301
|
Belnap DM. Electron Microscopy and Image Processing: Essential Tools for Structural Analysis of Macromolecules. ACTA ACUST UNITED AC 2015; 82:17.2.1-17.2.61. [PMID: 26521712 DOI: 10.1002/0471140864.ps1702s82] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macromolecular electron microscopy typically depicts the structures of macromolecular complexes ranging from ∼200 kDa to hundreds of MDa. The amount of specimen required, a few micrograms, is typically 100 to 1000 times less than needed for X-ray crystallography or nuclear magnetic resonance spectroscopy. Micrographs of frozen-hydrated (cryogenic) specimens portray native structures, but the original images are noisy. Computational averaging reduces noise, and three-dimensional reconstructions are calculated by combining different views of free-standing particles ("single-particle analysis"). Electron crystallography is used to characterize two-dimensional arrays of membrane proteins and very small three-dimensional crystals. Under favorable circumstances, near-atomic resolutions are achieved. For structures at somewhat lower resolution, pseudo-atomic models are obtained by fitting high-resolution components into the density. Time-resolved experiments describe dynamic processes. Electron tomography allows reconstruction of pleiomorphic complexes and subcellular structures and modeling of macromolecules in their cellular context. Significant information is also obtained from metal-coated and dehydrated specimens.
Collapse
Affiliation(s)
- David M Belnap
- Departments of Biology and Biochemistry, University of Utah, Salt Lake City, Utah
| |
Collapse
|
302
|
Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, Chiu W, Ludtke SJ, Serysheva II. Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 2015; 527:336-41. [PMID: 26458101 DOI: 10.1038/nature15249] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are ubiquitous ion channels responsible for cytosolic Ca(2+) signalling and essential for a broad array of cellular processes ranging from contraction to secretion, and from proliferation to cell death. Despite decades of research on InsP3Rs, a mechanistic understanding of their structure-function relationship is lacking. Here we present the first, to our knowledge, near-atomic (4.7 Å) resolution electron cryomicroscopy structure of the tetrameric mammalian type 1 InsP3R channel in its apo-state. At this resolution, we are able to trace unambiguously ∼85% of the protein backbone, allowing us to identify the structural elements involved in gating and modulation of this 1.3-megadalton channel. Although the central Ca(2+)-conduction pathway is similar to other ion channels, including the closely related ryanodine receptor, the cytosolic carboxy termini are uniquely arranged in a left-handed α-helical bundle, directly interacting with the amino-terminal domains of adjacent subunits. This configuration suggests a molecular mechanism for allosteric regulation of channel gating by intracellular signals.
Collapse
Affiliation(s)
- Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Matthew L Baker
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Zhao Wang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Pavel A Sinyagovskiy
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| |
Collapse
|
303
|
Structure of Ljungan virus provides insight into genome packaging of this picornavirus. Nat Commun 2015; 6:8316. [PMID: 26446437 PMCID: PMC4633645 DOI: 10.1038/ncomms9316] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 11/11/2022] Open
Abstract
Picornaviruses are responsible for a range of human and animal diseases, but how their RNA genome is packaged remains poorly understood. A particularly poorly studied group within this family are those that lack the internal coat protein, VP4. Here we report the atomic structure of one such virus, Ljungan virus, the type member of the genus Parechovirus B, which has been linked to diabetes and myocarditis in humans. The 3.78-Å resolution cryo-electron microscopy structure shows remarkable features, including an extended VP1 C terminus, forming a major protuberance on the outer surface of the virus, and a basic motif at the N terminus of VP3, binding to which orders some 12% of the viral genome. This apparently charge-driven RNA attachment suggests that this branch of the picornaviruses uses a different mechanism of genome encapsidation, perhaps explored early in the evolution of picornaviruses. The Ljungan virus is a picornavirus that lacks the internal coat protein VP4, and the packaging of its RNA genome is poorly understood. Here, the authors use cryo-electron microscopy to visualize this virus and suggest that it uses a different mechanism to other viruses for encapsidation of its genome.
Collapse
|
304
|
Rosenthal PB, Rubinstein JL. Validating maps from single particle electron cryomicroscopy. Curr Opin Struct Biol 2015; 34:135-44. [DOI: 10.1016/j.sbi.2015.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 01/10/2023]
|
305
|
Wriggers W, He J. Numerical geometry of map and model assessment. J Struct Biol 2015; 192:255-61. [PMID: 26416532 DOI: 10.1016/j.jsb.2015.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
We are describing best practices and assessment strategies for the atomic interpretation of cryo-electron microscopy (cryo-EM) maps. Multiscale numerical geometry strategies in the Situs package and in secondary structure detection software are currently evolving due to the recent increases in cryo-EM resolution. Criteria that aim to predict the accuracy of fitted atomic models at low (worse than 8Å) and medium (4-8 Å) resolutions remain challenging. However, a high level of confidence in atomic models can be achieved by combining such criteria. The observed errors are due to map-model discrepancies and due to the effect of imperfect global docking strategies. Extending the earlier motion capture approach developed for flexible fitting, we use simulated fiducials (pseudoatoms) at varying levels of coarse-graining to track the local drift of structural features. We compare three tracking approaches: naïve vector quantization, a smoothly deformable model, and a tessellation of the structure into rigid Voronoi cells, which are fitted using a multi-fragment refinement approach. The lowest error is an upper bound for the (small) discrepancy between the crystal structure and the EM map due to different conditions in their structure determination. When internal features such as secondary structures are visible in medium-resolution EM maps, it is possible to extend the idea of point-based fiducials to more complex geometric representations such as helical axes, strands, and skeletons. We propose quantitative strategies to assess map-model pairs when such secondary structure patterns are prominent.
Collapse
Affiliation(s)
- Willy Wriggers
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, United States.
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, United States.
| |
Collapse
|
306
|
Deller MC, Rupp B. Models of protein-ligand crystal structures: trust, but verify. J Comput Aided Mol Des 2015; 29:817-36. [PMID: 25665575 PMCID: PMC4531100 DOI: 10.1007/s10822-015-9833-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/29/2015] [Indexed: 11/26/2022]
Abstract
X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.
Collapse
Affiliation(s)
- Marc C Deller
- The Joint Center for Structural Genomics, San Diego, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Bernhard Rupp
- , k.-k. Hofkristallamt 991 Audrey Place, Vista, CA, 92084, USA.
- Department of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstr. 41, 6020, Innsbruck, Austria.
| |
Collapse
|
307
|
Chen VB, Wedell JR, Wenger RK, Ulrich EL, Markley JL. MolProbity for the masses-of data. JOURNAL OF BIOMOLECULAR NMR 2015; 63. [PMID: 26195077 PMCID: PMC4577456 DOI: 10.1007/s10858-015-9969-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
MolProbity is a powerful software program for validating structures of proteins and nucleic acids. Although MolProbity includes scripts for batch analysis of structures, because these scripts analyze structures one at a time, they are not well suited for the validation of a large dataset of structures. We have created a version of MolProbity (MolProbity-HTC) that circumvents these limitations and takes advantage of a high-throughput computing cluster by using the HTCondor software. MolProbity-HTC enables the longitudinal analysis of large sets of structures, such as those deposited in the PDB or generated through theoretical computation-tasks that would have been extremely time-consuming using previous versions of MolProbity. We have used MolProbity-HTC to validate the entire PDB, and have developed a new visual chart for the BioMagResBank website that enables users to easily ascertain the quality of each model in an NMR ensemble and to compare the quality of those models to the rest of the PDB.
Collapse
Affiliation(s)
- Vincent B Chen
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Jonathan R Wedell
- BioMagResBank, Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - R Kent Wenger
- BioMagResBank, Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Eldon L Ulrich
- BioMagResBank, Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - John L Markley
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA.
| |
Collapse
|
308
|
Barad BA, Echols N, Wang RYR, Cheng Y, DiMaio F, Adams PD, Fraser JS. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat Methods 2015; 12:943-6. [PMID: 26280328 PMCID: PMC4589481 DOI: 10.1038/nmeth.3541] [Citation(s) in RCA: 684] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/19/2015] [Indexed: 12/20/2022]
Abstract
Advances in high resolution electron cryomicroscopy (cryo-EM) have been accompanied by the development of validation metrics to independently assess map quality and model geometry. EMRinger assesses the precise fitting of an atomic model into the map during refinement and shows how radiation damage alters scattering from negatively charged amino acids. EMRinger will be useful for monitoring progress in resolving and modeling high-resolution features in cryo-EM.
Collapse
Affiliation(s)
- Benjamin A Barad
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Graduate Group in Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Nathaniel Echols
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ray Yu-Ruei Wang
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Yifan Cheng
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.,Institute for Protein Design, Seattle, Washington, USA
| | - Paul D Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
309
|
Structural insights into the bacterial carbon-phosphorus lyase machinery. Nature 2015; 525:68-72. [PMID: 26280334 PMCID: PMC4617613 DOI: 10.1038/nature14683] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/22/2015] [Indexed: 11/27/2022]
Abstract
Phosphorous is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use organic phosphonate compounds, which require specialised enzymatic machinery for breaking the stable carbon-phosphorus (C-P) bond. Despite its importance, the details of how this machinery catabolises phosphonate remain unknown. Here we determine the crystal structure of the 240 kDa Escherichia coli C-P lyase core complex (PhnGHIJ) and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that likely couple organic phosphonate compounds to ATP and subsequently hydrolyse the C-P bond. We map the binding site of PhnK on the complex using electron microscopy and show that it binds to PhnJ via a conserved insertion domain. Our results provide a structural basis for understanding microbial phosphonate breakdown.
Collapse
|
310
|
Sali A, Berman HM, Schwede T, Trewhella J, Kleywegt G, Burley SK, Markley J, Nakamura H, Adams P, Bonvin AMJJ, Chiu W, Peraro MD, Di Maio F, Ferrin TE, Grünewald K, Gutmanas A, Henderson R, Hummer G, Iwasaki K, Johnson G, Lawson CL, Meiler J, Marti-Renom MA, Montelione GT, Nilges M, Nussinov R, Patwardhan A, Rappsilber J, Read RJ, Saibil H, Schröder GF, Schwieters CD, Seidel CAM, Svergun D, Topf M, Ulrich EL, Velankar S, Westbrook JD. Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Structure 2015; 23:1156-67. [PMID: 26095030 PMCID: PMC4933300 DOI: 10.1016/j.str.2015.05.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023]
Abstract
Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models?
Collapse
Affiliation(s)
- Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall Room 503B, University of California, San Francisco, 1700 4(th) Street, San Francisco, CA 94158-2330, USA.
| | - Helen M Berman
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Torsten Schwede
- Swiss Institute of Bioinformatics Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Jill Trewhella
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Gerard Kleywegt
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - John Markley
- BioMagResBank, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Haruki Nakamura
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Paul Adams
- Physical Biosciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720-8235, USA; Department of Bioengineering, UC Berkeley, Berkeley, CA 94720, USA
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Wah Chiu
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Frank Di Maio
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7370, USA
| | - Thomas E Ferrin
- Department of Pharmaceutical Chemistry and Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158-2517, USA
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Trust Centre of Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Aleksandras Gutmanas
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Richard Henderson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Graham Johnson
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158-2330, USA
| | - Catherine L Lawson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Marc A Marti-Renom
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation (CRG) and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08028 Barcelona, Spain
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Michael Nilges
- Département de Biologie Structurale et Chimie, Unité de Bioinformatique Structurale, Institut Pasteur, F-75015 Paris, France; Unité Mixte de Recherche 3258, Centre National de la Recherche Scientifique, F-75015 Paris, France
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ardan Patwardhan
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Randy J Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Helen Saibil
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gunnar F Schröder
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Charles D Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Claus A M Seidel
- Chair for Molecular Physical Chemistry, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Eldon L Ulrich
- BioMagResBank, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
311
|
Cheng Y, Grigorieff N, Penczek PA, Walz T. A primer to single-particle cryo-electron microscopy. Cell 2015; 161:438-449. [PMID: 25910204 DOI: 10.1016/j.cell.2015.03.050] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 01/14/2023]
Abstract
Cryo-electron microscopy (cryo-EM) of single-particle specimens is used to determine the structure of proteins and macromolecular complexes without the need for crystals. Recent advances in detector technology and software algorithms now allow images of unprecedented quality to be recorded and structures to be determined at near-atomic resolution. However, compared with X-ray crystallography, cryo-EM is a young technique with distinct challenges. This primer explains the different steps and considerations involved in structure determination by single-particle cryo-EM to provide an overview for scientists wishing to understand more about this technique and the interpretation of data obtained with it, as well as a starting guide for new practitioners.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | | | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin Street, MSB 6.220, Houston, TX 77030, USA
| | - Thomas Walz
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
312
|
Farabella I, Vasishtan D, Joseph AP, Pandurangan AP, Sahota H, Topf M. TEMPy: a Python library for assessment of three-dimensional electron microscopy density fits. J Appl Crystallogr 2015; 48:1314-1323. [PMID: 26306092 PMCID: PMC4520291 DOI: 10.1107/s1600576715010092] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/24/2015] [Indexed: 12/21/2022] Open
Abstract
TEMPy is an object-oriented Python library that provides the means to validate density fits in electron microscopy reconstructions. This article highlights several features of particular interest for this purpose and includes some customized examples. Three-dimensional electron microscopy is currently one of the most promising techniques used to study macromolecular assemblies. Rigid and flexible fitting of atomic models into density maps is often essential to gain further insights into the assemblies they represent. Currently, tools that facilitate the assessment of fitted atomic models and maps are needed. TEMPy (template and electron microscopy comparison using Python) is a toolkit designed for this purpose. The library includes a set of methods to assess density fits in intermediate-to-low resolution maps, both globally and locally. It also provides procedures for single-fit assessment, ensemble generation of fits, clustering, and multiple and consensus scoring, as well as plots and output files for visualization purposes to help the user in analysing rigid and flexible fits. The modular nature of TEMPy helps the integration of scoring and assessment of fits into large pipelines, making it a tool suitable for both novice and expert structural biologists.
Collapse
Affiliation(s)
- Irene Farabella
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London , Malet street, London WC1E 7HX, UK
| | - Daven Vasishtan
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford , Oxford OX3 7BN, UK
| | - Agnel Praveen Joseph
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell , Didcot, Oxon OX11 0QX, UK
| | - Arun Prasad Pandurangan
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London , Malet street, London WC1E 7HX, UK
| | - Harpal Sahota
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London , Malet street, London WC1E 7HX, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London , Malet street, London WC1E 7HX, UK
| |
Collapse
|
313
|
Xu XP, Volkmann N. Validation methods for low-resolution fitting of atomic structures to electron microscopy data. Arch Biochem Biophys 2015; 581:49-53. [PMID: 26116787 DOI: 10.1016/j.abb.2015.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022]
Abstract
Fitting of atomic-resolution structures into reconstructions from electron cryo-microscopy is routinely used to understand the structure and function of macromolecular machines. Despite the fact that a plethora of fitting methods has been developed over recent years, standard protocols for quality assessment and validation of these fits have not been established. Here, we present the general concepts underlying current validation ideas as they relate to fitting of atomic-resolution models into electron cryo-microscopy reconstructions, with an emphasis on reconstructions with resolutions below the sub-nanometer range.
Collapse
Affiliation(s)
- Xiao-Ping Xu
- Bioinformatics and Structural Biology Program, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Niels Volkmann
- Bioinformatics and Structural Biology Program, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
314
|
Dalm D, Galaz-Montoya JG, Miller JL, Grushin K, Villalobos A, Koyfman AY, Schmid MF, Stoilova-McPhie S. Dimeric Organization of Blood Coagulation Factor VIII bound to Lipid Nanotubes. Sci Rep 2015; 5:11212. [PMID: 26082135 PMCID: PMC4469981 DOI: 10.1038/srep11212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/05/2015] [Indexed: 11/09/2022] Open
Abstract
Membrane-bound Factor VIII (FVIII) has a critical function in blood coagulation as the pro-cofactor to the serine-protease Factor IXa (FIXa) in the FVIIIa-FIXa complex assembled on the activated platelet membrane. Defects or deficiency of FVIII cause Hemophilia A, a mild to severe bleeding disorder. Despite existing crystal structures for FVIII, its membrane-bound organization has not been resolved. Here we present the dimeric FVIII membrane-bound structure when bound to lipid nanotubes, as determined by cryo-electron microscopy. By combining the structural information obtained from helical reconstruction and single particle subtomogram averaging at intermediate resolution (15-20 Å), we show unambiguously that FVIII forms dimers on lipid nanotubes. We also demonstrate that the organization of the FVIII membrane-bound domains is consistently different from the crystal structure in solution. The presented results are a critical step towards understanding the mechanism of the FVIIIa-FIXa complex assembly on the activated platelet surface in the propagation phase of blood coagulation.
Collapse
Affiliation(s)
- Daniela Dalm
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jesus G Galaz-Montoya
- 1] Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA [2] National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jaimy L Miller
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kirill Grushin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alex Villalobos
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexey Y Koyfman
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michael F Schmid
- 1] Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA [2] National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Svetla Stoilova-McPhie
- 1] Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA [2] Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
315
|
Liao HY, Hashem Y, Frank J. Efficient estimation of three-dimensional covariance and its application in the analysis of heterogeneous samples in cryo-electron microscopy. Structure 2015; 23:1129-37. [PMID: 25982529 PMCID: PMC4456258 DOI: 10.1016/j.str.2015.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 11/23/2022]
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of macromolecular structures at high resolution. Classification allows multiple structural states to be extracted and reconstructed from the same sample. One classification approach is via the covariance matrix, which captures the correlation between every pair of voxels. Earlier approaches employ computing-intensive resampling and estimate only the eigenvectors of the matrix, which are then used in a separate fast classification step. We propose an iterative scheme to explicitly estimate the covariance matrix in its entirety. In our approach, the flexibility in choosing the solution domain allows us to examine a part of the molecule in greater detail. Three-dimensional covariance maps obtained in this way from experimental data (cryo-EM images of the eukaryotic pre-initiation complex) prove to be in excellent agreement with conclusions derived by using traditional approaches, revealing in addition the interdependencies of ligand bindings and structural changes.
Collapse
Affiliation(s)
- Hstau Y Liao
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168 Street, New York, NY 10032, USA
| | - Yaser Hashem
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168 Street, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, 600 Fairchild Center, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, 650 West 168 Street, New York, NY 10032, USA.
| |
Collapse
|
316
|
Single particle tomography in EMAN2. J Struct Biol 2015; 190:279-90. [PMID: 25956334 DOI: 10.1016/j.jsb.2015.04.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 11/22/2022]
Abstract
Single particle tomography (SPT or subtomogram averaging) offers a powerful alternative to traditional 2-D single particle reconstruction for studying conformationally or compositionally heterogeneous macromolecules. It can also provide direct observation (without labeling or staining) of complexes inside cells at nanometer resolution. The development of computational methods and tools for SPT remains an area of active research. Here we present the EMAN2.1 SPT toolbox, which offers a full SPT processing pipeline, from particle picking to post-alignment analysis of subtomogram averages, automating most steps. Different algorithm combinations can be applied at each step, providing versatility and allowing for procedural cross-testing and specimen-specific strategies. Alignment methods include all-vs-all, binary tree, iterative single-model refinement, multiple-model refinement, and self-symmetry alignment. An efficient angular search, Graphic Processing Unit (GPU) acceleration and both threaded and distributed parallelism are provided to speed up processing. Finally, automated simulations, per particle reconstruction of subtiltseries, and per-particle Contrast Transfer Function (CTF) correction have been implemented. Processing examples using both real and simulated data are shown for several structures.
Collapse
|
317
|
Benchmarking the stability of human detergent-solubilised voltage-gated sodium channels for structural studies using eel as a reference. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1545-51. [PMID: 25838126 PMCID: PMC4557063 DOI: 10.1016/j.bbamem.2015.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 12/19/2022]
Abstract
With the ultimate goal of detailed structural analysis of mammalian and particularly human voltage-gated sodium channels (VGSCs), we have investigated the relative stability of human and rat VGSCs and compared them with electric eel VGSC. We found that NaV1.3 from rat was the most stable after detergent solubilisation. The order of stability was rNaV1.3>hNaV1.2>hNaV1.1>hNaV1.6>hNaV1.3>hNaV1.4. However, a comparison with the VGSC from Electrophorus electricus, which is most similar to NaV1.4, shows that the eel VGSC is considerably more stable in detergent than the human VGSCs examined. We conclude that current methods of structural analysis, such as single particle electron cryomicroscopy (cryoEM), may be most usefully targeted to eel VGSC or rNaV1.3, but that structural analysis on the full spectrum of VGSCs, by methods that require greater stability such as crystallisation and X-ray crystallography, will require further stabilisation of the channel.
Collapse
|
318
|
Sorzano C, Vargas J, de la Rosa-Trevín J, Otón J, Álvarez-Cabrera A, Abrishami V, Sesmero E, Marabini R, Carazo J. A statistical approach to the initial volume problem in Single Particle Analysis by Electron Microscopy. J Struct Biol 2015; 189:213-9. [DOI: 10.1016/j.jsb.2015.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
|
319
|
Yi P, Wang Z, Feng Q, Pintilie GD, Foulds CE, Lanz RB, Ludtke SJ, Schmid MF, Chiu W, O'Malley BW. Structure of a biologically active estrogen receptor-coactivator complex on DNA. Mol Cell 2015; 57:1047-1058. [PMID: 25728767 DOI: 10.1016/j.molcel.2015.01.025] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/05/2015] [Accepted: 01/20/2015] [Indexed: 12/17/2022]
Abstract
Estrogen receptor (ER/ESR1) is a transcription factor critical for development, reproduction, metabolism, and cancer. ER function hinges on its ability to recruit primary and secondary coactivators, yet structural information on the full-length receptor-coactivator complex to complement preexisting and sometimes controversial biochemical information is lacking. Here, we use cryoelectron microscopy (cryo-EM) to determine the quaternary structure of an active complex of DNA-bound ERα, steroid receptor coactivator 3 (SRC-3/NCOA3), and a secondary coactivator (p300/EP300). Our structural model suggests the following assembly mechanism for the complex: each of the two ligand-bound ERα monomers independently recruits one SRC-3 protein via the transactivation domain of ERα; the two SRC-3s in turn bind to different regions of one p300 protein through multiple contacts. We also present structural evidence for the location of activation function 1 (AF-1) in a full-length nuclear receptor, which supports a role for AF-1 in SRC-3 recruitment.
Collapse
Affiliation(s)
- Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Clayton Foundation for Research, Houston, TX 77056, USA
| | - Zhao Wang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Grigore D Pintilie
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
320
|
DiMaio F, Song Y, Li X, Brunner MJ, Xu C, Conticello V, Egelman E, Marlovits T, Cheng Y, Baker D. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement. Nat Methods 2015; 12:361-365. [PMID: 25707030 PMCID: PMC4382417 DOI: 10.1038/nmeth.3286] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022]
Abstract
We describe a general approach for refining protein structure models on the basis of cryo-electron microscopy maps with near-atomic resolution. The method integrates Monte Carlo sampling with local density-guided optimization, Rosetta all-atom refinement and real-space B-factor fitting. In tests on experimental maps of three different systems with 4.5-Å resolution or better, the method consistently produced models with atomic-level accuracy largely independently of starting-model quality, and it outperformed the molecular dynamics-based MDFF method. Cross-validated model quality statistics correlated with model accuracy over the three test systems.
Collapse
Affiliation(s)
- Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Yifan Song
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Cyrus Biotechnology, Inc., Seattle, WA, USA
| | - Xueming Li
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Matthias J Brunner
- Center for Structural Systems Biology (CSSB) University Medical Center Eppendorf-Hamburg (UKE), Hamburg, Germany.,Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Chunfu Xu
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | | | - Edward Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Thomas Marlovits
- Center for Structural Systems Biology (CSSB) University Medical Center Eppendorf-Hamburg (UKE), Hamburg, Germany.,Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Yifan Cheng
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
321
|
Abstract
Validation is a necessity to trust the structures solved by electron microscopy by single particle techniques. The impressive achievements in single particle reconstruction fuel its expansion beyond a small community of image processing experts. This poses the risk of inappropriate data processing with dubious results. Nowhere is it more clearly illustrated than in the recovery of a reference density map from pure noise aligned to that map—a phantom in the noise. Appropriate use of existing validating methods such as resolution-limited alignment and the processing of independent data sets (“gold standard”) avoid this pitfall. However, these methods can be undermined by biases introduced in various subtle ways. How can we test that a map is a coherent structure present in the images selected from the micrographs? In stead of viewing the phantom emerging from noise as a cautionary tale, it should be used as a defining baseline. Any map is always recoverable from noise images, provided a sufficient number of images are aligned and used in reconstruction. However, with smaller numbers of images, the expected coherence in the real particle images should yield better reconstructions than equivalent numbers of noise or background images, even without masking or imposing resolution limits as potential biases. The validation test proposed is therefore a simple alignment of a limited number of micrograph and noise images against the final reconstruction as reference, demonstrating that the micrograph images yield a better reconstruction. I examine synthetic cases to relate the resolution of a reconstruction to the alignment error as a function of the signal-to-noise ratio. I also administered the test to real cases of publicly available data. Adopting such a test can aid the microscopist in assessing the usefulness of the micrographs taken before committing to lengthy processing with questionable outcomes.
Collapse
Affiliation(s)
- J Bernard Heymann
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892, USA
| |
Collapse
|
322
|
Wood C, Burnley T, Patwardhan A, Scheres S, Topf M, Roseman A, Winn M. Collaborative computational project for electron cryo-microscopy. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:123-6. [PMID: 25615866 PMCID: PMC4304692 DOI: 10.1107/s1399004714018070] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/06/2014] [Indexed: 11/23/2022]
Abstract
The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.
Collapse
Affiliation(s)
- Chris Wood
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, England
| | - Tom Burnley
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, England
| | - Ardan Patwardhan
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Sjors Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Maya Topf
- Biological Sciences at Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Alan Roseman
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, England
| | - Martyn Winn
- Scientific Computing Department, Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, England
| |
Collapse
|
323
|
Van Petegem F. Ryanodine Receptors: Allosteric Ion Channel Giants. J Mol Biol 2015; 427:31-53. [DOI: 10.1016/j.jmb.2014.08.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 01/27/2023]
|
324
|
Abstract
A key reason three-dimensional (3-D) protein structures are annotated with supporting or derived information is to understand the molecular basis of protein function. To this end, protein structure annotation databases curate key facts and observations, based on community-accepted standards, about the ~100,000 3-D experimental protein structures to date. This review will introduce the primary structure repositories, databases, and value-added structural annotation databases, as well as the range of information they provide. The different levels of annotation data (primary vs. derived vs. inferred) and how they should all be considered accordingly will also be described.
Collapse
Affiliation(s)
- Margaret J. Gabanyi
- Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Helen M. Berman
- Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
325
|
Baker MR, Fan G, Serysheva II. Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Eur J Transl Myol 2015; 25:4803. [PMID: 25844145 PMCID: PMC4748972 DOI: 10.4081/ejtm.2015.4803] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/22/2014] [Accepted: 12/31/2014] [Indexed: 12/31/2022] Open
Abstract
Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants.
Collapse
Affiliation(s)
| | | | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
326
|
Saibil HR, Grünewald K, Stuart DI. A national facility for biological cryo-electron microscopy. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:127-35. [PMID: 25615867 PMCID: PMC4304693 DOI: 10.1107/s1399004714025280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/18/2014] [Indexed: 11/16/2022]
Abstract
Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.
Collapse
Affiliation(s)
- Helen R. Saibil
- Crystallography, Institute for Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England
| | - David I. Stuart
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England
- Diamond Light Source, Didcot OX11 0DE, England
| |
Collapse
|
327
|
Al-Zahrani A, Cant N, Kargas V, Rimington T, Aleksandrov L, R. Riordan J, C. Ford R. Structure of the cystic fibrosis transmembrane conductance regulator in the inward-facing conformation revealed by single particle electron microscopy. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.2.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
328
|
Brown A, Long F, Nicholls RA, Toots J, Emsley P, Murshudov G. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:136-53. [PMID: 25615868 PMCID: PMC4304694 DOI: 10.1107/s1399004714021683] [Citation(s) in RCA: 470] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/01/2014] [Indexed: 11/24/2022]
Abstract
The recent rapid development of single-particle electron cryo-microscopy (cryo-EM) now allows structures to be solved by this method at resolutions close to 3 Å. Here, a number of tools to facilitate the interpretation of EM reconstructions with stereochemically reasonable all-atom models are described. The BALBES database has been repurposed as a tool for identifying protein folds from density maps. Modifications to Coot, including new Jiggle Fit and morphing tools and improved handling of nucleic acids, enhance its functionality for interpreting EM maps. REFMAC has been modified for optimal fitting of atomic models into EM maps. As external structural information can enhance the reliability of the derived atomic models, stabilize refinement and reduce overfitting, ProSMART has been extended to generate interatomic distance restraints from nucleic acid reference structures, and a new tool, LIBG, has been developed to generate nucleic acid base-pair and parallel-plane restraints. Furthermore, restraint generation has been integrated with visualization and editing in Coot, and these restraints have been applied to both real-space refinement in Coot and reciprocal-space refinement in REFMAC.
Collapse
Affiliation(s)
- Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Fei Long
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Robert A. Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Jaan Toots
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Garib Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| |
Collapse
|
329
|
Site-specific cation release drives actin filament severing by vertebrate cofilin. Proc Natl Acad Sci U S A 2014; 111:17821-6. [PMID: 25468977 DOI: 10.1073/pnas.1413397111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this "stiffness cation" unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S. cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics.
Collapse
|
330
|
Rose PW, Prlić A, Bi C, Bluhm WF, Christie CH, Dutta S, Green RK, Goodsell DS, Westbrook JD, Woo J, Young J, Zardecki C, Berman HM, Bourne PE, Burley SK. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 2014; 43:D345-56. [PMID: 25428375 PMCID: PMC4383988 DOI: 10.1093/nar/gku1214] [Citation(s) in RCA: 387] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine.
Collapse
Affiliation(s)
- Peter W Rose
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Andreas Prlić
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Chunxiao Bi
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Wolfgang F Bluhm
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Cole H Christie
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Shuchismita Dutta
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology and Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rachel Kramer Green
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology and Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David S Goodsell
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John D Westbrook
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology and Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jesse Woo
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jasmine Young
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology and Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christine Zardecki
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology and Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Helen M Berman
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology and Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Philip E Bourne
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA RCSB Protein Data Bank, Department of Chemistry and Chemical Biology and Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
331
|
Sen S, Young J, Berrisford JM, Chen M, Conroy MJ, Dutta S, Di Costanzo L, Gao G, Ghosh S, Hudson BP, Igarashi R, Kengaku Y, Liang Y, Peisach E, Persikova I, Mukhopadhyay A, Narayanan BC, Sahni G, Sato J, Sekharan M, Shao C, Tan L, Zhuravleva MA. Small molecule annotation for the Protein Data Bank. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau116. [PMID: 25425036 PMCID: PMC4243272 DOI: 10.1093/database/bau116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100 000 structures contain more than 20 000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors.
Collapse
Affiliation(s)
- Sanchayita Sen
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Jasmine Young
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - John M Berrisford
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Minyu Chen
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Matthew J Conroy
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Shuchismita Dutta
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Luigi Di Costanzo
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Guanghua Gao
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Sutapa Ghosh
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Brian P Hudson
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Reiko Igarashi
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Yumiko Kengaku
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Yuhe Liang
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Ezra Peisach
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Irina Persikova
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Abhik Mukhopadhyay
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Buvaneswari Coimbatore Narayanan
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Gaurav Sahni
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Junko Sato
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Monica Sekharan
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Chenghua Shao
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Lihua Tan
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| | - Marina A Zhuravleva
- Protein Data Bank in Europe (PDBe), EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK, RCSB Protein Data Bank (RCSB PDB), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA and Protein Data Bank Japan (PDBj), Osaka University, Osaka, Japan
| |
Collapse
|
332
|
Zhang X, Yan K, Zhang Y, Li N, Ma C, Li Z, Zhang Y, Feng B, Liu J, Sun Y, Xu Y, Lei J, Gao N. Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly. Nucleic Acids Res 2014; 42:13430-9. [PMID: 25389271 PMCID: PMC4245960 DOI: 10.1093/nar/gku1135] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many ribosome-interacting GTPases, with proposed functions in ribosome biogenesis, are also implicated in the cellular regulatory coupling between ribosome assembly process and various growth control pathways. EngA is an essential GTPase in bacteria, and intriguingly, it contains two consecutive GTPase domains (GD), being one-of-a-kind among all known GTPases. EngA is required for the 50S subunit maturation. However, its molecular role remains elusive. Here, we present the structure of EngA bound to the 50S subunit. Our data show that EngA binds to the peptidyl transferase center (PTC) and induces dramatic conformational changes on the 50S subunit, which virtually returns the 50S subunit to a state similar to that of the late-stage 50S assembly intermediates. Very interestingly, our data show that the two GDs exhibit a pseudo-two-fold symmetry in the 50S-bound conformation. Our results indicate that EngA recognizes certain forms of the 50S assembly intermediates, and likely facilitates the conformational maturation of the PTC of the 23S rRNA in a direct manner. Furthermore, in a broad context, our data also suggest that EngA might be a sensor of the cellular GTP/GDP ratio, endowed with multiple conformational states, in response to fluctuations in cellular nucleotide pool, to facilitate and regulate ribosome assembly.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaige Yan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yixiao Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ningning Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chengying Ma
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhifei Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Boya Feng
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Liu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yadong Sun
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanji Xu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
333
|
Si D, He J. Tracing Beta Strands Using StrandTwister from Cryo-EM Density Maps at Medium Resolutions. Structure 2014; 22:1665-76. [DOI: 10.1016/j.str.2014.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
|
334
|
A newly isolated reovirus has the simplest genomic and structural organization of any reovirus. J Virol 2014; 89:676-87. [PMID: 25355879 DOI: 10.1128/jvi.02264-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A total of 2,691 mosquitoes representing 17 species was collected from eight locations in southwest Cameroon and screened for pathogenic viruses. Ten isolates of a novel reovirus (genus Dinovernavirus) were detected by culturing mosquito pools on Aedes albopictus (C6/36) cell cultures. A virus that caused overt cytopathic effects was isolated, but it did not infect vertebrate cells or produce detectable disease in infant mice after intracerebral inoculation. The virus, tentatively designated Fako virus (FAKV), represents the first 9-segment, double-stranded RNA (dsRNA) virus to be isolated in nature. FAKV appears to have a broad mosquito host range, and its detection in male specimens suggests mosquito-to-mosquito transmission in nature. The structure of the T=1 FAKV virion, determined to subnanometer resolution by cryoelectron microscopy (cryo-EM), showed only four proteins per icosahedral asymmetric unit: a dimer of the major capsid protein, one turret protein, and one clamp protein. While all other turreted reoviruses of known structures have at least two copies of the clamp protein per asymmetric unit, FAKV's clamp protein bound at only one conformer of the major capsid protein. The FAKV capsid architecture and genome organization represent the most simplified reovirus described to date, and phylogenetic analysis suggests that it arose from a more complex ancestor by serial loss-of-function events. IMPORTANCE We describe the detection, genetic, phenotypic, and structural characteristics of a novel Dinovernavirus species isolated from mosquitoes collected in Cameroon. The virus, tentatively designated Fako virus (FAKV), is related to both single-shelled and partially double-shelled viruses. The only other described virus in this genus was isolated from cultured mosquito cells. It was previously unclear whether the phenotypic characteristics of that virus were reflective of this genus in nature or were altered during serial passaging in the chronically infected cell line. FAKV is a naturally occurring single-shelled reovirus with a unique virion architecture that lacks several key structural elements thought to stabilize a single-shelled reovirus virion, suggesting what may be the minimal number of proteins needed to form a viable reovirus particle. FAKV evolved from more complex ancestors by losing a genome segment and several virion proteins.
Collapse
|
335
|
Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions. Proc Natl Acad Sci U S A 2014; 111:E4606-14. [PMID: 25313071 DOI: 10.1073/pnas.1407020111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many dsDNA viruses first assemble a DNA-free procapsid, using a scaffolding protein-dependent process. The procapsid, then, undergoes dramatic conformational maturation while packaging DNA. For bacteriophage T7 we report the following four single-particle cryo-EM 3D reconstructions and the derived atomic models: procapsid (4.6-Å resolution), an early-stage DNA packaging intermediate (3.5 Å), a later-stage packaging intermediate (6.6 Å), and the final infectious phage (3.6 Å). In the procapsid, the N terminus of the major capsid protein, gp10, has a six-turn helix at the inner surface of the shell, where each skewed hexamer of gp10 interacts with two scaffolding proteins. With the exit of scaffolding proteins during maturation the gp10 N-terminal helix unfolds and swings through the capsid shell to the outer surface. The refolded N-terminal region has a hairpin that forms a novel noncovalent, joint-like, intercapsomeric interaction with a pocket formed during shell expansion. These large conformational changes also result in a new noncovalent, intracapsomeric topological linking. Both interactions further stabilize the capsids by interlocking all pentameric and hexameric capsomeres in both DNA packaging intermediate and phage. Although the final phage shell has nearly identical structure to the shell of the DNA-free intermediate, surprisingly we found that the icosahedral faces of the phage are slightly (∼4 Å) contracted relative to the faces of the intermediate, despite the internal pressure from the densely packaged DNA genome. These structures provide a basis for understanding the capsid maturation process during DNA packaging that is essential for large numbers of dsDNA viruses.
Collapse
|
336
|
Guss JM, McMahon B. How to make deposition of images a reality. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2520-32. [PMID: 25286838 PMCID: PMC4188000 DOI: 10.1107/s1399004714005185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/06/2014] [Indexed: 11/24/2022]
Abstract
The IUCr Diffraction Data Deposition Working Group is investigating the rationale and policies for routine deposition of diffraction images (and other primary experimental data sets). An information-management framework is described that should inform policy directions, and some of the technical and other issues that need to be addressed in an effort to achieve such a goal are analysed. In the near future, routine data deposition could be encouraged at one of the growing number of institutional repositories that accept data sets or at a generic data-publishing web repository service. To realise all of the potential benefits of depositing diffraction data, specialized archives would be preferable. Funding such an initiative will be challenging.
Collapse
Affiliation(s)
- J. Mitchell Guss
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Brian McMahon
- International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England
| |
Collapse
|
337
|
Schneidman-Duhovny D, Pellarin R, Sali A. Uncertainty in integrative structural modeling. Curr Opin Struct Biol 2014; 28:96-104. [PMID: 25173450 PMCID: PMC4252396 DOI: 10.1016/j.sbi.2014.08.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/24/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023]
Abstract
Integrative structural modeling uses multiple types of input information and proceeds in four stages: (i) gathering information, (ii) designing model representation and converting information into a scoring function, (iii) sampling good-scoring models, and (iv) analyzing models and information. In the first stage, uncertainty originates from data that are sparse, noisy, ambiguous, or derived from heterogeneous samples. In the second stage, uncertainty can originate from a representation that is too coarse for the available information or a scoring function that does not accurately capture the information. In the third stage, the major source of uncertainty is insufficient sampling. In the fourth stage, clustering, cross-validation, and other methods are used to estimate the precision and accuracy of the models and information.
Collapse
Affiliation(s)
- Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA.
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
338
|
Berman HM, Kleywegt GJ, Nakamura H, Markley JL. The Protein Data Bank archive as an open data resource. J Comput Aided Mol Des 2014; 28:1009-14. [PMID: 25062767 PMCID: PMC4196035 DOI: 10.1007/s10822-014-9770-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/23/2014] [Indexed: 02/08/2023]
Abstract
The Protein Data Bank archive was established in 1971, and recently celebrated its 40th anniversary (Berman et al. in Structure 20:391, 2012). An analysis of interrelationships of the science, technology and community leads to further insights into how this resource evolved into one of the oldest and most widely used open-access data resources in biology.
Collapse
Affiliation(s)
- Helen M Berman
- RCSB PDB, Department of Chemistry and Chemical Biology and Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA,
| | | | | | | |
Collapse
|
339
|
López-Blanco JR, Chacón P. Structural modeling from electron microscopy data. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- José Ramón López-Blanco
- Department of Biological Physical Chemistry; Rocasolano Physical Chemistry Institute, CSIC; Madrid Spain
| | - Pablo Chacón
- Department of Biological Physical Chemistry; Rocasolano Physical Chemistry Institute, CSIC; Madrid Spain
| |
Collapse
|
340
|
An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nat Commun 2014; 5:4808. [PMID: 25185801 PMCID: PMC4155512 DOI: 10.1038/ncomms5808] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/24/2014] [Indexed: 12/11/2022] Open
Abstract
Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure. Recent developments in cryo-electron microscopy have enabled structure determination of large protein complexes at almost atomic resolution. Wang et al. combine some of these technologies into an effective workflow, and demonstrate the protocol by solving the atomic structure of an icosahedral RNA virus.
Collapse
|
341
|
Miyaguchi K. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules. Biol Cell 2014; 106:323-45. [PMID: 25040059 DOI: 10.1111/boc.201300081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/01/2014] [Indexed: 11/28/2022]
Abstract
Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X-ray crystallography and single-particle cryo-electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative-staining, rotary-shadowing and freeze-etching EM, which are categorised here as 'direct imaging EM methods'. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome-translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three-dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo.
Collapse
Affiliation(s)
- Katsuyuki Miyaguchi
- Shinsapporokeiaikai Hospital, 5-5-35 Ooyachihigashi, Atsubetsuku, Sapporo, 004-0041, Japan
| |
Collapse
|
342
|
Durrant JD, Amaro RE. LipidWrapper: an algorithm for generating large-scale membrane models of arbitrary geometry. PLoS Comput Biol 2014; 10:e1003720. [PMID: 25032790 PMCID: PMC4102414 DOI: 10.1371/journal.pcbi.1003720] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/21/2014] [Indexed: 11/19/2022] Open
Abstract
As ever larger and more complex biological systems are modeled in silico, approximating physiological lipid bilayers with simple planar models becomes increasingly unrealistic. In order to build accurate large-scale models of subcellular environments, models of lipid membranes with carefully considered, biologically relevant curvature will be essential. In the current work, we present a multi-scale utility called LipidWrapper capable of creating curved membrane models with geometries derived from various sources, both experimental and theoretical. To demonstrate its utility, we use LipidWrapper to examine an important mechanism of influenza virulence. A copy of the program can be downloaded free of charge under the terms of the open-source FreeBSD License from http://nbcr.ucsd.edu/lipidwrapper. LipidWrapper has been tested on all major computer operating systems.
Collapse
Affiliation(s)
- Jacob D. Durrant
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Rommie E. Amaro
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
343
|
Arora K, Talje L, Asenjo AB, Andersen P, Atchia K, Joshi M, Sosa H, Allingham JS, Kwok BH. KIF14 binds tightly to microtubules and adopts a rigor-like conformation. J Mol Biol 2014; 426:2997-3015. [PMID: 24949858 DOI: 10.1016/j.jmb.2014.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/30/2022]
Abstract
The mitotic kinesin motor protein KIF14 is essential for cytokinesis during cell division and has been implicated in cerebral development and a variety of human cancers. Here we show that the mouse KIF14 motor domain binds tightly to microtubules and does not display typical nucleotide-dependent changes in this affinity. It also has robust ATPase activity but very slow motility. A crystal structure of the ADP-bound form of the KIF14 motor domain reveals a dramatically opened ATP-binding pocket, as if ready to exchange its bound ADP for Mg·ATP. In this state, the central β-sheet is twisted ~10° beyond the maximal amount observed in other kinesins. This configuration has only been seen in the nucleotide-free states of myosins-known as the "rigor-like" state. Fitting of this atomic model to electron density maps from cryo-electron microscopy indicates a distinct binding configuration of the motor domain to microtubules. We postulate that these properties of KIF14 are well suited for stabilizing midbody microtubules during cytokinesis.
Collapse
Affiliation(s)
- Kritica Arora
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Rm. 652, Kingston, ON K7L 3 N6, Canada
| | - Lama Talje
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada
| | - Ana B Asenjo
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Parker Andersen
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada
| | - Kaleem Atchia
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada
| | - Monika Joshi
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Rm. 652, Kingston, ON K7L 3 N6, Canada
| | - Hernando Sosa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Rm. 652, Kingston, ON K7L 3 N6, Canada.
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada.
| |
Collapse
|
344
|
Zeev-Ben-Mordehai T, Vasishtan D, Siebert CA, Grünewald K. The full-length cell-cell fusogen EFF-1 is monomeric and upright on the membrane. Nat Commun 2014; 5:3912. [PMID: 24867324 PMCID: PMC4050280 DOI: 10.1038/ncomms4912] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/17/2014] [Indexed: 01/04/2023] Open
Abstract
Fusogens are membrane proteins that remodel lipid bilayers to facilitate membrane merging. Although several fusogen ectodomain structures have been solved, structural information on full-length, natively membrane-anchored fusogens is scarce. Here we present the electron cryo microscopy three-dimensional reconstruction of the Caenorhabditis elegans epithelial fusion failure 1 (EFF-1) protein natively anchored in cell-derived membrane vesicles. This reveals a membrane protruding, asymmetric, elongated monomer. Flexible fitting of a protomer of the EFF-1 crystal structure, which is homologous to viral class-II fusion proteins, shows that EFF-1 has a hairpin monomeric conformation before fusion. These structural insights, when combined with our observations of membrane-merging intermediates between vesicles, enable us to propose a model for EFF-1 mediated fusion. This process, involving identical proteins on both membranes to be fused, follows a mechanism that shares features of SNARE-mediated fusion while using the structural building blocks of the unilaterally acting class-II viral fusion proteins. Cell–cell fusion in Caenorhabditis elegans is mediated by EFF-1 and AFF-1 proteins. Here, the authors present an electron cryomicroscopy 3D reconstruction of EFF-1 in the membrane, and combine snapshots of membrane fusion in vitro with a recently reported crystal structure to propose a mechanism for the fusion process.
Collapse
Affiliation(s)
- Tzviya Zeev-Ben-Mordehai
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daven Vasishtan
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - C Alistair Siebert
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kay Grünewald
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
345
|
Villa E, Lasker K. Finding the right fit: chiseling structures out of cryo-electron microscopy maps. Curr Opin Struct Biol 2014; 25:118-25. [PMID: 24814094 DOI: 10.1016/j.sbi.2014.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022]
Abstract
Cryo-electron microscopy is a central tool for studying the architecture of macromolecular complexes at subnanometer resolution. Interpretation of an electron microscopy map requires its computational integration with data about the structure's components from all available sources, notably atomic models. Selecting a protocol for EM density-guided integrative structural modeling depends on the resolution and quality of the EM map as well as the available complimentary datasets. Here, we review rigid, flexible, and de novo integrative fitting into EM maps and provide guidelines and considerations for the design of modeling experiments. Finally, we discuss efforts towards establishing unified criteria for map and model assessment and validation.
Collapse
Affiliation(s)
- Elizabeth Villa
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States.
| | - Keren Lasker
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
346
|
Dauter Z, Wlodawer A, Minor W, Jaskolski M, Rupp B. Avoidable errors in deposited macromolecular structures: an impediment to efficient data mining. IUCRJ 2014; 1:179-93. [PMID: 25075337 PMCID: PMC4086436 DOI: 10.1107/s2052252514005442] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/10/2014] [Indexed: 05/20/2023]
Abstract
Whereas the vast majority of the more than 85 000 crystal structures of macromolecules currently deposited in the Protein Data Bank are of high quality, some suffer from a variety of imperfections. Although this fact has been pointed out in the past, it is still worth periodic updates so that the metadata obtained by global analysis of the available crystal structures, as well as the utilization of the individual structures for tasks such as drug design, should be based on only the most reliable data. Here, selected abnormal deposited structures have been analysed based on the Bayesian reasoning that the correctness of a model must be judged against both the primary evidence as well as prior knowledge. These structures, as well as information gained from the corresponding publications (if available), have emphasized some of the most prevalent types of common problems. The errors are often perfect illustrations of the nature of human cognition, which is frequently influenced by preconceptions that may lead to fanciful results in the absence of proper validation. Common errors can be traced to negligence and a lack of rigorous verification of the models against electron density, creation of non-parsimonious models, generation of improbable numbers, application of incorrect symmetry, illogical presentation of the results, or violation of the rules of chemistry and physics. Paying more attention to such problems, not only in the final validation stages but during the structure-determination process as well, is necessary not only in order to maintain the highest possible quality of the structural repositories and databases but most of all to provide a solid basis for subsequent studies, including large-scale data-mining projects. For many scientists PDB deposition is a rather infrequent event, so the need for proper training and supervision is emphasized, as well as the need for constant alertness of reason and critical judgment as absolutely necessary safeguarding measures against such problems. Ways of identifying more problematic structures are suggested so that their users may be properly alerted to their possible shortcomings.
Collapse
Affiliation(s)
- Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, NCI, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI at Frederick, Frederick, MD 21702, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics, USA
- New York Structural Genomics Consortium, USA
- Center for Structural Genomics of Infectious Diseases, USA
- Enzyme Function Initiative, USA
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Bernhard Rupp
- k.-k. Hofkristallamt, 991 Audrey Place, Vista, CA 92084, USA
- Department of Genetic Epidemiology, Innsbruck Medical University, Schöpfstrasse 41, A-6020 Innsbruck, Austria
| |
Collapse
|
347
|
Han R, Zhang F, Wan X, Fernández JJ, Sun F, Liu Z. A marker-free automatic alignment method based on scale-invariant features. J Struct Biol 2014; 186:167-80. [DOI: 10.1016/j.jsb.2014.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 11/30/2022]
|
348
|
Vuister GW, Fogh RH, Hendrickx PMS, Doreleijers JF, Gutmanas A. An overview of tools for the validation of protein NMR structures. JOURNAL OF BIOMOLECULAR NMR 2014; 58:259-285. [PMID: 23877928 DOI: 10.1007/s10858-013-9750-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Biomolecular structures at atomic resolution present a valuable resource for the understanding of biology. NMR spectroscopy accounts for 11% of all structures in the PDB repository. In response to serious problems with the accuracy of some of the NMR-derived structures and in order to facilitate proper analysis of the experimental models, a number of program suites are available. We discuss nine of these tools in this review: PROCHECK-NMR, PSVS, GLM-RMSD, CING, Molprobity, Vivaldi, ResProx, NMR constraints analyzer and QMEAN. We evaluate these programs for their ability to assess the structural quality, restraints and their violations, chemical shifts, peaks and the handling of multi-model NMR ensembles. We document both the input required by the programs and output they generate. To discuss their relative merits we have applied the tools to two representative examples from the PDB: a small, globular monomeric protein (Staphylococcal nuclease from S. aureus, PDB entry 2kq3) and a small, symmetric homodimeric protein (a region of human myosin-X, PDB entry 2lw9).
Collapse
Affiliation(s)
- Geerten W Vuister
- Department of Biochemistry, School of Biological Sciences, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK,
| | | | | | | | | |
Collapse
|
349
|
Thalassinos K, Pandurangan AP, Xu M, Alber F, Topf M. Conformational States of macromolecular assemblies explored by integrative structure calculation. Structure 2014; 21:1500-8. [PMID: 24010709 PMCID: PMC3988990 DOI: 10.1016/j.str.2013.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022]
Abstract
A detailed description of macromolecular assemblies in multiple conformational states can be very valuable for understanding cellular processes. At present, structural determination of most assemblies in different biologically relevant conformations cannot be achieved by a single technique and thus requires an integrative approach that combines information from multiple sources. Different techniques require different computational methods to allow efficient and accurate data processing and analysis. Here, we summarize the latest advances and future challenges in computational methods that help the interpretation of data from two techniques—mass spectrometry and three-dimensional cryo-electron microscopy (with focus on alignment and classification of heterogeneous subtomograms from cryo-electron tomography). We evaluate how new developments in these two broad fields will lead to further integration with atomic structures to broaden our picture of the dynamic behavior of assemblies in their native environment.
Collapse
Affiliation(s)
- Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
350
|
Berman HM, Kleywegt GJ, Nakamura H, Markley JL. How community has shaped the Protein Data Bank. Structure 2014; 21:1485-91. [PMID: 24010707 DOI: 10.1016/j.str.2013.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 11/19/2022]
Abstract
Following several years of community discussion, the Protein Data Bank (PDB) was established in 1971 as a public repository for the coordinates of three-dimensional models of biological macromolecules. Since then, the number, size, and complexity of structural models have continued to grow, reflecting the productivity of structural biology. Managed by the Worldwide PDB organization, the PDB has been able to meet increasing demands for the quantity of structural information and of quality. In addition to providing unrestricted access to structural information, the PDB also works to promote data standards and to raise the profile of structural biology with broader audiences. In this perspective, we describe the history of PDB and the many ways in which the community continues to shape the archive.
Collapse
Affiliation(s)
- Helen M Berman
- RCSB PDB, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ USA 08854.
| | | | | | | |
Collapse
|