301
|
Fuchs AV, Gemmell AC, Thurecht KJ. Utilising polymers to understand diseases: advanced molecular imaging agents. Polym Chem 2015. [DOI: 10.1039/c4py01311e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review describes how the highly tuneable size, shape and chemical functionality of polymeric molecular imaging agents provides a means to intimately probe the various mechanisms behind disease formation and behaviour.
Collapse
Affiliation(s)
- Adrian V. Fuchs
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| | - Anna C. Gemmell
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- ARC Centre of Excellence in Bio-Nano Science and Technology
| |
Collapse
|
302
|
Cao F, Huang T, Wang Y, Liu F, Chen L, Ling J, Sun J. Novel lanthanide–polymer complexes for dye-free dual modal probes for MRI and fluorescence imaging. Polym Chem 2015. [DOI: 10.1039/c5py01011j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
High-resolution imaging is a powerful technique in theranostics and staging of tumors.
Collapse
Affiliation(s)
- Fangyi Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Tongcun Huang
- Department of Radiology
- Sir Run Run Shaw Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310016
| | - Yifei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Fei Liu
- Department of Radiology
- Sir Run Run Shaw Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310016
| | - Lumin Chen
- Department of Radiology
- Sir Run Run Shaw Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310016
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jihong Sun
- Department of Radiology
- Sir Run Run Shaw Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310016
| |
Collapse
|
303
|
Pereira C, Pereira AM, Rocha M, Freire C, Geraldes CFGC. Architectured design of superparamagnetic Fe3O4nanoparticles for application as MRI contrast agents: mastering size and magnetism for enhanced relaxivity. J Mater Chem B 2015; 3:6261-6273. [DOI: 10.1039/c5tb00789e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superparamagnetic Fe3O4nanomaterials with enhanced relaxivity were prepared by coprecipitation using different alkanolamine bases, which mastered the materials' surface magnetic properties upon size reduction.
Collapse
Affiliation(s)
- Clara Pereira
- REQUIMTE/LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - André M. Pereira
- IFIMUP and IN – Institute of Nanoscience and Nanotechnology
- Departamento de Física e Astronomia
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Mariana Rocha
- REQUIMTE/LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Cristina Freire
- REQUIMTE/LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Carlos F. G. C. Geraldes
- Departamento de Ciências da Vida
- Faculdade de Ciências e Tecnologia
- Centro de Neurociências e Biologia Celular and Centro de Química de Coimbra
- Universidade de Coimbra
- 3000-393 Coimbra
| |
Collapse
|
304
|
Hu X, Liu G, Li Y, Wang X, Liu S. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J Am Chem Soc 2014; 137:362-8. [PMID: 25495130 DOI: 10.1021/ja5105848] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rational design of theranostic nanoparticles exhibiting synergistic turn-on of therapeutic potency and enhanced diagnostic imaging in response to tumor milieu is critical for efficient personalized cancer chemotherapy. We herein fabricate self-reporting theranostic drug nanocarriers based on hyperbranched polyprodrug amphiphiles (hPAs) consisting of hyperbranched cores conjugated with reduction-activatable camptothecin prodrugs and magnetic resonance (MR) imaging contrast agent (Gd complex), and hydrophilic coronas functionalized with guanidine residues. Upon cellular internalization, reductive milieu-actuated release of anticancer drug in the active form, activation of therapeutic efficacy (>70-fold enhancement in cytotoxicity), and turn-on of MR imaging (∼9.6-fold increase in T1 relaxivity) were simultaneously achieved in the simulated cytosol milieu. In addition, guanidine-decorated hPAs exhibited extended blood circulation with a half-life up to ∼9.8 h and excellent tumor cell penetration potency. The hyperbranched chain topology thus provides a novel theranostic polyprodrug platform for synergistic imaging/chemotherapy and enhanced tumor uptake.
Collapse
Affiliation(s)
- Xianglong Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | | | | | | | | |
Collapse
|
305
|
Wigger H, Zimmermann T, Pade C. Broadening our view on nanomaterials: highlighting potentials to contribute to a sustainable materials management in preliminary assessments. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s10669-014-9530-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
306
|
Sowers MA, McCombs JR, Wang Y, Paletta JT, Morton SW, Dreaden EC, Boska MD, Ottaviani MF, Hammond PT, Rajca A, Johnson JA. Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. Nat Commun 2014; 5:5460. [PMID: 25403521 PMCID: PMC4269368 DOI: 10.1038/ncomms6460] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/02/2014] [Indexed: 12/15/2022] Open
Abstract
Stimuli-responsive multimodality imaging agents have broad potential in medical diagnostics. Herein, we report the development of a new class of branched-bottlebrush polymer dual-modality organic radical contrast agents--ORCAFluors--for combined magnetic resonance and near-infrared fluorescence imaging in vivo. These nitroxide radical-based nanostructures have longitudinal and transverse relaxation times that are on par with commonly used heavy-metal-based magnetic resonance imaging (MRI) contrast agents. Furthermore, these materials display a unique compensatory redox response: fluorescence is partially quenched by surrounding nitroxides in the native state; exposure to ascorbate or ascorbate/glutathione leads to nitroxide reduction and a concomitant 2- to 3.5-fold increase in fluorescence emission. This behaviour enables correlation of MRI contrast, fluorescence intensity and spin concentration with tissues known to possess high concentrations of ascorbate in mice. Our in vitro and in vivo results, along with our modular synthetic approach, make ORCAFluors a promising new platform for multimodality molecular imaging.
Collapse
Affiliation(s)
- Molly A Sowers
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Jessica R McCombs
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Ying Wang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Joseph T Paletta
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Stephen W Morton
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Erik C Dreaden
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael D Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - M Francesca Ottaviani
- Department of Earth, Life and Environmental Sciences, University of Urbino, Loc. Corcicchia, 61029 Urbino, Italy
| | - Paula T Hammond
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
307
|
Park JA, Lee YJ, Ko IO, Kim TJ, Chang Y, Lim SM, Kim KM, Kim JY. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide. Biochem Biophys Res Commun 2014; 455:246-50. [PMID: 25449282 DOI: 10.1016/j.bbrc.2014.10.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 11/16/2022]
Abstract
Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.
Collapse
Affiliation(s)
- Ji-Ae Park
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea.
| | - Yong Jin Lee
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - In Ok Ko
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Tae-Jeong Kim
- Institute of Biomedical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Yongmin Chang
- Institute of Biomedical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Kyeong Min Kim
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Jung Young Kim
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
308
|
Tirotta I, Dichiarante V, Pigliacelli C, Cavallo G, Terraneo G, Bombelli FB, Metrangolo P, Resnati G. (19)F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev 2014; 115:1106-29. [PMID: 25329814 DOI: 10.1021/cr500286d] [Citation(s) in RCA: 368] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ilaria Tirotta
- Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" and ‡Fondazione Centro Europeo Nanomedicina, Politecnico di Milano , Milan 20131, Italy
| | | | | | | | | | | | | | | |
Collapse
|
309
|
Carniato F, Tei L, Phadngam S, Isidoro C, Botta M. NaGdF4Nanoparticles Coated with Functionalised Ethylenediaminetetraacetic Acid as Versatile Probes for Dual Optical and Magnetic Resonance Imaging. Chempluschem 2014; 80:503-510. [DOI: 10.1002/cplu.201402245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/29/2014] [Indexed: 11/07/2022]
|
310
|
Huang G, Li H, Chen J, Zhao Z, Yang L, Chi X, Chen Z, Wang X, Gao J. Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control. NANOSCALE 2014; 6:10404-10412. [PMID: 25079966 DOI: 10.1039/c4nr02680b] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we demonstrate the tunable T1 and T2 contrast abilities of engineered iron oxide nanoparticles with high performance for liver contrast-enhanced magnetic resonance imaging (MRI) in mice. To enhance the diagnostic accuracy of MRI, large numbers of contrast agents with T1 or T2 contrast ability have been widely explored. The comprehensive investigation of high-performance MRI contrast agents with controllable T1 and T2 contrast abilities is of high importance in the field of molecular imaging. In this study, we synthesized uniform manganese-doped iron oxide (MnIO) nanoparticles with controllable size from 5 to 12 nm and comprehensively investigated their MRI contrast abilities. We revealed that the MRI contrast effects of MnIO nanoparticles are highly size-dependent. By controlling the size of MnIO nanoparticles, we can achieve T1-dominated, T2-dominated, and T1-T2 dual-mode MRI contrast agents with much higher contrast enhancement than the corresponding conventional iron oxide nanoparticles.
Collapse
Affiliation(s)
- Guoming Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Chilla SNM, Laurent S, Vander Elst L, Muller RN. Synthesis and characterization of a new lanthanide based MRI contrast agent, potential and versatile tracer for multimodal imaging. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
312
|
Belleza OJV, Villaraza AJL. Ion charge density governs selectivity in the formation of metal–Xylenol Orange (M–XO) complexes. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
313
|
Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release 2014; 190:352-70. [DOI: 10.1016/j.jconrel.2014.05.002] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022]
|
314
|
Chen Y, Zhu Q, Cui X, Tang W, Yang H, Yuan Y, Hu A. Preparation of Highly Efficient MRI Contrast Agents through Complexation of Cationic GdIII-Containing Metallosurfactant with Biocompatible Polyelectrolytes. Chemistry 2014; 20:12477-82. [DOI: 10.1002/chem.201402530] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 12/21/2022]
|
315
|
Zhou S, Wu Z, Chen X, Jia L, Zhu W. PEGylated polyethylenimine as enhanced T₁ contrast agent for efficient magnetic resonance imaging. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11459-11469. [PMID: 24983917 DOI: 10.1021/am5020875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Currently used small molecular magnetic resonance (MR) imaging contrast agents (CAs) in clinics have relatively short half-lives, which has limited the acquisition of high-resolution organ and angiographic images. Therefore, development of a facile strategy for the synthesis of long-circulating CAs with the transforming potential for MR imaging still remains a great challenge. Here we communicate the design and synthesis of PEGylated polyethylenimine (PEI) and its application as enhanced T1 CA for the long-circulating blood pool as well as efficient organ and tumor imaging. In this study, PEI was covalently grafted with gadolinium (Gd(III)) chelator and mPEG-NHS, followed by acetylation of the remaining amines to improve biocompatibility and prolong circulation time. With the relatively long circulation time (3.8 h), the formed multifunctional PEI (PEI.NHAc-DTPA(Gd(III))-mPEG) can be used as an enhanced T1 CA for blood pool and major organ imaging, and could be cleared from the body 96 h post administration through the urinary system. Importantly, the PEI.NHAc-DTPA(Gd(III))-mPEG complexes displayed a strong T1 contrast effect for tumor imaging through the enhanced permeation and retention effect. These findings suggest that the synthesized PEI.NHAc-DTPA(Gd(III))-mPEG may be used as a promising CA for T1 MR imaging of various biological systems.
Collapse
Affiliation(s)
- Shengyuan Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University , Shanghai 200003, People's Republic of China
| | | | | | | | | |
Collapse
|
316
|
Shi S, Chen F, Cai W. Biomedical applications of functionalized hollow mesoporous silica nanoparticles: focusing on molecular imaging. Nanomedicine (Lond) 2014; 8:2027-39. [PMID: 24279491 DOI: 10.2217/nnm.13.177] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hollow mesoporous silica nanoparticles (HMSNs), with a large cavity inside each original mesoporous silica nanoparticle, have recently gained increasing interest owing to their tremendous potential for cancer imaging and therapy. The last several years have witnessed a rapid development in the engineering of functionalized HMSNs (i.e., f-HMSNs), with various types of inorganic functional nanocrystals integrated into the system for imaging and therapeutic applications. In this article, we summarize the recent progress in the design and biological applications of f-HMSNs, with a special emphasis on molecular imaging. Commonly used synthetic strategies for the generation of high quality HMSNs will be discussed in detail, followed by a systematic review of engineered f-HMSNs for optical, PET, MRI and ultrasound imaging in preclinical studies. Finally, we discuss the challenges and future research directions regarding the use of f-HMSNs for cancer imaging and therapy.
Collapse
Affiliation(s)
- Sixiang Shi
- Materials Science Program, University of Wisconsin - Madison, WI, USA
| | | | | |
Collapse
|
317
|
Chen Y, Li M, Hong Y, Lam JWY, Zheng Q, Tang BZ. Dual-modal MRI contrast agent with aggregation-induced emission characteristic for liver specific imaging with long circulation lifetime. ACS APPLIED MATERIALS & INTERFACES 2014; 6:10783-10791. [PMID: 24942209 DOI: 10.1021/am502282f] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We herein report a novel dual-modal MRI contrast agent, TPE-2Gd, for both magnetic and fluorescence imaging. TPE-2Gd consists of a hydrophobic tetraphenylethene (TPE) fluorophore and two hydrophilic gadolinium (Gd) diethylenetriaminepentaacetic acid moieties. As an amphiphilic molecule, TPE-2Gd aggregates into micelles at a high concentration in aqueous medium. These aggregates are highly emissive, showing an aggregation-induced emission (AIE) characteristic. TPE-2Gd is used as a fluorescent agent for cell imaging, which demonstrates negligible cytotoxicity and excellent photostability owing to its AIE property. As a magnetic resonance imaging (MRI) contrast agent, TPE-2Gd exhibits similar longitudinal relaxivity in water (R1,TPE-2Gd = 3.36 ± 0.10 s(-1) per mM of Gd(3+)) as those commercial agents (e.g., Magnevist, R1,magnevist = 3.70 ± 0.02 s(-1) per mM of Gd(3+)). Compared with Magnevist, the circulation lifetime of TPE-2Gd nanoaggregates in living rats is extended from 10 min to 1 h. With relatively high specificity to the liver, the MR imaging could remain hyperintense in liver even after 150 min post injection. These TPE-2Gd nanoparticles can be excreted gradually via renal filtration due to the disassembly of the nanoparticles into small molecules during circulation. TPE-2Gd could thus potentially be used as a liver specific MRI contrast agent for clinical diagnosis.
Collapse
Affiliation(s)
- Yilong Chen
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen 518057, China
| | | | | | | | | | | |
Collapse
|
318
|
Sousa-Herves A, Novoa-Carballal R, Riguera R, Fernandez-Megia E. GATG dendrimers and PEGylated block copolymers: from synthesis to bioapplications. AAPS JOURNAL 2014; 16:948-61. [PMID: 25004824 DOI: 10.1208/s12248-014-9642-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/20/2014] [Indexed: 12/18/2022]
Abstract
Dendrimers are synthetic macromolecules composed of repetitive layers of branching units that emerge from a central core. They are characterized by a tunable size and precise number of peripheral groups which determine their physicochemical properties and function. Their high multivalency, functional surface, and globular architecture with diameters in the nanometer scale makes them ideal candidates for a wide range of applications. Gallic acid-triethylene glycol (GATG) dendrimers have attracted our attention as a promising platform in the biomedical field because of their high tunability and versatility. The presence of terminal azides in GATG dendrimers and poly(ethylene glycol) (PEG)-dendritic block copolymers allows their efficient functionalization with a variety of ligands of biomedical relevance including anionic and cationic groups, carbohydrates, peptides, or imaging agents. The resulting functionalized dendrimers have found application in drug and gene delivery, as antiviral agents and for the treatment of neurodegenerative diseases, in diagnosis and as tools to study multivalent carbohydrate recognition and dendrimer dynamics. Herein, we present an account on the preparation and recent applications of GATG dendrimers in these fields.
Collapse
Affiliation(s)
- Ana Sousa-Herves
- Department of Organic Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
319
|
Bennett KM, Jo JI, Cabral H, Bakalova R, Aoki I. MR imaging techniques for nano-pathophysiology and theranostics. Adv Drug Deliv Rev 2014; 74:75-94. [PMID: 24787226 DOI: 10.1016/j.addr.2014.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/02/2014] [Accepted: 04/20/2014] [Indexed: 11/25/2022]
Abstract
The advent of nanoparticle DDSs (drug delivery systems, nano-DDSs) is opening new pathways to understanding physiology and pathophysiology at the nanometer scale. A nano-DDS can be used to deliver higher local concentrations of drugs to a target region and magnify therapeutic effects. However, interstitial cells or fibrosis in intractable tumors, as occurs in pancreatic or scirrhous stomach cancer, tend to impede nanoparticle delivery. Thus, it is critical to optimize the type and size of nanoparticles to reach the target. High-resolution 3D imaging provides a means of "seeing" the nanoparticle distribution and therapeutic effects. We introduce the concept of "nano-pathophysiological imaging" as a strategy for theranostics. The strategy consists of selecting an appropriate nano-DDS and rapidly evaluating drug effects in vivo to guide the next round of therapy. In this article we classify nano-DDSs by component carrier materials and present an overview of the significance of nano-pathophysiological MRI.
Collapse
|
320
|
Wu X, Li C, Liao S, Li L, Wang T, Su Z, Wang C, Zhao J, Sui C, Lin J. Silica-Encapsulated Gd3+-Aggregated Gold Nanoclusters for In Vitro and In Vivo Multimodal Cancer Imaging. Chemistry 2014; 20:8876-82. [DOI: 10.1002/chem.201403202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Indexed: 11/12/2022]
|
321
|
Tirotta I, Mastropietro A, Cordiglieri C, Gazzera L, Baggi F, Baselli G, Bruzzone MG, Zucca I, Cavallo G, Terraneo G, Baldelli Bombelli F, Metrangolo P, Resnati G. A Superfluorinated Molecular Probe for Highly Sensitive in Vivo19F-MRI. J Am Chem Soc 2014; 136:8524-7. [DOI: 10.1021/ja503270n] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
322
|
Doan BT, Crauste-Manciet S, Bourgaux C, Dhotel H, Jugé L, Brossard D, Scherman D, Bessodes M, Cuenod CA, Mignet N. Lipidic spherulites as magnetic resonance imaging contrast agents. NEW J CHEM 2014. [DOI: 10.1039/c4nj00571f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
323
|
Martinelli J, Thangavel K, Tei L, Botta M. Dendrimeric β-Cyclodextrin/GdIIIChelate Supramolecular Host-Guest Adducts as High-Relaxivity MRI Probes. Chemistry 2014; 20:10944-52. [DOI: 10.1002/chem.201402418] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 11/11/2022]
|
324
|
Hu YH. The first magnetic-nanoparticle-free carbon-based contrast agent of magnetic-resonance imaging-fluorinated graphene oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1451-1452. [PMID: 24376224 DOI: 10.1002/smll.201303644] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Indexed: 06/03/2023]
Affiliation(s)
- Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA
| |
Collapse
|
325
|
Cao L, Li B, Yi P, Zhang H, Dai J, Tan B, Deng Z. The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides. Biomaterials 2014; 35:4168-74. [DOI: 10.1016/j.biomaterials.2014.01.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/29/2014] [Indexed: 01/11/2023]
|
326
|
Ling D, Park W, Park SJ, Lu Y, Kim KS, Hackett MJ, Kim BH, Yim H, Jeon YS, Na K, Hyeon T. Multifunctional Tumor pH-Sensitive Self-Assembled Nanoparticles for Bimodal Imaging and Treatment of Resistant Heterogeneous Tumors. J Am Chem Soc 2014; 136:5647-55. [DOI: 10.1021/ja4108287] [Citation(s) in RCA: 382] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Daishun Ling
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Korea
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | - Wooram Park
- Department
of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 420-743, Korea
| | - Sin-jung Park
- Department
of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 420-743, Korea
| | - Yang Lu
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Korea
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | - Kyoung Sub Kim
- Department
of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 420-743, Korea
| | - Michael J. Hackett
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Korea
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | - Byung Hyo Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Korea
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | - Hyeona Yim
- Department
of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 420-743, Korea
| | - Yong Sun Jeon
- Department
of Radiology, Inha University College of Medicine, Incheon 420-751, Korea
| | - Kun Na
- Department
of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 420-743, Korea
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Korea
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
327
|
Xue S, Qiao J, Jiang J, Hubbard K, White N, Wei L, Li S, Liu ZR, Yang JJ. Design of ProCAs (protein-based Gd(3+) MRI contrast agents) with high dose efficiency and capability for molecular imaging of cancer biomarkers. Med Res Rev 2014; 34:1070-99. [PMID: 24615853 DOI: 10.1002/med.21313] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic resonance imaging (MRI) is the leading imaging technique for disease diagnostics, providing high resolution, three-dimensional images noninvasively. MRI contrast agents are designed to improve the contrast and sensitivity of MRI. However, current clinically used MRI contrast agents have relaxivities far below the theoretical upper limit, which largely prevent advancing molecular imaging of biomarkers with desired sensitivity and specificity. This review describes current progress in the development of a new class of protein-based MRI contrast agents (ProCAs) with high relaxivity using protein design to optimize the parameters that govern relaxivity. Further, engineering with targeting moiety allows these contrast agents to be applicable for molecular imaging of prostate cancer biomarkers by MRI. The developed protein-based contrast agents also exhibit additional in vitro and in vivo advantages for molecular imaging of disease biomarkers, such as high metal-binding stability and selectivity, reduced toxicity, proper blood circulation time, and higher permeability in tumor tissue in addition to improved relaxivities.
Collapse
Affiliation(s)
- Shenghui Xue
- Departments of Chemistry and Biology, Georgia State University, Atlanta, Georgia; Center for Diagnostics & Therapeutics (CDT), Georgia State University, Atlanta, Georgia; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia
| | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Ansari C, Tikhomirov GA, Hong SH, Falconer RA, Loadman PM, Gill JH, Castaneda R, Hazard FK, Tong L, Lenkov OD, Felsher DW, Rao J, Daldrup-Link HE. Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:566-75, 417. [PMID: 24038954 PMCID: PMC3946335 DOI: 10.1002/smll.201301456] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/03/2013] [Indexed: 05/05/2023]
Abstract
A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional "theranostic" nanoparticles (TNPs) is described for enzyme-specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA-approved iron oxide nanoparticles ferumoxytol to an MMP-activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO-ICTs (TNPs). Significant cell death is observed in TNP-treated MMP-14 positive MMTV-PyMT breast cancer cells in vitro, but not MMP-14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV-PyMT tumor-bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO-ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO-ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme-activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens.
Collapse
Affiliation(s)
- Celina Ansari
- Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, Stanford, CA, 94305-5614, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Shen YC, Zhou X, Xia XT, Yan GP, Dong JP, Lan XL, Guo JF, Zhang YX. Synthesis and properties of neutral gadolinium and technetium-99m-labeled complexes. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.892591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yan-Chun Shen
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xin Zhou
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xiao-Tian Xia
- Center for PET of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Ping Yan
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ju-Ping Dong
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xiao-Li Lan
- Center for PET of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Fang Guo
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yong-Xue Zhang
- Center for PET of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
330
|
Laznickova A, Biricova V, Laznicek M, Hermann P. Mono(pyridine-N-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with 177Lu: Radiolabeling and biodistribution studies. Appl Radiat Isot 2014; 84:70-7. [DOI: 10.1016/j.apradiso.2013.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/22/2013] [Accepted: 10/26/2013] [Indexed: 02/05/2023]
|
331
|
Huang G, Hu J, Zhang H, Zhou Z, Chi X, Gao J. Highly magnetic iron carbide nanoparticles as effective T(2) contrast agents. NANOSCALE 2014; 6:726-730. [PMID: 24287667 DOI: 10.1039/c3nr04691e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper reports that iron carbide nanoparticles with high air-stability and strong saturation magnetization can serve as effective T2 contrast agents for magnetic resonance imaging. Fe5C2 nanoparticles (~20 nm in diameter) exhibit strong contrast enhancement with an r2 value of 283.2 mM(-1) S(-1), which is about twice as high as that of spherical Fe3O4 nanoparticles (~140.9 mM(-1) S(-1)). In vivo experiments demonstrate that Fe5C2 nanoparticles are able to produce much more significant MRI contrast enhancement than conventional Fe3O4 nanoparticles in living subjects, which holds great promise in biomedical applications.
Collapse
Affiliation(s)
- Guoming Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | |
Collapse
|
332
|
Nazemi A, Gillies ER. Dendrimer Bioconjugates: Synthesis and Applications. CHEMISTRY OF BIOCONJUGATES 2014:146-183. [DOI: 10.1002/9781118775882.ch5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
333
|
Li T, Qian Y, Ye M, Tang J, Hu H, Shen Y. Synthesis and Properties of a Biodegradable Dendritic Magnetic Resonance Imaging Contrast Agent. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201300889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
334
|
Binding of a dimeric manganese porphyrin to serum albumin: towards a gadolinium-free blood-pool T
1 MRI contrast agent. J Biol Inorg Chem 2014; 19:229-35. [DOI: 10.1007/s00775-013-1073-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
|
335
|
Li Y, Laurent S, Esser L, Elst LV, Muller RN, Lowe AB, Boyer C, Davis TP. The precise molecular location of gadolinium atoms has a significant influence on the efficacy of nanoparticulate MRI positive contrast agents. Polym Chem 2014. [DOI: 10.1039/c3py01676e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
336
|
Debroye E, Eliseeva SV, Laurent S, Vander Elst L, Muller RN, Parac-Vogt TN. Micellar self-assemblies of gadolinium(iii)/europium(iii) amphiphilic complexes as model contrast agents for bimodal imaging. Dalton Trans 2014; 43:3589-600. [DOI: 10.1039/c3dt52842a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
337
|
Menelaou M, Georgoula K, Simeonidis K, Dendrinou-Samara C. Evaluation of nickel ferrite nanoparticles coated with oleylamine by NMR relaxation measurements and magnetic hyperthermia. Dalton Trans 2014; 43:3626-36. [DOI: 10.1039/c3dt52860j] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
338
|
Fuentes-Paniagua E, Hernández-Ros JM, Sánchez-Milla M, Camero MA, Maly M, Pérez-Serrano J, Copa-Patiño JL, Sánchez-Nieves J, Soliveri J, Gómez R, Javier de la Mata F. Carbosilane cationic dendrimers synthesized by thiol–ene click chemistry and their use as antibacterial agents. RSC Adv 2014. [DOI: 10.1039/c3ra45408h] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
339
|
Bastakoti BP, Sukegawa H, Wu KCW, Yamauchi Y. Synthesis of porous iron oxide microspheres by a double hydrophilic block copolymer. RSC Adv 2014. [DOI: 10.1039/c3ra47490a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
340
|
Cheng W, Rajendran R, Ren W, Gu L, Zhang Y, Chuang KH, Liu Y. A facile synthetic approach to a biodegradable polydisulfide MRI contrast agent. J Mater Chem B 2014; 2:5295-5301. [DOI: 10.1039/c4tb00413b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A biodegradable novel polydisulfide MRI contrast agent forming self-assembly in aqueous solution with a low cytotoxicity and a higherr1is promising for producing better MRI imaging with fewer side effects.
Collapse
Affiliation(s)
- Weiren Cheng
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- , Singapore
- Department of Biomedical Engineering
- National University of Singapore
| | - Reshmi Rajendran
- Singapore Bioimaging Consortium
- A*STAR (Agency for Science, Technology and Research)
- , Singapore
| | - Wei Ren
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- , Singapore
| | - Liuqun Gu
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- , Singapore
| | - Yong Zhang
- Department of Biomedical Engineering
- National University of Singapore
- , Singapore
| | - Kai-Hsiang Chuang
- Singapore Bioimaging Consortium
- A*STAR (Agency for Science, Technology and Research)
- , Singapore
| | - Ye Liu
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- , Singapore
| |
Collapse
|
341
|
Atabaev TS, Lee JH, Han DW, Kim HK, Hwang YH. Ultrafine PEG-capped gadolinia nanoparticles: cytotoxicity and potential biomedical applications for MRI and luminescent imaging. RSC Adv 2014. [DOI: 10.1039/c4ra03560g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultrafine PEG-capped gadolinium oxide NPs doped with erbium ions, which could serve as a dual-imaging agent for MRI/optical imaging were synthesized using a simple, green, and quick method.
Collapse
Affiliation(s)
- Timur Sh. Atabaev
- Department of Nanomaterials Engineering
- College of Nanoscience and Nanotechnology Pusan National University
- Miryang 627-706, Republic of Korea
| | - Jong Ho Lee
- Department of Cogno-Mechatronics Engineering
- Pusan National University
- Busan 609-735, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering
- Pusan National University
- Busan 609-735, Republic of Korea
| | - Hyung-Kook Kim
- Department of Nanomaterials Engineering
- College of Nanoscience and Nanotechnology Pusan National University
- Miryang 627-706, Republic of Korea
| | - Yoon-Hwae Hwang
- Department of Nanomaterials Engineering
- College of Nanoscience and Nanotechnology Pusan National University
- Miryang 627-706, Republic of Korea
| |
Collapse
|
342
|
Debroye E, Parac-Vogt TN. Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging. Chem Soc Rev 2014; 43:8178-92. [DOI: 10.1039/c4cs00201f] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the spotlight: polymetallic complexes permitting efficient sensitization of lanthanide luminescence and exhibiting favorable relaxometric properties.
Collapse
Affiliation(s)
- Elke Debroye
- Department of Chemistry
- KU Leuven
- 3001 Leuven, Belgium
| | | |
Collapse
|
343
|
Thirunarayanan A, Raja S, Mohanraj G, Rajakumar P. Synthesis of chiral core based triazole dendrimers with m-terphenyl surface unit and their antibacterial studies. RSC Adv 2014. [DOI: 10.1039/c4ra04967e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antibacterial activity against Shigella dysenteriae, Staphylococcus aureus and Serratia marcescen was studied with S-BINOL based triazole dendrimers 1, 2 and 3 with m-terphenyl surface units. Supported by molecular docking studies, the activity dendrimer 2 was comparable to that of streptomycin.
Collapse
Affiliation(s)
- Ayyavu Thirunarayanan
- Department of Organic Chemistry
- University of Madras
- Maraimalai Campus (Guindy)
- Chennai – 600 025, India
| | - Sebastian Raja
- Department of Organic Chemistry
- University of Madras
- Maraimalai Campus (Guindy)
- Chennai – 600 025, India
| | - Gunasekaran Mohanraj
- Centre for Advanced Studies in Botany
- University of Madras
- Maraimalai Campus (Guindy)
- Chennai-600 025, India
| | - Perumal Rajakumar
- Department of Organic Chemistry
- University of Madras
- Maraimalai Campus (Guindy)
- Chennai – 600 025, India
| |
Collapse
|
344
|
Liu D, He C, Poon C, Lin W. Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery. J Mater Chem B 2014; 2:8249-8255. [DOI: 10.1039/c4tb00751d] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mn-zoledronate NCP carries 63 wt% of zoledronate for cancer therapy and 13 wt% of Mn2+ for T1-weighted magnetic resonance imaging.
Collapse
Affiliation(s)
- Demin Liu
- Department of Chemistry
- University of Chicago
- Chicago, USA
| | - Chunbai He
- Department of Chemistry
- University of Chicago
- Chicago, USA
| | | | - Wenbin Lin
- Department of Chemistry
- University of Chicago
- Chicago, USA
| |
Collapse
|
345
|
Garofalo A, Parat A, Bordeianu C, Ghobril C, Kueny-Stotz M, Walter A, Jouhannaud J, Begin-Colin S, Felder-Flesch D. Efficient synthesis of small-sized phosphonated dendrons: potential organic coatings of iron oxide nanoparticles. NEW J CHEM 2014. [DOI: 10.1039/c4nj00654b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
346
|
Molecular imaging of EGFR/HER2 cancer biomarkers by protein MRI contrast agents. J Biol Inorg Chem 2013; 19:259-70. [PMID: 24366655 DOI: 10.1007/s00775-013-1076-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/06/2013] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR) and HER2 are major prognosis biomarkers and drug targets overexpressed in various types of cancer cells. There is a pressing need to develop MRI contrast agents capable of enhancing the contrast between normal tissues and tumors with high relaxivity, capable of targeting tumors, and with high intratumoral distribution and minimal toxicity. In this review, we first discuss EGFR signaling and its role in tumor progression as a major drug target. We then report our progress in the development of protein contrast agents with significant improvement of both r1 and r2 relaxivities, pharmacokinetics, in vivo retention time, and in vivo dose efficiency. Finally, we report our effort in the development of EGFR-targeted protein contrast agents with the capability to cross the endothelial boundary and with good tissue distribution across the entire tumor mass. The noninvasive capability of MRI to visualize spatially and temporally the intratumoral distribution as well as quantify the levels of EGFR and HER2 would greatly improve our ability to track changes of the biomarkers during tumor progression, monitor treatment efficacy, aid in patient selection, and further develop novel targeted therapies for clinical application.
Collapse
|
347
|
Wang F, Liu J. Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide. NANOSCALE 2013; 5:12375-82. [PMID: 24162019 DOI: 10.1039/c3nr04143c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Studying interactions between nano-carbons and lipid membranes is important for multiplexed drug delivery, device fabrication and for understanding toxicity. Herein, we report that nanodiamond (ND, sp(3) carbon) forms a complex with highly biocompatible zwitterionic liposomes based on hydrogen bonding, which is confirmed by pH-dependent and urea-dependent assays. Despite such weak interaction, the complex is highly stable. Comparisons were made with two sp(2) carbons: nanoscale graphene oxide (NGO) and carbon nanotubes (CNTs), where CNT adsorption is the weakest. Adsorption of the nano-carbons does not induce liposome leakage or affect lipid phase transition temperature. Therefore, the potential toxicity of nano-carbons is unlikely to be related to direct membrane damage. ND facilitates cellular uptake of liposomes and co-delivery of negatively charged calcein and positively charged doxorubicin has been demonstrated. ND has the lowest toxicity, while CNTs and NGO are slightly more toxic. The effect of introducing fusogenic lipids and cholesterol was further studied to understand the effect of lipid formulation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| | | |
Collapse
|
348
|
Synthesis and Characterisation of First Generation Luminescent Lanthanide Complexes Suitable for Being Adapted for Uptake via the Mannose Receptor. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/498598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the aim of directing lanthanide complex uptake via the mannose receptor, a first generation of luminescent lanthanide complexes has been developed with an α-D-mannose targeting motif. Four complexes were produced to investigate photophysical properties and determine the effect of the coordinated mannose residue on emission intensity. The free hydroxyls of the α-D-mannose residue quenched lanthanide phosphorescence due to their close proximity, though they did not bind the lanthanide centre as observed by q-values ≈1.0 for all complexes between pH 3 and 10. Fluorescent emission was found to vary significantly with pH, though phosphorescent emission was relatively insensitive to pH. This lack of pH sensitivity has the potential to provide stable emission for the visualisation of the endosome-lysosome system where acidic pH is often encountered.
Collapse
|
349
|
Valetti S, Mura S, Stella B, Couvreur P. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice. J Nanobiotechnology 2013; 11 Suppl 1:S6. [PMID: 24564841 PMCID: PMC4029540 DOI: 10.1186/1477-3155-11-s1-s6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field.
Collapse
|
350
|
Ultrahigh relaxivity and safe probes of manganese oxide nanoparticles for in vivo imaging. Sci Rep 2013; 3:3424. [PMID: 24305731 PMCID: PMC4070373 DOI: 10.1038/srep03424] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/18/2013] [Indexed: 12/31/2022] Open
Abstract
Mn-based nanoparticles (NPs) have emerged as new class of probes for magnetic resonance imaging due to the impressive contrast ability. However, the reported Mn-based NPs possess low relaxivity and there are no immunotoxicity data regarding Mn-based NPs as contrast agents. Here, we demonstrate the ultrahigh relaxivity of water protons of 8.26 mM(-1) s(-1) from the Mn3O4 NPs synthesized by a simple and green technique, which is twice higher than that of commercial gadolinium (Gd)-based contrast agents (4.11 mM(-1) s(-1)) and the highest value reported to date for Mn-based NPs. We for the first time demonstrate these Mn3O4 NPs biocompatibilities both in vitro and in vivo are satisfactory based on systematical studies of the intrinsic toxicity including cell viability of human nasopharyngeal carcinoma cells, normal nasopharyngeal epithelium, apoptosis in cells and in vivo immunotoxicity. These findings pave the way for the practical clinical diagnosis of Mn based NPs as safe probes for in vivo imaging.
Collapse
|