301
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
302
|
Synaptic plasticity by antidromic firing during hippocampal network oscillations. Proc Natl Acad Sci U S A 2013; 110:5175-80. [PMID: 23479613 DOI: 10.1073/pnas.1210735110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Learning and other cognitive tasks require integrating new experiences into context. In contrast to sensory-evoked synaptic plasticity, comparatively little is known of how synaptic plasticity may be regulated by intrinsic activity in the brain, much of which can involve nonclassical modes of neuronal firing and integration. Coherent high-frequency oscillations of electrical activity in CA1 hippocampal neurons [sharp-wave ripple complexes (SPW-Rs)] functionally couple neurons into transient ensembles. These oscillations occur during slow-wave sleep or at rest. Neurons that participate in SPW-Rs are distinguished from adjacent nonparticipating neurons by firing action potentials that are initiated ectopically in the distal region of axons and propagate antidromically to the cell body. This activity is facilitated by GABA(A)-mediated depolarization of axons and electrotonic coupling. The possible effects of antidromic firing on synaptic strength are unknown. We find that facilitation of spontaneous SPW-Rs in hippocampal slices by increasing gap-junction coupling or by GABA(A)-mediated axon depolarization resulted in a reduction of synaptic strength, and electrical stimulation of axons evoked a widespread, long-lasting synaptic depression. Unlike other forms of synaptic plasticity, this synaptic depression is not dependent upon synaptic input or glutamate receptor activation, but rather requires L-type calcium channel activation and functional gap junctions. Synaptic stimulation delivered after antidromic firing, which was otherwise too weak to induce synaptic potentiation, triggered a long-lasting increase in synaptic strength. Rescaling synaptic weights in subsets of neurons firing antidromically during SPW-Rs might contribute to memory consolidation by sharpening specificity of subsequent synaptic input and promoting incorporation of novel information.
Collapse
|
303
|
|
304
|
The sleeping child outplays the adult's capacity to convert implicit into explicit knowledge. Nat Neurosci 2013; 16:391-3. [PMID: 23434910 DOI: 10.1038/nn.3343] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/24/2013] [Indexed: 02/05/2023]
Abstract
When sleep followed implicit training on a motor sequence, children showed greater gains in explicit sequence knowledge after sleep than adults. This greater explicit knowledge in children was linked to their higher sleep slow-wave activity and to stronger hippocampal activation at explicit knowledge retrieval. Our data indicate the superiority of children in extracting invariant features from complex environments, possibly as a result of enhanced reprocessing of hippocampal memory representations during slow-wave sleep.
Collapse
|
305
|
Consolidation differentially modulates schema effects on memory for items and associations. PLoS One 2013; 8:e56155. [PMID: 23409144 PMCID: PMC3567062 DOI: 10.1371/journal.pone.0056155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/07/2013] [Indexed: 12/22/2022] Open
Abstract
Newly learned information that is congruent with a preexisting schema is often better remembered than information that is incongruent. This schema effect on memory has previously been associated to more efficient encoding and consolidation mechanisms. However, this effect is not always consistently supported in the literature, with differential schema effects reported for different types of memory, different retrieval cues, and the possibility of time-dependent effects related to consolidation processes. To examine these effects more directly, we tested participants on two different types of memory (item recognition and associative memory) for newly encoded visuo-tactile associations at different study-test intervals, thus probing memory retrieval accuracy for schema-congruent and schema-incongruent items and associations at different time points (t = 0, t = 20, and t = 48 hours) after encoding. Results show that the schema effect on visual item recognition only arises after consolidation, while the schema effect on associative memory is already apparent immediately after encoding, persisting, but getting smaller over time. These findings give further insight into different factors influencing the schema effect on memory, and can inform future schema experiments by illustrating the value of considering effects of memory type and consolidation on schema-modulated retrieval.
Collapse
|
306
|
Spencer RMC. Neurophysiological Basis of Sleep's Function on Memory and Cognition. ISRN PHYSIOLOGY 2013; 2013:619319. [PMID: 24600607 PMCID: PMC3940073 DOI: 10.1155/2013/619319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A wealth of recent studies support a function of sleep on memory and cognitive processing. At a physiological level, sleep supports memory in a number of ways including neural replay and enhanced plasticity in the context of reduced ongoing input. This paper presents behavioral evidence for sleep's role in selective remembering and forgetting of declarative memories, in generalization of these memories, and in motor skill consolidation. Recent physiological data reviewed suggests how these behavioral changes might be supported by sleep. Importantly, in reviewing these findings, an integrated view of how distinct sleep stages uniquely contribute to memory processing emerges. This model will be useful in developing future behavioral and physiological studies to test predictions that emerge.
Collapse
Affiliation(s)
- Rebecca M C Spencer
- Department of Psychology and Neuroscience and Behavior Program, University of Massachusetts, Amherst 419 Tobin Hall, 135 Hicks Way, Amherst, MA 01003, USA
| |
Collapse
|
307
|
Inostroza M, Binder S, Born J. Sleep-dependency of episodic-like memory consolidation in rats. Behav Brain Res 2013; 237:15-22. [DOI: 10.1016/j.bbr.2012.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
|
308
|
Generalizing memories over time: sleep and reinforcement facilitate transitive inference. Neurobiol Learn Mem 2012; 100:70-6. [PMID: 23257278 DOI: 10.1016/j.nlm.2012.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/03/2012] [Accepted: 12/09/2012] [Indexed: 10/27/2022]
Abstract
The use of reinforcement and rewards is known to enhance memory retention. However, the impact of reinforcement on higher-order forms of memory processing, such as integration and generalization, has not been directly manipulated in previous studies. Furthermore, there is evidence that sleep enhances the integration and generalization of memory, but these studies have only used reinforcement learning paradigms and have not examined whether reinforcement impacts or is critical for memory integration and generalization during sleep. Thus, the aims of the current study were to examine: (1) whether reinforcement during learning impacts the integration and generalization of memory; and (2) whether sleep and reinforcement interact to enhance memory integration and generalization. We investigated these questions using a transitive inference (TI) task, which is thought to require the integration and generalization of disparate relational memories in order to make novel inferences. To examine whether reinforcement influences or is required for the formation of inferences, we compared performance using a reinforcement or an observation based TI task. We examined the impact of sleep by comparing performance after a 12-h delay containing either wake or sleep. Our results showed that: (1) explicit reinforcement during learning is required to make transitive inferences and that sleep further enhances this effect; (2) sleep does not make up for the inability to make inferences when reinforcement does not occur during learning. These data expand upon previous findings and suggest intriguing possibilities for the mechanisms involved in sleep-dependent memory transformation.
Collapse
|
309
|
Durrant SJ, Cairney SA, Lewis PA. Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum. ACTA ACUST UNITED AC 2012; 23:2467-78. [PMID: 22879350 DOI: 10.1093/cercor/bhs244] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sleep is important for abstraction of the underlying principles (or gist) which bind together conceptually related stimuli, but little is known about the neural correlates of this process. Here, we investigate this issue using overnight sleep monitoring and functional magnetic resonance imaging (fMRI). Participants were exposed to a statistically structured sequence of auditory tones then tested immediately for recognition of short sequences which conformed to the learned statistical pattern. Subsequently, after consolidation over either 30 min or 24h, they performed a delayed test session in which brain activity was monitored with fMRI. Behaviorally, there was greater improvement across 24h than across 30 min, and this was predicted by the amount of slow wave sleep (SWS) obtained. Functionally, we observed weaker parahippocampal responses and stronger striatal responses after sleep. Like the behavioral result, these differences in functional response were predicted by the amount of SWS obtained. Furthermore, connectivity between striatum and parahippocampus was weaker after sleep, whereas connectivity between putamen and planum temporale was stronger. Taken together, these findings suggest that abstraction is associated with a gradual shift from the hippocampal to the striatal memory system and that this may be mediated by SWS.
Collapse
Affiliation(s)
- Simon J Durrant
- School of Psychology, Bridge House, University of Lincoln, Lincoln LN6 7TS, UK and
| | | | | |
Collapse
|
310
|
Kroes MC, Fernández G. Dynamic neural systems enable adaptive, flexible memories. Neurosci Biobehav Rev 2012; 36:1646-66. [DOI: 10.1016/j.neubiorev.2012.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/07/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
311
|
Wikenheiser AM, Redish AD. The balance of forward and backward hippocampal sequences shifts across behavioral states. Hippocampus 2012; 23:22-9. [PMID: 22736562 DOI: 10.1002/hipo.22049] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2012] [Indexed: 11/08/2022]
Abstract
Place cell firing patterns in the rat hippocampus are often organized as sequences. Sequences falling within cycles of the theta (6-10 Hz) local field potential (LFP) oscillation represent segments of ongoing behavioral trajectories. Sequences expressed during sharp wave ripple (SWR) complexes represent spatial trajectories through the environment, in both the same direction as actual trajectories (forward sequences) and in an ordering opposite that of behavior (backward sequences). Although hippocampal sequences could fulfill unique functional roles depending on the direction of the sequence and the animal's state when the sequence occurs, quantitative comparisons of sequence direction across behavioral and physiological states within the same experiment, employing consistent methodology, are lacking. Here, we used cross-correlation and Bayesian decoding to measure the direction of hippocampal sequences in rats during active behavior, awake rest and slow-wave sleep. During pretask sleep, few sequences were detected in either direction. Sequences within theta cycles during active behavior were overwhelmingly forward. Sequences during quiescent moments of behavior were both forward and backward, in equal proportion. During postbehavior sleep, sequences were again expressed in both directions, but significantly more forward than backward sequences were detected. The shift in the balance of sequence direction could reflect changing functional demands on the hippocampal network across behavioral and physiological states.
Collapse
Affiliation(s)
- Andrew M Wikenheiser
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
312
|
Saletin JM, Walker MP. Nocturnal mnemonics: sleep and hippocampal memory processing. Front Neurol 2012; 3:59. [PMID: 22557988 PMCID: PMC3340569 DOI: 10.3389/fneur.2012.00059] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/28/2012] [Indexed: 11/20/2022] Open
Abstract
As critical as waking brain function is to learning and memory, an established literature now describes an equally important yet complementary role for sleep in information processing. This overview examines the specific contribution of sleep to human hippocampal memory processing; both the detriments caused by a lack of sleep, and conversely, the proactive benefits that develop following the presence of sleep. First, a role for sleep before learning is discussed, preparing the hippocampus for initial memory encoding. Second, a role for sleep after learning is considered, modulating the post-encoding consolidation of hippocampal-dependent memory. Third, a model is outlined in which these encoding and consolidation operations are symbiotically accomplished, associated with specific NREM sleep physiological oscillations. As a result, the optimal network outcome is achieved: increasing hippocampal independence and hence overnight consolidation, while restoring next-day sparse hippocampal encoding capacity for renewed learning ability upon awakening. Finally, emerging evidence is considered suggesting that, unlike previous conceptions, sleep does not universally consolidate all information. Instead, and based on explicit as well as saliency cues during initial encoding, sleep executes the discriminatory offline consolidation only of select information. Consequently, sleep promotes the targeted strengthening of some memories while actively forgetting others; a proposal with significant theoretical and clinical ramifications.
Collapse
Affiliation(s)
- Jared M Saletin
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California Berkeley, CA, USA
| | | |
Collapse
|
313
|
Ferrara M, Moroni F, De Gennaro L, Nobili L. Hippocampal sleep features: relations to human memory function. Front Neurol 2012; 3:57. [PMID: 22529835 PMCID: PMC3327976 DOI: 10.3389/fneur.2012.00057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/28/2012] [Indexed: 02/05/2023] Open
Abstract
The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate sleep function.
Collapse
Affiliation(s)
- Michele Ferrara
- Department of Health Sciences, University of L’AquilaL’Aquila, Italy
| | - Fabio Moroni
- Department of Psychology, “Sapienza” University of RomeRoma, Italy
- Department of Psychology, University of BolognaBologna, Italy
| | - Luigi De Gennaro
- Department of Psychology, “Sapienza” University of RomeRoma, Italy
| | - Lino Nobili
- Centre of Epilepsy Surgery “C. Munari,” Niguarda HospitalMilano, Italy
- Center of Sleep Medicine, Niguarda HospitalMilano, Italy
| |
Collapse
|
314
|
How schema and novelty augment memory formation. Trends Neurosci 2012; 35:211-9. [DOI: 10.1016/j.tins.2012.02.001] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/02/2011] [Accepted: 02/01/2012] [Indexed: 11/22/2022]
|
315
|
Zeithamova D, Schlichting ML, Preston AR. The hippocampus and inferential reasoning: building memories to navigate future decisions. Front Hum Neurosci 2012; 6:70. [PMID: 22470333 PMCID: PMC3312239 DOI: 10.3389/fnhum.2012.00070] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/13/2012] [Indexed: 11/13/2022] Open
Abstract
A critical aspect of inferential reasoning is the ability to form relationships between items or events that were not experienced together. This review considers different perspectives on the role of the hippocampus in successful inferential reasoning during both memory encoding and retrieval. Intuitively, inference can be thought of as a logical process by which elements of individual existing memories are retrieved and recombined to answer novel questions. Such flexible retrieval is sub-served by the hippocampus and is thought to require specialized hippocampal encoding mechanisms that discretely code events such that event elements are individually accessible from memory. In addition to retrieval-based inference, recent research has also focused on hippocampal processes that support the combination of information acquired across multiple experiences during encoding. This mechanism suggests that by recalling past events during new experiences, connections can be created between newly formed and existing memories. Such hippocampally mediated memory integration would thus underlie the formation of networks of related memories that extend beyond direct experience to anticipate future judgments about the relationships between items and events. We also discuss integrative encoding in the context of emerging evidence linking the hippocampus to the formation of schemas as well as prospective theories of hippocampal function that suggest memories are actively constructed to anticipate future decisions and actions.
Collapse
Affiliation(s)
- Dagmar Zeithamova
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA
- Department of Psychology, The University of Texas at Austin, AustinTX, USA
- Institute for Neuroscience, The University of Texas at Austin, AustinTX, USA
| | - Margaret L. Schlichting
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA
- Department of Psychology, The University of Texas at Austin, AustinTX, USA
| | - Alison R. Preston
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA
- Department of Psychology, The University of Texas at Austin, AustinTX, USA
- Institute for Neuroscience, The University of Texas at Austin, AustinTX, USA
| |
Collapse
|
316
|
Schacter DL, Guerin SA, St Jacques PL. Memory distortion: an adaptive perspective. Trends Cogn Sci 2011; 15:467-74. [PMID: 21908231 DOI: 10.1016/j.tics.2011.08.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022]
Abstract
Memory is prone to distortions that can have serious consequences in everyday life. Here we integrate emerging evidence that several types of memory distortions - imagination inflation, gist-based and associative memory errors, and post-event misinformation - reflect adaptive cognitive processes that contribute to the efficient functioning of memory, but produce distortions as a consequence of doing so. We consider recent cognitive and neuroimaging studies that link these distortions with adaptive processes, including simulation of future events, semantic and contextual encoding, creativity, and memory updating. We also discuss new evidence concerning factors that can influence the occurrence of memory distortions, such as sleep and retrieval conditions, as well as conceptual issues related to the development of an adaptive perspective.
Collapse
Affiliation(s)
- Daniel L Schacter
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|