primitive HSPCs, as well as microenvironmental cells in BM are also able to sense systemically migrating hematopoietic stress signals, and respond by orchestrating on-site hematopoiesis via direct and indirect mechanisms. While inflammation has many beneficial roles in activating the immune system for defense or facilitating tissue repair, it also shows detrimental effects if sustained chronically, i.e., might lead to HSPC damage as bone marrow failure or leukemia. Thus, inflammation requires tight control of initiation and termination in time and space dependent manner.
Collapse
|
312
|
Metabolic regulation of hematopoietic and leukemic stem/progenitor cells under homeostatic and stress conditions. Int J Hematol 2017; 106:18-26. [PMID: 28540498 DOI: 10.1007/s12185-017-2261-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSCs) exhibit multilineage differentiation and self-renewal activities that maintain the entire hematopoietic system during an organism's lifetime. These abilities are sustained by intrinsic transcriptional programs and extrinsic cues from the microenvironment or niche. Recent studies using metabolomics technologies reveal that metabolic regulation plays an essential role in HSC maintenance. Metabolic pathways provide energy and building blocks for other factors functioning at steady state and in stress. Here we review recent advances in our understanding of metabolic regulation in HSCs relevant to cell cycle quiescence, symmetric/asymmetric division, and proliferation following stress and lineage commitment, and discuss the therapeutic potential of targeting metabolic factors or pathways to treat hematological malignancies.
Collapse
|
313
|
Yang J, Tanaka Y, Seay M, Li Z, Jin J, Garmire LX, Zhu X, Taylor A, Li W, Euskirchen G, Halene S, Kluger Y, Snyder MP, Park IH, Pan X, Weissman SM. Single cell transcriptomics reveals unanticipated features of early hematopoietic precursors. Nucleic Acids Res 2017; 45:1281-1296. [PMID: 28003475 PMCID: PMC5388401 DOI: 10.1093/nar/gkw1214] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022] Open
Abstract
Molecular changes underlying stem cell differentiation are of fundamental interest. scRNA-seq on murine hematopoietic stem cells (HSC) and their progeny MPP1 separated the cells into 3 main clusters with distinct features: active, quiescent, and an un-characterized cluster. Induction of anemia resulted in mobilization of the quiescent to the active cluster and of the early to later stage of cell cycle, with marked increase in expression of certain transcription factors (TFs) while maintaining expression of interferon response genes. Cells with surface markers of long term HSC increased the expression of a group of TFs expressed highly in normal cycling MPP1 cells. However, at least Id1 and Hes1 were significantly activated in both HSC and MPP1 cells in anemic mice. Lineage-specific genes were differently expressed between cells, and correlated with the cell cycle stages with a specific augmentation of erythroid related genes in the G2/M phase. Most lineage specific TFs were stochastically expressed in the early precursor cells, but a few, such as Klf1, were detected only at very low levels in few precursor cells. The activation of these factors may correlate with stages of differentiation. This study reveals effects of cell cycle progression on the expression of lineage specific genes in precursor cells, and suggests that hematopoietic stress changes the balance of renewal and differentiation in these homeostatic cells.
Collapse
Affiliation(s)
- Jennifer Yang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Yoshiaki Tanaka
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Montrell Seay
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Zhen Li
- Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jiaqi Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Lana Xia Garmire
- Epidemiology Program, University of Hawaii Cancer Center, HI, USA
| | - Xun Zhu
- Epidemiology Program, University of Hawaii Cancer Center, HI, USA
| | - Ashley Taylor
- Hematology, Yale Comprehensive Cancer Center and Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Weidong Li
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,JiangXi Key Laboratory of Systems Biomedicine, Jiujiang University, Jiangxi, PR China
| | - Ghia Euskirchen
- Department of Genetics, Stanford University, Palo, Alto, CA, USA
| | - Stephanie Halene
- Hematology, Yale Comprehensive Cancer Center and Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Palo, Alto, CA, USA
| | - In-Hyun Park
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Xinghua Pan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, Guangdong, PR China
| | | |
Collapse
|
314
|
Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB, Pastor-Flores D, Roma LP, Renders S, Zeisberger P, Przybylla A, Schönberger K, Scognamiglio R, Altamura S, Florian CM, Fawaz M, Vonficht D, Tesio M, Collier P, Pavlinic D, Geiger H, Schroeder T, Benes V, Dick TP, Rieger MA, Stegle O, Trumpp A. Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell 2017; 169:807-823.e19. [PMID: 28479188 DOI: 10.1016/j.cell.2017.04.018] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
Dormant hematopoietic stem cells (dHSCs) are atop the hematopoietic hierarchy. The molecular identity of dHSCs and the mechanisms regulating their maintenance or exit from dormancy remain uncertain. Here, we use single-cell RNA sequencing (RNA-seq) analysis to show that the transition from dormancy toward cell-cycle entry is a continuous developmental path associated with upregulation of biosynthetic processes rather than a stepwise progression. In addition, low Myc levels and high expression of a retinoic acid program are characteristic for dHSCs. To follow the behavior of dHSCs in situ, a Gprc5c-controlled reporter mouse was established. Treatment with all-trans retinoic acid antagonizes stress-induced activation of dHSCs by restricting protein translation and levels of reactive oxygen species (ROS) and Myc. Mice maintained on a vitamin A-free diet lose HSCs and show a disrupted re-entry into dormancy after exposure to inflammatory stress stimuli. Our results highlight the impact of dietary vitamin A on the regulation of cell-cycle-mediated stem cell plasticity. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Nina Cabezas-Wallscheid
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany.
| | - Florian Buettner
- European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Daniel Klimmeck
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Luisa Ladel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Frederic B Thalheimer
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Daniel Pastor-Flores
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Leticia P Roma
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Simon Renders
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Petra Zeisberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Adriana Przybylla
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Katharina Schönberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Roberta Scognamiglio
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Carolina M Florian
- Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, 89081 Ulm, Germany
| | - Malak Fawaz
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dominik Vonficht
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Melania Tesio
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Paul Collier
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Hartmut Geiger
- Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, 89081 Ulm, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
315
|
Biechonski S, Yassin M, Milyavsky M. DNA-damage response in hematopoietic stem cells: an evolutionary trade-off between blood regeneration and leukemia suppression. Carcinogenesis 2017; 38:367-377. [PMID: 28334174 DOI: 10.1093/carcin/bgx002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
Self-renewing and multipotent hematopoietic stem cells (HSCs) maintain lifelong hematopoiesis. Their enormous regenerative potential coupled with lifetime persistence in the body, in contrast with the Progenitors, demand tight control of HSCs genome stability. Indeed, failure to accurately repair DNA damage in HSCs is associated with bone marrow failure and accelerated leukemogenesis. Recent observations exposed remarkable differences in several DNA-damage response (DDR) aspects between HSCs and Progenitors, especially in their DNA-repair capacities and susceptibility to apoptosis. Human HSCs in comparison with Progenitors exhibit delayed DNA double-strand break rejoining, persistent DDR signaling activation, higher sensitivity to the cytotoxic effects of ionizing radiation and attenuated expression of DNA-repair genes. Importantly, the distinct DDR of HSCs was also documented in mouse models. Nevertheless, physiological significance and the molecular basis of the HSCs-specific DDR features are only partially understood. Taking radiation-induced DDR as a paradigm, this review will focus on the current advances in understanding the role of cell-intrinsic DDR regulators and the cellular microenvironment in balancing stemness with genome stability. Pre-leukemia HSCs and clonal hematopoiesis evolvement will be discussed as an evolutionary compromise between the need for lifelong blood regeneration and DDR. Uniquely for this review, we outline the differences in HSCs-related DDR as highlighted by various experimental systems and attempt to provide their critical analysis.
Collapse
Affiliation(s)
- Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
316
|
Kokavec J, Zikmund T, Savvulidi F, Kulvait V, Edelmann W, Skoultchi AI, Stopka T. The ISWI ATPase Smarca5 (Snf2h) Is Required for Proliferation and Differentiation of Hematopoietic Stem and Progenitor Cells. Stem Cells 2017; 35:1614-1623. [PMID: 28276606 DOI: 10.1002/stem.2604] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 12/14/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
The imitation switch nuclear ATPase Smarca5 (Snf2h) is one of the most conserved chromatin remodeling factors. It exists in a variety of oligosubunit complexes that move DNA with respect to the histone octamer to generate regularly spaced nucleosomal arrays. Smarca5 interacts with different accessory proteins and represents a molecular motor for DNA replication, repair, and transcription. We deleted Smarca5 at the onset of definitive hematopoiesis (Vav1-iCre) and observed that animals die during late fetal development due to anemia. Hematopoietic stem and progenitor cells accumulated but their maturation toward erythroid and myeloid lineages was inhibited. Proerythroblasts were dysplastic while basophilic erythroblasts were blocked in G2/M and depleted. Smarca5 deficiency led to increased p53 levels, its activation at two residues, one associated with DNA damage (S15Ph °s ) second with CBP/p300 (K376Ac ), and finally activation of the p53 targets. We also deleted Smarca5 in committed erythroid cells (Epor-iCre) and observed that animals were anemic postnatally. Furthermore, 4-hydroxytamoxifen-mediated deletion of Smarca5 in the ex vivo cultures confirmed its requirement for erythroid cell proliferation. Thus, Smarca5 plays indispensable roles during early hematopoiesis and erythropoiesis. Stem Cells 2017;35:1614-1623.
Collapse
Affiliation(s)
- Juraj Kokavec
- BIOCEV, First Faculty of Medicine, Charles University, Czech Republic.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tomas Zikmund
- BIOCEV, First Faculty of Medicine, Charles University, Czech Republic
| | - Filipp Savvulidi
- BIOCEV, First Faculty of Medicine, Charles University, Czech Republic
| | - Vojtech Kulvait
- BIOCEV, First Faculty of Medicine, Charles University, Czech Republic
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tomas Stopka
- BIOCEV, First Faculty of Medicine, Charles University, Czech Republic
| |
Collapse
|
317
|
Hérault A, Binnewies M, Leong S, Calero-Nieto FJ, Zhang SY, Kang YA, Wang X, Pietras EM, Chu SH, Barry-Holson K, Armstrong S, Göttgens B, Passegué E. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature 2017; 544:53-58. [PMID: 28355185 PMCID: PMC5383507 DOI: 10.1038/nature21693] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
Although many aspects of blood production are well understood, the spatial organization of myeloid differentiation in the bone marrow remains unknown. Here we use imaging to track granulocyte/macrophage progenitor (GMP) behaviour in mice during emergency and leukaemic myelopoiesis. In the steady state, we find individual GMPs scattered throughout the bone marrow. During regeneration, we observe expanding GMP patches forming defined GMP clusters, which, in turn, locally differentiate into granulocytes. The timed release of important bone marrow niche signals (SCF, IL-1β, G-CSF, TGFβ and CXCL4) and activation of an inducible Irf8 and β-catenin progenitor self-renewal network control the transient formation of regenerating GMP clusters. In leukaemia, we show that GMP clusters are constantly produced owing to persistent activation of the self-renewal network and a lack of termination cytokines that normally restore haematopoietic stem-cell quiescence. Our results uncover a previously unrecognized dynamic behaviour of GMPs in situ, which tunes emergency myelopoiesis and is hijacked in leukaemia.
Collapse
Affiliation(s)
- Aurélie Hérault
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mikhail Binnewies
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stephanie Leong
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Fernando J. Calero-Nieto
- Cambridge University Department of Haematology, Cambridge Institute for Medical Research, Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Si Yi Zhang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yoon-A Kang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xiaonan Wang
- Cambridge University Department of Haematology, Cambridge Institute for Medical Research, Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Eric M. Pietras
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - S. Haihua Chu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Keegan Barry-Holson
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Scott Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Berthold Göttgens
- Cambridge University Department of Haematology, Cambridge Institute for Medical Research, Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Emmanuelle Passegué
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
318
|
Will T, Helms V. Rewiring of the inferred protein interactome during blood development studied with the tool PPICompare. BMC SYSTEMS BIOLOGY 2017; 11:44. [PMID: 28376810 PMCID: PMC5379774 DOI: 10.1186/s12918-017-0400-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Differential analysis of cellular conditions is a key approach towards understanding the consequences and driving causes behind biological processes such as developmental transitions or diseases. The progress of whole-genome expression profiling enabled to conveniently capture the state of a cell's transcriptome and to detect the characteristic features that distinguish cells in specific conditions. In contrast, mapping the physical protein interactome for many samples is experimentally infeasible at the moment. For the understanding of the whole system, however, it is equally important how the interactions of proteins are rewired between cellular states. To overcome this deficiency, we recently showed how condition-specific protein interaction networks that even consider alternative splicing can be inferred from transcript expression data. Here, we present the differential network analysis tool PPICompare that was specifically designed for isoform-sensitive protein interaction networks. RESULTS Besides detecting significant rewiring events between the interactomes of grouped samples, PPICompare infers which alterations to the transcriptome caused each rewiring event and what is the minimal set of alterations necessary to explain all between-group changes. When applied to the development of blood cells, we verified that a reasonable amount of rewiring events were reported by the tool and found that differential gene expression was the major determinant of cellular adjustments to the interactome. Alternative splicing events were consistently necessary in each developmental step to explain all significant alterations and were especially important for rewiring in the context of transcriptional control. CONCLUSIONS Applying PPICompare enabled us to investigate the dynamics of the human protein interactome during developmental transitions. A platform-independent implementation of the tool PPICompare is available at https://sourceforge.net/projects/ppicompare/ .
Collapse
Affiliation(s)
- Thorsten Will
- Center for Bioinformatics, Saarland University, Campus E2.1, Saarbrücken, 66123 Germany
- Graduate School of Computer Science, Saarland University, Campus E1.3, Saarbrücken, 66123 Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Campus E2.1, Saarbrücken, 66123 Germany
| |
Collapse
|
319
|
Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress. Blood 2017; 129:2479-2492. [PMID: 28270450 DOI: 10.1182/blood-2016-06-725093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/26/2017] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2 Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R-loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability.
Collapse
|
320
|
The crosstalk between long non-coding RNAs and PI3K in cancer. Med Oncol 2017; 34:39. [PMID: 28176240 DOI: 10.1007/s12032-017-0897-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 01/27/2017] [Indexed: 12/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) are able to positively or negatively regulate other genes expression in cis or in trans. Their effect can be achieved through RNA-protein, RNA-DNA, or RNA-RNA interactions. They can recruit transcription factors and act as scaffolds or guides for chromatin-modifying enzymes. PI3K kinases transform external stimuli to intracellular signals regulating cell growth, differentiation, proliferation, survival, intracellular trafficking, cytoskeletal changes, cell migration and motility, and metabolism. PI3K is activated in cancer and affects several aspects of oncogenesis. LncRNAs and PI3K have been shown to be interconnected in several different cancer subtypes enhancing aberrant cell proliferation, epithelial-to-mesenchymal transition, migration and invasion, and also cancer cell metabolism. In this review, we have assembled recent data describing the interaction between lncRNAs and PI3K and the results of such interaction.
Collapse
|
321
|
Latorre-Rey LJ, Wintterle S, Dütting S, Kohlscheen S, Abel T, Schenk F, Wingert S, Rieger MA, Nieswandt B, Heinz N, Modlich U. Targeting expression to megakaryocytes and platelets by lineage-specific lentiviral vectors. J Thromb Haemost 2017; 15:341-355. [PMID: 27930847 DOI: 10.1111/jth.13582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 12/15/2022]
Abstract
Essentials Platelet phenotypes can be modified by lentiviral transduction of hematopoietic stem cells. Megakaryocyte-specific lentiviral vectors were tested in vitro and in vivo for restricted expression. The glycoprotein 6 vector expressed almost exclusively in megakaryocytes. The platelet factor 4 vector was the strongest but with activity in hematopoietic stem cells. SUMMARY Background Lentiviral transduction and transplantation of hematopoietic stem cells (HSCs) can be utilized to modify the phenotype of megakaryocytes and platelets. As the genetic modification in HSCs is transmitted onto all hematopoietic progenies, transgene expression from the vector should be restricted to megakaryocytes to avoid un-physiologic effects by ectopic transgene expression. This can be achieved by lentiviral vectors that control expression by lineage-specific promoters. Methods In this study, we introduced promoters of megakaryocyte/platelet-specific genes, namely human glycoprotein 6 (hGP6) and hGP9, into third generation lentiviral vectors and analyzed their functionality in vitro and in vivo in bone marrow transplantation assays. Their specificity and efficiency of expression was compared with lentiviral vectors utilizing the promoters of murine platelet factor 4 (mPf4) and hGP1BA, both with strong activity in megakaryocytes (MKs) used in earlier studies, and the ubiquitously expressing phosphoglycerate kinase (hPGK) and spleen focus forming virus (SFFV) enhancer/promoters. Results Expression from the mPf4 vector in MKs and platelets was the strongest similar to expression from the viral SFFV promoter, however, the mPf4 vector, also exhibited considerable off-target expression in hematopoietic stem and progenitor cells. In contrast, the newly generated hGP6 vector was highly specific to megakaryocytes and platelets. The specificity was also retained when reducing the promoter size to 350 bp, making it a valuable new tool for lentiviral expression in MKs/platelets. Conclusion MK-specific vectors express preferentially in the megakaryocyte lineage. These vectors can be applied to develop murine models to study megakaryocyte and platelet function, or for gene therapy targeting proteins to platelets.
Collapse
Affiliation(s)
- L J Latorre-Rey
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - S Wintterle
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - S Dütting
- Department of Experimental Biomedicine-Vascular Medicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - S Kohlscheen
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - T Abel
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institute, Langen, Germany
| | - F Schenk
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - S Wingert
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - M A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - B Nieswandt
- Department of Experimental Biomedicine-Vascular Medicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - N Heinz
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - U Modlich
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
322
|
Hamed M, Trumm J, Spaniol C, Sethi R, Irhimeh MR, Fuellen G, Paulsen M, Helms V. Linking Hematopoietic Differentiation to Co-Expressed Sets of Pluripotency-Associated and Imprinted Genes and to Regulatory microRNA-Transcription Factor Motifs. PLoS One 2017; 12:e0166852. [PMID: 28052084 PMCID: PMC5215400 DOI: 10.1371/journal.pone.0166852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/05/2016] [Indexed: 12/22/2022] Open
Abstract
Maintenance of cell pluripotency, differentiation, and reprogramming are regulated by complex gene regulatory networks (GRNs) including monoallelically-expressed imprinted genes. Besides transcriptional control, epigenetic modifications and microRNAs contribute to cellular differentiation. As a model system for studying the capacity of cells to preserve their pluripotency state and the onset of differentiation and subsequent specialization, murine hematopoiesis was used and compared to embryonic stem cells (ESCs) as a control. Using published microarray data, the expression profiles of two sets of genes, pluripotent and imprinted, were compared to a third set of known hematopoietic genes. We found that more than half of the pluripotent and imprinted genes are clearly upregulated in ESCs but subsequently repressed during hematopoiesis. The remaining genes were either upregulated in hematopoietic progenitors or in differentiated blood cells. The three gene sets each consist of three similarly behaving gene groups with similar expression profiles in various lineages of the hematopoietic system as well as in ESCs. To explain this co-regulation behavior, we explored the transcriptional and post-transcriptional mechanisms of pluripotent and imprinted genes and their regulator/target miRNAs in six different hematopoietic lineages. Therewith, lineage-specific transcription factor (TF)-miRNA regulatory networks were generated and their topologies and functional impacts during hematopoiesis were analyzed. This led to the identification of TF-miRNA co-regulatory motifs, for which we validated the contribution to the cellular development of the corresponding lineage in terms of statistical significance and relevance to biological evidence. This analysis also identified key miRNAs and TFs/genes that might play important roles in the derived lineage networks. These molecular associations suggest new aspects of the cellular regulation of the onset of cellular differentiation and during hematopoiesis involving, on one hand, pluripotent genes that were previously not discussed in the context of hematopoiesis and, on the other hand, involve genes that are related to genomic imprinting. These are new links between hematopoiesis and cellular differentiation and the important field of epigenetic modifications.
Collapse
Affiliation(s)
- Mohamed Hamed
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Johannes Trumm
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Christian Spaniol
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Riccha Sethi
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Mohammad R. Irhimeh
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, St Leonards, NSW, Australia
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Martina Paulsen
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
323
|
Goldstein O, Meyer K, Greenshpan Y, Bujanover N, Feigin M, Ner-Gaon H, Shay T, Gazit R. Mapping Whole-Transcriptome Splicing in Mouse Hematopoietic Stem Cells. Stem Cell Reports 2016; 8:163-176. [PMID: 28041879 PMCID: PMC5233452 DOI: 10.1016/j.stemcr.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 10/31/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are rare cells that generate all the various types of blood and immune cells. High-quality transcriptome data have enabled the identification of significant genes for HSCs. However, most genes are expressed in various forms by alternative splicing (AS), extending transcriptome complexity. Here, we delineate AS to determine which isoforms are expressed in mouse HSCs. Our analysis of microarray and RNA-sequencing data includes differential expression of splicing factors that may regulate AS, and a complete map of splicing isoforms. Multiple types of isoforms for known HSC genes and unannotated splicing that may alter gene function are presented. Transcriptome-wide identification of genes and their respective isoforms in mouse HSCs will open another dimension for adult stem cells.
Collapse
Affiliation(s)
- Oron Goldstein
- The Shraga Segal Department for Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Karin Meyer
- The Shraga Segal Department for Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Yariv Greenshpan
- The Shraga Segal Department for Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Nir Bujanover
- The Shraga Segal Department for Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Mili Feigin
- The Shraga Segal Department for Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Hadas Ner-Gaon
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Roi Gazit
- The Shraga Segal Department for Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
| |
Collapse
|
324
|
Goncalves KA, Silberstein L, Li S, Severe N, Hu MG, Yang H, Scadden DT, Hu GF. Angiogenin Promotes Hematopoietic Regeneration by Dichotomously Regulating Quiescence of Stem and Progenitor Cells. Cell 2016; 166:894-906. [PMID: 27518564 DOI: 10.1016/j.cell.2016.06.042] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/19/2016] [Accepted: 06/23/2016] [Indexed: 12/21/2022]
Abstract
Regulation of stem and progenitor cell populations is critical in the development, maintenance, and regeneration of tissues. Here, we define a novel mechanism by which a niche-secreted RNase, angiogenin (ANG), distinctively alters the functional characteristics of primitive hematopoietic stem/progenitor cells (HSPCs) compared with lineage-committed myeloid-restricted progenitor (MyePro) cells. Specifically, ANG reduces the proliferative capacity of HSPC while simultaneously increasing proliferation of MyePro cells. Mechanistically, ANG induces cell-type-specific RNA-processing events: tRNA-derived stress-induced small RNA (tiRNA) generation in HSPCs and rRNA induction in MyePro cells, leading to respective reduction and increase in protein synthesis. Recombinant ANG protein improves survival of irradiated animals and enhances hematopoietic regeneration of mouse and human HSPCs in transplantation. Thus, ANG plays a non-cell-autonomous role in regulation of hematopoiesis by simultaneously preserving HSPC stemness and promoting MyePro proliferation. These cell-type-specific functions of ANG suggest considerable therapeutic potential.
Collapse
Affiliation(s)
- Kevin A Goncalves
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Lev Silberstein
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02445, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Shuping Li
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Nicolas Severe
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02445, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Miaofen G Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Hailing Yang
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02445, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Guo-Fu Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
325
|
Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors. Nat Commun 2016; 7:13396. [PMID: 27869129 PMCID: PMC5121332 DOI: 10.1038/ncomms13396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 09/27/2016] [Indexed: 12/15/2022] Open
Abstract
Recent efforts have attempted to convert non-blood cells into hematopoietic stem cells (HSCs) with the goal of generating blood lineages de novo. Here we show that hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can convert a developmentally distant lineage (fibroblasts) into ‘induced hematopoietic progenitors' (iHPs). Functionally, iHPs generate acetylcholinesterase+ megakaryocytes and phagocytic myeloid cells in vitro and can also engraft immunodeficient mice, generating myeloerythoid and B-lymphoid cells for up to 4 months in vivo. Molecularly, iHPs transcriptionally resemble native Kit+ hematopoietic progenitors. Mechanistically, reprogramming factor Lmo2 implements a hematopoietic programme in fibroblasts by rapidly binding to and upregulating the Hhex and Gfi1 genes within days. Moreover the reprogramming transcription factors also require extracellular BMP and MEK signalling to cooperatively effectuate reprogramming. Thus, the transcription factors that orchestrate embryonic hematopoiesis can artificially reconstitute this programme in developmentally distant fibroblasts, converting them into engraftable blood progenitors. Direct reprogramming of closely-related lineages can generate hematopoietic stem cells. Here, the authors show hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can reprogram fibroblasts into induced hematopoietic progenitors (iHPs), which are engraftable blood progenitors.
Collapse
|
326
|
DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation. Cell Stem Cell 2016; 19:808-822. [PMID: 27867036 PMCID: PMC5145815 DOI: 10.1016/j.stem.2016.10.019] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 01/29/2023]
Abstract
Hematopoietic stem cells give rise to all blood cells in a differentiation process that involves widespread epigenome remodeling. Here we present genome-wide reference maps of the associated DNA methylation dynamics. We used a meta-epigenomic approach that combines DNA methylation profiles across many small pools of cells and performed single-cell methylome sequencing to assess cell-to-cell heterogeneity. The resulting dataset identified characteristic differences between HSCs derived from fetal liver, cord blood, bone marrow, and peripheral blood. We also observed lineage-specific DNA methylation between myeloid and lymphoid progenitors, characterized immature multi-lymphoid progenitors, and detected progressive DNA methylation differences in maturing megakaryocytes. We linked these patterns to gene expression, histone modifications, and chromatin accessibility, and we used machine learning to derive a model of human hematopoietic differentiation directly from DNA methylation data. Our results contribute to a better understanding of human hematopoietic stem cell differentiation and provide a framework for studying blood-linked diseases. Sequencing provides DNA methylation maps of hematopoietic stem and progenitor cells Methylation differs in HSCs from fetal liver, bone marrow, cord, and peripheral blood Myeloid and lymphoid progenitors are distinguished by enhancer-linked DNA methylation Machine learning enables data-driven reconstruction of the hematopoietic lineage
Collapse
|
327
|
Pollard SM. Quantitative stem cell biology: the threat and the glory. Development 2016; 143:4097-4100. [PMID: 27875250 DOI: 10.1242/dev.140541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/03/2016] [Indexed: 01/10/2023]
Abstract
Major technological innovations over the past decade have transformed our ability to extract quantitative data from biological systems at an unprecedented scale and resolution. These quantitative methods and associated large datasets should lead to an exciting new phase of discovery across many areas of biology. However, there is a clear threat: will we drown in these rivers of data? On 18th July 2016, stem cell biologists gathered in Cambridge for the 5th annual Cambridge Stem Cell Symposium to discuss 'Quantitative stem cell biology: from molecules to models'. This Meeting Review provides a summary of the data presented by each speaker, with a focus on quantitative techniques and the new biological insights that are emerging.
Collapse
Affiliation(s)
- Steven M Pollard
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH16 4AA, UK
| |
Collapse
|
328
|
Kovtonyuk LV, Fritsch K, Feng X, Manz MG, Takizawa H. Inflamm-Aging of Hematopoiesis, Hematopoietic Stem Cells, and the Bone Marrow Microenvironment. Front Immunol 2016; 7:502. [PMID: 27895645 PMCID: PMC5107568 DOI: 10.3389/fimmu.2016.00502] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022] Open
Abstract
All hematopoietic and immune cells are continuously generated by hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) through highly organized process of stepwise lineage commitment. In the steady state, HSCs are mostly quiescent, while HPCs are actively proliferating and contributing to daily hematopoiesis. In response to hematopoietic challenges, e.g., life-threatening blood loss, infection, and inflammation, HSCs can be activated to proliferate and engage in blood formation. The HSC activation induced by hematopoietic demand is mediated by direct or indirect sensing mechanisms involving pattern recognition receptors or cytokine/chemokine receptors. In contrast to the hematopoietic challenges with obvious clinical symptoms, how the aging process, which involves low-grade chronic inflammation, impacts hematopoiesis remains undefined. Herein, we summarize recent findings pertaining to functional alternations of hematopoiesis, HSCs, and the bone marrow (BM) microenvironment during the processes of aging and inflammation and highlight some common cellular and molecular changes during the processes that influence hematopoiesis and its cells of origin, HSCs and HPCs, as well as the BM microenvironment. We also discuss how age-dependent alterations of the immune system lead to subclinical inflammatory states and how inflammatory signaling might be involved in hematopoietic aging. Our aim is to present evidence supporting the concept of “Inflamm-Aging,” or inflammation-associated aging of hematopoiesis.
Collapse
Affiliation(s)
- Larisa V Kovtonyuk
- Division of Hematology, University Hospital Zurich, University of Zurich , Zurich , Switzerland
| | - Kristin Fritsch
- Division of Hematology, University Hospital Zurich, University of Zurich , Zurich , Switzerland
| | - Xiaomin Feng
- International Research Center for Medical Sciences , Kumamoto , Japan
| | - Markus G Manz
- Division of Hematology, University Hospital Zurich, University of Zurich , Zurich , Switzerland
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences , Kumamoto , Japan
| |
Collapse
|
329
|
The chromatin-associated Sin3B protein is required for hematopoietic stem cell functions in mice. Blood 2016; 129:60-70. [PMID: 27806947 DOI: 10.1182/blood-2016-06-721746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) reside at the top of the hematopoietic hierarchy and are the origin of all blood cells produced throughout an individual's life. The balance between HSC self-renewal and differentiation is maintained by various intrinsic and extrinsic mechanisms. Among these, the molecular pathways that restrict cell cycle progression are critical to the maintenance of functional HSCs. Alterations in the regulation of cell cycle progression in HSCs invariably lead to the development of hematologic malignancies or bone marrow failure syndromes. Here we report that hematopoietic-specific genetic inactivation of Sin3B, an essential component of the mammalian Sin3-histone deacetylase corepressor complex, severely impairs the competitive repopulation capacity of HSCs. Sin3B-deleted HSCs accumulate and fail to properly differentiate following transplantation. Moreover, Sin3B inactivation impairs HSC quiescence and sensitizes mice to myelosuppressive therapy. Together, these results identify Sin3B as a novel and critical regulator of HSC functions.
Collapse
|
330
|
Han T, Yang CS, Chang KY, Zhang D, Imam FB, Rana TM. Identification of novel genes and networks governing hematopoietic stem cell development. EMBO Rep 2016; 17:1814-1828. [PMID: 27797851 PMCID: PMC5167341 DOI: 10.15252/embr.201642395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/13/2016] [Accepted: 09/30/2016] [Indexed: 01/06/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are capable of giving rise to all blood cell lineages throughout adulthood, and the generation of engraftable HSCs from human pluripotent stem cells is a major goal for regenerative medicine. Here, we describe a functional genome‐wide RNAi screen to identify genes required for the differentiation of embryonic stem cell (ESC) into hematopoietic stem/progenitor cells (HSPCs) in vitro. We report the discovery of novel genes important for the endothelial‐to‐hematopoietic transition and subsequently for HSPC specification. High‐throughput sequencing and bioinformatic analyses identified twelve groups of genes, including a set of 351 novel genes required for HSPC specification. As in vivo proof of concept, four of these genes, Ap2a1, Mettl22, Lrsam1, and Hal, are selected for validation, confirmed to be essential for HSPC development in zebrafish and for maintenance of human HSCs. Taken together, our results not only identify a number of novel regulatory genes and pathways essential for HSPC development but also serve as valuable resource for directed differentiation of therapy grade HSPCs using human pluripotent stem cells.
Collapse
Affiliation(s)
- Tianxu Han
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Chao-Shun Yang
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Kung-Yen Chang
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Danhua Zhang
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Farhad B Imam
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA.,Division of Neonatology, Rady Children's Hospital-San Diego, San Diego, CA, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA .,Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
331
|
Young K, Borikar S, Bell R, Kuffler L, Philip V, Trowbridge JJ. Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging. J Exp Med 2016; 213:2259-2267. [PMID: 27811054 PMCID: PMC5068232 DOI: 10.1084/jem.20160168] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/08/2016] [Indexed: 01/18/2023] Open
Abstract
Age-related lymphoid cell decline is due to a cell-autonomous progressive loss of LMPP/MPP4 cells associated with increased cycling and differentiation potential toward the myeloid lineage. Declining immune function with age is associated with reduced lymphoid output of hematopoietic stem cells (HSCs). Currently, there is poor understanding of changes with age in the heterogeneous multipotent progenitor (MPP) cell compartment, which is long lived and responsible for dynamically regulating output of mature hematopoietic cells. In this study, we observe an early and progressive loss of lymphoid-primed MPP cells (LMPP/MPP4) with aging, concomitant with expansion of HSCs. Transcriptome and in vitro functional analyses at the single-cell level reveal a concurrent increase in cycling of aging LMPP/MPP4 with loss of lymphoid priming and differentiation potential. Impaired lymphoid differentiation potential of aged LMPP/MPP4 is not rescued by transplantation into a young bone marrow microenvironment, demonstrating cell-autonomous changes in the MPP compartment with aging. These results pinpoint an age and cellular compartment to focus further interrogation of the drivers of lymphoid cell loss with aging.
Collapse
Affiliation(s)
- Kira Young
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609
| | - Sneha Borikar
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609
| | - Rebecca Bell
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609
| | - Lauren Kuffler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609
| | - Vivek Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609
| | | |
Collapse
|
332
|
Goloviznina NA, Verghese SC, Yoon YM, Taratula O, Marks DL, Kurre P. Mesenchymal Stromal Cell-derived Extracellular Vesicles Promote Myeloid-biased Multipotent Hematopoietic Progenitor Expansion via Toll-Like Receptor Engagement. J Biol Chem 2016; 291:24607-24617. [PMID: 27758863 DOI: 10.1074/jbc.m116.745653] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/06/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) present in the bone marrow microenvironment secrete cytokines and angiogenic factors that support the maintenance and regenerative expansion of hematopoietic stem and progenitor cells (HSPCs). Here, we tested the hypothesis that extracellular vesicles (EVs) released by MSCs contribute to the paracrine crosstalk that shapes hematopoietic function. We systematically characterized EV release by murine stromal cells and demonstrate that MSC-derived EVs prompt a loss of HSPC quiescence with concomitant expansion of murine myeloid progenitors. Our studies reveal that HSPC expansion by MSC EVs is mediated via the MyD88 adapter protein and is partially blocked by treatment with a TLR4 inhibitor. Imaging of fluorescence protein-tagged MSC EVs corroborated their cellular co-localization with TLR4 and endosomal Rab5 compartments in HSPCs. The dissection of downstream responses to TLR4 activation reveals that the mechanism by which MSC EVs impact HSPCs involves canonical NF-κB signaling and downstream activation of Hif-1α and CCL2 target genes. Our aggregate data identify a previously unknown role for MSC-derived EVs in the regulation of hematopoiesis through innate immune mechanisms and illustrate the expansive cell-cell crosstalk in the bone marrow microenvironment.
Collapse
Affiliation(s)
| | | | - Young Me Yoon
- From the Department of Pediatrics,; Papé Family Pediatric Research Institute, and
| | - Oleh Taratula
- the Oregon State University, College of Pharmacy, Corvallis, Oregon 97331
| | - Daniel L Marks
- From the Department of Pediatrics,; Papé Family Pediatric Research Institute, and
| | - Peter Kurre
- From the Department of Pediatrics,; Papé Family Pediatric Research Institute, and; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, Oregon 97239 and.
| |
Collapse
|
333
|
Benetatos L, Vartholomatos G. On the potential role of DNMT1 in acute myeloid leukemia and myelodysplastic syndromes: not another mutated epigenetic driver. Ann Hematol 2016; 95:1571-82. [PMID: 26983918 DOI: 10.1007/s00277-016-2636-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
DNA methylation is the most common epigenetic modification in the mammalian genome. DNA methylation is governed by the DNA methyltransferases mainly DNMT1, DNMT3A, and DNMT3B. DNMT1 methylates hemimethylated DNA ensuring accurate DNA methylation maintenance. DNMT1 is involved in the proper differentiation of hematopoietic stem cells (HSCs) through the interaction with effector molecules. DNMT1 is deregulated in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) as early as the leukemic stem cell stage. Through the interaction with fundamental transcription factors, non-coding RNAs, fusion oncogenes and by modulating core members of signaling pathways, it can affect leukemic cells biology. DNMT1 action might be also catalytic-independent highlighting a methylation-independent mode of action. In this review, we have gathered some current facts of DNMT1 role in AML and MDS and we also propose some perspectives for future studies.
Collapse
|
334
|
Janss T, Mesnil C, Pirottin D, Lemaitre P, Marichal T, Bureau F, Desmet CJ. Interferon response factor-3 promotes the pro-Th2 activity of mouse lung CD11b + conventional dendritic cells in response to house dust mite allergens. Eur J Immunol 2016; 46:2614-2628. [PMID: 27546168 DOI: 10.1002/eji.201646513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/07/2016] [Accepted: 08/16/2016] [Indexed: 11/07/2022]
Abstract
Very few transcription factors have been identified that are required by antigen-presenting cells (APCs) to induce T helper type 2 (Th2) responses. Because lung CD11b+ conventional dendritic cells (CD11b+ cDCs) are responsible for priming Th2 responses in house-dust mite (HDM)-induced airway allergy, we used them as a model to identify transcriptional events regulating the pro-Th2 activity of cDCs. Transcriptomic profiling of lung CD11b+ cDCs exposed to HDM in vivo revealed first that HDM triggers an antiviral defence-like response, and second that the majority of HDM-induced transcriptional changes depend on the transcription factor Interferon Response Factor-3 (Irf3). Validating the functional relevance of these observations, Irf3-deficient CD11b+ cDCs displayed reduced pro-allergic activity. Indeed, Irf3-deficient CD11b+ cDCs induced less Th2, more regulatory T cell, and similar Th1 differentiation in naïve CD4+ T cells compared to their wild-type counterparts. The altered APC activity of Irf3 CD11b+ cDCs was associated with reduced expression of CD86 and was phenocopied by blocking CD86 activity in wild-type CD11b+ cDCs. Altogether, these results establish Irf3, known mostly for its role in antiviral responses, as a transcription factor involved in the induction of Th2 responses through the promotion of pro-Th2 costimulation in CD11b+ DCs.
Collapse
Affiliation(s)
- Thibaut Janss
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Claire Mesnil
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Dimitri Pirottin
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Pierre Lemaitre
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium.
| |
Collapse
|
335
|
Rossnagl S, Altrock E, Sens C, Kraft S, Rau K, Milsom MD, Giese T, Samstag Y, Nakchbandi IA. EDA-Fibronectin Originating from Osteoblasts Inhibits the Immune Response against Cancer. PLoS Biol 2016; 14:e1002562. [PMID: 27653627 PMCID: PMC5031442 DOI: 10.1371/journal.pbio.1002562] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/25/2016] [Indexed: 01/29/2023] Open
Abstract
Osteoblasts lining the inner surface of bone support hematopoietic stem cell differentiation by virtue of proximity to the bone marrow. The osteoblasts also modify their own differentiation by producing various isoforms of fibronectin (FN). Despite evidence for immune regulation by osteoblasts, there is limited knowledge of how osteoblasts modulate cells of the immune system. Here, we show that extra domain A (EDA)-FN produced by osteoblasts increases arginase production in myeloid-derived cells, and we identify α5β1 as the mediating receptor. In different mouse models of cancer, osteoblasts or EDA-FN was found to up-regulate arginase-1 expression in myeloid-derived cells, resulting in increased cancer growth. This harmful effect can be reduced by interfering with the integrin α5β1 receptor or inhibiting arginase. Conversely, in tissue injury, the expression of arginase-1 is normally beneficial as it dampens the immune response to allow wound healing. We show that EDA-FN protects against excessive fibrotic tissue formation in a liver fibrosis model. Our results establish an immune regulatory function for EDA-FN originating from the osteoblasts and identify new avenues for enhancing the immune reaction against cancer. Osteoblasts produce an isoform of fibronectin (EDA-fibronectin) that acts on myeloid cells to increase arginase-1 expression and protect against fibrosis. However, it can also enhance cancer growth; interfering with the interaction between EDA-fibronectin and its receptor diminishes this effect. Osteoblasts, which are the cells that produce bone, line the inner surface of the bone and are adjacent to the marrow that generates all the different blood cells. Osteoblasts have a close relationship with hematopoiesis, and it has been shown that a transient elimination of osteoblasts leads to the decrease of hematopoietic stem cells and progenitor cells. Fibronectin (FN) is an extracellular matrix protein with a known role in hematopoiesis in vitro that is secreted by osteoblasts. Here, we analyze the role of FN in hematopoiesis and find that an isoform that contains the extra domain A (EDA) and is produced by the osteoblasts affects both the number and future behavior of a subset of immune cells. EDA-FN protects against excessive fibrotic tissue formation in a liver fibrosis model. The same process, however, is detrimental in cancer, because it prevents the organism from mounting a potent immune response against the cancer and induces an increase of cancer growth. Mechanistically, we find that the EDA domain binds to the cell surface receptor α5β1 integrin and enhances the production of the anti-inflammatory and immunosuppressive factor arginase-1. We conclude that EDA-FN production by osteoblasts modulates immune cell behavior, and that interfering with this mechanism opens up new possibilities for enhancing an immune reaction against cancer.
Collapse
Affiliation(s)
- Stephanie Rossnagl
- Max-Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Eva Altrock
- Max-Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Carla Sens
- Max-Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Sabrina Kraft
- Max-Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Katrin Rau
- Max-Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Michael D. Milsom
- German Cancer Research Center (DKFZ), Division of Stem Cells and Cancer, Experimental Hematology Group, and Heidelberg Institute for Stem Cell Technology and Experimental Medicine, gGmbH (HI-STEM), Heidelberg, Germany
| | - Thomas Giese
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Yvonne Samstag
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Inaam A. Nakchbandi
- Max-Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
336
|
Sawai CM, Babovic S, Upadhaya S, Knapp DJHF, Lavin Y, Lau CM, Goloborodko A, Feng J, Fujisaki J, Ding L, Mirny LA, Merad M, Eaves CJ, Reizis B. Hematopoietic Stem Cells Are the Major Source of Multilineage Hematopoiesis in Adult Animals. Immunity 2016; 45:597-609. [PMID: 27590115 PMCID: PMC5054720 DOI: 10.1016/j.immuni.2016.08.007] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/14/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSCs) sustain long-term reconstitution of hematopoiesis in transplantation recipients, yet their role in the endogenous steady-state hematopoiesis remains unclear. In particular, recent studies suggested that HSCs provide a relatively minor contribution to immune cell development in adults. We directed transgene expression in a fraction of HSCs that maintained reconstituting activity during serial transplantations. Inducible genetic labeling showed that transgene-expressing HSCs gave rise to other phenotypic HSCs, confirming their top position in the differentiation hierarchy. The labeled HSCs rapidly contributed to committed progenitors of all lineages and to mature myeloid cells and lymphocytes, but not to B-1a cells or tissue macrophages. Importantly, labeled HSCs gave rise to more than two-thirds of all myeloid cells and platelets in adult mice, and this contribution could be accelerated by an induced interferon response. Thus, classically defined HSCs maintain immune cell development in the steady state and during systemic cytokine responses.
Collapse
Affiliation(s)
- Catherine M Sawai
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Sonja Babovic
- Terry Fox Laboratory, British Columbia Cancer Agency and University of British Columbia, Vancouver, BC V5Z 4E6, Canada
| | - Samik Upadhaya
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA; Graduate Program in Pathobiology and Molecular Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - David J H F Knapp
- Terry Fox Laboratory, British Columbia Cancer Agency and University of British Columbia, Vancouver, BC V5Z 4E6, Canada
| | - Yonit Lavin
- Department of Oncological Science, The Tisch Cancer Institute and The Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Colleen M Lau
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anton Goloborodko
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jue Feng
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Joji Fujisaki
- Department of Pediatrics and Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Lei Ding
- Department of Regenerative Medicine and Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Leonid A Mirny
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Miriam Merad
- Department of Oncological Science, The Tisch Cancer Institute and The Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency and University of British Columbia, Vancouver, BC V5Z 4E6, Canada
| | - Boris Reizis
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA; Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
337
|
Diener Y, Bosio A, Bissels U. Delivery of RNA-based molecules to human hematopoietic stem and progenitor cells for modulation of gene expression. Exp Hematol 2016; 44:991-1001. [PMID: 27576131 DOI: 10.1016/j.exphem.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/01/2016] [Accepted: 08/18/2016] [Indexed: 12/26/2022]
Abstract
Gene modulation of human hematopoietic stem and progenitor cells (HSPCs) harbors great potential for therapeutic application of these cells and presents a versatile tool in basic research to enhance our understanding of HSPC biology. However, stable genetic modification might be adverse, particularly in clinical settings. Here, we review a broad range of approaches to transient, nonviral modulation of protein expression with a focus on RNA-based methods. We compare different delivery methods and describe the usefulness of RNA molecules for overexpression as well as downregulation of proteins in HSPCs.
Collapse
Affiliation(s)
| | | | - Ute Bissels
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.
| |
Collapse
|
338
|
Phosphoproteomic profiling of mouse primary HSPCs reveals new regulators of HSPC mobilization. Blood 2016; 128:1465-74. [PMID: 27365422 DOI: 10.1182/blood-2016-05-711424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022] Open
Abstract
Protein phosphorylation is a central mechanism of signal transduction that both positively and negatively regulates protein function. Large-scale studies of the dynamic phosphorylation states of cell signaling systems have been applied extensively in cell lines and whole tissues to reveal critical regulatory networks, and candidate-based evaluations of phosphorylation in rare cell populations have also been informative. However, application of comprehensive profiling technologies to adult stem cell and progenitor populations has been challenging, due in large part to the scarcity of such cells in adult tissues. Here, we combine multicolor flow cytometry with highly efficient 3-dimensional high performance liquid chromatography/mass spectrometry to enable quantitative phosphoproteomic analysis from 200 000 highly purified primary mouse hematopoietic stem and progenitor cells (HSPCs). Using this platform, we identify ARHGAP25 as a novel regulator of HSPC mobilization and demonstrate that ARHGAP25 phosphorylation at serine 363 is an important modulator of its function. Our approach provides a robust platform for large-scale phosphoproteomic analyses performed with limited numbers of rare progenitor cells. Data from our study comprises a new resource for understanding the molecular signaling networks that underlie hematopoietic stem cell mobilization.
Collapse
|
339
|
A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 2016; 128:e20-31. [PMID: 27365425 DOI: 10.1182/blood-2016-05-716480] [Citation(s) in RCA: 461] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/28/2016] [Indexed: 02/08/2023] Open
Abstract
Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice.
Collapse
|
340
|
Tracing haematopoietic stem cell formation at single-cell resolution. Nature 2016; 533:487-92. [PMID: 27225119 DOI: 10.1038/nature17997] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/11/2016] [Indexed: 12/18/2022]
Abstract
Haematopoietic stem cells (HSCs) are derived early from embryonic precursors, such as haemogenic endothelial cells and pre-haematopoietic stem cells (pre-HSCs), the molecular identity of which still remains elusive. Here we use potent surface markers to capture the nascent pre-HSCs at high purity, as rigorously validated by single-cell-initiated serial transplantation. Then we apply single-cell RNA sequencing to analyse endothelial cells, CD45(-) and CD45(+) pre-HSCs in the aorta-gonad-mesonephros region, and HSCs in fetal liver. Pre-HSCs show unique features in transcriptional machinery, arterial signature, metabolism state, signalling pathway, and transcription factor network. Functionally, activation of mechanistic targets of rapamycin (mTOR) is shown to be indispensable for the emergence of HSCs but not haematopoietic progenitors. Transcriptome data-based functional analysis reveals remarkable heterogeneity in cell-cycle status of pre-HSCs. Finally, the core molecular signature of pre-HSCs is identified. Collectively, our work paves the way for dissection of complex molecular mechanisms regulating stepwise generation of HSCs in vivo, informing future efforts to engineer HSCs for clinical applications.
Collapse
|
341
|
Masamoto Y, Kurokawa M. Inflammation-induced emergency megakaryopoiesis: inflammation paves the way for platelets. Stem Cell Investig 2016; 3:16. [PMID: 27486586 DOI: 10.21037/sci.2016.05.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Yosuke Masamoto
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
342
|
Cullen SM, Goodell MA. Dynamic DNA methylation discovered during HSC differentiation. Cell Cycle 2016; 14:693-4. [PMID: 25714123 DOI: 10.1080/15384101.2015.1006558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sean M Cullen
- a Stem Cells and Regenerative Medicine Center & Program in Developmental Biology ; Baylor College of Medicine ; Houston , TX USA
| | | |
Collapse
|
343
|
Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk LV, Zhang S, Lakshminarasimhan R, Chin CP, Techner JM, Will B, Nerlov C, Steidl U, Manz MG, Schroeder T, Passegué E. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol 2016; 18:607-18. [PMID: 27111842 PMCID: PMC4884136 DOI: 10.1038/ncb3346] [Citation(s) in RCA: 490] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/24/2016] [Indexed: 02/08/2023]
Abstract
Haematopoietic stem cells (HSC) maintain lifelong blood production and increase blood cell numbers in response to chronic and acute injury. However, the mechanism(s) by which inflammatory insults are communicated to HSCs and their consequences for HSC activity remain largely unknown. Here, we demonstrate that interleukin-1 (IL-1), which functions as a key pro-inflammatory ‘emergency’ signal, directly accelerates cell division and myeloid differentiation of HSCs via precocious activation of a PU.1-dependent gene program. While this effect is essential for rapid myeloid recovery following acute injury to the bone marrow (BM), chronic IL-1 exposure restricts HSC lineage output, severely erodes HSC self-renewal capacity, and primes IL-1-exposed HSCs to fail massive replicative challenges like transplantation. Importantly, these damaging effects are transient and fully reversible upon IL-1 withdrawal. Our results identify a critical regulatory circuit that tailors HSC responses to acute needs, and likely underlies deregulated blood homeostasis in chronic inflammation conditions.
Collapse
Affiliation(s)
- Eric M Pietras
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94143, USA
| | - Cristina Mirantes-Barbeito
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94143, USA
| | - Sarah Fong
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94143, USA
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Larisa V Kovtonyuk
- Division of Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - SiYi Zhang
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94143, USA
| | - Ranjani Lakshminarasimhan
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94143, USA
| | - Chih Peng Chin
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94143, USA
| | - José-Marc Techner
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94143, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein Medical College, Queens, New York 10461, USA
| | - Claus Nerlov
- Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein Medical College, Queens, New York 10461, USA
| | - Markus G Manz
- Division of Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Emmanuelle Passegué
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
344
|
Perié L, Duffy KR, Kok L, de Boer RJ, Schumacher TN. The Branching Point in Erythro-Myeloid Differentiation. Cell 2016; 163:1655-62. [PMID: 26687356 DOI: 10.1016/j.cell.2015.11.059] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/18/2015] [Accepted: 11/28/2015] [Indexed: 12/17/2022]
Abstract
Development of mature blood cell progenies from hematopoietic stem cells involves the transition through lineage-restricted progenitors. The first branching point along this developmental process is thought to separate the erythro-myeloid and lymphoid lineage fate by yielding two intermediate progenitors, the common myeloid and the common lymphoid progenitors (CMPs and CLPs). Here, we use single-cell lineage tracing to demonstrate that so-called CMPs are highly heterogeneous with respect to cellular output, with most individual CMPs yielding either only erythrocytes or only myeloid cells after transplantation. Furthermore, based on the labeling of earlier progenitors, we show that the divergence between the myeloid and erythroid lineage develops within multipotent progenitors (MPP). These data provide evidence for a model of hematopoietic branching in which multiple distinct lineage commitments occur in parallel within the MPP pool.
Collapse
Affiliation(s)
- Leïla Perié
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Institut Curie, PSL Research University, CNRS UMR168, 26 rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, 75005 Paris, France.
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Lianne Kok
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ton N Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
345
|
Wilson M, Tsakraklides V, Tran M, Xiao YY, Zhang Y, Perkins AS. EVI1 Interferes with Myeloid Maturation via Transcriptional Repression of Cebpa, via Binding to Two Far Downstream Regulatory Elements. J Biol Chem 2016; 291:13591-607. [PMID: 27129260 DOI: 10.1074/jbc.m115.708156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
One mechanism by which oncoproteins work is through perturbation of cellular maturation; understanding the mechanisms by which this occurs can lead to the development of targeted therapies. EVI1 is a zinc finger oncoprotein involved in the development of acute myeloid leukemia; previous work has shown it to interfere with the maturation of granulocytes from immature precursors. Here we investigate the mechanism by which that occurs, using an immortalized hematopoietic progenitor cell line, EML-C1, as a model system. We document that overexpression of EVI1 abrogates retinoic acid-induced maturation of EML cells into committed myeloid cells, a process that can be documented by the down-regulation of stem cell antigen-1 and acquisition of responsiveness to granulocyte-macrophage colony-stimulating factor. We show that this requires DNA binding capacity of EVI1, suggesting that downstream target genes are involved. We identify the myeloid regulator Cebpa as a target gene and identify two EVI1 binding regions within evolutionarily conserved enhancer elements at +35 and +37 kb relative to the gene. EVI1 can strongly suppress Cebpa transcription, and add-back of Cebpa into EVI1-expressing EML cells partially corrects the block in maturation. We identify the DNA sequences to which EVI1 binds at +35 and +37 kb and show that mutation of one of these releases Cebpa from EVI1-induced suppression. We observe a more complex picture in primary bone marrow cells, where EVI1 suppresses Cebpa in stem cells but not in more committed progenitors. Our data thus identify a regulatory node by which EVI1 contributes to leukemia, and this represents a possible therapeutic target for treatment of EVI1-expressing leukemia.
Collapse
Affiliation(s)
- Michael Wilson
- From the Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642 and
| | | | - Minh Tran
- the Department of Pathology, Yale University, New Haven, Connecticut 06520
| | - Ying-Yi Xiao
- the Department of Pathology, Yale University, New Haven, Connecticut 06520
| | - Yi Zhang
- From the Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Archibald S Perkins
- From the Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642 and
| |
Collapse
|
346
|
Runx1 downregulates stem cell and megakaryocytic transcription programs that support niche interactions. Blood 2016; 127:3369-81. [PMID: 27076172 DOI: 10.1182/blood-2015-09-668129] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/31/2016] [Indexed: 12/20/2022] Open
Abstract
Disrupting mutations of the RUNX1 gene are found in 10% of patients with myelodysplasia (MDS) and 30% of patients with acute myeloid leukemia (AML). Previous studies have revealed an increase in hematopoietic stem cells (HSCs) and multipotent progenitor (MPP) cells in conditional Runx1-knockout (KO) mice, but the molecular mechanism is unresolved. We investigated the myeloid progenitor (MP) compartment in KO mice, arguing that disruptions at the HSC/MPP level may be amplified in downstream cells. We demonstrate that the MP compartment is increased by more than fivefold in Runx1 KO mice, with a prominent skewing toward megakaryocyte (Meg) progenitors. Runx1-deficient granulocyte-macrophage progenitors are characterized by increased cloning capacity, impaired development into mature cells, and HSC and Meg transcription signatures. An HSC/MPP subpopulation expressing Meg markers was also increased in Runx1-deficient mice. Rescue experiments coupled with transcriptome analysis and Runx1 DNA-binding assays demonstrated that granulocytic/monocytic (G/M) commitment is marked by Runx1 suppression of genes encoding adherence and motility proteins (Tek, Jam3, Plxnc1, Pcdh7, and Selp) that support HSC-Meg interactions with the BM niche. In vitro assays confirmed that enforced Tek expression in HSCs/MPPs increases Meg output. Interestingly, besides this key repressor function of Runx1 to control lineage decisions and cell numbers in progenitors, our study also revealed a critical activating function in erythroblast differentiation, in addition to its known importance in Meg and G/M maturation. Thus both repressor and activator functions of Runx1 at multiple hematopoietic stages and lineages likely contribute to the tumor suppressor activity in MDS and AML.
Collapse
|
347
|
Vedi A, Santoro A, Dunant CF, Dick JE, Laurenti E. Molecular landscapes of human hematopoietic stem cells in health and leukemia. Ann N Y Acad Sci 2016; 1370:5-14. [PMID: 26663266 DOI: 10.1111/nyas.12981] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/07/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
Abstract
Blood cells are organized as a hierarchy with hematopoietic stem cells (HSCs) at the root. The advent of genomic technologies has opened the way for global characterization of the molecular landscape of HSCs and their progeny, both in mouse and human models, at the genetic, transcriptomic, epigenetic, and proteomics levels. Here, we outline our current understanding of the molecular programs that govern human HSCs and how dynamic changes occurring during HSC differentiation are necessary for well-regulated blood formation under homeostasis and upon injury. A large body of evidence is accumulating on how the programs of normal hematopoiesis are modified in acute myeloid leukemia, an aggressive adult malignancy driven by leukemic stem cells. We summarize these findings and their clinical implications.
Collapse
Affiliation(s)
- Aditi Vedi
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Paediatric Oncology, Royal Marsden Hospital, Sutton, London, United Kingdom
| | - Antonella Santoro
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elisa Laurenti
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
348
|
Goodman SR, Pace BS, Hansen KC, D'alessandro A, Xia Y, Daescu O, Glatt SJ. Minireview: Multiomic candidate biomarkers for clinical manifestations of sickle cell severity: Early steps to precision medicine. Exp Biol Med (Maywood) 2016; 241:772-81. [PMID: 27022133 DOI: 10.1177/1535370216640150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this review, we provide a description of those candidate biomarkers which have been demonstrated by multiple-omics approaches to vary in correlation with specific clinical manifestations of sickle cell severity. We believe that future clinical analyses of severity phenotype will require a multiomic analysis, or an omics stack approach, which includes integrated interactomics. It will also require the analysis of big data sets. These candidate biomarkers, whether they are individual or panels of functionally linked markers, will require future validation in large prospective and retrospective clinical studies. Once validated, the hope is that informative biomarkers will be used for the identification of individuals most likely to experience severe complications, and thereby be applied for the design of patient-specific therapeutic approaches and response to treatment. This would be the beginning of precision medicine for sickle cell disease.
Collapse
Affiliation(s)
- Steven R Goodman
- Department of Pediatrics and Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Kirk C Hansen
- Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80202, USA
| | - Angelo D'alessandro
- Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80202, USA
| | - Yang Xia
- Biochemistry and Molecular Biology Department, University of Texas at Houston, TX 77030, USA
| | - Ovidiu Daescu
- University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephen J Glatt
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
349
|
Schulze I, Rohde C, Scheller-Wendorff M, Bäumer N, Krause A, Herbst F, Riemke P, Hebestreit K, Tschanter P, Lin Q, Linhart H, Godley LA, Glimm H, Dugas M, Wagner W, Berdel WE, Rosenbauer F, Müller-Tidow C. Increased DNA methylation of Dnmt3b targets impairs leukemogenesis. Blood 2016; 127:1575-86. [PMID: 26729896 DOI: 10.1182/blood-2015-07-655928] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022] Open
Abstract
The de novo DNA methyltransferases Dnmt3a and Dnmt3b are of crucial importance in hematopoietic stem cells. Dnmt3b has recently been shown to play a role in genic methylation. To investigate how Dnmt3b-mediated DNA methylation affects leukemogenesis, we analyzed leukemia development under conditions of high and physiological methylation levels in a tetracycline-inducible knock-in mouse model. High expression of Dnmt3b slowed leukemia development in serial transplantations and impaired leukemia stem cell (LSC) function. Forced Dnmt3b expression induced widespread DNA hypermethylation inMyc-Bcl2-induced leukemias, preferentially at gene bodies.MLL-AF9-induced leukemogenesis showed much less pronounced DNA hypermethylation upon Dnmt3b expression. Nonetheless, leukemogenesis was delayed in both models with a shared core set of DNA hypermethylated regions and suppression of stem cell-related genes. Acute myeloid leukemia patients with high expression of Dnmt3b target genes showed inferior survival. Together, these findings indicate a critical role for Dnmt3b-mediated DNA methylation in leukemia development and maintenance of LSC function.
Collapse
Affiliation(s)
- Isabell Schulze
- Department of Hematology and Oncology, University of Halle, Halle, Germany
| | - Christian Rohde
- Department of Hematology and Oncology, University of Halle, Halle, Germany
| | | | - Nicole Bäumer
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Annika Krause
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Friederike Herbst
- National Center for Tumor Diseases, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Pia Riemke
- Institute of Molecular Tumor Biology and
| | - Katja Hebestreit
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Petra Tschanter
- Department of Hematology and Oncology, University of Halle, Halle, Germany
| | - Qiong Lin
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; and
| | - Heinz Linhart
- National Center for Tumor Diseases, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Lucy A Godley
- Department of Medicine and Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Hanno Glimm
- National Center for Tumor Diseases, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; and
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | | | | |
Collapse
|
350
|
Kokkaliaris KD, Lucas D, Beerman I, Kent DG, Perié L. Understanding hematopoiesis from a single-cell standpoint. Exp Hematol 2016; 44:447-50. [PMID: 26997547 DOI: 10.1016/j.exphem.2016.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/11/2022]
Abstract
The cellular diversity of the hematopoietic system has been extensively studied, and a plethora of cell surface markers have been used to discriminate and prospectively purify different blood cell types. However, even within phenotypically identical fractions of hematopoietic stem and progenitor cells or lineage-restricted progenitors, significant functional heterogeneity is observed when single cells are analyzed. To address these challenges, researchers are now using techniques to follow single cells and their progeny to improve our understanding of the underlying functional heterogeneity. On November 19, 2015, Dr. David Kent and Dr. Leïla Perié, two emerging young group leaders, presented their recent efforts to dissect the functional properties of individual cells with a webinar series organized by the International Society for Experimental Hematology. Here, we provide a summary of the presented methods for cell labeling and clonal tracking and discuss how these different techniques have been employed to study hematopoiesis.
Collapse
Affiliation(s)
- Konstantinos D Kokkaliaris
- Cell Systems Dynamics Research Group, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - Daniel Lucas
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Isabel Beerman
- Program of Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - David G Kent
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge University, Cambridge, UK
| | - Leïla Perié
- Institut Curie, PSL Research University, Paris, France
| |
Collapse
|