301
|
K13 Propeller Mutations in Plasmodium falciparum Populations in Regions of Malaria Endemicity in Vietnam from 2009 to 2016. Antimicrob Agents Chemother 2017; 61:AAC.01578-16. [PMID: 28137815 PMCID: PMC5365681 DOI: 10.1128/aac.01578-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/22/2017] [Indexed: 12/12/2022] Open
Abstract
The spread of artemisinin-resistant Plasmodium falciparum compromises the therapeutic efficacy of artemisinin combination therapies (ACTs) and is considered the greatest threat to current global initiatives to control and eliminate malaria. This is particularly relevant in Vietnam, where dihydroartemisinin-piperaquine (DP) is the recommended ACT for P. falciparum infection. The propeller domain gene of K13, a molecular marker of artemisinin resistance, was successfully sequenced in 1,060 P. falciparum isolates collected at 3 malaria hot spots in Vietnam between 2009 and 2016. Eight K13 propeller mutations (Thr474Ile, Tyr493His, Arg539Thr, Ile543Thr, Pro553Leu, Val568Gly, Pro574Leu, and Cys580Tyr), including several that have been validated to be artemisinin resistance markers, were found. The prevalences of K13 mutations were 29% (222/767), 6% (11/188), and 43% (45/105) in the Binh Phuoc, Ninh Thuan, and Gia Lai Provinces of Vietnam, respectively. Cys580Tyr became the dominant genotype in recent years, with 79.1% (34/43) of isolates in Binh Phuoc Province and 63% (17/27) of isolates in Gia Lai Province carrying this mutation. K13 mutations were associated with reduced ring-stage susceptibility to dihydroartemisinin (DHA) in vitro and prolonged parasite clearance in vivo. An analysis of haplotypes flanking K13 suggested the presence of multiple strains with the Cys580Tyr mutation rather than a single strain expanding across the three sites.
Collapse
|
302
|
Impact of Extended Duration of Artesunate Treatment on Parasitological Outcome in a Cytocidal Murine Malaria Model. Antimicrob Agents Chemother 2017; 61:AAC.02499-16. [PMID: 28096162 DOI: 10.1128/aac.02499-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022] Open
Abstract
Artemisinin-based combination therapies are a key pillar in global malaria control and are recommended as a first-line Plasmodium falciparum treatment. They rely upon a rapid 4-log-unit reduction in parasitemia by artemisinin compounds with a short half-life and the killing of remaining parasites by a partner compound with a longer half-life. Current treatment guidelines stipulate giving three 24-h-interval doses or six 12-h-interval doses over a 3-day period. Due to the short half-life of artesunate and artemether, almost all of the resulting cytocidal activity is confined within a single 48-h asexual P. falciparum cycle. Here, we utilized a luciferase reporter, Plasmodium berghei ANKA, in a cytocidal model in which treatment was initiated at high parasitemia, allowing us to monitor a greater than 3-log-unit reduction in parasite density, as well as 30-day survival. In this study, we demonstrated that increasing the artesunate duration from spanning one asexual cycle to spanning three asexual cycles while keeping the total dose constant results in enhanced cytocidal activity. Single daily artesunate doses at 50 mg/kg of body weight over 7 days were the minimum necessary for curative monotherapy. In combination with a single sub-human-equivalent dose of the partner drug amodiaquine or piperaquine, the three-asexual-cycle artesunate duration was able to cure 75% and 100% of mice, respectively, whereas 0% and 33% cures were achieved with the single-asexual-cycle artesunate duration. In summary, cytocidal activity of the artemisinin compounds, such as artesunate, can be improved solely by altering the dosing duration.
Collapse
|
303
|
Diawara S, Madamet M, Kounta MB, Lo G, Wade KA, Nakoulima A, Bercion R, Amalvict R, Gueye MW, Fall B, Diatta B, Pradines B. Confirmation of Plasmodium falciparum in vitro resistance to monodesethylamodiaquine and chloroquine in Dakar, Senegal, in 2015. Malar J 2017; 16:118. [PMID: 28302108 PMCID: PMC5356232 DOI: 10.1186/s12936-017-1773-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
Abstract
Background In response to increasing resistance to anti-malarial drugs, Senegal adopted artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria in 2006. However, resistance of Plasmodium falciparum parasites to artemisinin derivatives, characterized by delayed parasite clearance after treatment with ACT or artesunate monotherapy, has recently emerged and rapidly spread in Southeast Asia. After 10 years of stability with rates ranging from 5.6 to 11.8%, the prevalence of parasites with reduced susceptibility in vitro to monodesethylamodiaquine, the active metabolite of an ACT partner drug, increased to 30.6% in 2014 in Dakar. Additionally, after a decrease of the in vitro chloroquine resistance in Dakar in 2009–2011, the prevalence of parasites that showed in vitro chloroquine resistance increased again to approximately 50% in Dakar since 2013. The aim of this study was to follow the evolution of the susceptibility to ACT partners and other anti-malarial drugs in 2015 in Dakar. An in vitro test is the only method currently available to provide an early indication of resistance to ACT partners. Results Thirty-two P. falciparum isolates collected in 2015 in Dakar were analysed using a standard ex vivo assay based on an HRP2 ELISA. The prevalence of P. falciparum parasites with reduced susceptibility in vitro to monodesethylamodiaquine, chloroquine, mefloquine, doxycycline and quinine was 28.1, 46.9, 45.2, 31.2 and 9.7%, respectively. None of the parasites were resistant to lumefantrine, piperaquine, pyronaridine, dihydroartemisinin and artesunate. These results confirm an increase in the reduced susceptibility to monodesethylamodiaquine observed in 2014 in Dakar and the chloroquine resistance observed in 2013. The in vitro resistance seems to be established in Dakar. Additionally, the prevalence of parasites with reduced susceptibility to doxycycline has increased two-fold compared to 2014. Conclusions The establishment of a reduced susceptibility to monodesethylamodiaquine as well as chloroquine resistance, and the emergence of a reduced susceptibility to doxycycline are disturbing. The in vitro and in vivo surveillance of anti-malarial drugs must be implemented in Senegal.
Collapse
Affiliation(s)
- Silman Diawara
- Laboratoire d'étude de la Chimiosensibilité du Paludisme, Fédération des Laboratoires, Hôpital Principal de Dakar, Dakar, Senegal
| | - Marylin Madamet
- Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Mame Bou Kounta
- Service des Urgences, Hôpital Principal de Dakar, Dakar, Senegal
| | - Gora Lo
- Centre Medical Inter-armées, Dakar, Senegal.,Laboratoire de Bactériologie Virologie, Université Cheikh Anta Diop, CHU Le Dantec, Dakar, Senegal
| | | | | | - Raymond Bercion
- Laboratoire d'Analyses Médicales, Institut Pasteur, Dakar, Senegal
| | - Rémy Amalvict
- Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Mamadou Wague Gueye
- Laboratoire d'étude de la Chimiosensibilité du Paludisme, Fédération des Laboratoires, Hôpital Principal de Dakar, Dakar, Senegal
| | - Bécaye Fall
- Laboratoire d'étude de la Chimiosensibilité du Paludisme, Fédération des Laboratoires, Hôpital Principal de Dakar, Dakar, Senegal
| | - Bakary Diatta
- Chefferie, Hôpital Principal de Dakar, Dakar, Senegal
| | - Bruno Pradines
- Laboratoire d'étude de la Chimiosensibilité du Paludisme, Fédération des Laboratoires, Hôpital Principal de Dakar, Dakar, Senegal. .,Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France. .,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France. .,Centre National de Référence du Paludisme, Marseille, France.
| |
Collapse
|
304
|
Birnbaum J, Flemming S, Reichard N, Soares AB, Mesén-Ramírez P, Jonscher E, Bergmann B, Spielmann T. A genetic system to study Plasmodium falciparum protein function. Nat Methods 2017; 14:450-456. [DOI: 10.1038/nmeth.4223] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/06/2017] [Indexed: 02/07/2023]
|
305
|
Lu F, Culleton R, Zhang M, Ramaprasad A, von Seidlein L, Zhou H, Zhu G, Tang J, Liu Y, Wang W, Cao Y, Xu S, Gu Y, Li J, Zhang C, Gao Q, Menard D, Pain A, Yang H, Zhang Q, Cao J. Emergence of Indigenous Artemisinin-Resistant Plasmodium falciparum in Africa. N Engl J Med 2017; 376:991-3. [PMID: 28225668 DOI: 10.1056/nejmc1612765] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Feng Lu
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | | | | | - Abhinay Ramaprasad
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Huayun Zhou
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Guoding Zhu
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jianxia Tang
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yaobao Liu
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Weiming Wang
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yuanyuan Cao
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Sui Xu
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yaping Gu
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Julin Li
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Chao Zhang
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Qi Gao
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | | | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Haitao Yang
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | | | - Jun Cao
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| |
Collapse
|
306
|
Association between Polymorphisms in the Pf mdr6 Gene and Ex Vivo Susceptibility to Quinine in Plasmodium falciparum Parasites from Dakar, Senegal. Antimicrob Agents Chemother 2017; 61:AAC.01183-16. [PMID: 28052850 DOI: 10.1128/aac.01183-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/12/2016] [Indexed: 11/20/2022] Open
Abstract
Polymorphisms and the overexpression of transporter genes, especially of the ATP-binding cassette superfamily, have been involved in antimalarial drug resistance. The objective of this study was to use 77 Senegalese Plasmodium falciparum isolates to evaluate the association between the number of Asn residues in the polymorphic microsatellite region of the Plasmodium falciparum multidrug resistance 6 gene (Pfmdr6) and the ex vivo susceptibility to antimalarials. A significant association was observed between the presence of 7 or 9 Asn repeats and reduced susceptibility to quinine.
Collapse
|
307
|
Dama S, Niangaly H, Ouattara A, Sagara I, Sissoko S, Traore OB, Bamadio A, Dara N, Djimde M, Alhousseini ML, Goita S, Maiga H, Dara A, Doumbo OK, Djimde AA. Reduced ex vivo susceptibility of Plasmodium falciparum after oral artemether-lumefantrine treatment in Mali. Malar J 2017; 16:59. [PMID: 28148267 PMCID: PMC5289056 DOI: 10.1186/s12936-017-1700-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapy is the recommended first-line treatment for uncomplicated falciparum malaria worldwide. However, recent studies conducted in Mali showed an increased frequency of recurrent parasitaemia following artemether-lumefantrine (AL) treatment. METHODS Study samples were collected during a large WANECAM study. Ex-vivo Plasmodium falciparum sensitivity to artemether and lumefantrine was assessed using the tritiated hypoxanthine-based assay. The prevalence of molecular markers of anti-malarial drug resistance (pfcrt K76T, pfmdr1 N86Y and K13-propeller) were measured by PCR and/or sequencing. RESULTS Overall 61 samples were successfully analysed in ex vivo studies. Mean IC50s increased significantly between baseline and recurrent parasites for both artemether (1.6 nM vs 3.2 nM, p < 0.001) and lumefantrine (1.4 nM vs 3.4 nM, p = 0.004). Wild type Pfmdr1 N86 allele was selected after treatment (71 vs 91%, 112 of 158 vs 95 of 105, p < 0.001) but not the wild type pfcrt K76 variant (23.5 vs 24.8%, 40 of 170 vs 26 of 105, p = 0.9). Three non-synonymous K13-propeller SNPs (A522C, A578S, and G638R) were found with allele frequencies <2%. CONCLUSION Malian post-AL P. falciparum isolates were less susceptible to artemether and lumefantrine than baseline isolates.
Collapse
Affiliation(s)
- Souleymane Dama
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Hamidou Niangaly
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Amed Ouattara
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Sekou Sissoko
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Oumar Bila Traore
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Amadou Bamadio
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Niawanlou Dara
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Moussa Djimde
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Mohamed Lamine Alhousseini
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Siaka Goita
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Hamma Maiga
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Technique and Technology of Bamako, P.O. Box 1805, Bamako, Mali
| |
Collapse
|
308
|
Muhamad P, Thiengsusuk A, Phompradit P, Na-Bangchang K. In vitro sensitivity of antimalarial drugs and correlation with clinico-parasitological response following treatment with a 3-day artesunate-mefloquine combination in patients with falciparum malaria along the Thai-Myanmar border. Acta Trop 2017; 166:257-261. [PMID: 27866919 DOI: 10.1016/j.actatropica.2016.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/10/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022]
Abstract
A 3-day artesunate-mefloquine combination therapy has been using as first-line treatment for acute uncomplicated Plasmodium falciparum malaria in Thailand since 1995 on the background of mefloquine resistance. The aim of the present study was to assess sensitivity of P. falciparum isolates (n=44) in an area along the Thai-Myanmar border (year 2009) to artesunate, mefloquine, chloroquine and quinine, including their correlation with clinico-parasitological response. Twenty, 19, and 5 isolates were collected from patients with 'Adequate Clinical and Parasitological Response (ACPR)', 'Late Parasitological Failure (LPF)' and 're-infection', respectively. The IC50 of artesunate and mefloquine were significantly higher in patients with LPF compared with ACPR and re-infection. The proportion of isolates with declined artesunate or mefloquine sensitivity in the LPF group (47.4%) was significantly higher than the ACPR group (5.0%). A weak but statistical significant correlation (r=0.384, p=0.01) was observed between IC50 values of artesunate and parasite clearance time (PCT). There was no significant relationship between in vitro sensitivity of parasite isolates to chloroquine or quinine and clinical response. In vitro susceptibility of P. falciparum isolates to artesunate and mefloquine may be used as a useful reliable tool to predict clinico-pathological response following a 3-day artesunate-mefloquine combination therapy.
Collapse
|
309
|
Baumgärtner F, Jourdan J, Scheurer C, Blasco B, Campo B, Mäser P, Wittlin S. In vitro activity of anti-malarial ozonides against an artemisinin-resistant isolate. Malar J 2017; 16:45. [PMID: 28122617 PMCID: PMC5267415 DOI: 10.1186/s12936-017-1696-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/13/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Recently published data suggest that artemisinin derivatives and synthetic peroxides, such as the ozonides OZ277 and OZ439, have a similar mode of action. Here the cross-resistance of OZ277 and OZ439 and four additional next-generation ozonides was probed against the artemisinin-resistant clinical isolate Plasmodium falciparum Cam3.I, which carries the K13-propeller mutation R539T (Cam3.IR539T). METHODS The previously described in vitro ring-stage survival assay (RSA0-3h) was employed and a simplified variation of the original protocol was developed. RESULTS At the pharmacologically relevant concentration of 700 nM, all six ozonides were highly effective against the dihydroartemisinin-resistant P. falciparum Cam3.IR539T parasites, showing a per cent survival ranging from <0.01 to 1.83%. A simplified version of the original RSA0-3h method was developed and gave similar results, thus providing a practical drug discovery tool for further optimization of next-generation anti-malarial peroxides. CONCLUSION The absence of in vitro cross-resistance against the artemisinin-resistant clinical isolate Cam3.IR539T suggests that ozonides could be effective against artemisinin-resistant P. falciparum. How this will translate to the human situation in clinical settings remains to be investigated.
Collapse
Affiliation(s)
- Fabian Baumgärtner
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Joëlle Jourdan
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Christian Scheurer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Benjamin Blasco
- Medicines for Malaria Venture, ICC, 20 Route de Pré-Bois, PO Box 1826, 1215 Geneva, Switzerland
| | - Brice Campo
- Medicines for Malaria Venture, ICC, 20 Route de Pré-Bois, PO Box 1826, 1215 Geneva, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
310
|
Thanh NV, Thuy-Nhien N, Tuyen NTK, Tong NT, Nha-Ca NT, Dong LT, Quang HH, Farrar J, Thwaites G, White NJ, Wolbers M, Hien TT. Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin-piperaquine in the south of Vietnam. Malar J 2017; 16:27. [PMID: 28086775 PMCID: PMC5237149 DOI: 10.1186/s12936-017-1680-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/04/2017] [Indexed: 12/03/2022] Open
Abstract
Background Artemisinin resistant Plasmodium falciparum has emerged in the countries of the Greater Mekong sub-region posing a serious threat to global malaria elimination efforts. The relationship of artemisinin resistance to treatment failure has been unclear. Methods In annual studies conducted in three malaria endemic provinces in the south of Vietnam (Binh Phuoc, Ninh Thuan and Gia Lai) between 2011 and 2015, 489 patients with uncomplicated P. falciparum malaria were enrolled in detailed clinical, parasitological and molecular therapeutic response assessments with 42 days follow up. Patients received the national recommended first-line treatment dihydroartemisinin-piperaquine for three days. Results Over the 5 years the proportion of patients with detectable parasitaemia on day 3 rose steadily from 38 to 57% (P < 0.001). In Binh Phuoc province, the parasite clearance half-life increased from 3.75 h in 2011 to 6.60 h in 2015 (P < 0.001), while treatment failures rose from 0% in 2012 and 2013, to 7% in 2014 and 26% in 2015 (P < 0.001). Recrudescence was associated with in vitro evidence of artemisinin and piperaquine resistance. In the treatment failures cases of 2015, all 14 parasite isolates carried the C580Y Pfkelch 13 gene, marker of artemisinin resistance and 93% (13/14) of them carried exoE415G mutations, markers of piperaquine resistance. Conclusions In the south of Vietnam recent emergence of piperaquine resistant P. falciparum strains has accelerated the reduced response to artemisinin and has led to treatment failure rates of up to 26% to dihydroartemisinin-piperaquine, Vietnam’s current first-line ACT. Alternative treatments are urgently needed. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1680-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ngo Viet Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Thuy-Nhien
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.
| | - Nguyen Thi Kim Tuyen
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Tong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Thuy Nha-Ca
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Le Thanh Dong
- Institute of Malariology, Parasitology, and Entomology, Ho Chi Minh City, Vietnam
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology, and Entomology, Qui Nhon, Vietnam
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Nicholas J White
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.,Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Marcel Wolbers
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
311
|
Molecular Mechanism of Drug Resistance. DRUG RESISTANCE IN BACTERIA, FUNGI, MALARIA, AND CANCER 2017. [PMCID: PMC7122190 DOI: 10.1007/978-3-319-48683-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The treatment of microbial infections has suffered greatly in this present century of pathogen dominance. Inspite of extensive research efforts and scientific advancements, the worldwide emergence of microbial tolerance continues to plague survivability. The innate property of microbe to resist any antibiotic due to evolution is the virtue of intrinsic resistance. However, the classical genetic mutations and extrachromosomal segments causing gene exchange attribute to acquired tolerance development. Rampant use of antimicrobials causes certain selection pressure which increases the resistance frequency. Genomic duplication, enzymatic site modification, target alteration, modulation in membrane permeability, and the efflux pump mechanism are the major contributors of multidrug resistance (MDR), specifically antibiotic tolerance development. MDRs will lead to clinical failures for treatment and pose health crisis. The molecular mechanisms of antimicrobial resistance are diverse as well as complex and still are exploited for new discoveries in order to prevent the surfacing of “superbugs.” Antimicrobial chemotherapy has diminished the threat of infectious diseases to some extent. To avoid the indiscriminate use of antibiotics, the new ones licensed for use have decreased with time. Additionally, in vitro assays and genomics for anti-infectives are novel approaches used in resolving the issues of microbial resistance. Proper use of drugs can keep it under check and minimize the risk of MDR spread.
Collapse
|
312
|
Fall B, Madamet M, Camara C, Amalvict R, Fall M, Nakoulima A, Diatta B, Diémé Y, Wade B, Pradines B. Plasmodium falciparum In Vitro Resistance to Monodesethylamodiaquine, Dakar, Senegal, 2014. Emerg Infect Dis 2016; 22:841-5. [PMID: 27088703 PMCID: PMC4861513 DOI: 10.3201/eid2205.151321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We successfully cultured 36 Plasmodium falciparum isolates from blood samples of 44 malaria patients admitted to the Hôpital Principal de Dakar (Dakar, Senegal) during August-December 2014. The prevalence of isolates with in vitro reduced susceptibility was 30.6% for monodesethylamodiaquine, 52.8% for chloroquine, 44.1% for mefloquine, 16.7% for doxycycline, 11.8% for piperaquine, 8.3% for artesunate, 5.9% for pyronaridine, 2.8% for quinine and dihydroartemisinin, and 0.0% for lumefantrine. The prevalence of isolates with reduced in vitro susceptibility to the artemisinin-based combination therapy partner monodesethylamodiaquine increased from 5.6% in 2013 to 30.6% in 2014. Because of the increased prevalence of P. falciparum parasites with impaired in vitro susceptibility to monodesethylamodiaquine, the implementation of in vitro and in vivo surveillance of all artemisinin-based combination therapy partners is warranted.
Collapse
|
313
|
Menard S, Tchoufack JN, Maffo CN, Nsango SE, Iriart X, Abate L, Tsapi MT, Awono-Ambéné PH, Abega Mekongo FA, Morlais I, Berry A. Insight into k13-propeller gene polymorphism and ex vivo DHA-response profiles from Cameroonian isolates. Malar J 2016; 15:572. [PMID: 27887614 PMCID: PMC5124315 DOI: 10.1186/s12936-016-1622-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spread of Plasmodium falciparum resistance to artemisinin derivatives in Southeast Asia is a major source of concern and the emergence of resistance in Africa would have dramatic consequences, by increasing malaria mortality and morbidity. It is therefore urgent to implement regular monitoring in sentinel sites in sub-Saharan Africa using robust and easy-to-implement tools. The prevalence of k13-propeller mutations and the phenotypic profiles are poorly known in sub-Saharan Africa. Here, the k13-propeller polymorphism was compared to both ex vivo susceptibility to DHA and early parasitological and clinical responses to artemisinin combination therapy (ACT). METHODS Plasmodium falciparum isolates were collected in 2015 in Yaoundé (Cameroon) from patients treated with dihydroartemisinin-piperaquine combination. Samples were analysed for their susceptibility to artemisinin using the k13-propeller sequencing, the ex vivo ring-stage survival assay, the in vivo parasite positive rate and the clinical statute at day 2. RESULTS None of the collected isolates revealed the presence of resistance mutations in the k13-propeller sequence. The median ring-stage survival rate for all the 64 interpretable isolates after a 6-hour pulse of 700 nM dihydroartemisinin was low, 0.49% (IQR: 0-1.3). Total parasite clearance was observed for 87.5% of patients and the remaining parasitaemic isolates (12.5%) showed a high reduction of parasite load, ranging from 97.5 to 99.9%. Clinical symptoms disappeared in 92.8% of cases. CONCLUSION This study demonstrated the absence of k13-resistant genotypes in P. falciparum isolates from Cameroon. Only synonymous mutations were found with a low prevalence (4.3%). A good association between k13 genotypes and the ex vivo ring-stage survival assay or parasitological and clinical data was obtained. These results give a baseline for the long-term monitoring of artemisinin derivative efficacy in Africa.
Collapse
Affiliation(s)
- Sandie Menard
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, CNRS UMR5282, Université de Toulouse, Toulouse, France
| | - Joëlle Njila Tchoufack
- Laboratoire d'Entomologie Médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Christelle Ngou Maffo
- Laboratoire d'Entomologie Médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Sandrine E Nsango
- Laboratoire d'Entomologie Médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon.,Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, Douala, Cameroon
| | - Xavier Iriart
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, CNRS UMR5282, Université de Toulouse, Toulouse, France.,Service de Parasitologie-Mycologie, CHU Toulouse, Toulouse, France
| | - Luc Abate
- UMR MIVEGEC, IRD 224-CNRS5290-UM, Institut de Recherche pour le développement, Montpellier, France
| | - Majoline Tchioffo Tsapi
- UMR MIVEGEC, IRD 224-CNRS5290-UM, Institut de Recherche pour le développement, Montpellier, France
| | - Parfait H Awono-Ambéné
- Laboratoire d'Entomologie Médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | | | - Isabelle Morlais
- UMR MIVEGEC, IRD 224-CNRS5290-UM, Institut de Recherche pour le développement, Montpellier, France
| | - Antoine Berry
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, CNRS UMR5282, Université de Toulouse, Toulouse, France. .,Service de Parasitologie-Mycologie, CHU Toulouse, Toulouse, France.
| |
Collapse
|
314
|
Magistrado PA, Corey VC, Lukens AK, LaMonte G, Sasaki E, Meister S, Wree M, Winzeler E, Wirth DF. Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes. ACS Infect Dis 2016; 2:816-826. [PMID: 27933786 PMCID: PMC5109296 DOI: 10.1021/acsinfecdis.6b00025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
MMV007564
is a novel antimalarial benzimidazolyl piperidine chemotype
identified in cellular screens. To identify the genetic determinant
of MMV007564 resistance, parasites were cultured in the presence of
the compound to generate resistant lines. Whole genome sequencing
revealed distinct mutations in the gene named Plasmodium
falciparum cyclic amine resistance locus (pfcarl), encoding a conserved protein of unknown function.
Mutations in pfcarl are strongly associated with
resistance to a structurally unrelated class of compounds, the imidazolopiperazines,
including KAF156, currently in clinical trials. Our data demonstrate
that pfcarl mutations confer resistance to two distinct
compound classes, benzimidazolyl piperidines and imidazolopiperazines.
However, MMV007564 and the imidazolopiperazines, KAF156 and GNF179,
have different timings of action in the asexual blood stage and different
potencies against the liver and sexual blood stages. These data suggest
that pfcarl is a multidrug-resistance gene rather
than a common target for benzimidazolyl piperidines and imidazolopiperazines.
Collapse
Affiliation(s)
- Pamela A. Magistrado
- Department
of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Victoria C. Corey
- School
of Medicine, University of California—San Diego, La Jolla, California 92093, United States
| | - Amanda K. Lukens
- Department
of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Infectious
Disease Program, The Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Greg LaMonte
- School
of Medicine, University of California—San Diego, La Jolla, California 92093, United States
| | - Erika Sasaki
- School
of Medicine, University of California—San Diego, La Jolla, California 92093, United States
| | - Stephan Meister
- School
of Medicine, University of California—San Diego, La Jolla, California 92093, United States
| | - Melanie Wree
- School
of Medicine, University of California—San Diego, La Jolla, California 92093, United States
| | - Elizabeth Winzeler
- School
of Medicine, University of California—San Diego, La Jolla, California 92093, United States
| | - Dyann F. Wirth
- Department
of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Infectious
Disease Program, The Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
315
|
Tacoli C, Gai PP, Bayingana C, Sifft K, Geus D, Ndoli J, Sendegeya A, Gahutu JB, Mockenhaupt FP. Artemisinin Resistance-Associated K13 Polymorphisms of Plasmodium falciparum in Southern Rwanda, 2010-2015. Am J Trop Med Hyg 2016; 95:1090-1093. [PMID: 27573632 PMCID: PMC5094222 DOI: 10.4269/ajtmh.16-0483] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/22/2016] [Indexed: 01/09/2023] Open
Abstract
Emerging artemisinin resistance is a threat to global malaria control. Mutations in the Plasmodium falciparum Kelch 13 (K13) propeller domain confer artemisinin resistance and constitute molecular markers for its detection and monitoring. We sequenced 222 P. falciparum isolates obtained from community children in the Huye District of southern Rwanda in 2010, 2014, and 2015 to investigate the presence of K13 polymorphisms. No polymorphisms were observed in 2010 but they were present in 2.5% and 4.5% in 2014 and 2015, respectively. In 2015, two isolates showed candidate K13 resistance mutations (P574L and A675V), which are common in southeast Asia and associated with delayed parasite clearance. K13 polymorphisms in southern Rwanda are infrequent but include variants associated with artemisinin resistance. Establishing correlations with local treatment response and in vitro resistance assays are needed in addition to further monitoring K13 polymorphisms in the study area.
Collapse
Affiliation(s)
- Costanza Tacoli
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedzin Berlin, Berlin, Germany
| | - Prabhanjan P Gai
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedzin Berlin, Berlin, Germany
| | - Claude Bayingana
- University Teaching Hospital of Butare, Butare, Rwanda
- School of Medicine and Pharmacy, University of Rwanda, Butare, Rwanda
| | - Kevin Sifft
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedzin Berlin, Berlin, Germany
| | - Dominik Geus
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedzin Berlin, Berlin, Germany
| | - Jules Ndoli
- University Teaching Hospital of Butare, Butare, Rwanda
- School of Medicine and Pharmacy, University of Rwanda, Butare, Rwanda
| | - Augustin Sendegeya
- University Teaching Hospital of Butare, Butare, Rwanda
- School of Medicine and Pharmacy, University of Rwanda, Butare, Rwanda
| | - Jean Bosco Gahutu
- University Teaching Hospital of Butare, Butare, Rwanda
- School of Medicine and Pharmacy, University of Rwanda, Butare, Rwanda
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedzin Berlin, Berlin, Germany.
| |
Collapse
|
316
|
Grist EPM, Flegg JA, Humphreys G, Mas IS, Anderson TJC, Ashley EA, Day NPJ, Dhorda M, Dondorp AM, Faiz MA, Gething PW, Hien TT, Hlaing TM, Imwong M, Kindermans JM, Maude RJ, Mayxay M, McDew-White M, Menard D, Nair S, Nosten F, Newton PN, Price RN, Pukrittayakamee S, Takala-Harrison S, Smithuis F, Nguyen NT, Tun KM, White NJ, Witkowski B, Woodrow CJ, Fairhurst RM, Sibley CH, Guerin PJ. Optimal health and disease management using spatial uncertainty: a geographic characterization of emergent artemisinin-resistant Plasmodium falciparum distributions in Southeast Asia. Int J Health Geogr 2016; 15:37. [PMID: 27776514 PMCID: PMC5078981 DOI: 10.1186/s12942-016-0064-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/23/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Artemisinin-resistant Plasmodium falciparum malaria parasites are now present across much of mainland Southeast Asia, where ongoing surveys are measuring and mapping their spatial distribution. These efforts require substantial resources. Here we propose a generic 'smart surveillance' methodology to identify optimal candidate sites for future sampling and thus map the distribution of artemisinin resistance most efficiently. METHODS The approach uses the 'uncertainty' map generated iteratively by a geostatistical model to determine optimal locations for subsequent sampling. RESULTS The methodology is illustrated using recent data on the prevalence of the K13-propeller polymorphism (a genetic marker of artemisinin resistance) in the Greater Mekong Subregion. CONCLUSION This methodology, which has broader application to geostatistical mapping in general, could improve the quality and efficiency of drug resistance mapping and thereby guide practical operations to eliminate malaria in affected areas.
Collapse
Affiliation(s)
- Eric P. M. Grist
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK ,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK
| | - Jennifer A. Flegg
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK ,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK ,School of Mathematical Sciences, Monash University, Melbourne, Australia
| | - Georgina Humphreys
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK ,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK
| | - Ignacio Suay Mas
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK ,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK
| | - Tim J. C. Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Elizabeth A. Ashley
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK ,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Mehul Dhorda
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK ,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK
| | - Arjen M. Dondorp
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK ,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - M. Abul Faiz
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand ,Dev Care Foundation and Malaria Research Group, Dhaka, Bangladesh
| | - Peter W. Gething
- Spatial Epidemiology and Ecology Group, Department of Zoology, University of Oxford, Oxford, UK
| | - Tran T. Hien
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK ,Hospital for Tropical Disease, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tin M. Hlaing
- Defence Services Medical Research Centre, Naypyitaw, Myanmar
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Richard J. Maude
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK ,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand ,Harvard TH Chan School of Public Health, Harvard University, Boston, USA
| | - Mayfong Mayxay
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK ,Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Marina McDew-White
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institute Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Shalini Nair
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Francois Nosten
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK ,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Paul N. Newton
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK ,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK ,Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Ric N. Price
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK ,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK ,Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | | | - Frank Smithuis
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK ,Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Nhien T. Nguyen
- Hospital for Tropical Disease, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Kyaw M. Tun
- Defence Services Medical Research Centre, Naypyitaw, Myanmar ,Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Nicholas J. White
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK ,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Benoit Witkowski
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK ,Malaria Molecular Epidemiology Unit, Institute Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Charles J. Woodrow
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK ,Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD USA
| | - Carol Hopkins Sibley
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK ,Department of Genome Sciences, University of Washington, Seattle, WA USA
| | - Philippe J. Guerin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK ,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ UK
| |
Collapse
|
317
|
Chaorattanakawee S, Lon C, Jongsakul K, Gawee J, Sok S, Sundrakes S, Kong N, Thamnurak C, Chann S, Chattrakarn S, Praditpol C, Buathong N, Uthaimongkol N, Smith P, Sirisopana N, Huy R, Prom S, Fukuda MM, Bethell D, Walsh DS, Lanteri C, Saunders D. Ex vivo piperaquine resistance developed rapidly in Plasmodium falciparum isolates in northern Cambodia compared to Thailand. Malar J 2016; 15:519. [PMID: 27769299 PMCID: PMC5075182 DOI: 10.1186/s12936-016-1569-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022] Open
Abstract
Background The recent dramatic decline in dihydroartemisinin-piperaquine (DHA-PPQ) efficacy in northwestern Cambodia has raised concerns about the rapid spread of piperaquine resistance just as DHA-PPQ is being introduced as first-line therapy in neighbouring countries. Methods Ex vivo parasite susceptibilities were tracked to determine the rate of progression of DHA, PPQ and mefloquine (MQ) resistance from sentinel sites on the Thai–Cambodian and Thai–Myanmar borders from 2010 to 2015. Immediate ex vivo (IEV) histidine-rich protein 2 (HRP-2) assays were used on fresh patient Plasmodium falciparum isolates to determine drug susceptibility profiles. Results IEV HRP-2 assays detected the precipitous emergence of PPQ resistance in Cambodia beginning in 2013 when 40 % of isolates had an IC90 greater than the upper limit of prior years, and this rate doubled to 80 % by 2015. In contrast, Thai–Myanmar isolates from 2013 to 14 remained PPQ-sensitive, while northeastern Thai isolates appeared to have an intermediate resistance profile. The opposite trend was observed for MQ where Cambodian isolates appeared to have a modest increase in overall sensitivity during the same period, with IC50 declining to median levels comparable to those found in Thailand. A significant association between increased PPQ IC50 and IC90 among Cambodian isolates with DHA-PPQ treatment failure was observed. Nearly all Cambodian and Thai isolates were deemed artemisinin resistant with a >1 % survival rate for DHA in the ring-stage assay (RSA), though there was no correlation among isolates to indicate cross-resistance between PPQ and artemisinins. Conclusions Clinical DHA-PPQ failures appear to be associated with declines in the long-acting partner drug PPQ, though sensitivity appears to remain largely intact for now in western Thailand. Rapid progression of PPQ resistance associated with DHA-PPQ treatment failures in northern Cambodia limits drugs of choice in this region, and urgently requires alternative therapy. The temporary re-introduction of artesunate AS-MQ is the current response to PPQ resistance in this area, due to inverse MQ and PPQ resistance patterns. This will require careful monitoring for re-emergence of MQ resistance, and possible simultaneous resistance to all three drugs (AS, MQ and PPQ). Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1569-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suwanna Chaorattanakawee
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand.,Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Chanthap Lon
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand. .,USAMC-AFRIMS, Phnom Penh, Cambodia.
| | - Krisada Jongsakul
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Somethy Sok
- Royal Cambodian Armed Forces, Phnom Penh, Cambodia
| | - Siratchana Sundrakes
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Nareth Kong
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Chatchadaporn Thamnurak
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Sorayut Chattrakarn
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Chantida Praditpol
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Nillawan Buathong
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Nichapat Uthaimongkol
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Philip Smith
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | | | - Mark M Fukuda
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Delia Bethell
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Douglas S Walsh
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Charlotte Lanteri
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand.,Department of Pathology and Area Laboratory Services, Microbiology Section, Brooke Army Medical Center, San Antonio, TX, USA
| | - David Saunders
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| |
Collapse
|
318
|
Endoperoxide Drug Cross-Resistance Patterns for Plasmodium falciparum Exhibiting an Artemisinin Delayed-Clearance Phenotype. Antimicrob Agents Chemother 2016; 60:6952-6956. [PMID: 27600038 DOI: 10.1128/aac.00857-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/28/2016] [Indexed: 11/20/2022] Open
Abstract
The ring-stage susceptibility assay was modified to quantify the susceptibilities of multiple strains of control and delayed-clearance phenotype (DCP) Plasmodium falciparum strains to seven endoperoxide antimalarial drugs. The susceptibility of all of the DCP lines to six of the drugs was lower than that of the controls. In contrast, DCP parasites did not show reduced susceptibility to the synthetic endoperoxide drug OZ439. These data show that it is possible to circumvent emerging artemisinin resistance with a modified endoperoxide drug.
Collapse
|
319
|
Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during Plasmodium falciparum Infection. mBio 2016; 7:mBio.01538-16. [PMID: 27795395 PMCID: PMC5082902 DOI: 10.1128/mbio.01538-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs). EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids) by epoxide hydrolases (EHs). The malaria parasite Plasmodium falciparum infects host red blood cells (RBCs) and exports hundreds of proteins into the RBC compartment. In this study, we show that two parasite epoxide hydrolases, P. falciparum epoxide hydrolases 1 (PfEH1) and 2 (PfEH2), both with noncanonical serine nucleophiles, are exported to the periphery of infected RBCs. PfEH1 and PfEH2 were successfully expressed in Escherichia coli, and they hydrolyzed physiologically relevant erythrocyte EETs. Mutations in active site residues of PfEH1 ablated the ability of the enzyme to hydrolyze an epoxide substrate. Overexpression of PfEH1 or PfEH2 in parasite-infected RBCs resulted in a significant alteration in the epoxide fatty acids stored in RBC phospholipids. We hypothesize that the parasite disruption of epoxide-containing signaling lipids leads to perturbed vascular function, creating favorable conditions for binding and sequestration of infected RBCs to the microvascular endothelium. The malaria parasite exports hundreds of proteins into the erythrocyte compartment. However, for most of these proteins, their physiological function is unknown. In this study, we investigate two “hypothetical” proteins of the α/β-hydrolase fold family that share sequence similarity with epoxide hydrolases (EHs)—enzymes that destroy bioactive epoxides. Altering EH expression in parasite-infected erythrocytes resulted in a significant change in the epoxide fatty acids stored in the host cell. We propose that these EH enzymes may help the parasite to manipulate host blood vessel opening and inflame the vessel walls as they pass through the circulation system. Understanding how the malaria parasite interacts with its host RBCs will aid in our ability to combat this deadly disease.
Collapse
|
320
|
Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border. Sci Rep 2016; 6:33891. [PMID: 27694982 PMCID: PMC5046179 DOI: 10.1038/srep33891] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/05/2016] [Indexed: 12/02/2022] Open
Abstract
Drug resistance has emerged as one of the greatest challenges facing malaria control. The recent emergence of resistance to artemisinin (ART) and its partner drugs in ART-based combination therapies (ACT) is threatening the efficacy of this front-line regimen for treating Plasmodium falciparum parasites. Thus, an understanding of the molecular mechanisms that underlie the resistance to ART and the partner drugs has become a high priority for resistance containment and malaria management. Using genome-wide association studies, we investigated the associations of genome-wide single nucleotide polymorphisms with in vitro sensitivities to 10 commonly used antimalarial drugs in 94 P. falciparum isolates from the China-Myanmar border area, a region with the longest history of ART usage. We identified several loci associated with various drugs, including those containing pfcrt and pfdhfr. Of particular interest is a locus on chromosome 10 containing the autophagy-related protein 18 (ATG18) associated with decreased sensitivities to dihydroartemisinin, artemether and piperaquine – an ACT partner drug in this area. ATG18 is a phosphatidylinositol-3-phosphate binding protein essential for autophagy and recently identified as a potential ART target. Further investigations on the ATG18 and genes at the chromosome 10 locus may provide an important lead for a connection between ART resistance and autophagy.
Collapse
|
321
|
Le Bihan A, de Kanter R, Angulo-Barturen I, Binkert C, Boss C, Brun R, Brunner R, Buchmann S, Burrows J, Dechering KJ, Delves M, Ewerling S, Ferrer S, Fischli C, Gamo–Benito FJ, Gnädig NF, Heidmann B, Jiménez-Díaz MB, Leroy D, Martínez MS, Meyer S, Moehrle JJ, Ng CL, Noviyanti R, Ruecker A, Sanz LM, Sauerwein RW, Scheurer C, Schleiferboeck S, Sinden R, Snyder C, Straimer J, Wirjanata G, Marfurt J, Price RN, Weller T, Fischli W, Fidock DA, Clozel M, Wittlin S. Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose-Efficacy Modeling. PLoS Med 2016; 13:e1002138. [PMID: 27701420 PMCID: PMC5049785 DOI: 10.1371/journal.pmed.1002138] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 08/24/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. METHOD AND FINDINGS The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under the concentration versus time curve (AUC), maximum observed plasma concentration (Cmax), and time above a threshold concentration. The determination of the dose-efficacy relationship of ACT-451840 under curative conditions in rodent malaria models allowed prediction of the human efficacious exposure. CONCLUSION The dual activity of ACT-451840 against asexual and sexual stages of P. falciparum and the activity on P. vivax have the potential to meet the specific profile of a target compound that could replace the fast-acting artemisinin component and harbor additional gametocytocidal activity and, thereby, transmission-blocking properties. The fast parasite reduction ratio (PRR) and gametocytocidal effect of ACT-451840 were recently also confirmed in a clinical proof-of-concept (POC) study.
Collapse
Affiliation(s)
| | | | - Iñigo Angulo-Barturen
- GlaxoSmithKline, TresCantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | | | | | - Reto Brun
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ralf Brunner
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | - Michael Delves
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, United Kingdom
| | | | - Santiago Ferrer
- GlaxoSmithKline, TresCantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | - Christoph Fischli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Francisco Javier Gamo–Benito
- GlaxoSmithKline, TresCantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | - Nina F. Gnädig
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | | | - María Belén Jiménez-Díaz
- GlaxoSmithKline, TresCantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Maria Santos Martínez
- GlaxoSmithKline, TresCantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | - Solange Meyer
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Caroline L. Ng
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | | | - Andrea Ruecker
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Laura María Sanz
- GlaxoSmithKline, TresCantos Medicines Development Campus, Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | | | - Christian Scheurer
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sarah Schleiferboeck
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Robert Sinden
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, United Kingdom
| | | | - Judith Straimer
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas Weller
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
| | | | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
322
|
Intermittent Preventive Treatment with Dihydroartemisinin-Piperaquine in Ugandan Schoolchildren Selects for Plasmodium falciparum Transporter Polymorphisms That Modify Drug Sensitivity. Antimicrob Agents Chemother 2016; 60:5649-54. [PMID: 27401569 DOI: 10.1128/aac.00920-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/02/2016] [Indexed: 01/12/2023] Open
Abstract
Dihydroartemisinin-piperaquine (DP) offers prolonged protection against malaria, but its impact on Plasmodium falciparum drug sensitivity is uncertain. In a trial of intermittent preventive treatment in schoolchildren in Tororo, Uganda, in 2011 to 2012, monthly DP for 1 year decreased the incidence of malaria by 96% compared to placebo; DP once per school term offered protection primarily during the first month after therapy. To assess the impact of DP on selection of drug resistance, we compared the prevalence of key polymorphisms in isolates that emerged at different intervals after treatment with DP. Blood obtained monthly and at each episode of fever was assessed for P. falciparum parasitemia by microscopy. Samples from 160 symptomatic and 650 asymptomatic episodes of parasitemia were assessed at 4 loci (N86Y, Y184F, and D1246Y in pfmdr1 and K76T in pfcrt) that modulate sensitivity to aminoquinoline antimalarials, utilizing a ligase detection reaction-fluorescent microsphere assay. For pfmdr1 N86Y and pfcrt K76T, but not the other studied polymorphisms, the prevalences of mutant genotypes were significantly greater in children who had received DP within the past 30 days than in those not treated within 60 days (86Y, 18.0% versus 8.3% [P = 0.03]; 76T, 96.0% versus 86.1% [P = 0.05]), suggesting selective pressure of DP. Full sequencing of pfcrt in a subset of samples did not identify additional polymorphisms selected by DP. In summary, parasites that emerged soon after treatment with DP were more likely than parasites not under drug pressure to harbor pfmdr1 and pfcrt polymorphisms associated with decreased sensitivity to aminoquinoline antimalarials. (This study has been registered at ClinicalTrials.gov under no. NCT01231880.).
Collapse
|
323
|
Roseau JB, Pradines B, Paleiron N, Vedy S, Madamet M, Simon F, Javelle E. Failure of dihydroartemisinin plus piperaquine treatment of falciparum malaria by under-dosing in an overweight patient. Malar J 2016; 15:479. [PMID: 27646822 PMCID: PMC5028982 DOI: 10.1186/s12936-016-1535-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) introduced in the mid-1990s has been recommended since 2005 by the World Health Organization as first-line treatment against Plasmodium falciparum in all endemic countries. In 2010, the combination dihydroartemisinin-piperaquine (DP) was recommended for the treatment of uncomplicated P. falciparum malaria. DP is one of the first-line treatments used by the French army since 2013. CASE PRESENTATION A case of P. falciparum clinical failure with DP at day 20 was described in a 104 kg French soldier deployed in Djibouti. He was admitted to hospital for supervision of oral treatment with DP [40 mg dihydroartemisinin (DHA) plus 320 mg piperaquine tetraphosphate (PPQ)]. This corresponded to a cumulative dose of 4.6 mg/kg DHA and 37 mg/kg PPQ in the present patient, which is far below the WHO recommended ranges. No mutation was found in the propeller domain of the Kelch 13 (k13) gene, which is associated with artemisinin resistance in Southeast Asia. Pfmdr1 N86, 184F, S1034 and N1042 polymorphisms and haplotype 72-76 CVIET for the pfcrt gene were found in the present case. There was no evidence of resistance to DP. CONCLUSION This case confirms the risk of therapeutic failure with dihydroartemisinin-piperaquine by under-dosing in patients weighing more than 100 kg. This therapeutic failure with DP by under-dosing highlighted the importance of appropriate dosing guidelines and the need of research data (efficacy, pharmacokinetics and pharmacodynamics) in over-weight patient group.
Collapse
Affiliation(s)
- Jean Baptiste Roseau
- Service de Pneumologie, Hôpital d'Instruction des Armées Laveran, Marseille, France.,Groupe Médico-chirurgical Bouffard, Djibouti, Republic of Djibouti
| | - Bruno Pradines
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France. .,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France. .,Centre National de Référence du Paludisme, Marseille, France.
| | - Nicolas Paleiron
- Groupe Médico-chirurgical Bouffard, Djibouti, Republic of Djibouti.,Service de Pneumologie, Hôpital d'Instruction des Armées Clermont-Tonnerre, Brest, France
| | - Serge Vedy
- Groupe Médico-chirurgical Bouffard, Djibouti, Republic of Djibouti
| | - Marylin Madamet
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France.,Equipe Résidente de Recherche en Infectiologie Tropicale, Institut de Recherche Biomédicale des Armées, Hôpital d'Instruction des Armées, Marseille, France
| | - Fabrice Simon
- Service de pathologie infectieuse et tropicale, Hôpital d'Instruction des Armées Laveran, Marseille, France.,Ecole du Val de Grâce, Paris, France
| | - Emilie Javelle
- Service de pathologie infectieuse et tropicale, Hôpital d'Instruction des Armées Laveran, Marseille, France.
| |
Collapse
|
324
|
Woodrow CJ, White NJ. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol Rev 2016; 41:34-48. [PMID: 27613271 PMCID: PMC5424521 DOI: 10.1093/femsre/fuw037] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/11/2016] [Accepted: 07/31/2016] [Indexed: 11/25/2022] Open
Abstract
Artemisinins are the most rapidly acting of currently available antimalarial drugs. Artesunate has become the treatment of choice for severe malaria, and artemisinin-based combination therapies (ACTs) are the foundation of modern falciparum malaria treatment globally. Their safety and tolerability profile is excellent. Unfortunately, Plasmodium falciparum infections with mutations in the ‘K13’ gene, with reduced ring-stage susceptibility to artemisinins, and slow parasite clearance in patients treated with ACTs, are now widespread in Southeast Asia. We review clinical efficacy data from the region (2000–2015) that provides strong evidence that the loss of first-line ACTs in western Cambodia, first artesunate-mefloquine and then DHA-piperaquine, can be attributed primarily to K13 mutated parasites. The ring-stage activity of artemisinins is therefore critical for the sustained efficacy of ACTs; once it is lost, rapid selection of partner drug resistance and ACT failure are inevitable consequences. Consensus methods for monitoring artemisinin resistance are now available. Despite increased investment in regional control activities, ACTs are failing across an expanding area of the Greater Mekong subregion. Although multiple K13 mutations have arisen independently, successful multidrug-resistant parasite genotypes are taking over and threaten to spread to India and Africa. Stronger containment efforts and new approaches to sustaining long-term efficacy of antimalarial regimens are needed to prevent a global malaria emergency. Artemisinin resistance in Plasmodium falciparum malaria is causing failure of artemisinin-based combination therapies across an expanding area of Southeast Asia, undermining control and elimination efforts. The potential global consequences can only be avoided by new approaches that ensure sustained efficacy for antimalarial regimens in malaria affected populations.
Collapse
Affiliation(s)
- Charles J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6, Rajvithi Road, Bangkok 10400, Thailand
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6, Rajvithi Road, Bangkok 10400, Thailand
| |
Collapse
|
325
|
Mbaye A, Dieye B, Ndiaye YD, Bei AK, Muna A, Deme AB, Yade MS, Diongue K, Gaye A, Ndiaye IM, Ndiaye T, Sy M, Diallo MA, Badiane AS, Ndiaye M, Seck MC, Sy N, Koita O, Krogstad DJ, Nwakanma D, Ndiaye D. Selection of N86F184D1246 haplotype of Pfmrd1 gene by artemether-lumefantrine drug pressure on Plasmodium falciparum populations in Senegal. Malar J 2016; 15:433. [PMID: 27562216 PMCID: PMC5000460 DOI: 10.1186/s12936-016-1490-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023] Open
Abstract
Background The use of artemisinin as a monotherapy resulted in the emergence of artemisinin resistance in 2005 in Southeast Asia. Monitoring of artemisinin combination therapy (ACT) is critical in order to detect and prevent the spread of resistance in endemic areas. Ex vivo studies and genotyping of molecular markers of resistance can be used as part of this routine monitoring strategy. One gene that has been associated in some ACT partner drug resistance is the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene. The purpose of this study was to assess the drug susceptibility of P. falciparum populations from Thiès, Senegal by ex vivo assay and typing molecular markers of resistance to drug components of ACT currently used for treatment. Methods The ex vivo susceptibility of 170 P. falciparum isolates to chloroquine, amodiaquine, lumefantrine, artesunate, and artemether was determined using the DAPI ex vivo assay. The high resolution melting technique was used to genotype the pfmdr1 gene at codons 86, 184 and 1246. Results A significant decrease in IC50 values was observed between 2012 and 2013: from 13.84 to 6.484 for amodiaquine, 173.4 to 113.2 for lumefantrine, and 39.72 to 18.29 for chloroquine, respectively. Increase of the wild haplotype NYD and the decrease of the mutant haplotype NFD (79 and 62.26 %) was also observed. A correlation was observed between the wild type allele Y184 in pfmdr1 and higher IC50 for all drugs, except amodiaquine. Conclusion This study has shown an increase in sensitivity over the span of two transmission seasons, marked by an increase in the WT alleles at pfmdr1. Continuous the monitoring of the ACT used for treatment of uncomplicated malaria will be helpful.
Collapse
Affiliation(s)
- Aminata Mbaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal.
| | - Baba Dieye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Yaye D Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Amy K Bei
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | | | - Awa B Deme
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Mamadou S Yade
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Khadim Diongue
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Amy Gaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Ibrahima M Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Tolla Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Mouhamad Sy
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Mamadou A Diallo
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Aida S Badiane
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Mouhamadou Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Mame C Seck
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Ngayo Sy
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | | | | | | | - Daouda Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
326
|
The Spiroindolone KAE609 Does Not Induce Dormant Ring Stages in Plasmodium falciparum Parasites. Antimicrob Agents Chemother 2016; 60:5167-74. [PMID: 27297484 DOI: 10.1128/aac.02838-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/02/2016] [Indexed: 01/12/2023] Open
Abstract
In vitro drug treatment with artemisinin derivatives, such as dihydroartemisinin (DHA), results in a temporary growth arrest (i.e., dormancy) at an early ring stage in Plasmodium falciparum This response has been proposed to play a role in the recrudescence of P. falciparum infections following monotherapy with artesunate and may contribute to the development of artemisinin resistance in P. falciparum malaria. We demonstrate here that artemether does induce dormant rings, a finding which further supports the class effect of artemisinin derivatives in inducing the temporary growth arrest of P. falciparum parasites. In contrast and similarly to lumefantrine, the novel and fast-acting spiroindolone compound KAE609 does not induce growth arrest at the early ring stage of P. falciparum and prevents the recrudescence of DHA-arrested rings at a low concentration (50 nM). Our findings, together with previous clinical data showing that KAE609 is active against artemisinin-resistant K13 mutant parasites, suggest that KAE609 could be an effective partner drug with a broad range of antimalarials, including artemisinin derivatives, in the treatment of multidrug-resistant P. falciparum malaria.
Collapse
|
327
|
Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach. Sci Rep 2016; 6:30106. [PMID: 27471101 PMCID: PMC4965867 DOI: 10.1038/srep30106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/27/2016] [Indexed: 11/08/2022] Open
Abstract
Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs.
Collapse
|
328
|
Muangphrom P, Seki H, Fukushima EO, Muranaka T. Artemisinin-based antimalarial research: application of biotechnology to the production of artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites. J Nat Med 2016; 70:318-34. [PMID: 27250562 PMCID: PMC4935751 DOI: 10.1007/s11418-016-1008-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
Malaria is a worldwide disease caused by Plasmodium parasites. A sesquiterpene endoperoxide artemisinin isolated from Artemisia annua was discovered and has been accepted for its use in artemisinin-based combinatorial therapies, as the most effective current antimalarial treatment. However, the quantity of this compound produced from the A. annua plant is very low, and the availability of artemisinin is insufficient to treat all infected patients. In addition, the emergence of artemisinin-resistant Plasmodium has been reported recently. Several techniques have been applied to enhance artemisinin availability, and studies related to its mode of action and the mechanism of resistance of malaria-causing parasites are ongoing. In this review, we summarize the application of modern technologies to improve the production of artemisinin, including our ongoing research on artemisinin biosynthetic genes in other Artemisia species. The current understanding of the mode of action of artemisinin as well as the mechanism of resistance against this compound in Plasmodium parasites is also presented. Finally, the current situation of malaria infection and the future direction of antimalarial drug development are discussed.
Collapse
Affiliation(s)
- Paskorn Muangphrom
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Continuing Professional Development Center, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
329
|
Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, Rahim-Awab G, Barnadas C, Berry A, Boum Y, Bustos MD, Cao J, Chen JH, Collet L, Cui L, Thakur GD, Dieye A, Djallé D, Dorkenoo MA, Eboumbou-Moukoko CE, Espino FECJ, Fandeur T, Ferreira-da-Cruz MF, Fola AA, Fuehrer HP, Hassan AM, Herrera S, Hongvanthong B, Houzé S, Ibrahim ML, Jahirul-Karim M, Jiang L, Kano S, Ali-Khan W, Khanthavong M, Kremsner PG, Lacerda M, Leang R, Leelawong M, Li M, Lin K, Mazarati JB, Ménard S, Morlais I, Muhindo-Mavoko H, Musset L, Na-Bangchang K, Nambozi M, Niaré K, Noedl H, Ouédraogo JB, Pillai DR, Pradines B, Quang-Phuc B, Ramharter M, Randrianarivelojosia M, Sattabongkot J, Sheikh-Omar A, Silué KD, Sirima SB, Sutherland C, Syafruddin D, Tahar R, Tang LH, Touré OA, Tshibangu-wa-Tshibangu P, Vigan-Womas I, Warsame M, Wini L, Zakeri S, Kim S, Eam R, Berne L, Khean C, Chy S, Ken M, Loch K, Canier L, Duru V, Legrand E, Barale JC, Stokes B, Straimer J, Witkowski B, Fidock DA, Rogier C, Ringwald P, Ariey F, Mercereau-Puijalon O. A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. N Engl J Med 2016; 374:2453-64. [PMID: 27332904 PMCID: PMC4955562 DOI: 10.1056/nejmoa1513137] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).
Collapse
Affiliation(s)
- Didier Ménard
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Nimol Khim
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Johann Beghain
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Ayola A Adegnika
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Mohammad Shafiul-Alam
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Olukemi Amodu
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Ghulam Rahim-Awab
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Céline Barnadas
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Antoine Berry
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Yap Boum
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Maria D Bustos
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Jun Cao
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Jun-Hu Chen
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Louis Collet
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Liwang Cui
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Garib-Das Thakur
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Alioune Dieye
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Djibrine Djallé
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Monique A Dorkenoo
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | | | | | - Thierry Fandeur
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | | | - Abebe A Fola
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Hans-Peter Fuehrer
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Abdillahi M Hassan
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Socrates Herrera
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Bouasy Hongvanthong
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Sandrine Houzé
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Maman L Ibrahim
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Mohammad Jahirul-Karim
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Lubin Jiang
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Shigeyuki Kano
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Wasif Ali-Khan
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Maniphone Khanthavong
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Peter G Kremsner
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Marcus Lacerda
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Rithea Leang
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Mindy Leelawong
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Mei Li
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Khin Lin
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Jean-Baptiste Mazarati
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Sandie Ménard
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Isabelle Morlais
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | | | - Lise Musset
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Kesara Na-Bangchang
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Michael Nambozi
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Karamoko Niaré
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Harald Noedl
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Jean-Bosco Ouédraogo
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Dylan R Pillai
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Bruno Pradines
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Bui Quang-Phuc
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Michael Ramharter
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | | | - Jetsumon Sattabongkot
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Abdiqani Sheikh-Omar
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Kigbafori D Silué
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Sodiomon B Sirima
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Colin Sutherland
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Din Syafruddin
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Rachida Tahar
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Lin-Hua Tang
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Offianan A Touré
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | | | - Inès Vigan-Womas
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Marian Warsame
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Lyndes Wini
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Sedigheh Zakeri
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Saorin Kim
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Rotha Eam
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Laura Berne
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Chanra Khean
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Sophy Chy
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Malen Ken
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Kaknika Loch
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Lydie Canier
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Valentine Duru
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Eric Legrand
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Jean-Christophe Barale
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Barbara Stokes
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Judith Straimer
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Benoit Witkowski
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - David A Fidock
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Christophe Rogier
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Pascal Ringwald
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Frederic Ariey
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | | |
Collapse
|
330
|
Dorkenoo AM, Yehadji D, Agbo YM, Layibo Y, Agbeko F, Adjeloh P, Yakpa K, Sossou E, Awokou F, Ringwald P. Therapeutic efficacy trial of artemisinin-based combination therapy for the treatment of uncomplicated malaria and investigation of mutations in k13 propeller domain in Togo, 2012-2013. Malar J 2016; 15:331. [PMID: 27334876 PMCID: PMC4917981 DOI: 10.1186/s12936-016-1381-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since 2005, the Togo National Malaria Control Programme has recommended two different formulations of artemisinin-based combination therapy (ACT), artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL), for the treatment of uncomplicated malaria. Regular efficacy monitoring of these two combinations is conducted every 2 or 3 years. This paper reports the latest efficacy assessment results and the investigation of mutations in the k13 propeller domain. METHODS The study was conducted in 2012-2013 on three sentinel sites of Togo (Lomé, Sokodé and Niamtougou). Children aged 6-59 months, who were symptomatically infected with Plasmodium falciparum, were treated with either AL (Coartem(®), Novartis Pharma, Switzerland) or ASAQ (Co-Arsucam(®), Sanofi Aventis, France). The WHO standard protocol for anti-malarial treatment evaluation was used. The primary end-point was 28-day adequate clinical and parasitological response (ACPR), corrected to exclude reinfection using polymerase-chain reaction (PCR) genotyping. RESULTS A total of 523 children were included in the study. PCR-corrected ACPR was 96.3-100 % for ASAQ and 97-100 % for AL across the three study sites. Adverse events were negligible: 0-4.8 % across all sites, for both artemisinin-based combinations. Upon investigation of mutations in the k13 propeller domain, only 9 (1.8 %) mutations were reported, three in each site. All mutant parasites were cleared before day 3. All day 3 positive patients were infected with k13 wild type parasites. CONCLUSIONS The efficacy of AL and ASAQ remains high in Togo, and both drugs are well tolerated. ASAQ and AL would be recommended for the treatment of uncomplicated malaria in Togo.
Collapse
Affiliation(s)
- Améyo M Dorkenoo
- Faculté des Sciences de la Sante, Université de Lomé, BP 1515, Lomé, Togo. .,Ministere de la Sante et de la Protection Sociale, Angle avenue Sarakawa et avenue du 2 Fevrier, BP 336, Lomé, Togo.
| | - Degninou Yehadji
- Ministere de la Sante et de la Protection Sociale, Angle avenue Sarakawa et avenue du 2 Fevrier, BP 336, Lomé, Togo
| | - Yao M Agbo
- Faculté des Sciences de la Sante, Université de Lomé, BP 1515, Lomé, Togo
| | - Yao Layibo
- Ministere de la Sante et de la Protection Sociale, Angle avenue Sarakawa et avenue du 2 Fevrier, BP 336, Lomé, Togo
| | - Foli Agbeko
- Service de Pediatrie, Centre Hospitalier Regional de Sokode, BP 187, Lomé, Togo
| | - Poukpessi Adjeloh
- Programme National de Lutte contre le Paludisme, Quartier Administratif, BP 518, Lomé, Togo
| | - Kossi Yakpa
- Programme National de Lutte contre le Paludisme, Quartier Administratif, BP 518, Lomé, Togo
| | - Efoe Sossou
- Service des Laboratoires, Centre Hospitalier Universitaire Sylvanus Olympio, 198 rue de l'Hopital, Tokoin Hopital, BP 57, Lomé, Togo
| | - Fantchè Awokou
- Programme National de Lutte contre le Paludisme, Quartier Administratif, BP 518, Lomé, Togo
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, 20 Avenue Appia, 1211, Geneva 27, Switzerland
| |
Collapse
|
331
|
Tilley L, Straimer J, Gnädig NF, Ralph SA, Fidock DA. Artemisinin Action and Resistance in Plasmodium falciparum. Trends Parasitol 2016; 32:682-696. [PMID: 27289273 DOI: 10.1016/j.pt.2016.05.010] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
Abstract
The worldwide use of artemisinin-based combination therapies (ACTs) has contributed in recent years to a substantial reduction in deaths resulting from Plasmodium falciparum malaria. Resistance to artemisinins, however, has emerged in Southeast Asia. Clinically, resistance is defined as a slower rate of parasite clearance in patients treated with an artemisinin derivative or an ACT. These slow clearance rates associate with enhanced survival rates of ring-stage parasites briefly exposed in vitro to dihydroartemisinin. We describe recent progress made in defining the molecular basis of artemisinin resistance, which has identified a primary role for the P. falciparum K13 protein. Using K13 mutations as molecular markers, epidemiological studies are now tracking the emergence and spread of artemisinin resistance. Mechanistic studies suggest potential ways to overcome resistance.
Collapse
Affiliation(s)
- Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia.
| | - Judith Straimer
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
332
|
Fairhurst RM, Dondorp AM. Artemisinin-Resistant Plasmodium falciparum Malaria. Microbiol Spectr 2016; 4:10.1128/microbiolspec.EI10-0013-2016. [PMID: 27337450 PMCID: PMC4992992 DOI: 10.1128/microbiolspec.ei10-0013-2016] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 01/05/2023] Open
Abstract
For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins, the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs)-the first-line treatments for malaria-are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in vitro, genomics, and transcriptomics studies in SEA have defined in vivo and in vitro phenotypes of artemisinin resistance, identified its causal genetic determinant, explored its molecular mechanism, and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early-ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's K13 gene, is associated with an upregulated "unfolded protein response" pathway that may antagonize the pro-oxidant activity of artemisinins, and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent, test whether new combinations of currently available drugs cure ACT failures, and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest.
Collapse
Affiliation(s)
- Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, United States of America
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
333
|
Abstract
For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins, the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs)-the first-line treatments for malaria-are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in vitro, genomics, and transcriptomics studies in SEA have defined in vivo and in vitro phenotypes of artemisinin resistance, identified its causal genetic determinant, explored its molecular mechanism, and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early-ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's K13 gene, is associated with an upregulated "unfolded protein response" pathway that may antagonize the pro-oxidant activity of artemisinins, and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent, test whether new combinations of currently available drugs cure ACT failures, and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest.
Collapse
|
334
|
Little Polymorphism at the K13 Propeller Locus in Worldwide Plasmodium falciparum Populations Prior to the Introduction of Artemisinin Combination Therapies. Antimicrob Agents Chemother 2016; 60:3340-7. [PMID: 27001814 DOI: 10.1128/aac.02370-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
The emergence and spread of artemisinin-resistant Plasmodium falciparum is of huge concern for the global effort toward malaria control and elimination. Artemisinin resistance, defined as a delayed time to parasite clearance following administration of artemisinin, is associated with mutations in the Pfkelch13 gene of resistant parasites. To date, as many as 60 nonsynonymous mutations have been identified in this gene, but whether these mutations have been selected by artemisinin usage or merely reflect natural polymorphism independent of selection is currently unknown. To clarify this, we sequenced the Pfkelch13 propeller domain in 581 isolates collected before (420 isolates) and after (161 isolates) the implementation of artemisinin combination therapies (ACTs), from various regions of endemicity worldwide. Nonsynonymous mutations were observed in 1% of parasites isolated prior to the introduction of ACTs. Frequencies of mutant isolates, nucleotide diversity, and haplotype diversity were significantly higher in the parasites isolated from populations exposed to artemisinin than in those from populations that had not been exposed to the drug. In the artemisinin-exposed population, a significant excess of dN compared to dS was observed, suggesting the presence of positive selection. In contrast, pairwise comparison of dN and dS and the McDonald and Kreitman test indicate that purifying selection acts on the Pfkelch13 propeller domain in populations not exposed to ACTs. These population genetic analyses reveal a low baseline of Pfkelch13 polymorphism, probably due to purifying selection in the absence of artemisinin selection. In contrast, various Pfkelch13 mutations have been selected under artemisinin pressure.
Collapse
|
335
|
Absence of Association between Polymorphisms in the RING E3 Ubiquitin Protein Ligase Gene and Ex Vivo Susceptibility to Conventional Antimalarial Drugs in Plasmodium falciparum Isolates from Dakar, Senegal. Antimicrob Agents Chemother 2016; 60:5010-3. [PMID: 27185795 DOI: 10.1128/aac.03105-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/08/2016] [Indexed: 11/20/2022] Open
Abstract
The RING E3 ubiquitin protein ligase is crucial for facilitating the transfer of ubiquitin. The only polymorphism identified in the E3 ubiquitin protein ligase gene was the D113N mutation (62.5%) but was not significantly associated with the 50% inhibitory concentration (IC50) of conventional antimalarial drugs. However, some mutated isolates (D113N) present a trend of reduced susceptibility to piperaquine (P = 0.0938). To evaluate the association of D113N polymorphism with susceptibility to antimalarials, more isolates are necessary.
Collapse
|
336
|
Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun 2016; 7:11553. [PMID: 27189525 PMCID: PMC4873939 DOI: 10.1038/ncomms11553] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/07/2016] [Indexed: 02/07/2023] Open
Abstract
Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes. Antimalarial chemotherapy relies on combination therapies (ACTs) consisting of an artemisinin derivative and a partner drug. Here, the authors study the effects of globally prevalent mutations in a multidrug resistance transporter (PfMDR1) on the parasite's susceptibility to ACT drugs.
Collapse
|
337
|
Ménard S, Ben Haddou T, Ramadani AP, Ariey F, Iriart X, Beghain J, Bouchier C, Witkowski B, Berry A, Mercereau-Puijalon O, Benoit-Vical F. Induction of Multidrug Tolerance in Plasmodium falciparum by Extended Artemisinin Pressure. Emerg Infect Dis 2016; 21:1733-41. [PMID: 26401601 PMCID: PMC4593447 DOI: 10.3201/eid2110.150682] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tolerance is not detected by current assays and represents a major threat to antimalarial drug policy. Plasmodium falciparum resistance to artemisinin derivatives in Southeast Asia threatens global malaria control strategies. Whether delayed parasite clearance, which exposes larger parasite numbers to artemisinins for longer times, selects higher-grade resistance remains unexplored. We investigated whether long-lasting artemisinin pressure selects a novel multidrug-tolerance profile. Although 50% inhibitory concentrations for 10 antimalarial drugs tested were unchanged, drug-tolerant parasites showed higher recrudescence rates for endoperoxides, quinolones, and an antifolate, including partner drugs of recommended combination therapies, but remained susceptible to atovaquone. Moreover, the age range of intraerythrocytic stages able to resist artemisinin was extended to older ring forms and trophozoites. Multidrug tolerance results from drug-induced quiescence, which enables parasites to survive exposure to unrelated antimalarial drugs that inhibit a variety of metabolic pathways. This novel resistance pattern should be urgently monitored in the field because this pattern is not detected by current assays and represents a major threat to antimalarial drug policy.
Collapse
|
338
|
Eastman RT, Khine P, Huang R, Thomas CJ, Su XZ. PfCRT and PfMDR1 modulate interactions of artemisinin derivatives and ion channel blockers. Sci Rep 2016; 6:25379. [PMID: 27147113 PMCID: PMC4857081 DOI: 10.1038/srep25379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023] Open
Abstract
Treatment of the symptomatic asexual stage of Plasmodium falciparum relies almost exclusively on artemisinin (ART) combination therapies (ACTs) in endemic regions. ACTs combine ART or its derivative with a long-acting partner drug to maximize efficacy during the typical three-day regimen. Both laboratory and clinical studies have previously demonstrated that the common drug resistance determinants P. falciparum chloroquine resistance transporter (PfCRT) and multidrug resistance transporter (PfMDR1) can modulate the susceptibility to many current antimalarial drugs and chemical compounds. Here we investigated the parasite responses to dihydroartemisinin (DHA) and various Ca2+ and Na+ channel blockers and showed positively correlated responses between DHA and several channel blockers, suggesting potential shared transport pathways or mode of action. Additionally, we demonstrated that PfCRT and PfMDR1 could also significantly modulate the pharmacodynamic interactions of the compounds and that the interactions were influenced by the parasite genetic backgrounds. These results provide important information for better understanding of drug resistance and for assessing the overall impact of drug resistance markers on parasite response to ACTs.
Collapse
Affiliation(s)
- Richard T Eastman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Division of Preclinical Development, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Pwint Khine
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ruili Huang
- Division of Preclinical Development, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Craig J Thomas
- Division of Preclinical Development, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
339
|
Lead Selection of a New Aminomethylphenol, JPC-3210, for Malaria Treatment and Prevention. Antimicrob Agents Chemother 2016; 60:3115-8. [PMID: 26856849 DOI: 10.1128/aac.03066-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 11/20/2022] Open
Abstract
Structure-activity relationship studies of trifluoromethyl-substituted pyridine and pyrimidine analogues of 2-aminomethylphenols (JPC-2997, JPC-3186, and JPC-3210) were conducted for preclinical development for malaria treatment and/or prevention. Of these compounds, JPC-3210 [4-(tert-butyl)-2-((tert-butylamino)methyl)-6-(5-fluoro-6-(trifluoromethyl)pyridin-3-yl)phenol] was selected as the lead compound due to superior in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum lines, lower in vitro cytotoxicity in mammalian cell lines, longer plasma elimination half-life, and greater in vivo efficacy against murine malaria.
Collapse
|
340
|
Assessment of the Worldwide Antimalarial Resistance Network Standardized Procedure for In Vitro Malaria Drug Sensitivity Testing Using SYBR Green Assay for Field Samples with Various Initial Parasitemia Levels. Antimicrob Agents Chemother 2016; 60:2417-24. [PMID: 26856829 DOI: 10.1128/aac.00527-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 02/02/2016] [Indexed: 12/29/2022] Open
Abstract
The malaria SYBR green assay, which is used to profilein vitrodrug susceptibility ofPlasmodium falciparum, is a reliable drug screening and surveillance tool. Malaria field surveillance efforts provide isolates with various low levels of parasitemia. To be advantageous, malaria drug sensitivity assays should perform reproducibly among various starting parasitemia levels rather than at one fixed initial value. We examined the SYBR green assay standardized procedure developed by the Worldwide Antimalarial Resistance Network (WWARN) for its sensitivity and ability to accurately determine the drug concentration that inhibits parasite growth by 50% (IC50) in samples with a range of initial parasitemia levels. The initial sensitivity determination of the WWARN procedure yielded a detection limit of 0.019% parasitemia.P. falciparumlaboratory strains and field isolates with various levels of initial parasitemia were then subjected to a range of doses of common antimalarials. The IC50s were comparable for laboratory strains with between 0.0375% and 0.6% parasitemia and for field isolates with between 0.075% and 0.6% parasitemia for all drugs tested. Furthermore, assay quality (Z') analysis indicated that the WWARN procedure displays high robustness, allowing for drug testing of malaria field samples within the derived range of initial parasitemia. The use of the WWARN procedure should allow for the inclusion of more malaria field samples in malaria drug sensitivity screens that would have otherwise been excluded due to low initial parasitemia levels.
Collapse
|
341
|
Wilairat P, Kümpornsin K, Chookajorn T. Plasmodium falciparum malaria: Convergent evolutionary trajectories towards delayed clearance following artemisinin treatment. Med Hypotheses 2016; 90:19-22. [PMID: 27063079 DOI: 10.1016/j.mehy.2016.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/26/2016] [Accepted: 02/27/2016] [Indexed: 11/28/2022]
Abstract
Malaria is a major global health challenge with 300million new cases every year. The most effective regimen for treating Plasmodium falciparum malaria is based on artemisinin and its derivatives. The drugs are highly effective, resulting in rapid clearance of parasites even in severe P. falciparum malaria patients. During the last five years, artemisinin-resistant parasites have begun to emerge first in Cambodia and now in Thailand and Myanmar. At present, the level of artemisinin resistance is relatively low with clinical presentation of delayed artemisinin clearance (a longer time to reduce parasite load) and a small decrease in artemisinin sensitivity in cultured isolates. Nevertheless, multiple genetic loci associated with delayed parasite clearance have been reported, but they cannot account for a large portion of cases. Even the most well-studied kelch 13 propeller mutations cannot always predict the outcome of artemisinin treatment in vitro and in vivo. Here we propose that delayed clearance by artemisinin could be the result of convergent evolution, driven by multiple trajectories to overcome artemisinin-induced stress, but precluded to become full blown resistance by high fitness cost. Genetic association studies by several genome-wide approaches reveal linkage disequilibrium between multiple loci and delayed parasite clearance. Genetic manipulations at some of these loci already have resulted in loss in artemisinin sensitivity. The notion presented here is by itself consistent with existing evidence on artemisinin resistance and has the potential to be explored using available genomic data. Most important of all, molecular surveillance of artemisinin resistance based on multi-genic markers could be more informative than relying on any one particular molecular marker.
Collapse
Affiliation(s)
- Prapon Wilairat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krittikorn Kümpornsin
- Genomics and Evolutionary Medicine Unit (GEM), Center of Excellence in Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thanat Chookajorn
- Genomics and Evolutionary Medicine Unit (GEM), Center of Excellence in Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
342
|
Abstract
The current epidemic of artemisinin resistant Plasmodium falciparum in Southeast Asia is the result of a soft selective sweep involving at least 20 independent kelch13 mutations. In a large global survey, we find that kelch13 mutations which cause resistance in Southeast Asia are present at low frequency in Africa. We show that African kelch13 mutations have originated locally, and that kelch13 shows a normal variation pattern relative to other genes in Africa, whereas in Southeast Asia there is a great excess of non-synonymous mutations, many of which cause radical amino-acid changes. Thus, kelch13 is not currently undergoing strong selection in Africa, despite a deep reservoir of variations that could potentially allow resistance to emerge rapidly. The practical implications are that public health surveillance for artemisinin resistance should not rely on kelch13 data alone, and interventions to prevent resistance must account for local evolutionary conditions, shown by genomic epidemiology to differ greatly between geographical regions. DOI:http://dx.doi.org/10.7554/eLife.08714.001 Malaria is an infectious disease caused by a microscopic parasite called Plasmodium, which is transferred between humans by mosquitos. One species of malaria parasite called Plasmodium falciparum can cause particularly severe and life-threatening forms of the disease. Currently, the most widely used treatment for P. falciparum infections is artemisinin combination therapy, a treatment that combines the drug artemisinin (or a closely related molecule) with another antimalarial drug. However, resistance to artemisinin has started to spread throughout Southeast Asia. Artemisinin resistance is caused by mutations in a parasite gene called kelch13, and researchers have identified over 20 different mutations in P. falciparum that confer artemisinin resistance. The diversity of mutations involved, and the fact that the same mutation can arise independently in different locations, make it difficult to track the spread of resistance using conventional molecular marker approaches. Here, Amato, Miotto et al. sequenced the entire genomes of more than 3,000 clinical samples of P. falciparum from Southeast Asia and Africa, collected as part of a global network of research groups called the MalariaGEN Plasmodium falciparum Community Project. Amato, Miotto et al. found that African parasites had independently acquired many of the same kelch13 mutations that are known to cause resistance to artemisinin in Southeast Asia. However the kelch13 mutations seen in Africa remained at low levels in the parasite population, and appeared to be under much less pressure for evolutionary selection than those found in Southeast Asia. These findings demonstrate that the emergence and spread of resistance to antimalarial drugs does not depend solely on the mutational process, but also on other factors that influence whether the mutations will spread in the population. Understanding how this is affected by different patterns of drug treatments and other environmental conditions will be important in developing more effective strategies for combating malaria. DOI:http://dx.doi.org/10.7554/eLife.08714.002
Collapse
|
343
|
Flow Cytometry for Antimalarial Drug Testing: More than Meets the Eye. J Clin Microbiol 2016; 54:817. [DOI: 10.1128/jcm.03017-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
344
|
Win AA, Imwong M, Kyaw MP, Woodrow CJ, Chotivanich K, Hanboonkunupakarn B, Pukrittayakamee S. K13 mutations and pfmdr1 copy number variation in Plasmodium falciparum malaria in Myanmar. Malar J 2016; 15:110. [PMID: 26911145 PMCID: PMC4765153 DOI: 10.1186/s12936-016-1147-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/04/2016] [Indexed: 11/11/2022] Open
Abstract
Background Artemisinin-based combination therapy has been first-line treatment for falciparum malaria in Myanmar since 2005. The wide extent of artemisinin resistance in the Greater Mekong sub-region and the presence of mefloquine resistance at the Myanmar-Thailand border raise concerns over resistance patterns in Myanmar. The availability of molecular markers for resistance to both drugs enables assessment even in remote malaria-endemic areas. Methods A total of 250 dried blood spot samples collected from patients with Plasmodium falciparum malarial infection in five malaria-endemic areas across Myanmar were analysed for kelch 13 sequence (k13) and pfmdr1 copy number variation. K13 mutations in the region corresponding to amino acids 210–726 (including the propeller region of the protein) were detected by nested PCR amplification and sequencing, and pfmdr1 copy number variation by real-time PCR. In two sites, a sub-set of patients were prospectively followed up for assessment of day-3 parasite clearance rates after a standard course of artemether-lumefantrine. Results K13 mutations and pfmdr1 amplification were successfully analysed in 206 and 218 samples, respectively. Sixty-nine isolates (33.5 %) had mutations within the k13 propeller region with 53 of these (76.8 %) having mutations already known to be associated with artemisinin resistance. F446I (32 isolates) and P574L (15 isolates) were the most common examples. K13 mutation was less common in sites in western border regions (29 of 155 isolates) compared to samples from the east and north (40 of 51 isolates; p < 0.0001). The overall proportion of parasites with multiple pfmdr1 copies (greater than 1.5) was 5.5 %. Seven samples showed both k13 mutation and multiple copies of pfmdr1. Only one of 36 patients followed up after artemether-lumefantrine treatment still had parasites at day 3; molecular analysis indicated wild-type k13 and single copy pfmdr1. Conclusion The proportion of P. falciparum isolates with mutations in the propeller region of k13 indicates that artemisinin resistance extends across much of Myanmar. There is a low prevalence of parasites with multiple pfmdr1 copies across the country. The efficacy of artemisinin-based combination therapy containing mefloquine and lumefantrine is, therefore, expected to be high, although regular monitoring of efficacy will be important. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1147-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aye A Win
- Department of Medicine, Institute of Medicine 1, Yangon, Myanmar.
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand. .,Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | - Myat P Kyaw
- Department of Medical Research (Lower Myanmar), Yangon, Myanmar.
| | - Charles J Woodrow
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand. .,Nuffield Department of Clinical Medicine, Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK.
| | - Kesinee Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand. .,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Borimas Hanboonkunupakarn
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand. .,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand. .,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
345
|
Abstract
PURPOSE OF REVIEW The emergence of artemisinin resistance in Southeast Asia (SEA), where artemisinin combination therapies (ACTs) are beginning to fail, threatens global endeavors to control and eliminate Plasmodium falciparum malaria. Future efforts to prevent the spread of this calamity to Africa will benefit from last year's tremendous progress in understanding artemisinin resistance. RECENT FINDINGS Multiple international collaborations have established that artemisinin resistance is associated with slow parasite clearance in patients, increased survival of early-ring-stage parasites in vitro, single-nucleotide polymorphisms (SNPs) in the parasite's kelch protein gene (K13), parasite 'founder' populations sharing a genetic background of four additional SNPs, parasite transcriptional profiles reflecting an 'unfolded protein response' and decelerated parasite development, and elevated parasite phosphatidylinositol-3-kinase activity. In Western Cambodia, where the K13 C580Y mutation is approaching fixation, the frontline ACT is failing to cure nearly half of patients, likely due to partner drug resistance. In Africa, where dozens of K13 mutations have been detected at low frequency, there is no evidence yet of artemisinin resistance. SUMMARY In SEA, clinical and epidemiological investigations are urgently needed to stop the further spread of artemisinin resistance, monitor the efficacy of ACTs where K13 mutations are prevalent, identify currently-available drug regimens that cure ACT failures, and rapidly advance new antimalarial compounds through preclinical studies and clinical trials.
Collapse
|
346
|
Kite WA, Melendez-Muniz VA, Moraes Barros RR, Wellems TE, Sá JM. Alternative methods for the Plasmodium falciparum artemisinin ring-stage survival assay with increased simplicity and parasite stage-specificity. Malar J 2016; 15:94. [PMID: 26888201 PMCID: PMC4756417 DOI: 10.1186/s12936-016-1148-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/04/2016] [Indexed: 11/16/2022] Open
Abstract
Background Artemisinin-based combination therapy is recommended to treat Plasmodium falciparum worldwide, but observations of longer artemisinin (ART) parasite clearance times (PCTs) in Southeast Asia are widely interpreted as a sign of potential ART resistance. In search of an in vitro correlate of in vivo PCT after ART treatment, a ring-stage survival assay (RSA) of 0–3 h parasites was developed and linked to polymorphisms in the Kelch propeller protein (K13). However, RSA remains a laborious process, involving heparin, Percoll gradient, and sorbitol treatments to obtain rings in the 0–3 h window. Here two alternative RSA protocols are presented and compared to the standard Percoll-based method, one highly stage-specific and one streamlined for laboratory application. Methods For all protocols, P. falciparum cultures were synchronized with 5 % sorbitol treatment twice over two intra-erythrocytic cycles. For a filtration-based RSA, late-stage schizonts were passed through a 1.2 μm filter to isolate merozoites, which were incubated with uninfected erythrocytes for 45 min. The erythrocytes were then washed to remove lysis products and further incubated until 3 h post-filtration. Parasites were pulsed with either 0.1 % dimethyl sulfoxide (DMSO) or 700 nM dihydroartemisinin in 0.1 % DMSO for 6 h, washed twice in drug-free media, and incubated for 66–90 h, when survival was assessed by microscopy. For a sorbitol-only RSA, synchronized young (0–3 h) rings were treated with 5 % sorbitol once more prior to the assay and adjusted to 1 % parasitaemia. The drug pulse, incubation, and survival assessment were as described above. Results Ring-stage survival of P. falciparum parasites containing either the K13 C580 or C580Y polymorphism (associated with low and high RSA survival, respectively) were assessed by the described filtration and sorbitol-only methods and produced comparable results to the reported Percoll gradient RSA. Advantages of both new methods include: fewer reagents, decreased time investment, and fewer procedural steps, with enhanced stage-specificity conferred by the filtration method. Conclusions Assessing P. falciparum ART sensitivity in vitro via RSA can be streamlined and accurately evaluated in the laboratory by filtration or sorbitol synchronization methods, thus increasing the accessibility of the assay to research groups. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1148-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Whitney A Kite
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Room 3E - 10, Rockville, MD, 20852, USA.
| | - Viviana A Melendez-Muniz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Room 3E - 10, Rockville, MD, 20852, USA. .,Universidad Central del Caribe School of Medicine, Bayamon, PR, 00960, USA.
| | - Roberto R Moraes Barros
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Room 3E - 10, Rockville, MD, 20852, USA.
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Room 3E - 10, Rockville, MD, 20852, USA.
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Room 3E - 10, Rockville, MD, 20852, USA.
| |
Collapse
|
347
|
Obaldía N, Dow GS, Gerena L, Kyle D, Otero W, Mantel PY, Baro N, Daniels R, Mukherjee A, Childs LM, Buckee C, Duraisingh MT, Volkman SK, Wirth DF, Marti M. Altered drug susceptibility during host adaptation of a Plasmodium falciparum strain in a non-human primate model. Sci Rep 2016; 6:21216. [PMID: 26880111 PMCID: PMC4754742 DOI: 10.1038/srep21216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 01/07/2023] Open
Abstract
Infections with Plasmodium falciparum, the most pathogenic of the Plasmodium species affecting man, have been reduced in part due to artemisinin-based combination therapies. However, artemisinin resistant parasites have recently emerged in South-East Asia. Novel intervention strategies are therefore urgently needed to maintain the current momentum for control and elimination of this disease. In the present study we characterize the phenotypic and genetic properties of the multi drug resistant (MDR) P. falciparum Thai C2A parasite strain in the non-human Aotus primate model, and across multiple passages. Aotus infections with C2A failed to clear upon oral artesunate and mefloquine treatment alone or in combination, and ex vivo drug assays demonstrated reduction in drug susceptibility profiles in later Aotus passages. Further analysis revealed mutations in the pfcrt and pfdhfr loci and increased parasite multiplication rate (PMR) across passages, despite elevated pfmdr1 copy number. Altogether our experiments suggest alterations in parasite population structure and increased fitness during Aotus adaptation. We also present data of early treatment failures with an oral artemisinin combination therapy in a pre-artemisinin resistant P. falciparum Thai isolate in this animal model.
Collapse
Affiliation(s)
- Nicanor Obaldía
- Department of Immunology and Infectious Diseases, Harvard
- T.H. Chan School of Public Health, Boston, MA, United States.,Center for the Evaluation of Antimalarial Drugs and Vaccines, Tropical Medicine Research/Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Republic of Panama
| | - Geoffrey S Dow
- Walter Reed Army Institute of Research, Silver Springs, MD, United States
| | - Lucia Gerena
- Walter Reed Army Institute of Research, Silver Springs, MD, United States
| | - Dennis Kyle
- Department of Global Health, University of South Florida, Tampa, FL, United States
| | - William Otero
- Center for the Evaluation of Antimalarial Drugs and Vaccines, Tropical Medicine Research/Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Republic of Panama
| | - Pierre-Yves Mantel
- Department of Immunology and Infectious Diseases, Harvard
- T.H. Chan School of Public Health, Boston, MA, United States
| | - Nicholas Baro
- Department of Immunology and Infectious Diseases, Harvard
- T.H. Chan School of Public Health, Boston, MA, United States
| | - Rachel Daniels
- Department of Immunology and Infectious Diseases, Harvard
- T.H. Chan School of Public Health, Boston, MA, United States
| | - Angana Mukherjee
- Department of Immunology and Infectious Diseases, Harvard
- T.H. Chan School of Public Health, Boston, MA, United States
| | - Lauren M Childs
- Center for Communicable Disease Dynamics and Harvard
- T.H. Chan School of Public Health, Boston, MA, United States.,Department of Epidemiology, Harvard
- T.H. Chan School of Public Health, Boston, MA, United States
| | - Caroline Buckee
- Center for Communicable Disease Dynamics and Harvard
- T.H. Chan School of Public Health, Boston, MA, United States.,Department of Epidemiology, Harvard
- T.H. Chan School of Public Health, Boston, MA, United States
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard
- T.H. Chan School of Public Health, Boston, MA, United States
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard
- T.H. Chan School of Public Health, Boston, MA, United States.,The Broad Institute of MIT and Harvard, Cambridge, MA, United States.,School of Nursing and Health Sciences, Simmons College, Boston, MA United States
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard
- T.H. Chan School of Public Health, Boston, MA, United States.,The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard
- T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
348
|
In Vivo Efficacy of Artesunate/Sulphadoxine-Pyrimethamine versus Artesunate/Amodiaquine in the Treatment of Uncomplicated P. falciparium Malaria in Children around the Slope of Mount Cameroon: A Randomized Controlled Trial. Biomedicines 2016; 4:biomedicines4010005. [PMID: 28536372 PMCID: PMC5344242 DOI: 10.3390/biomedicines4010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/31/2016] [Accepted: 02/04/2016] [Indexed: 11/21/2022] Open
Abstract
Background: The development and spread of antimalarial drug resistant parasites contributes to the global impact of the disease. In vivo efficacy assessments of treatments for Plasmodium falciparum malaria are essential for ensuring effective case management. Artemisinin-based combinations have been adopted as the first-line treatment for uncomplicated P. falciparum malaria in Cameroon since 2004. Methods: A total of 177 children aged six-months to 10 years with uncomplicated mono-infected falciparum malaria were randomized (1:1) to receive artesunate/sulphadoxine-pyrimethamine (AS/SP) or artesunate/amodiaquine (AS/AQ) pediatric tablets and followed up for 28 days according to the standard World Health Organization in vivo drug efficacy monitoring protocol. The primary and secondary endpoints were PCR uncorrected and corrected cure rates, as measured by adequate clinical and parasitological response (ACPR) on day 28. Results: The PCR corrected cure rate was high, overall (88.1%, 95% CI 83.1–93.1), 85.9% (95% CI 78.2–93.6), and 90.2% (95% CI 83.8–96.6) for AS/SP and AS/AQ, respectively. Twenty-one treatment failures were observed during follow-up, constituting one (4.6%), 14 (8.2%), and six (3.5%) early treatment failure (ETF), late clinical failure (LCF), and late parasitological failure (LPF), respectively. The drugs were well tolerated with no serious adverse events. Conclusions: Both AS/SP and AS/AQ are highly effective and well-tolerated treatments for uncomplicated P. falciparum malaria around the slope of Mount Cameroon.
Collapse
|
349
|
Ye R, Hu D, Zhang Y, Huang Y, Sun X, Wang J, Chen X, Zhou H, Zhang D, Mungthin M, Pan W. Distinctive origin of artemisinin-resistant Plasmodium falciparum on the China-Myanmar border. Sci Rep 2016; 6:20100. [PMID: 26831371 PMCID: PMC4735722 DOI: 10.1038/srep20100] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
The artemisinin (ART), discovered in China, has been widely used against malaria in China over the last 30 years. Understanding the emergence and origin of ART resistance in China is therefore of great interest. We analyzed 111 culture-adapted isolates of P. falciparum from China-Myanmar (CM) border for their susceptibility to dihydroartemisinin using the ring stage survival assay (RSA0−3h) and genotyped their K13 genes. Of the isolates, 59 had a wild type of the K13 marker and a median ring survival rate of 0.26% (P95 = 1.005%). Among the remaining isolates harboring single mutations in the K13 marker, 26 survived at >P95(median survival rate = 2.95%). Further, we genotyped the K13 gene of 693 isolates collected from different regions in China and China-Myanmar/Thai-Cambodia/Thai-Myanmar (CM/TC/TM) borders, 308 (44.4%) had K13 mutations and marked differences in the patterns of K13 mutations were observed between the CM and the TC/TM borders. A network diagram showed that majority of the K13 mutant alleles from the CM border clustered together including those harboring the high resistant-associated R539T mutations. The resistant parasites carrying distinct halplotypes suggested the multiple indigenous origins of the resistant alleles, which highlight the importance of surveillance of resistance in all malaria endemic areas where ART has been introduced.
Collapse
Affiliation(s)
- Run Ye
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China
| | - Dongwei Hu
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China
| | - Yilong Zhang
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China
| | - Yufu Huang
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China
| | - Xiaodong Sun
- Yunnan Institute of Parasitic Diseases, Puer 665000, China
| | - Jian Wang
- Yunnan Institute of Parasitic Diseases, Puer 665000, China
| | - Xuedi Chen
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Puer 665000, China
| | - Dongmei Zhang
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand
| | - Weiqing Pan
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
350
|
Mideo N, Bailey JA, Hathaway NJ, Ngasala B, Saunders DL, Lon C, Kharabora O, Jamnik A, Balasubramanian S, Björkman A, Mårtensson A, Meshnick SR, Read AF, Juliano JJ. A deep sequencing tool for partitioning clearance rates following antimalarial treatment in polyclonal infections. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:21-36. [PMID: 26817485 PMCID: PMC4753362 DOI: 10.1093/emph/eov036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/21/2015] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Current tools struggle to detect drug-resistant malaria parasites when infections contain multiple parasite clones, which is the norm in high transmission settings in Africa. Our aim was to develop and apply an approach for detecting resistance that overcomes the challenges of polyclonal infections without requiring a genetic marker for resistance. METHODOLOGY Clinical samples from patients treated with artemisinin combination therapy were collected from Tanzania and Cambodia. By deeply sequencing a hypervariable locus, we quantified the relative abundance of parasite subpopulations (defined by haplotypes of that locus) within infections and revealed evolutionary dynamics during treatment. Slow clearance is a phenotypic, clinical marker of artemisinin resistance; we analyzed variation in clearance rates within infections by fitting parasite clearance curves to subpopulation data. RESULTS In Tanzania, we found substantial variation in clearance rates within individual patients. Some parasite subpopulations cleared as slowly as resistant parasites observed in Cambodia. We evaluated possible explanations for these data, including resistance to drugs. Assuming slow clearance was a stable phenotype of subpopulations, simulations predicted that modest increases in their frequency could substantially increase time to cure. CONCLUSIONS AND IMPLICATIONS By characterizing parasite subpopulations within patients, our method can detect rare, slow clearing parasites in vivo whose phenotypic effects would otherwise be masked. Since our approach can be applied to polyclonal infections even when the genetics underlying resistance are unknown, it could aid in monitoring the emergence of artemisinin resistance. Our application to Tanzanian samples uncovers rare subpopulations with worrying phenotypes for closer examination.
Collapse
Affiliation(s)
- Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada;
| | - Jeffrey A Bailey
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts, Worcester, MA, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA
| | - Billy Ngasala
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - David L Saunders
- Division of Immunology and Medicine, USAMC Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanthap Lon
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Oksana Kharabora
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew Jamnik
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Sujata Balasubramanian
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anders Björkman
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Mårtensson
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research Sörmland, Uppsala University, Sweden; Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Sweden
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Department of Biology and Entomology, the Pennsylvania State University, University Park, PA, USA and
| | - Jonathan J Juliano
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|