301
|
Early-onset epileptic encephalopathy with de novo SCN8A mutation. Epilepsy Res 2018; 139:9-13. [DOI: 10.1016/j.eplepsyres.2017.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/09/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023]
|
302
|
Sakata K, Wang Y, Urabe D, Inoue M. Synthesis of the Tetracyclic Structure of Batrachotoxin Enabled by Bridgehead Radical Coupling and Pd/Ni-Promoted Ullmann Reaction. Org Lett 2017; 20:130-133. [PMID: 29232148 DOI: 10.1021/acs.orglett.7b03482] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The steroidal ABCD-ring system of the potent neurotoxin batrachotoxin was efficiently assembled in a convergent fashion. Bridgehead radical coupling between the simple AB-ring and D-ring fragments (3 and 4) formed the sterically congested linkage at the C9-oxygen-attached tetrasubstituted carbon. The C-ring was then cyclized by the Pd/Ni-promoted Ullmann reaction of the vinyl triflate and vinyl bromide of 19, giving rise to tetracyclic structure 1.
Collapse
Affiliation(s)
- Komei Sakata
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yinghua Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Urabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
303
|
Fouillet A, Watson JF, Piekarz AD, Huang X, Li B, Priest B, Nisenbaum E, Sher E, Ursu D. Characterisation of Nav1.7 functional expression in rat dorsal root ganglia neurons by using an electrical field stimulation assay. Mol Pain 2017; 13:1744806917745179. [PMID: 29166836 PMCID: PMC5731621 DOI: 10.1177/1744806917745179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The Nav1.7 subtype of voltage-gated sodium channels is specifically expressed in sensory and sympathetic ganglia neurons where it plays an important role in the generation and transmission of information related to pain sensation. Human loss or gain-of-function mutations in the gene encoding Nav1.7 channels (SCN9A) are associated with either absence of pain, as reported for congenital insensitivity to pain, or with exacerbation of pain, as reported for primary erythromelalgia and paroxysmal extreme pain disorder. Based on this important human genetic evidence, numerous drug discovery efforts are ongoing in search for Nav1.7 blockers as a novel therapeutic strategy to treat pain conditions. Results We are reporting here a novel approach to study Nav1.7 function in cultured rat sensory neurons. We used live cell imaging combined with electrical field stimulation to evoke and record action potential-driven calcium transients in the neurons. We have shown that the tarantula venom peptide Protoxin-II, a known Nav1.7 subtype selective blocker, inhibited electrical field stimulation-evoked calcium responses in dorsal root ganglia neurons with an IC50 of 72 nM, while it had no activity in embryonic hippocampal neurons. The results obtained in the live cell imaging assay were supported by patch-clamp studies as well as by quantitative PCR and Western blotting experiments that confirmed the presence of Nav1.7 mRNA and protein in dorsal root ganglia but not in embryonic hippocampal neurons. Conclusions The findings presented here point to a selective effect of Protoxin-II in sensory neurons and helped to validate a new method for investigating and comparing Nav1.7 pharmacology in sensory versus central nervous system neurons. This will help in the characterisation of the selectivity of novel Nav1.7 modulators using native ion channels and will provide the basis for the development of higher throughput models for enabling pain-relevant phenotypic screening.
Collapse
Affiliation(s)
- Antoine Fouillet
- 1 Lilly Research Centre, 1539 Eli Lilly and Company , Windlesham, UK
| | - Jake F Watson
- 1 Lilly Research Centre, 1539 Eli Lilly and Company , Windlesham, UK
| | - Andrew D Piekarz
- 2 Lilly Research Laboratories, 1539 Eli Lilly and Company , IN, USA
| | - Xiaofang Huang
- 2 Lilly Research Laboratories, 1539 Eli Lilly and Company , IN, USA
| | - Baolin Li
- 2 Lilly Research Laboratories, 1539 Eli Lilly and Company , IN, USA
| | - Birgit Priest
- 2 Lilly Research Laboratories, 1539 Eli Lilly and Company , IN, USA
| | - Eric Nisenbaum
- 2 Lilly Research Laboratories, 1539 Eli Lilly and Company , IN, USA
| | - Emanuele Sher
- 1 Lilly Research Centre, 1539 Eli Lilly and Company , Windlesham, UK
| | - Daniel Ursu
- 1 Lilly Research Centre, 1539 Eli Lilly and Company , Windlesham, UK
| |
Collapse
|
304
|
Storer RI, Pike A, Swain NA, Alexandrou AJ, Bechle BM, Blakemore DC, Brown AD, Castle NA, Corbett MS, Flanagan NJ, Fengas D, Johnson MS, Jones LH, Marron BE, Payne CE, Printzenhoff D, Rawson DJ, Rose CR, Ryckmans T, Sun J, Theile JW, Torella R, Tseng E, Warmus JS. Highly potent and selective NaV1.7 inhibitors for use as intravenous agents and chemical probes. Bioorg Med Chem Lett 2017; 27:4805-4811. [DOI: 10.1016/j.bmcl.2017.09.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/17/2017] [Accepted: 09/27/2017] [Indexed: 01/04/2023]
|
305
|
Wu YJ, Guernon J, McClure A, Luo G, Rajamani R, Ng A, Easton A, Newton A, Bourin C, Parker D, Mosure K, Barnaby O, Soars MG, Knox RJ, Matchett M, Pieschl R, Herrington J, Chen P, Sivarao D, Bristow LJ, Meanwell NA, Bronson J, Olson R, Thompson LA, Dzierba C. Discovery of non-zwitterionic aryl sulfonamides as Nav1.7 inhibitors with efficacy in preclinical behavioral models and translational measures of nociceptive neuron activation. Bioorg Med Chem 2017; 25:5490-5505. [DOI: 10.1016/j.bmc.2017.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 01/12/2023]
|
306
|
Tosti E, Boni R, Gallo A. µ-Conotoxins Modulating Sodium Currents in Pain Perception and Transmission: A Therapeutic Potential. Mar Drugs 2017; 15:E295. [PMID: 28937587 PMCID: PMC5666403 DOI: 10.3390/md15100295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022] Open
Abstract
The Conus genus includes around 500 species of marine mollusks with a peculiar production of venomous peptides known as conotoxins (CTX). Each species is able to produce up to 200 different biological active peptides. Common structure of CTX is the low number of amino acids stabilized by disulfide bridges and post-translational modifications that give rise to different isoforms. µ and µO-CTX are two isoforms that specifically target voltage-gated sodium channels. These, by inducing the entrance of sodium ions in the cell, modulate the neuronal excitability by depolarizing plasma membrane and propagating the action potential. Hyperexcitability and mutations of sodium channels are responsible for perception and transmission of inflammatory and neuropathic pain states. In this review, we describe the current knowledge of µ-CTX interacting with the different sodium channels subtypes, the mechanism of action and their potential therapeutic use as analgesic compounds in the clinical management of pain conditions.
Collapse
Affiliation(s)
- Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 75100 Potenza, Italy.
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
307
|
Baldisserotto B, Parodi TV, Stevens ED. Lack of postexposure analgesic efficacy of low concentrations of eugenol in zebrafish. Vet Anaesth Analg 2017; 45:48-56. [PMID: 29239756 DOI: 10.1016/j.vaa.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To test the postexposure analgesic efficacy of low doses of eugenol in zebrafish. STUDY DESIGN Prospective experimental study. ANIMALS A total of 76 large adult zebrafish (Danio rerio). METHODS Fish swimming behavior (median velocity, freeze time, high-speed swimming and distance moved in the vertical direction) was recorded in a 1.6 L video arena before and after exposure to eugenol (0, 1, 2, 5, 10 and 20 mg L-1). In a second experiment, fish were anesthetized with 2-phenoxy-ethanol and treated with an injection of 5% acetic acid (noxious stimulus), and then exposed to 0, 1, 2 and 5 mg L-1 eugenol. The fish swimming behavior was also recorded. RESULTS The higher doses (10 and 20 mg L-1) reduced the median velocity, high-speed swimming and distance moved in the vertical direction, and increased the freeze time. Zebrafish behavior was not altered by eugenol (1, 2 and 5 mg L-1) after noxious stimulation. CONCLUSIONS AND CLINICAL RELEVANCE The change in the behavior of zebrafish associated with a noxious stimulus can be monitored and is a good model for studying analgesia in fish. Eugenol (10 and 20 mg L-1) induced zebrafish sedation. The response after a noxious stimulus was not affected by postexposure to lower doses, and thus we cannot recommend its use as an analgesic.
Collapse
Affiliation(s)
- Bernardo Baldisserotto
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Thaylise V Parodi
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - E Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| |
Collapse
|
308
|
Biswas K, Nixey TE, Murray JK, Falsey JR, Yin L, Liu H, Gingras J, Hall BE, Herberich B, Holder JR, Li H, Ligutti J, Lin MHJ, Liu D, Soriano BD, Soto M, Tran L, Tegley CM, Zou A, Gunasekaran K, Moyer BD, Doherty L, Miranda LP. Engineering Antibody Reactivity for Efficient Derivatization to Generate Na V1.7 Inhibitory GpTx-1 Peptide-Antibody Conjugates. ACS Chem Biol 2017; 12:2427-2435. [PMID: 28800217 DOI: 10.1021/acschembio.7b00542] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The voltage-gated sodium channel NaV1.7 is a genetically validated pain target under investigation for the development of analgesics. A therapeutic with a less frequent dosing regimen would be of value for treating chronic pain; however functional NaV1.7 targeting antibodies are not known. In this report, we describe NaV1.7 inhibitory peptide-antibody conjugates as an alternate construct for potential prolonged channel blockade through chemical derivatization of engineered antibodies. We previously identified NaV1.7 inhibitory peptide GpTx-1 from tarantula venom and optimized its potency and selectivity. Tethering GpTx-1 peptides to antibodies bifunctionally couples FcRn-based antibody recycling attributes to the NaV1.7 targeting function of the peptide warhead. Herein, we conjugated a GpTx-1 peptide to specific engineered cysteines in a carrier anti-2,4-dinitrophenol monoclonal antibody using polyethylene glycol linkers. The reactivity of 13 potential cysteine conjugation sites in the antibody scaffold was tuned using a model alkylating agent. Subsequent reactions with the peptide identified cysteine locations with the highest conversion to desired conjugates, which blocked NaV1.7 currents in whole cell electrophysiology. Variations in attachment site, linker, and peptide loading established design parameters for potency optimization. Antibody conjugation led to in vivo half-life extension by 130-fold relative to a nonconjugated GpTx-1 peptide and differential biodistribution to nerve fibers in wild-type but not NaV1.7 knockout mice. This study describes the optimization and application of antibody derivatization technology to functionally inhibit NaV1.7 in engineered and neuronal cells.
Collapse
Affiliation(s)
- Kaustav Biswas
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Thomas E. Nixey
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Justin K. Murray
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - James R. Falsey
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Li Yin
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Hantao Liu
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jacinthe Gingras
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian E. Hall
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brad Herberich
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jerry Ryan Holder
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Hongyan Li
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joseph Ligutti
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Min-Hwa Jasmine Lin
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Dong Liu
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian D. Soriano
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Marcus Soto
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Linh Tran
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Christopher M. Tegley
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Anrou Zou
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kannan Gunasekaran
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bryan D. Moyer
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Liz Doherty
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Les P. Miranda
- Therapeutic Discovery, ‡Neuroscience, and §Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery, ⊥Neuroscience, and #Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
309
|
Alyahya B, Friesen M, Nauche B, Laliberté M. Acute lamotrigine overdose: a systematic review of published adult and pediatric cases. Clin Toxicol (Phila) 2017; 56:81-89. [DOI: 10.1080/15563650.2017.1370096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bader Alyahya
- Clinical Pharmacology and Toxicology Program, McGill University, Montreal, QC, Canada
- Emergency Department, King Saud University, Riyadh, Saudi Arabia
| | - Marjorie Friesen
- Pharmacy Department, McGill University Health Centre, Montreal, QC, Canada
| | - Bénédicte Nauche
- Library Department, McGill University Health Centre, Montreal, QC, Canada
| | - Martin Laliberté
- McGill University Health Centre, Emergency Medicine, McGill University, Montreal, QC, Canada
- Centre anti-poison du Québec, Quebec City, QC, Canada
| |
Collapse
|
310
|
Hilder TA, Robinson A, Chung SH. Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNa v1.7. ACS Chem Neurosci 2017; 8:1747-1755. [PMID: 28586206 DOI: 10.1021/acschemneuro.7b00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mutations of hNav1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNav1.7 specific inhibitors have been identified, most of which interact with the voltage-sensing domain of the voltage-activated sodium ion channel. In our previous computational study, we demonstrated that a [Lys6]-C84 fullerene binds tightly (affinity of 46 nM) to NavAb, the voltage-gated sodium channel from the bacterium Arcobacter butzleri. Here, we extend this work and, using molecular dynamics simulations, demonstrate that the same [Lys6]-C84 fullerene binds strongly (2.7 nM) to the pore of a modeled human sodium ion channel hNav1.7. In contrast, the fullerene binds only weakly to a mutated model of hNav1.7 (I1399D) (14.5 mM) and a model of the skeletal muscle hNav1.4 (3.7 mM). Comparison of one representative sequence from each of the nine human sodium channel isoforms shows that only hNav1.7 possesses residues that are critical for binding the fullerene derivative and blocking the channel pore.
Collapse
Affiliation(s)
- Tamsyn A. Hilder
- School
of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
- Computational
Biophysics Group, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Anna Robinson
- Computational
Biophysics Group, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Shin-Ho Chung
- Computational
Biophysics Group, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
311
|
Swain NA, Batchelor D, Beaudoin S, Bechle BM, Bradley PA, Brown AD, Brown B, Butcher KJ, Butt RP, Chapman ML, Denton S, Ellis D, Galan SRG, Gaulier SM, Greener BS, de Groot MJ, Glossop MS, Gurrell IK, Hannam J, Johnson MS, Lin Z, Markworth CJ, Marron BE, Millan DS, Nakagawa S, Pike A, Printzenhoff D, Rawson DJ, Ransley SJ, Reister SM, Sasaki K, Storer RI, Stupple PA, West CW. Discovery of Clinical Candidate 4-[2-(5-Amino-1H-pyrazol-4-yl)-4-chlorophenoxy]-5-chloro-2-fluoro-N-1,3-thiazol-4-ylbenzenesulfonamide (PF-05089771): Design and Optimization of Diaryl Ether Aryl Sulfonamides as Selective Inhibitors of NaV1.7. J Med Chem 2017; 60:7029-7042. [DOI: 10.1021/acs.jmedchem.7b00598] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Serge Beaudoin
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | - Bruce M. Bechle
- Worldwide
Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | | | | | | | | | | | - Mark L. Chapman
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | | | | | | | | | | | | | | | | | - Matthew S. Johnson
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | - Zhixin Lin
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | - Brian E. Marron
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | | | | | - David Printzenhoff
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | | | - Steven M. Reister
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | | | | | - Christopher W. West
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| |
Collapse
|
312
|
Discovery of a biarylamide series of potent, state-dependent NaV1.7 inhibitors. Bioorg Med Chem Lett 2017; 27:3817-3824. [DOI: 10.1016/j.bmcl.2017.06.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 11/20/2022]
|
313
|
Logan MM, Toma T, Thomas-Tran R, Du Bois J. Asymmetric synthesis of batrachotoxin: Enantiomeric toxins show functional divergence against NaV. Science 2017; 354:865-869. [PMID: 27856903 DOI: 10.1126/science.aag2981] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/14/2016] [Indexed: 01/22/2023]
Abstract
The steroidal neurotoxin (-)-batrachotoxin functions as a potent agonist of voltage-gated sodium ion channels (NaVs). Here we report concise asymmetric syntheses of the natural (-) and non-natural (+) antipodes of batrachotoxin, as well both enantiomers of a C-20 benzoate-modified derivative. Electrophysiological characterization of these molecules against NaV subtypes establishes the non-natural toxin enantiomer as a reversible antagonist of channel function, markedly different in activity from (-)-batrachotoxin. Protein mutagenesis experiments implicate a shared binding side for the enantiomers in the inner pore cavity of NaV These findings motivate and enable subsequent studies aimed at revealing how small molecules that target the channel inner pore modulate NaV dynamics.
Collapse
Affiliation(s)
- Matthew M Logan
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | - Tatsuya Toma
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.
| |
Collapse
|
314
|
Pero JE, Rossi MA, Lehman HD, Kelly MJ, Mulhearn JJ, Wolkenberg SE, Cato MJ, Clements MK, Daley CJ, Filzen T, Finger EN, Gregan Y, Henze DA, Jovanovska A, Klein R, Kraus RL, Li Y, Liang A, Majercak JM, Panigel J, Urban MO, Wang J, Wang YH, Houghton AK, Layton ME. Benzoxazolinone aryl sulfonamides as potent, selective Na v 1.7 inhibitors with in vivo efficacy in a preclinical pain model. Bioorg Med Chem Lett 2017; 27:2683-2688. [DOI: 10.1016/j.bmcl.2017.04.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
|
315
|
Hernandez JS, Wainwright ML, Mozzachiodi R. Long-term sensitization training in Aplysia decreases the excitability of a decision-making neuron through a sodium-dependent mechanism. ACTA ACUST UNITED AC 2017; 24:257-261. [PMID: 28507035 PMCID: PMC5435880 DOI: 10.1101/lm.044883.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/31/2017] [Indexed: 11/24/2022]
Abstract
In Aplysia, long-term sensitization (LTS) occurs concurrently with a suppression of feeding. At the cellular level, the suppression of feeding is accompanied by decreased excitability of decision-making neuron B51. We examined the contribution of voltage-gated Na+ and K+ channels to B51 decreased excitability. In a pharmacologically isolated Na+ channels environment, LTS training significantly increased B51 firing threshold, compared with untrained controls. Conversely, in a pharmacologically isolated K+ channels environment, no differences were observed between trained and untrained animals in either amplitude or area of B51 K+-dependent depolarizations. These findings suggest that Na+ channels contribute to the decrease in B51 excitability induced by LTS training.
Collapse
Affiliation(s)
- John S Hernandez
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Marcy L Wainwright
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Riccardo Mozzachiodi
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| |
Collapse
|
316
|
Kornecook TJ, Yin R, Altmann S, Be X, Berry V, Ilch CP, Jarosh M, Johnson D, Lee JH, Lehto SG, Ligutti J, Liu D, Luther J, Matson D, Ortuno D, Roberts J, Taborn K, Wang J, Weiss MM, Yu V, Zhu DXD, Fremeau RT, Moyer BD. Pharmacologic Characterization of AMG8379, a Potent and Selective Small Molecule Sulfonamide Antagonist of the Voltage-Gated Sodium Channel NaV1.7. J Pharmacol Exp Ther 2017; 362:146-160. [DOI: 10.1124/jpet.116.239590] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/03/2017] [Indexed: 02/05/2023] Open
|
317
|
Wu W, Li Z, Yang G, Teng M, Qin J, Hu Z, Hou L, Shen L, Dong H, Zhang Y, Li J, Chen S, Tian J, Zhang J, Ye L. The discovery of tetrahydropyridine analogs as h Nav1.7 selective inhibitors for analgesia. Bioorg Med Chem Lett 2017; 27:2210-2215. [DOI: 10.1016/j.bmcl.2017.03.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 11/26/2022]
|
318
|
Discovery of selective, orally bioavailable, N -linked arylsulfonamide Na v 1.7 inhibitors with pain efficacy in mice. Bioorg Med Chem Lett 2017; 27:2087-2093. [DOI: 10.1016/j.bmcl.2017.03.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/30/2022]
|
319
|
Pryde DC, Swain NA, Stupple PA, West CW, Marron B, Markworth CJ, Printzenhoff D, Lin Z, Cox PJ, Suzuki R, McMurray S, Waldron GJ, Payne CE, Warmus JS, Chapman ML. The discovery of a potent Na v1.3 inhibitor with good oral pharmacokinetics. MEDCHEMCOMM 2017; 8:1255-1267. [PMID: 30108836 DOI: 10.1039/c7md00131b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/26/2017] [Indexed: 11/21/2022]
Abstract
In this article, we describe the discovery of an aryl ether series of potent and selective Nav1.3 inhibitors. Based on structural analogy to a similar series of compounds we have previously shown bind to the domain IV voltage sensor region of Nav channels, we propose this series binds in the same location. We describe the development of this series from a published starting point, highlighting key selectivity and potency data, and several studies designed to validate Nav1.3 as a target for pain.
Collapse
Affiliation(s)
- D C Pryde
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK .
| | - N A Swain
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK .
| | - P A Stupple
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK .
| | - C W West
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - B Marron
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - C J Markworth
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - D Printzenhoff
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - Z Lin
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - P J Cox
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - R Suzuki
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - S McMurray
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - G J Waldron
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - C E Payne
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - J S Warmus
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Groton , CT , USA
| | - M L Chapman
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| |
Collapse
|
320
|
Weiss MM, Dineen TA, Marx IE, Altmann S, Boezio A, Bregman H, Chu-Moyer M, DiMauro EF, Feric Bojic E, Foti RS, Gao H, Graceffa R, Gunaydin H, Guzman-Perez A, Huang H, Huang L, Jarosh M, Kornecook T, Kreiman CR, Ligutti J, La DS, Lin MHJ, Liu D, Moyer BD, Nguyen HN, Peterson EA, Rose PE, Taborn K, Youngblood BD, Yu V, Fremeau RT. Sulfonamides as Selective NaV1.7 Inhibitors: Optimizing Potency and Pharmacokinetics While Mitigating Metabolic Liabilities. J Med Chem 2017; 60:5969-5989. [DOI: 10.1021/acs.jmedchem.6b01851] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Thomas Kornecook
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | - Joseph Ligutti
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | - Dong Liu
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Bryan D. Moyer
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | | | | | | | |
Collapse
|
321
|
Graceffa RF, Boezio AA, Able J, Altmann S, Berry LM, Boezio C, Butler JR, Chu-Moyer M, Cooke M, DiMauro EF, Dineen TA, Feric Bojic E, Foti RS, Fremeau RT, Guzman-Perez A, Gao H, Gunaydin H, Huang H, Huang L, Ilch C, Jarosh M, Kornecook T, Kreiman CR, La DS, Ligutti J, Milgram BC, Lin MHJ, Marx IE, Nguyen HN, Peterson EA, Rescourio G, Roberts J, Schenkel L, Shimanovich R, Sparling BA, Stellwagen J, Taborn K, Vaida KR, Wang J, Yeoman J, Yu V, Zhu D, Moyer BD, Weiss MM. Sulfonamides as Selective NaV1.7 Inhibitors: Optimizing Potency, Pharmacokinetics, and Metabolic Properties to Obtain Atropisomeric Quinolinone (AM-0466) that Affords Robust in Vivo Activity. J Med Chem 2017; 60:5990-6017. [DOI: 10.1021/acs.jmedchem.6b01850] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Jessica Able
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Thomas Kornecook
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | - Joseph Ligutti
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bryan D. Moyer
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | |
Collapse
|
322
|
Deuis JR, Mueller A, Israel MR, Vetter I. The pharmacology of voltage-gated sodium channel activators. Neuropharmacology 2017; 127:87-108. [PMID: 28416444 DOI: 10.1016/j.neuropharm.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Toxins and venom components that target voltage-gated sodium (NaV) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. NaV channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of NaV channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of NaV channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Alexander Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
323
|
Netirojjanakul C, Miranda LP. Progress and challenges in the optimization of toxin peptides for development as pain therapeutics. Curr Opin Chem Biol 2017; 38:70-79. [PMID: 28376346 DOI: 10.1016/j.cbpa.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/25/2017] [Accepted: 03/13/2017] [Indexed: 02/05/2023]
Abstract
The number of new toxin peptide discoveries has been rapidly growing in the past few decades. Because of progress in proteomics, sequencing technologies, and high throughput bioassays, the search for new toxin peptides from venom collections and potency optimization has become manageable. However, to date, only six toxin peptide-derived therapeutics have been approved by the USFDA, with only one, ziconotide, for a pain indication. The challenge of venom-derived peptide therapeutic development remains in improving selectivity to the target and more importantly, in delivery of these peptides to the sites of action in the central and peripheral nervous system. In this review, we highlight peptide toxins that target major therapeutic targets for pain and discuss the challenges of developing toxin peptides as potential therapeutics.
Collapse
Affiliation(s)
- Chawita Netirojjanakul
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Les P Miranda
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| |
Collapse
|
324
|
Sparling BA, Yi S, Able J, Bregman H, DiMauro EF, Foti RS, Gao H, Guzman-Perez A, Huang H, Jarosh M, Kornecook T, Ligutti J, Milgram BC, Moyer BD, Youngblood B, Yu VL, Weiss MM. Discovery and hit-to-lead evaluation of piperazine amides as selective, state-dependent Na V1.7 inhibitors. MEDCHEMCOMM 2017; 8:744-754. [PMID: 30108793 PMCID: PMC6072352 DOI: 10.1039/c6md00578k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022]
Abstract
NaV1.7 is a particularly compelling target for the treatment of pain. Herein, we report the discovery and evaluation of a series of piperazine amides that exhibit state-dependent inhibition of NaV1.7. After demonstrating significant pharmacodynamic activity with early lead compound 14 in a NaV1.7-dependent behavioural mouse model, we systematically established SAR trends throughout each sector of the scaffold. The information gleaned from this modular analysis was then applied additively to quickly access analogues that encompass an optimal balance of properties, including NaV1.7 potency, selectivity over NaV1.5, aqueous solubility, and microsomal stability.
Collapse
Affiliation(s)
- Brian A Sparling
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - S Yi
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - J Able
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - H Bregman
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - Erin F DiMauro
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - R S Foti
- Department of Pharmacokinetics and Drug Metabolism , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - H Gao
- Department of Molecular Engineering, Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - A Guzman-Perez
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - H Huang
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - M Jarosh
- Department of Neuroscience , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - T Kornecook
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - J Ligutti
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - B C Milgram
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - B D Moyer
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - B Youngblood
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - V L Yu
- Department of Neuroscience , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - M M Weiss
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| |
Collapse
|
325
|
Cieplak P, Strongin AY. Matrix metalloproteinases - From the cleavage data to the prediction tools and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1952-1963. [PMID: 28347746 DOI: 10.1016/j.bbamcr.2017.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/29/2022]
Abstract
Understanding the physiological role of any protease requires identification of both its cleavage substrates and their relative cleavage efficacy as compared with other substrates and other proteinases. Our review manuscript is focused on the cleavage preferences of the individual matrix metalloproteinases (MMPs) and the cleavage similarity and distinction that exist in the human MMP family. The recent in-depth analysis of MMPs by us and many others greatly increased knowledge of the MMP biology and structural-functional relationships among this protease family members. A better knowledge of cleavage preferences of MMPs has led us to the development of the prediction tools that are now capable of the high throughput reliable prediction and ranking the MMP cleavage sites in the peptide sequences in silico. Our software unifies and consolidates volumes of the pre-existing data. Now this prediction-ranking in silico tool is ready to be used by others. The software we developed may facilitate both the identification of the novel proteolytic regulatory pathways and the discovery of the previously uncharacterized substrates of the individual MMPs. Because now the MMP research may be based on the mathematical probability parameters rather than on either random luck or common sense alone, the researchers armed with this novel in silico tool will be better equipped to fine-tune or, at least, to sharply focus their wet chemistry experiments. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Piotr Cieplak
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Alex Y Strongin
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
326
|
Wu YJ, Guernon J, Shi J, Ditta J, Robbins KJ, Rajamani R, Easton A, Newton A, Bourin C, Mosure K, Soars MG, Knox RJ, Matchett M, Pieschl RL, Post-Munson DJ, Wang S, Herrington J, Graef J, Newberry K, Bristow LJ, Meanwell NA, Olson R, Thompson LA, Dzierba C. Development of New Benzenesulfonamides As Potent and Selective Na v1.7 Inhibitors for the Treatment of Pain. J Med Chem 2017; 60:2513-2525. [PMID: 28234467 DOI: 10.1021/acs.jmedchem.6b01918] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
By taking advantage of certain features in piperidine 4, we developed a novel series of cyclohexylamine- and piperidine-based benzenesulfonamides as potent and selective Nav1.7 inhibitors. However, compound 24, one of the early analogs, failed to reduce phase 2 flinching in the mouse formalin test even at a dose of 100 mpk PO due to insufficient dorsal root ganglion (DRG) exposure attributed to poor membrane permeability. Two analogs with improved membrane permeability showed much increased DRG concentrations at doses of 30 mpk PO, but, confoundingly, only one of these was effective in the formalin test. More data are needed to understand the disconnect between efficacy and exposure relationships.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Jason Guernon
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Jianliang Shi
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Jonathan Ditta
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Kevin J Robbins
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Ramkumar Rajamani
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Amy Easton
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Amy Newton
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Clotilde Bourin
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Kathleen Mosure
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Matthew G Soars
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Ronald J Knox
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Michele Matchett
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Rick L Pieschl
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Debra J Post-Munson
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Shuya Wang
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - James Herrington
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - John Graef
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Kimberly Newberry
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Linda J Bristow
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Nicholas A Meanwell
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Richard Olson
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Lorin A Thompson
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Carolyn Dzierba
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| |
Collapse
|
327
|
Valkova C, Liebmann L, Krämer A, Hübner CA, Kaether C. The sorting receptor Rer1 controls Purkinje cell function via voltage gated sodium channels. Sci Rep 2017; 7:41248. [PMID: 28117367 PMCID: PMC5259745 DOI: 10.1038/srep41248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023] Open
Abstract
Rer1 is a sorting receptor in the early secretory pathway that controls the assembly and the cell surface transport of selected multimeric membrane protein complexes. Mice with a Purkinje cell (PC) specific deletion of Rer1 showed normal polarization and differentiation of PCs and normal development of the cerebellum. However, PC-specific loss of Rer1 led to age-dependent motor deficits in beam walk, ladder climbing and gait. Analysis of brain sections revealed a specific degeneration of PCs in the anterior cerebellar lobe in old animals. Electrophysiological recordings demonstrated severe deficits in spontaneous action potential generation. Measurements of resurgent currents indicated decreased surface densities of voltage-gated sodium channels (Nav), but not changes in individual channels. Analysis of mice with a whole brain Rer1-deletion demonstrated a strong down-regulation of Nav1.6 and 1.1 in the absence of Rer1, whereas protein levels of the related Cav2.1 and of Kv3.3 and 7.2 channels were not affected. The data suggest that Rer1 controls the assembly and transport of Nav1.1 and 1.6, the principal sodium channels responsible for recurrent firing, in PCs.
Collapse
Affiliation(s)
- Christina Valkova
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07743 Jena, Germany
| | - Lutz Liebmann
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Germany
| | - Andreas Krämer
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07743 Jena, Germany
| | - Christian A Hübner
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Germany
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07743 Jena, Germany
| |
Collapse
|
328
|
Berlinck RGS, Bertonha AF, Takaki M, Rodriguez JPG. The chemistry and biology of guanidine natural products. Nat Prod Rep 2017; 34:1264-1301. [DOI: 10.1039/c7np00037e] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemistry and biology of natural guanidines isolated from microbial culture media, from marine invertebrates, as well as from terrestrial plants and animals, are reviewed.
Collapse
Affiliation(s)
| | - Ariane F. Bertonha
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Mirelle Takaki
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | | |
Collapse
|
329
|
Voltage-gated sodium channels viewed through a structural biology lens. Curr Opin Struct Biol 2016; 45:74-84. [PMID: 27988421 DOI: 10.1016/j.sbi.2016.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
Abstract
Voltage-gated sodium (Nav) channels initiate and propagate action potentials in excitable cells, and are frequently dysregulated or mutated in human disease. Despite decades of intense physiological and biophysical research, eukaryotic Nav channels have so far eluded high-resolution structure determination because of their biochemical complexity. Recently, simpler bacterial voltage-gated sodium (BacNav) channels have provided templates to understand the structural basis of voltage-dependent activation, inactivation, ion selectivity, and drug block in eukaryotic Nav and related voltage-gated calcium (Cav) channels. Further breakthroughs employing BacNav channels have also enabled visualization of bound small molecule modulators that can guide the rational design of next generation therapeutics. This review will highlight the emerging structural biology of BacNav channels and its contribution to our understanding of the gating, ion selectivity, and pharmacological regulation of eukaryotic Nav (and Cav) channels.
Collapse
|
330
|
James S. The Genetics of Pain. CURRENT ANESTHESIOLOGY REPORTS 2016. [DOI: 10.1007/s40140-016-0185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
331
|
Toma T, Logan MM, Menard F, Devlin AS, Du Bois J. Inhibition of Sodium Ion Channel Function with Truncated Forms of Batrachotoxin. ACS Chem Neurosci 2016; 7:1463-1468. [PMID: 27501251 DOI: 10.1021/acschemneuro.6b00212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A novel family of small molecule inhibitors of voltage-gated sodium channels (NaVs) based on the structure of batrachotoxin (BTX), a well-known channel agonist, is described. Protein mutagenesis and electrophysiology experiments reveal the binding site as the inner pore region of the channel, analogous to BTX, alkaloid toxins, and local anesthetics. Homology modeling of the eukaryotic channel based on recent crystallographic analyses of bacterial NaVs suggests a mechanism of action for ion conduction block.
Collapse
Affiliation(s)
- Tatsuya Toma
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Matthew M. Logan
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Frederic Menard
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - A. Sloan Devlin
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - J. Du Bois
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
332
|
Increased sodium channel use-dependent inhibition by a new potent analogue of tocainide greatly enhances in vivo antimyotonic activity. Neuropharmacology 2016; 113:206-216. [PMID: 27743929 PMCID: PMC5154332 DOI: 10.1016/j.neuropharm.2016.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 01/19/2023]
Abstract
Although the sodium channel blocker, mexiletine, is the first choice drug in myotonia, some myotonic patients remain unsatisfied due to contraindications, lack of tolerability, or incomplete response. More therapeutic options are thus needed for myotonic patients, which require clinical trials based on solid preclinical data. In previous structure-activity relationship studies, we identified two newly-synthesized derivatives of tocainide, To040 and To042, with greatly enhanced potency and use-dependent behavior in inhibiting sodium currents in frog skeletal muscle fibers. The current study was performed to verify their potential as antimyotonic agents. Patch-clamp experiments show that both compounds, especially To042, are greatly more potent and use-dependent blockers of human skeletal muscle hNav1.4 channels compared to tocainide and mexiletine. Reduced effects on F1586C hNav1.4 mutant suggest that the compounds bind to the local anesthetic receptor, but that the increased hindrance and lipophilia of the N-substituent may further strengthen drug-receptor interaction and use-dependence. Compared to mexiletine, To042 was 120 times more potent to block hNav1.4 channels in a myotonia-like cellular condition and 100 times more potent to improve muscle stiffness in vivo in a previously-validated rat model of myotonia. To explore toxicological profile, To042 was tested on hERG potassium currents, motor coordination using rotarod, and C2C12 cell line for cytotoxicity. All these experiments suggest a satisfactory therapeutic index for To042. This study shows that, owing to a huge use-dependent block of sodium channels, To042 is a promising candidate drug for myotonia and possibly other membrane excitability disorders, warranting further preclinical and human studies. To040 and To042 are potent use-dependent hNav1.4 sodium channel blockers. The compounds strengthen the molecular interaction at the local anesthetic receptor. To042 is 120-fold more potent than mexiletine in vitro in myotonia-like conditions. To042 is 100-fold more potent than mexiletine in vivo in a rat model of myotonia. To042 is a promising antimyotonic drug deserving further investigation.
Collapse
|
333
|
Marx IE, Dineen TA, Able J, Bode C, Bregman H, Chu-Moyer M, DiMauro EF, Du B, Foti RS, Fremeau RT, Gao H, Gunaydin H, Hall BE, Huang L, Kornecook T, Kreiman CR, La DS, Ligutti J, Lin MHJ, Liu D, McDermott JS, Moyer BD, Peterson EA, Roberts JT, Rose P, Wang J, Youngblood BD, Yu V, Weiss MM. Sulfonamides as Selective Na V1.7 Inhibitors: Optimizing Potency and Pharmacokinetics to Enable in Vivo Target Engagement. ACS Med Chem Lett 2016; 7:1062-1067. [PMID: 27994738 DOI: 10.1021/acsmedchemlett.6b00243] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022] Open
Abstract
Human genetic evidence has identified the voltage-gated sodium channel NaV1.7 as an attractive target for the treatment of pain. We initially identified naphthalene sulfonamide 3 as a potent and selective inhibitor of NaV1.7. Optimization to reduce biliary clearance by balancing hydrophilicity and hydrophobicity (Log D) while maintaining NaV1.7 potency led to the identification of quinazoline 16 (AM-2099). Compound 16 demonstrated a favorable pharmacokinetic profile in rat and dog and demonstrated dose-dependent reduction of histamine-induced scratching bouts in a mouse behavioral model following oral dosing.
Collapse
Affiliation(s)
- Isaac E. Marx
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Thomas A. Dineen
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Jessica Able
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Christiane Bode
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Howard Bregman
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Margaret Chu-Moyer
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Erin F. DiMauro
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Bingfan Du
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Robert S. Foti
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Robert T. Fremeau
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Hua Gao
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Hakan Gunaydin
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Brian E. Hall
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Liyue Huang
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Thomas Kornecook
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Charles R. Kreiman
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Daniel S. La
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Joseph Ligutti
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Min-Hwa Jasmine Lin
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Dong Liu
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Jeff S. McDermott
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Bryan D. Moyer
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Emily A. Peterson
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Jonathan T. Roberts
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Paul Rose
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Jean Wang
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Beth D. Youngblood
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Violeta Yu
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Matthew M. Weiss
- Department of Medicinal
Chemistry, ‡Department of Molecular Engineering, §Department of Pharmacokinetics
and Drug Metabolism, ∥Department of Neuroscience, and ⊥Department of Biologics, Amgen, Inc., 360 Binney
Street, Cambridge, Massachusetts 02142, and One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| |
Collapse
|
334
|
Hanukoglu I. ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters. FEBS J 2016; 284:525-545. [DOI: 10.1111/febs.13840] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/04/2016] [Accepted: 08/26/2016] [Indexed: 12/18/2022]
|
335
|
DiMauro EF, Altmann S, Berry LM, Bregman H, Chakka N, Chu-Moyer M, Bojic EF, Foti RS, Fremeau R, Gao H, Gunaydin H, Guzman-Perez A, Hall BE, Huang H, Jarosh M, Kornecook T, Lee J, Ligutti J, Liu D, Moyer BD, Ortuno D, Rose PE, Schenkel LB, Taborn K, Wang J, Wang Y, Yu V, Weiss MM. Application of a Parallel Synthetic Strategy in the Discovery of Biaryl Acyl Sulfonamides as Efficient and Selective NaV1.7 Inhibitors. J Med Chem 2016; 59:7818-39. [DOI: 10.1021/acs.jmedchem.6b00425] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert Fremeau
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | | | | | | - Thomas Kornecook
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | - Joseph Ligutti
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Dong Liu
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Bryan D. Moyer
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Lin Z, Santos S, Padilla K, Printzenhoff D, Castle NA. Biophysical and Pharmacological Characterization of Nav1.9 Voltage Dependent Sodium Channels Stably Expressed in HEK-293 Cells. PLoS One 2016; 11:e0161450. [PMID: 27556810 PMCID: PMC4996523 DOI: 10.1371/journal.pone.0161450] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/07/2016] [Indexed: 11/19/2022] Open
Abstract
The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with β1/β2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA) binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799) which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N) resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.
Collapse
Affiliation(s)
- Zhixin Lin
- Neuroscience and Pain Research Unit, Pfizer Inc., Durham, North Carolina, United States of America
- * E-mail:
| | - Sonia Santos
- Neuroscience and Pain Research Unit, Pfizer Inc., Durham, North Carolina, United States of America
| | - Karen Padilla
- Neuroscience and Pain Research Unit, Pfizer Inc., Durham, North Carolina, United States of America
| | - David Printzenhoff
- Neuroscience and Pain Research Unit, Pfizer Inc., Durham, North Carolina, United States of America
| | - Neil A. Castle
- Neuroscience and Pain Research Unit, Pfizer Inc., Durham, North Carolina, United States of America
| |
Collapse
|
337
|
Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 2016; 7:121. [PMID: 27242528 PMCID: PMC4861771 DOI: 10.3389/fphar.2016.00121] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Giulia M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|
338
|
Emery EC, Luiz AP, Wood JN. Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin Ther Targets 2016; 20:975-83. [PMID: 26941184 PMCID: PMC4950419 DOI: 10.1517/14728222.2016.1162295] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduction: Chronic pain is a massive clinical problem. We discuss the potential of subtype selective sodium channel blockers that may provide analgesia with limited side effects. Areas covered: Sodium channel subtypes have been linked to human pain syndromes through genetic studies. Gain of function mutations in Nav1.7, 1.8 and 1.9 can cause pain, whilst loss of function Nav1.7 mutations lead to loss of pain in otherwise normal people. Intriguingly, both human and mouse Nav1.7 null mutants have increased opioid drive, because naloxone, an opioid antagonist, can reverse the analgesia associated with the loss of Nav1.7 expression. Expert Opinion: We believe there is a great future for sodium channel antagonists, particularly Nav1.7 antagonists in treating most pain syndromes. This review deals with recent attempts to develop specific sodium channel blockers, the mechanisms that underpin the Nav1.7 null pain-free phenotype and new routes to analgesia using, for example, gene therapy or combination therapy with subtype specific sodium channel blockers and opioids. The use of selective Nav1.7 antagonists together with either enkephalinase inhibitors or low dose opioids has the potential for side effect-free analgesia, as well as an important opioid sparing function that may be clinically very significant.
Collapse
Affiliation(s)
- Edward C Emery
- a Molecular Nociception Group, Department of Medicine , WIBR, University College London , London WC1E 6BT , UK
| | - Ana Paula Luiz
- a Molecular Nociception Group, Department of Medicine , WIBR, University College London , London WC1E 6BT , UK
| | - John N Wood
- a Molecular Nociception Group, Department of Medicine , WIBR, University College London , London WC1E 6BT , UK
| |
Collapse
|
339
|
Frost JM, DeGoey DA, Shi L, Gum RJ, Fricano MM, Lundgaard GL, El-Kouhen OF, Hsieh GC, Neelands T, Matulenko MA, Daanen JF, Pai M, Ghoreishi-Haack N, Zhan C, Zhang XF, Kort ME. Substituted Indazoles as Nav1.7 Blockers for the Treatment of Pain. J Med Chem 2016; 59:3373-91. [DOI: 10.1021/acs.jmedchem.6b00063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jennifer M. Frost
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - David A. DeGoey
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Lei Shi
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Rebecca J. Gum
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Meagan M. Fricano
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Greta L. Lundgaard
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Odile F. El-Kouhen
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Gin C. Hsieh
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Torben Neelands
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Mark A. Matulenko
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Jerome F. Daanen
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Madhavi Pai
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | | | - Cenchen Zhan
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Xu-Feng Zhang
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Michael E. Kort
- Research
and Development, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| |
Collapse
|
340
|
Focken T, Liu S, Chahal N, Dauphinais M, Grimwood ME, Chowdhury S, Hemeon I, Bichler P, Bogucki D, Waldbrook M, Bankar G, Sojo LE, Young C, Lin S, Shuart N, Kwan R, Pang J, Chang JH, Safina BS, Sutherlin DP, Johnson JP, Dehnhardt CM, Mansour TS, Oballa RM, Cohen CJ, Robinette CL. Discovery of Aryl Sulfonamides as Isoform-Selective Inhibitors of NaV1.7 with Efficacy in Rodent Pain Models. ACS Med Chem Lett 2016; 7:277-82. [PMID: 26985315 DOI: 10.1021/acsmedchemlett.5b00447] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
We report on a novel series of aryl sulfonamides that act as nanomolar potent, isoform-selective inhibitors of the human sodium channel hNaV1.7. The optimization of these inhibitors is described. We aimed to improve potency against hNaV1.7 while minimizing off-target safety concerns and generated compound 3. This agent displayed significant analgesic effects in rodent models of acute and inflammatory pain and demonstrated that binding to the voltage sensor domain 4 site of NaV1.7 leads to an analgesic effect in vivo. Our findings corroborate the importance of hNaV1.7 as a drug target for the treatment of pain.
Collapse
Affiliation(s)
- Thilo Focken
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Shifeng Liu
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Navjot Chahal
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Maxim Dauphinais
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Michael E. Grimwood
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Paul Bichler
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - David Bogucki
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Girish Bankar
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Luis E. Sojo
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Clint Young
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Noah Shuart
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian S. Safina
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel P. Sutherlin
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - J. P. Johnson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | | | - Tarek S. Mansour
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Renata M. Oballa
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Charles J. Cohen
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - C. Lee Robinette
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| |
Collapse
|
341
|
Murray JK, Long J, Zou A, Ligutti J, Andrews KL, Poppe L, Biswas K, Moyer BD, McDonough SI, Miranda LP. Single Residue Substitutions That Confer Voltage-Gated Sodium Ion Channel Subtype Selectivity in the NaV1.7 Inhibitory Peptide GpTx-1. J Med Chem 2016; 59:2704-17. [DOI: 10.1021/acs.jmedchem.5b01947] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Justin K. Murray
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jason Long
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Anruo Zou
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joseph Ligutti
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kristin L. Andrews
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Leszek Poppe
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kaustav Biswas
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bryan D. Moyer
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Stefan I. McDonough
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Les P. Miranda
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
342
|
Chambers C, Witton I, Adams C, Marrington L, Kammonen J. High-Throughput Screening of NaV1.7 Modulators Using a Giga-Seal Automated Patch Clamp Instrument. Assay Drug Dev Technol 2016; 14:93-108. [DOI: 10.1089/adt.2016.700] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Chris Chambers
- Neuroscience and Pain Research Unit, Pfizer Inc., Cambridge, United Kingdom
| | - Ian Witton
- Neuroscience and Pain Research Unit, Pfizer Inc., Cambridge, United Kingdom
| | - Cathryn Adams
- Neuroscience and Pain Research Unit, Pfizer Inc., Cambridge, United Kingdom
| | - Luke Marrington
- Neuroscience and Pain Research Unit, Pfizer Inc., Cambridge, United Kingdom
| | - Juha Kammonen
- Neuroscience and Pain Research Unit, Pfizer Inc., Cambridge, United Kingdom
| |
Collapse
|
343
|
Luiz AP, Wood JN. Sodium Channels in Pain and Cancer: New Therapeutic Opportunities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:153-78. [PMID: 26920012 DOI: 10.1016/bs.apha.2015.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Voltage-gated sodium channels (VGSCs) underpin electrical activity in the nervous system through action potential propagation. First predicted by the modeling studies of Hodgkin and Huxley, they were subsequently identified at the molecular level by groups led by Catterall and Numa. VGSC dysfunction has long been linked to neuronal and cardiac disorders with some nonselective sodium channel blockers in current use in the clinic. The lack of selectivity means that side effect issues are a major impediment to the use of broad spectrum sodium channel blockers. Nine different sodium channels are known to exist, and selective blockers are now being developed. The potential utility of these drugs to target diseases ranging from migraine, multiple sclerosis, muscle, and immune system disorders, to cancer and pain is being explored. Four channels are potential targets for pain disorders. This conclusion comes from mouse knockout studies and human mutations that prove the involvement of Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in the development and maintenance of acute and chronic pain. In this chapter, we present a short overview of the possible role of Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in human pain and the emerging and unexpected role of sodium channels in cancer pathogenesis.
Collapse
Affiliation(s)
- Ana Paula Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.
| |
Collapse
|
344
|
Nakazaki A, Nakane Y, Ishikawa Y, Yotsu-Yamashita M, Nishikawa T. Asymmetric synthesis of crambescin A–C carboxylic acids and their inhibitory activity on voltage-gated sodium channels. Org Biomol Chem 2016; 14:5304-9. [DOI: 10.1039/c6ob00914j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both enantiomers of crambescin A–C carboxylic acids were synthesized via Katsuki asymmetric epoxidation and bromocation-triggered cascade cyclization.
Collapse
Affiliation(s)
- Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Yoshiki Nakane
- Graduate School of Bioagricultural Sciences
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Yuki Ishikawa
- Graduate School of Bioagricultural Sciences
- Nagoya University
- Nagoya 464-8601
- Japan
| | | | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences
- Nagoya University
- Nagoya 464-8601
- Japan
| |
Collapse
|
345
|
Tao H, Chen X, Lu M, Wu Y, Deng M, Zeng X, Liu Z, Liang S. Molecular determinant for the tarantula toxin Jingzhaotoxin-I slowing the fast inactivation of voltage-gated sodium channels. Toxicon 2015; 111:13-21. [PMID: 26721415 DOI: 10.1016/j.toxicon.2015.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Peptide toxins often have divergent pharmacological functions and are powerful tools for a deep review on the current understanding of the structure-function relationships of voltage-gated sodium channels (VGSCs). However, knowing about the interaction of site 3 toxins from tarantula venoms with VGSCs is not sufficient. In the present study, using whole-cell patch clamp technique, we determined the effects of Jingzhaotoxin-I (JZTX-I) on five VGSC subtypes expressed in HEK293 cells. The results showed that JZTX-I could inhibit the inactivation of rNav1.2, rNav1.3, rNav1.4, hNav1.5 and hNav1.7 channels with the IC50 of 870 ± 8 nM, 845 ± 4 nM, 339 ± 5 nM, 335 ± 9 nM, and 348 ± 6 nM, respectively. The affinity of the toxin interaction with subtypes (rNav1.4, hNav1.5, and hNav1.7) was only 2-fold higher than that for subtypes (rNav1.2 and rNav1.3). The toxin delayed the inactivation of VGSCs without affecting the activation and steady-state inactivation kinetics in the physiological range of voltages. Site-directed mutagenesis indicated that the toxin interacted with site 3 located at the extracellular S3-S4 linker of domain IV, and the acidic residue Asp at the position1609 in hNav1.5 was crucial for JZTX-I activity. Our results provide new insights in single key residue that allows toxins to recognize distinct ion channels with similar potency and enhance our understanding of the structure-function relationships of toxin-channel interactions.
Collapse
Affiliation(s)
- Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| | - Xia Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Min Lu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yuanyuan Wu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Meichun Deng
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha 410013, Hunan, China
| | - Xiongzhi Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zhonghua Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
346
|
Ahuja S, Mukund S, Deng L, Khakh K, Chang E, Ho H, Shriver S, Young C, Lin S, Johnson JP, Wu P, Li J, Coons M, Tam C, Brillantes B, Sampang H, Mortara K, Bowman KK, Clark KR, Estevez A, Xie Z, Verschoof H, Grimwood M, Dehnhardt C, Andrez JC, Focken T, Sutherlin DP, Safina BS, Starovasnik MA, Ortwine DF, Franke Y, Cohen CJ, Hackos DH, Koth CM, Payandeh J. Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science 2015; 350:aac5464. [DOI: 10.1126/science.aac5464] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
347
|
Nahorski MS, Chen YC, Woods CG. New Mendelian Disorders of Painlessness. Trends Neurosci 2015; 38:712-724. [DOI: 10.1016/j.tins.2015.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 02/08/2023]
|
348
|
Abdel-Magid AF. Nav1.7 Inhibitors: Potential Effective Therapy for the Treatment of Chronic Pain. ACS Med Chem Lett 2015; 6:956-7. [PMID: 26396679 DOI: 10.1021/acsmedchemlett.5b00312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 11/28/2022] Open
|
349
|
Remacle AG, Kumar S, Motamedchaboki K, Cieplak P, Hullugundi S, Dolkas J, Shubayev VI, Strongin AY. Matrix Metalloproteinase (MMP) Proteolysis of the Extracellular Loop of Voltage-gated Sodium Channels and Potential Alterations in Pain Signaling. J Biol Chem 2015; 290:22939-44. [PMID: 26283785 DOI: 10.1074/jbc.c115.671107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 12/19/2022] Open
Abstract
Congenital insensitivity to pain (CIP) or congenital analgesia is a rare monogenic hereditary condition. This disorder is characterized by the inability to perceive any form of pain. Nonsense mutations in Nav.1.7, the main pain signaling voltage-gated sodium channel, lead to its truncations and, consequently, to the inactivation of the channel functionality. However, a non-truncating homozygously inherited missense mutation in a Bedouin family with CIP (Nav1.7-R907Q) has also been reported. Based on our currently acquired in-depth knowledge of matrix metalloproteinase (MMP) cleavage preferences, we developed the specialized software that predicts the presence of the MMP cleavage sites in the peptide sequences. According to our in silico predictions, the peptide sequence of the exposed extracellular unstructured region linking the S5-S6 transmembrane segments in the DII domain of the human Nav1.7 sodium channel is highly sensitive to MMP-9 proteolysis. Intriguingly, the CIP R907Q mutation overlaps with the predicted MMP-9 cleavage site sequence. Using MMP-9 proteolysis of the wild-type, CIP, and control peptides followed by mass spectrometry of the digests, we demonstrated that the mutant sequence is severalfold more sensitive to MMP-9 proteolysis relative to the wild type. Because of the substantial level of sequence homology among sodium channels, our data also implicate MMP proteolysis in regulating the cell surface levels of the Nav1.7, Nav1.6, and Nav1.8 channels, but not Nav1.9. It is likely that the aberrantly accelerated MMP-9 proteolysis during neurogenesis is a biochemical rational for the functional inactivation in Nav1.7 and that the enhanced cleavage of the Nav1.7-R907Q mutant is a cause of CIP in the Bedouin family.
Collapse
Affiliation(s)
- Albert G Remacle
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Sonu Kumar
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | | | - Piotr Cieplak
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Swathi Hullugundi
- the Department of Anesthesiology, University of California San Diego, La Jolla, California 92093, and the Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Jennifer Dolkas
- the Department of Anesthesiology, University of California San Diego, La Jolla, California 92093, and the Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Veronica I Shubayev
- the Department of Anesthesiology, University of California San Diego, La Jolla, California 92093, and the Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Alex Y Strongin
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
| |
Collapse
|