301
|
Attwooll C, Denchi EL, Helin K. The E2F family: specific functions and overlapping interests. EMBO J 2004; 23:4709-16. [PMID: 15538380 PMCID: PMC535093 DOI: 10.1038/sj.emboj.7600481] [Citation(s) in RCA: 425] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/20/2004] [Indexed: 01/01/2023] Open
Abstract
The E2F transcription factors are key regulators of cell cycle progression and the E2F field has made rapid advances since its advent in 1986. Yet, while our understanding of the roles and functions of the E2F family has made enormous progress, with each discovery new questions arise. In this review, we summarise the most recent advances in the field and discuss the remaining key questions. In particular, we will focus on how specificity is achieved among the E2Fs.
Collapse
Affiliation(s)
- Claire Attwooll
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | - Kristian Helin
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Biotech Research & Innovation Centre, Copenhagen, Denmark
| |
Collapse
|
302
|
Haura EB, Cress WD, Chellappan S, Zheng Z, Bepler G. Antiapoptotic signaling pathways in non-small-cell lung cancer: biology and therapeutic strategies. Clin Lung Cancer 2004; 6:113-22. [PMID: 15476597 DOI: 10.3816/clc.2004.n.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the hallmarks of lung cancer is the deregulation of apoptotic or programmed cell death mechanisms usually found in normal cells that allow for corrupted cells to undergo cellular suicide. This includes mechanisms that attenuate proapoptotic pathways and/or amplify antiapoptotic pathways. Increasing evidence suggests that lung cancer cells use multiple and perhaps redundant pathways to maintain survival. Increasing knowledge of these pathways offers a better understanding of the biology of lung cancer as well as novel therapeutic strategies that can enhance lung cancer cell death. This review discusses the apoptotic machinery and signal transduction pathways that regulate apoptosis, methods of identifying the presence of activated survival signaling pathways in human lung cancers, and the clinical significance and relevance for therapy for patients with lung cancer.
Collapse
Affiliation(s)
- Eric B Haura
- Thoracic Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | | | | | | | | |
Collapse
|
303
|
Flinterman M, Guelen L, Ezzati-Nik S, Killick R, Melino G, Tominaga K, Mymryk JS, Gäken J, Tavassoli M. E1A activates transcription of p73 and Noxa to induce apoptosis. J Biol Chem 2004; 280:5945-59. [PMID: 15572378 DOI: 10.1074/jbc.m406661200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
p73, a member of the p53 family of proteins, transcriptionally activates a number of genes involved in the control of cell cycle and apoptosis. Overexpression of p73 was detected in a large number of primary head and neck cancers, and in the established cell lines examined, these all contained inactivating p53 mutations. The significance of p73 overexpression in the pathogenesis of head and neck cancer is currently unclear. We have shown that the expression of adenovirus 5 E1A in a panel of head and neck cancer cell lines induces apoptosis independently of their p53 status. In this study we examined the role of p73 and its transcriptional targets in E1A-mediated induction of apoptosis. E1A expression resulted in significant activation of the TAp73 promoter but had no effect on the alternative, DeltaNp73 promoter. E1A also increased expression of endogenous TAp73 mRNA and protein. E1A mutants lacking the p300- and/or pRB-binding sites showed reduced ability to activate the TAp73 promoter. Additionally, mutations in the E2F1-binding sites in the TAp73 promoter impaired activation by E1A. Importantly, expression of the 13S isoform of E1A substantially induced the p53 apoptotic target Noxa in several p53-deficient cancer cell lines. Our results indicate that E1A activation of p73 and the p53 apoptotic target Noxa can occur in the absence of a functional p53. This activation is likely to play a key role in the mechanism of p53-independent apoptosis induced by E1A in some cancers and may provide an avenue for future cancer therapies.
Collapse
Affiliation(s)
- Marcella Flinterman
- Head and Neck Oncology Group, Guy's King's & St. Thomas's School of Dentistry, King's College London, SE5 9NU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Meyer G, Cabrera Socorro A, Perez Garcia CG, Martinez Millan L, Walker N, Caput D. Developmental roles of p73 in Cajal-Retzius cells and cortical patterning. J Neurosci 2004; 24:9878-87. [PMID: 15525772 PMCID: PMC6730229 DOI: 10.1523/jneurosci.3060-04.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 09/08/2004] [Accepted: 09/08/2004] [Indexed: 01/22/2023] Open
Abstract
To examine the role of the p53 homolog p73 in brain development, we studied p73-/-, p73+/-, E2F1-/-, and reeler mutant mice. p73 in developing brain is expressed in Cajal-Retzius (CR) cells, the cortical hem, and the choroid plexus. p73-expressing CR cells are lost in p73-/- embryos, although Reelin is faintly expressed in the marginal zone. Ectopic neurons in the p73-/- preplate and cortical hem at embryonic day 12 implicate p73 in the early developmental program of the cortex; however, preplate partition and early cortical plate formation are not disturbed. Postnatal p73-/- mice show a mild hypoplasia of the rostral cortex and a severely disrupted architecture of the posterior telencephalon. In the developing p73-/- hippocampus, the most striking abnormality is the absence of the hippocampal fissure, suggesting a role of p73 in cortical folding. p73+/- mice have a less severe cortical phenotype; they display a dorsal shift of the entorhinal cortex and a reduced size of occipital and posterior temporal areas, which acquire entorhinal-like features such as Reelin-positive cells in layer II. CR cells appear unaffected by heterozygosity. We relate the malformations of the posterior pole in p73 mutant mice to alterations of p73 expression in the cortical hem and suggest that p73 forms part of an early signaling network that controls neocortical and archicortical regionalization. In mice deficient for the transcription factor E2F1, a main activator of the TAp73 (transactivating p73) isoform, we find a defect of the caudal cortical architecture resembling the p73+/- phenotype along with reduced TAp73 protein levels and propose that an E2F1-TAp73 dependent pathway is involved in cortical patterning.
Collapse
Affiliation(s)
- Gundela Meyer
- Department of Anatomy, University La Laguna, 38071 La Laguna, Tenerife, Spain.
| | | | | | | | | | | |
Collapse
|
305
|
Feng B, Cheng S, Hsia CY, King LB, Monroe JG, Liou HC. NF-κB inducible genes BCL-X and cyclin E promote immature B-cell proliferation and survival. Cell Immunol 2004; 232:9-20. [PMID: 15922711 DOI: 10.1016/j.cellimm.2005.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 01/06/2005] [Accepted: 01/06/2005] [Indexed: 12/22/2022]
Abstract
B-cell receptor (BCR) ligation induces proliferation and survival in mature B-cells but conversely, can lead to apoptosis in immature B-cells. We have previously shown that c-Rel, a member of the NF-kappaB transcription factor family, is essential for mature B-cell survival and proliferation via regulation of the anti-apoptotic molecule Bcl-X and cell cycle genes E2F3a and cyclin E. Here, we report that c-Rel-deficient mature B-cells are rendered sensitive to BCR-induced growth arrest and apoptosis in a manner that strongly resembles the phenotypic response of immature B-cells to BCR signaling. We further demonstrate that BCR-stimulated immature B-cells are defective in NF-kappaB activation, but that introduction of two downstream c-Rel target genes, Bcl-X and cyclin E, can restore survival and proliferation to these cells. Our studies therefore suggest that specific blockade of NF-kappaB activation may be responsible for the growth arrest and apoptosis of BCR-activated immature B-cells.
Collapse
Affiliation(s)
- Biao Feng
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
306
|
Abstract
The E2F transcription factors are downstream effectors of the retinoblastoma protein (pRB) pathway and are required for the timely regulation of numerous genes essential for DNA replication and cell cycle progression. Several laboratories have used genome-wide approaches to discover novel target genes of E2F, leading to the identification of several hundred such genes that are involved not only in DNA replication and cell cycle progression, but also in DNA damage repair, apoptosis, differentiation and development. These new findings greatly enrich our understanding of how E2F controls transcription and cellular homeostasis.
Collapse
Affiliation(s)
- Adrian P Bracken
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | | | | | |
Collapse
|
307
|
Stiewe T, Tuve S, Peter M, Tannapfel A, Elmaagacli AH, Pützer BM. Quantitative TP73 transcript analysis in hepatocellular carcinomas. Clin Cancer Res 2004; 10:626-33. [PMID: 14760085 DOI: 10.1158/1078-0432.ccr-0153-03] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The p53 family member p73 displays significant homology to p53, but data from primary tumors demonstrating increased expression levels of p73 in the absence of any gene mutations argue against a classical tumor suppressor function. A detailed analysis of the p73 protein in tumor tissues has revealed expression of two classes of p73 isoforms. Whereas the proapoptotic, full-length, transactivation-competent p73 protein (TA-p73) has a putative tumor suppressor activity similar to p53, the antiapoptotic, NH(2)-terminally truncated, transactivation-deficient p73 protein (DeltaTA-p73) has been shown to possess oncogenic activity. The oncogenic proteins can be generated by the following two different mechanisms: (a) aberrant splicing (p73Deltaex2, p73Deltaex2/3, DeltaN'-p73) and (b) alternative promoter usage of a second intronic promoter (DeltaN-p73). The purpose of our study was to elucidate the origin of DeltaTA-p73 isoforms in hepatocellular carcinomas. EXPERIMENTAL DESIGN We analyzed the underlying mechanisms of p73 overexpression in cancer cells by quantification of p73 transcripts from 10 hepatocellular carcinoma patients using isoform-specific real-time reverse transcription-PCR. RESULTS Our data demonstrate that only aberrantly spliced DeltaTA-p73 transcripts from the TA promoter show significantly increased expression levels in the tumor whereas the DeltaN-p73 transcript generated from the second promoter is not significantly up-regulated. CONCLUSIONS Although we only analyzed 10 patient samples the results strongly suggest that the elevated activity of the first promoter (TA promoter) accounts for high-level expression of both full-length TA-p73 and aberrantly spliced DeltaTA-p73 isoforms in hepatocellular carcinoma tissues.
Collapse
Affiliation(s)
- Thorsten Stiewe
- Center for Cancer Research and Cancer Therapy, Institute of Molecular Biology, University of Essen Medical School, Essen, Germany
| | | | | | | | | | | |
Collapse
|
308
|
Garcia V, Silva J, Dominguez G, García JM, Peña C, Rodriguez R, Provencio M, España P, Bonilla F. Overexpression of p16INK4a correlates with high expression of p73 in breast carcinomas. Mutat Res 2004; 554:215-21. [PMID: 15450420 DOI: 10.1016/j.mrfmmm.2004.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/27/2004] [Accepted: 04/29/2004] [Indexed: 04/30/2023]
Abstract
The p16-cyclin D-Cdk4(6)-pRB-E2F and p73 pathways are involved in the control of cell-cycle progression, and genetic lesions in both pathways frequently occur in breast carcinomas and other human cancers. The p16INK4a gene is involved in regulation of the G1/S transition, and when overexpressed, the p73 gene activates transcription of p53-responsive genes and promotes apoptosis. These pathways are related, for instance, p73 is also downstream of E2F-1, since E2F-1 induces p73-mediated apoptosis in the absence of p53. We studied 93 breast cancer patients to identify alterations in the expression of p16INK4a and p73 by semiquantitative RT-PCR analysis and possible interactions between them and correlations with clinicopathological parameters. p73 was overexpressed in 24 cases. Overexpression of p16INK4a was detected in 17 cases and underexpression in 32 cases. A significant correlation was observed between the overexpression of both genes (P = 0.05). Concurrent overexpression of p73 and p16INK4a was significantly correlated with metastases in three or more lymph nodes (P = 0.0007), positive immunohistochemistry for p53 (P = 0.014), vascular invasion (P = 0.048) and negative progesterone receptors (P = 0.004). These results indicate that concomitant overexpression of p16INK4a and p73 may be involved in breast cancer and associated with poor tumor characteristics.
Collapse
Affiliation(s)
- Vanesa Garcia
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro, C/San Martin de Porres 4, E-28035 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Teixeiro E, Daniels MA, Hausmann B, Schrum AG, Naeher D, Luescher I, Thome M, Bragado R, Palmer E. T Cell Division and Death Are Segregated by Mutation of TCRβ Chain Constant Domains. Immunity 2004; 21:515-26. [PMID: 15485629 DOI: 10.1016/j.immuni.2004.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 07/19/2004] [Accepted: 08/18/2004] [Indexed: 02/07/2023]
Abstract
We have studied the role of the T cell receptor (TCR) beta chain transmembrane and cytoplasmic domains (betaTM/Cyto) in T cell signaling. Upon antigen stimulation, T lymphocytes expressing a TCR with mutant and betaTM and Cyto domains accumulate in large numbers and are specifically defective in undergoing activation-induced cell death (AICD). The mutant TCR poorly recruits the protein adaptor Carma-1 and is subsequently impaired in activating NF-kappaB. This signaling defect leads to a reduced expression of Fas ligand (FasL) and to a reduction in AICD. These beta chain domains are involved in discriminating cell division and apoptosis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD
- Antigens, Differentiation, T-Lymphocyte
- Apoptosis/physiology
- Blotting, Western
- Cell Division/immunology
- Fas Ligand Protein
- Flow Cytometry
- Interleukin-2/metabolism
- Lymphocyte Activation/immunology
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Transgenic
- Microscopy, Confocal
- Molecular Sequence Data
- Mutation
- NF-kappa B/immunology
- NF-kappa B/metabolism
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Interleukin-2
- Signal Transduction/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Emma Teixeiro
- Laboratory of Transplantation Immunology, Department of Research, University Hospital-Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Abstract
Deregulation of the transcription factor E2F-1 is a common event in most human cancers. Paradoxically, E2F-1 has been shown to have the ability to induce both cell cycle progression and programmed cell death, leading potentially to both tumour-promoting as well as tumour-suppressive effects. Although the pathway to cell cycle progression seems straightforward with a number of growth-promoting E2F target genes having been described, the pathways to apoptosis are less well defined and more complex. The discovery that E2F-1 'knockout' mice are highly tumour prone has caused a recent surge in the number of reports relating to programmed cell death. This review focuses on these recent findings, highlighting the way in which they have increased our understanding of E2F-1-induced cell death, as well as indicating the questions that remain. Insight gained as to the role of this intriguing molecule in cancer and its potential for targeted therapy will also be discussed.
Collapse
Affiliation(s)
- L A Bell
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | | |
Collapse
|
311
|
Hobom U, Dobbelstein M. E1B-55-kilodalton protein is not required to block p53-induced transcription during adenovirus infection. J Virol 2004; 78:7685-97. [PMID: 15220443 PMCID: PMC434109 DOI: 10.1128/jvi.78.14.7685-7697.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The adenovirus E1B-55-kDa protein binds and inactivates the tumor suppressor protein p53. However, the role of this interaction during infection is still poorly understood and was therefore examined here. Infection with a virus carrying the E1B-55-kDa mutation R239A, preventing the interaction with p53, led to the accumulation of p53. However, p53 target genes were not activated in the infected cells, although p53 phosphorylation did occur and the p53 antagonists Mdm2 and deltaNp73 did not accumulate. Deletion of E4orf6, alone or in combination with E1B-55-kDa, did not allow the induction of p53-responsive genes either. In transient reporter assays, the viral E1A-13S protein antagonized p53 activity; mutational analysis suggested that this depends partially on p300 binding, but it depends even more strongly on the interaction of E1A with the p400/TRRAP protein complex. However, viruses expressing E1A mutants lacking these binding activities, in combination with E1B-55-kDa R239A, still abolished p53 activity. In contrast, when the mutation of E1B-55-kDa at R239A was combined with a deletion of the apoptosis inhibitor E1B-19-kDa, infected cells showed more extensive apoptosis than after infection with single mutants, suggesting that accumulated p53, albeit transcriptionally inactive, might nonetheless enhance apoptosis. Despite extensive apoptosis of the infected cells, the deletion of E1B-19-kDa, in combination with the E1B-55-kDa mutation or in the presence of the constitutively active p53 mutant p53mt24-28, reduced virus replication less than fivefold. In conclusion, adenovirus does not need direct binding of E1B-55-kDa to inactivate p53, and forced p53 activity with consecutive apoptosis does not severely impair virus replication.
Collapse
Affiliation(s)
- Urs Hobom
- Institut für Virologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
312
|
Finzer P, Krueger A, Stöhr M, Brenner D, Soto U, Kuntzen C, Krammer PH, Rösl F. HDAC inhibitors trigger apoptosis in HPV-positive cells by inducing the E2F-p73 pathway. Oncogene 2004; 23:4807-17. [PMID: 15077164 DOI: 10.1038/sj.onc.1207620] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Histone deacetylase (HDAC) inhibitors induce an intrinsic type of apoptosis in human papillomavirus (HPV)-positive cells by disrupting the mitochondrial transmembrane potential (deltapsim). Loss of deltapsim was only detected in E7, but not in E6 oncogene-expressing cells. HDAC inhibition led to a time-dependent degradation of the pocket proteins pRb, p107 and p130, releasing 'free' E2F-1 following initial G1 arrest. Inhibition of proteasomal proteolysis, but not of caspase activity rescued pRb from degradation and functionally restored its inhibitory effect on the cyclin E gene, known to be suppressed by pRb-E2F-1 in conjunction with HDAC1. Using siRNA targeted against p53, E2F-1 still triggered apoptosis by inducing the E2F-responsive proapoptotic alpha- and beta-isoforms of p73. These data may determine future therapeutic strategies in which HDAC inhibitors can effectively eliminate HPV-positive cells by an apoptotic route that does not rely on the reactivation of the 'classical' p53 pathway through a preceding shut-off of viral gene expression.
Collapse
Affiliation(s)
- Patrick Finzer
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Abteilung Virale Transformationsmechanismen, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
313
|
Cao Q, Xia Y, Azadniv M, Crispe IN. The E2F-1 Transcription Factor Promotes Caspase-8 and Bid Expression, and Enhances Fas Signaling in T Cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:1111-7. [PMID: 15240700 DOI: 10.4049/jimmunol.173.2.1111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The immune system depends on the extensive proliferation of rare Ag-specific precursor T lymphocytes, followed by their differentiation, the delivery of effector function, and finally death by apoptosis. T cells that lack the E2F-1 transcription factor, which is activated as cells pass the restriction point and enter S phase, show defects in activation-induced cell death. We now report that E2F-1 increases the activity of an apoptotic pathway that is important in murine primary T cells. Thus, E2F-1 promotes the transcription of Bid, a molecule that links death receptor signaling to the activation of apoptotic mechanisms in mitochondria. It also promotes the transcription of caspase-8, the enzyme that cleaves and activates Bid. Enforced expression of Bid can partially restore apoptosis in E2F-1-deficient T cells. Thus, E2F-1 integrates cell cycle progression with apoptosis.
Collapse
Affiliation(s)
- Qingyu Cao
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
314
|
Senoo M, Manis JP, Alt FW, McKeon F. p63 and p73 are not required for the development and p53-dependent apoptosis of T cells. Cancer Cell 2004; 6:85-9. [PMID: 15261144 DOI: 10.1016/j.ccr.2004.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 04/06/2004] [Accepted: 05/14/2004] [Indexed: 11/21/2022]
Abstract
The recent discoveries of p63 and p73, homologs of the tumor suppressor p53, raised the possibility of a network of these family members governing cell cycle arrest and apoptosis in response to stress. However, mice lacking p73 show no tendency for spontaneous tumors, and mutations in p63 or p73 are rare in human tumors, rendering any obligate role of these genes in cell death and tumor suppression unclear. In an effort to reconcile these incongruent data, we examined the genetic interactions between p53, p63, and p73 in well-established paradigms of p53-dependent and -independent T cell death using primary, genetically defined lymphocytes. Our findings challenge the generality of the notion that p63 and p73 are required for p53 function or for apoptosis in T cells.
Collapse
Affiliation(s)
- Makoto Senoo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
315
|
Abstract
Abstract
The tumor suppressor p53 is critically important in the cellular damage response and is the founding member of a family of proteins. All three genes regulate cell cycle and apoptosis after DNA damage. However, despite a remarkable structural and partly functional similarity among p53, p63, and p73, mouse knockout studies revealed an unexpected functional diversity among them. p63 and p73 knockouts exhibit severe developmental abnormalities but no increased cancer susceptibility, whereas this picture is reversed for p53 knockouts. Neither p63 nor p73 is the target of inactivating mutations in human cancers. Genomic organization is more complex in p63 and p73, largely the result of an alternative internal promoter generating NH2-terminally deleted dominant-negative proteins that engage in inhibitory circuits within the family. Deregulated dominant-negative p73 isoforms might play an active oncogenic role in some human cancers. Moreover, COOH-terminal extensions specific for p63 and p73 enable further unique protein-protein interactions with regulatory pathways involved in development, differentiation, proliferation, and damage response. Thus, p53 family proteins take on functions within a wide biological spectrum stretching from development (p63 and p73), DNA damage response via apoptosis and cell cycle arrest (p53, TAp63, and TAp73), chemosensitivity of tumors (p53 and TAp73), and immortalization and oncogenesis (ΔNp73).
Collapse
|
316
|
Craveiro R, Costa S, Pinto D, Salgado L, Carvalho L, Castro C, Bravo I, Lopes C, Silva I, Medeiros R. TP73 alterations in cervical carcinoma. ACTA ACUST UNITED AC 2004; 150:116-21. [PMID: 15066318 DOI: 10.1016/j.cancergencyto.2003.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Revised: 08/26/2003] [Accepted: 08/27/2003] [Indexed: 12/27/2022]
Abstract
Infection with human papillomaviruses (HPV) is essential in the carcinogenesis of the uterine cervix. However, a complex interrelation between viral and cellular genes is necessary for cell-cycle control deregulation and development and progression of cervical cancer induction. The TP73 gene is localized in 1p36.3 band, which is often deleted by loss of heterozygosity (LOH) in human cancers. We analyzed the p73 cytosine thymine polymorphism and LOH in this locus by polymerase chain reaction restriction fragment length polymorphism in 134 DNA samples from biopsies of 67 primary untreated invasive cervix tumors and the corresponding peripheral blood. Genotype frequencies of 56.7% for homozygous genotype GC/GC and 43.3% for heterozygous genotype GC/AT were found. The presence of the GC/AT genotype in tumors was associated with lower age at menarche (P=0.039) and high parity (P=0.015). In 20.0% of DNA tumor samples, the AT allele was lost compared with their DNA normal blood pairs. The AT allele was conserved in women with high parity. This was not the case in the group with low parity, with 33.3% of patients showing loss of the AT allele in tumor DNA (P=0.041). These results suggest that TP73 genetic alterations may contribute to the genesis and/or progression of cervical carcinoma in an HPV-infected transformation zone under prolonged exposure to events related to pregnancy.
Collapse
Affiliation(s)
- Rogéria Craveiro
- Department of Radiotherapy, Instituto Português de Oncologia, Porto, Rua Dr. Ant. Bernardino Almeida, 4200-072 Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Dasgupta P, Betts V, Rastogi S, Joshi B, Morris M, Brennan B, Ordonez-Ercan D, Chellappan S. Direct binding of apoptosis signal-regulating kinase 1 to retinoblastoma protein: novel links between apoptotic signaling and cell cycle machinery. J Biol Chem 2004; 279:38762-9. [PMID: 15210709 DOI: 10.1074/jbc.m312273200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The retinoblastoma protein Rb has antiproliferative and antiapoptotic functions. Our previous studies have shown that certain apoptotic signals can inactivate Rb via the p38 pathway. Here we show that Rb associates with the apoptosis signal-regulating kinase ASK1 in response to specific apoptotic signals. An LXCXE motif on ASK1 was required for Rb binding; this correlated with increased E2F1 transcriptional activity and up-regulation of the proapoptotic protein p73. Overexpression of Rb inhibited ASK1-induced apoptosis; in addition, an ASK1 mutant incapable of binding Rb could not induce apoptosis, indicating that ASK1 has to overcome the antiapoptotic properties of Rb to kill cells. Chromatin immunoprecipitation assays show that in asynchronous cells the p73P1 promoter is occupied predominantly by E2F3; upon tumor necrosis factor (TNF)-alpha stimulation, E2F3 is dissociated from the promoter and replaced by E2F1. At the same time, TNF-alpha stimulation causes Rb to dissociate from the p73P1 promoter. These are promoter-specific events because Rb binds to the mitogenic cdc25A promoter upon TNF-alpha stimulation. These studies suggest that Rb acts as a link between apoptotic and proliferative pathways by interacting with distinct kinases and occupying different promoters.
Collapse
Affiliation(s)
- Piyali Dasgupta
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
318
|
Chen W, Lee J, Cho SY, Fine HA. Proteasome-Mediated Destruction of the Cyclin A/Cyclin-Dependent Kinase 2 Complex Suppresses Tumor Cell Growth in Vitro and in Vivo. Cancer Res 2004; 64:3949-57. [PMID: 15173007 DOI: 10.1158/0008-5472.can-03-3906] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclin-dependent kinases (cdks) represent potentially promising molecular targets for cancer therapeutic strategies. To evaluate the antitumor activity of selective cyclin/cdk inhibition, we constructed a chimeric protein composed of a F-box protein (TrCP) fused to a peptide comprising the cyclin/cdk2 binding motif in p21-like cdk inhibitors (TrCP-LFG). We now demonstrate that endogenous cyclin A and its binding substrate, cdk2, can be tethered to beta-TrCP, ubiquitinated, and effectively degraded. Degradation of cdk2 and cyclin A together, but not cdk2 alone, results in massive tumor cell apoptosis in vitro and in vivo in a proteasome-dependent manner with no toxicity to normal tissue. These data demonstrate that cyclin A and/or the cyclin A/cdk2 complex is a promising anticancer target with a high therapeutic index.
Collapse
Affiliation(s)
- Wei Chen
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Neurological Disorder and Stroke, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
319
|
Concin N, Becker K, Slade N, Erster S, Mueller-Holzner E, Ulmer H, Daxenbichler G, Zeimet A, Zeillinger R, Marth C, Moll UM. Transdominant DeltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo. Cancer Res 2004; 64:2449-60. [PMID: 15059898 DOI: 10.1158/0008-5472.can-03-1060] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite strong homology, the roles of TP53 and TP73 in tumorigenesis seem to be fundamentally different. In contrast to TP53, tumor-associated overexpression of TP73 in many different cancers, combined with virtual absence of inactivating mutations and lack of a cancer phenotype in the TP73 null mouse are inconsistent with a suppressor function but instead support an oncogenic function. The discovery of NH(2)-terminally truncated p73 isoforms, collectively called DeltaTAp73, is now the focus of intense interest because they act as potent transdominant inihibitors of wild-type p53 and transactivation-competent TAp73. Therefore, establishing deregulated DeltaTAp73 expression in tumors could be the crucial link to decipher which of the two opposing roles of this bipolar gene is the biologically relevant one. This study is the largest to date and encompasses 100 ovarian carcinomas with complete expression profile of all NH(2)-terminal isoforms, discriminating between TAp73 and DeltaTAp73 (DeltaNp73, DeltaN'p73, Ex2p73, and Ex2/3p73) by isoform-specific real-time reverse transcription-PCR. We find that the set of NH(2)-terminal p73 isoforms distinguishes ovarian cancer patients from healthy controls and thus is a molecular marker for this diagnosis. Ovarian cancers strongly and almost universally overexpress DeltaN'p73 compared with normal tissues (95% of cancers). About one-third of tumors also exhibit concomitant up-regulation of the antagonistic TAp73, whereas only a small subgroup of tumors overexpress DeltaNp73. Thus, deregulation of the E2F1-responsive P1 promoter, rather than the alternate P2 promoter, is mainly responsible for the production of transdominant p53/TAp73 antagonists in ovarian cancer. Tumor stage, grade, presence of metastases, p53 status, and residual disease after resection are significant prognostic markers for overall and recurrence-free survival. A trend is found for better overall survival in patients with low expression of DeltaN'p73/DeltaNp73, compared with patients with high expression. A strong correlation between deregulated DeltaTAp73 and p53 status exists. p53 wild-type cancers exhibit significantly higher deregulation of DeltaN'p73, DeltaNp73, and Ex2/3p73 than p53 mutant cancers. This data strongly supports the hypothesis that overexpression of transdominant p73 isoforms can function as epigenetic inhibitors of p53 in vivo, thereby alleviating selection pressure for p53 mutations in tumors.
Collapse
Affiliation(s)
- Nicole Concin
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Liu K, Luo Y, Lin FT, Lin WC. TopBP1 recruits Brg1/Brm to repress E2F1-induced apoptosis, a novel pRb-independent and E2F1-specific control for cell survival. Genes Dev 2004; 18:673-86. [PMID: 15075294 PMCID: PMC387242 DOI: 10.1101/gad.1180204] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
TopBP1 (DNA topoisomerase IIbeta binding protein I) contains multiple BRCT domains and is involved in replication and the DNA damage checkpoint. Through its BRCT domain, TopBP1 interacts with and represses exclusively E2F1 but not other E2F factors. This regulation of E2F1 transcriptional activity is mediated by a pRb-independent, but Brg1/Brm-dependent mechanism. TopBP1 recruits Brg1/Brm, a central component of the SWI/SNF chromatin-remodeling complex, to E2F1-responsive promoters and represses the activities of E2F1, but not E2F2 or E2F3. This regulation is crucial in the control of E2F1-dependent apoptosis during normal cell growth and DNA damage. Interestingly, TopBP1 is induced by E2F and interacts with E2F1 during G1/S transition. Thus, TopBP1 functions as a critical modulator and serves as a negative feedback regulator of E2F1 by inhibiting E2F1-dependent apoptosis during G1/S transition as well as DNA damage to promote cell survival.
Collapse
Affiliation(s)
- Kang Liu
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, AL 35294-3300, USA
| | | | | | | |
Collapse
|
321
|
Pennaneach V, Barbier V, Regazzoni K, Fotedar R, Fotedar A. Rb Inhibits E2F-1-induced Cell Death in a LXCXE-dependent Manner by Active Repression. J Biol Chem 2004; 279:23376-83. [PMID: 15016799 DOI: 10.1074/jbc.m309809200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rb (retinoblastoma protein) inhibits E2F-1-induced cell death. We now show that the ability of Rb to inhibit E2F-1-induced cell death is dependent on a functional LXCXE-binding site in Rb, thereby suggesting that proteins that bind the LXCXE-binding site in Rb may regulate the anti-apoptotic activity of Rb. HDAC1, an LXCXE protein that plays a critical role in Rb-mediated transcription repression, abrogates the effect of Rb on E2F-1-induced cell death. In contrast, RF-Cp145, another LXCXE protein, cooperates with Rb to inhibit E2F-1-induced cell death. Both proteins exert their effect in an LXCXE-dependent manner. Rb regulates E2F-induced cell death by acting upstream of p73. Rb represses the p73 promoter. Our results further suggest a model in which Rb-E2F-1 complexes mediate the anti-apoptotic activity of Rb through active repression of target genes without recruiting HDAC1.
Collapse
|
322
|
Chau BN, Chen TT, Wan YY, DeGregori J, Wang JYJ. Tumor necrosis factor alpha-induced apoptosis requires p73 and c-ABL activation downstream of RB degradation. Mol Cell Biol 2004; 24:4438-47. [PMID: 15121862 PMCID: PMC400462 DOI: 10.1128/mcb.24.10.4438-4447.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 11/21/2003] [Accepted: 02/21/2004] [Indexed: 11/20/2022] Open
Abstract
The retinoblastoma protein (RB) suppresses cell proliferation and apoptosis. We have previously shown that RB degradation is required for tumor necrosis factor alpha (TNF-alpha) to induce apoptosis. We show here the identification of two apoptotic effectors, i.e., c-ABL tyrosine kinase and p73, which are activated by TNF-alpha following RB degradation. In cells expressing a degradation-resistant RB protein (RB-MI), TNF-alpha does not activate c-ABL. RB-MI also inhibits TNF-alpha-mediated activation of p73. Genetic deletion and pharmacological inhibition of c-ABL or p73 diminish the apoptotic response to TNF-alpha in human cell lines and mouse fibroblasts. Thymocytes isolated from Rb(MI/MI), Abl(-/-), or p73(-/-) mice are resistant to TNF-alpha-induced apoptosis compared to their wild-type counterparts. This is in contrast to p53(-/-) thymocytes, which exhibit a wild-type level of apoptosis in response to TNF-alpha. Thus, c-ABL and p73 contribute to apoptosis induced by TNF-alpha, in addition to their role in promoting DNA damage-associated cell death.
Collapse
Affiliation(s)
- B Nelson Chau
- Division of Biological Sciences and Cancer Center, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | | | | | |
Collapse
|
323
|
Terrinoni A, Ranalli M, Cadot B, Leta A, Bagetta G, Vousden KH, Melino G. p73-alpha is capable of inducing scotin and ER stress. Oncogene 2004; 23:3721-5. [PMID: 15116103 DOI: 10.1038/sj.onc.1207342] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
p73, like its family member p53, can induce programmed cell death following DNA damage. Here, we report that this mechanism also involves endoplasmic reticulum (ER) stress and the transactivation of scotin, a protein identified recently as a p53 target able to induce ER stress. By using Tet-On inducible cell lines (Saos 2 osteosarcoma cells that lack p53), we observed that TAp73alpha elicits significant alterations in the morphology of the ER system, namely in the fine subcellular localization of calnexin. We found that both TAp73alpha and p53 are strong inducers of scotin. On the other hand, the transcriptionally deficient short isoforms DeltaNp73alpha did not upregulate the steady-state mRNA level of scotin, as evaluated by real-time RT-PCR. Following the induction of scotin, ER staining with calnexin showed evidence of morphological alteration, with variations in the intracellular concentration of free calcium, visualized by fluo-3 staining. The induction of ER stress by p73 was further supported by the transcriptional induction of Gadd 153, a transcription factor induced under ER stress conditions. In conclusion, the data reported indicate the ability of TAp73alpha and p53 (not DeltaNp73alpha) to elicit scotin transactivation and ER stress. This molecular mechanism might contribute to the effector events inducing apoptosis downstream of p73.
Collapse
Affiliation(s)
- Alessandro Terrinoni
- Biochemistry Laboratory, IDI-IRCCS, Department of Experimental Medicine and Biochemical Sciences, University of Rome 'Tor Vergata', 00133 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
324
|
Wen XZ, Miyake S, Akiyama Y, Yuasa Y. BMP-2 modulates the proliferation and differentiation of normal and cancerous gastric cells. Biochem Biophys Res Commun 2004; 316:100-6. [PMID: 15003517 DOI: 10.1016/j.bbrc.2004.02.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Indexed: 11/25/2022]
Abstract
Bone morphogenetic protein 2 (BMP-2), a member of the transforming growth factor beta super-family, has been shown to act as an antiproliferative agent for a variety of cell lines by activating signaling cascades that cause cell cycle arrest. However, the biological effect and mechanism of action of BMP-2 on gastric cells remain unknown. In the present study, we showed that recombinant human BMP-2 dose-dependently inhibited the growth of OUMS37 rat gastric cells and MKN74 human gastric cancer cells. The antiproliferation seems to be due to cell cycle arrest in the G1-phase, which was revealed by flow cytometric assays. BMP-2 increased the level of p21/WAF1/CIP1, suggesting that BMP-2-mediated inhibition of cell proliferation may be induced through p21/WAF1/CIP1. In addition, BMP-2 increased the expression of pepsinogen II, a differentiation marker of the stomach, in MKN74 cells. These results indicate that BMP-2 plays important roles in modulating the proliferation and differentiation of gastric epithelial cells.
Collapse
Affiliation(s)
- Xian-Zi Wen
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
325
|
Powers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG. E2F1 Uses the ATM Signaling Pathway to Induce p53 and Chk2 Phosphorylation and Apoptosis. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.203.2.4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The p53 tumor suppressor protein is phosphorylated and activated by several DNA damage-inducible kinases, such as ATM, and is a key effector of the DNA damage response by promoting cell cycle arrest or apoptosis. Deregulation of the Rb-E2F1 pathway also results in the activation of p53 and the promotion of apoptosis, and this contributes to the suppression of tumor development. Here, we describe a novel connection between E2F1 and the ATM DNA damage response pathway. In primary human fibroblasts lacking functional ATM, the ability of E2F1 to induce the phosphorylation of p53 and apoptosis is impaired. In contrast, ATM status has no effect on transcriptional activation of target genes or the stimulation of DNA synthesis by E2F1. Cells containing mutant Nijmegen breakage syndrome protein (NBS1), a component of the Mre11-Rad50 DNA repair complex, also have attenuated p53 phosphorylation and apoptosis in response to E2F1 expression. Moreover, E2F1 induces ATM- and NBS1-dependent phosphorylation of the checkpoint kinase Chk2 at Thr68, a phosphorylation site that stimulates Chk2 activity. Delayed γH2AX phosphorylation and absence of ATM autophosphorylation at Ser1981 suggest that E2F1 stimulates ATM through a unique mechanism that is distinct from agents that cause DNA double-strand breaks. These findings identify new roles for several DNA damage response factors by demonstrating that they also participate in the oncogenic stress signaling pathway between E2F1 and p53.
Collapse
Affiliation(s)
- John T. Powers
- 1Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
- 2Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas; and
| | - SungKi Hong
- 1Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | - Christopher N. Mayhew
- 3Department of Cell Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Pamela M. Rogers
- 1Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | - Erik S. Knudsen
- 3Department of Cell Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - David G. Johnson
- 1Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
- 2Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas; and
| |
Collapse
|
326
|
Affiliation(s)
- Sharad Kumar
- Hanson Institute, IMVS, PO Box 14, Rundle Mall, Adelaide 5000, Australia.
| | | |
Collapse
|
327
|
Young AP, Longmore GD. Differential regulation of apoptotic genes by Rb in human versus mouse cells. Oncogene 2004; 23:2587-99. [PMID: 15048095 DOI: 10.1038/sj.onc.1207330] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The retinoblastoma protein (Rb) controls cellular proliferation and suppresses tumor formation through its effects upon E2F transcriptional regulation of the cell cycle. Unexpectedly, however, in proliferating human cells, Rb was present at the promoters of eight of eight E2F-regulated apoptotic genes tested, but zero of six E2F-regulated cell cycle genes tested. Binding of apoptotic gene promoters by Rb was constitutive, and inhibition of Rb in human cells by E2Fdb or E1A expression resulted in induction of these apoptotic genes and efficient cell death. E1A induced apoptosis much more efficiently in human fibroblasts than in mouse fibroblasts, suggesting a difference in susceptibility to loss of Rb function between human cells and mouse cells. Abrogation of Rb function in mouse cells did not induce expression of these apoptotic genes. Underlying this species difference in susceptibility to apoptosis following loss of Rb function was the absence of Rb on apoptotic gene promoters in mouse cells. Rb protein levels were 20-35-fold higher in primary human cells than in primary mouse cells. The constitutive repression of a multitude of apoptotic genes by Rb in human cells but not in mouse cells may provide a partial explanation for the well-known difference between human and mouse cells in transformation and tumorigenic potential.
Collapse
Affiliation(s)
- Arthur P Young
- Department of Medicine, Washington University School of Medicine, 4940 Parkview Place, St Louis, MO 63110, USA
| | | |
Collapse
|
328
|
Wilson C, Henry S, Smith MA, Bowser R. The p53 homologue p73 accumulates in the nucleus and localizes to neurites and neurofibrillary tangles in Alzheimer disease brain. Neuropathol Appl Neurobiol 2004; 30:19-29. [PMID: 14720173 PMCID: PMC1540445 DOI: 10.1046/j.0305-1846.2003.00496.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms that regulate neuronal survival vs. death during Alzheimer disease (AD) remain unclear. Nonetheless, a number of recent studies indicate that increased expression or altered subcellular distribution of numerous cell cycle proteins during AD may contribute to disease pathogenesis. Because homologues of p53, a key regulatory protein in the cell cycle, such as p73, have been identified and shown to participate in cellular differentiation and death pathways, we examined the expression and distribution of p73 in the hippocampus of eight control and 16 AD subjects. In control subjects, hippocampal pyramidal neurones exhibit p73 immunoreactivity that is distributed predominately in the cytoplasm. In AD hippocampus, increased levels of p73 are located in the nucleus of pyramidal neurones and p73 is located in dystrophic neurites and cytoskeletal pathology. Immunoblot analysis confirmed the presence of p73 in the hippocampus. These data indicate that p73 is expressed within hippocampal pyramidal neurones and exhibits altered subcellular distribution in AD.
Collapse
Affiliation(s)
- C Wilson
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
329
|
Abstract
The recent discovery of two genes, termed p63 and p73, encoding transcription factors highly homologous to p53 presents unexpected challenges and opportunities for the understanding and treatment of cancers. The questions raised are many but center on determining whether these new genes possess novel tumor suppressor functions, cooperate with p53, or impart oncogenic effects. At present there is considerable discord in the field concerning these concepts with some favoring a tumor suppressor role for the p53 family members and others an oncogenic influence. In support of a tumor suppressor role is the ability of p73 and p63 isoforms to transactivate p53 target genes and the large body of work linking p73, and to some extent p63, in apoptotic events in response to cellular stresses generally considered the purview of p53. More recently, p73 has been implicated in cell death following T cell activation, the response of cancers to chemotherapy, and finally, along with p63, to the function of p53 itself. Opposing this view is the fact that the p73 and p63 genes are rarely mutated in cancers and the stark absence of tumors in the p73 null mouse. Moreover, the high expression of dominant negative (dn) versions of the p73 and p63 proteins supports an anti-p53 function and therefore possibly an oncogenic effect. Indeed, the p63 gene is located in a region of chromosome three amplified in squamous cell carcinomas and the number of reports of dn-p63 overexpression in these diseases is increasing. This review will examine both sides of these arguments in an attempt to decipher common themes and to identify opportunities these genes represent for understanding tumorigenesis.
Collapse
Affiliation(s)
- Frank D McKeon
- Department of Cell Biology, Harvard Medical School, USA.
| |
Collapse
|
330
|
Liu G, Nozell S, Xiao H, Chen X. DeltaNp73beta is active in transactivation and growth suppression. Mol Cell Biol 2004; 24:487-501. [PMID: 14701724 PMCID: PMC343790 DOI: 10.1128/mcb.24.2.487-501.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
p73, a p53 family protein, shares significant sequence homolog and functional similarity with p53. However, unlike p53, p73 has at least seven alternatively spliced isoforms with different carboxyl termini (p73alpha-eta). Moreover, the p73 gene can be transcribed from a cryptic promoter located in intron 3, producing seven more proteins (DeltaNp73alpha-eta). DeltaNp73, which does not contain the N-terminal activation domain in p73, has been thought to be transcriptionally inactive and dominant negative over p53 or p73. To systemically analyze the activity of the DeltaN variant, we generated stable cell lines, which inducibly express DeltaNp73alpha, DeltaNp73beta, and various DeltaNp73beta mutants by using the tetracycline-inducible expression system. Surprisingly, we found that DeltaNp73beta is indeed active in inducing cell cycle arrest and apoptosis. Importantly, we found that, when DeltaNp73beta is expressed at a physiologically relevant level, it is capable of suppressing cell growth. We then demonstrated that these DeltaNp73beta activities are not cell type specific. We showed that the 13 unique residues at the N terminus are required for DeltaNp73beta to suppress cell growth. We also found that, among the 13 residues, residues 6 to 10 are critical to DeltaNp73beta function. Furthermore, we found that DeltaNp73beta is capable of inducing some p53 target genes, albeit to a lesser extent than does p73beta. Finally, we found that the 13 unique residues, together with the N-terminal PXXP motifs, constitute a novel activation domain. Like DeltaNp73beta, DeltaNp73gamma is active in transactivation. However, unlike DeltaNp73beta, DeltaNp73alpha is inactive in suppressing cell growth. Our data, together with others' previous findings, suggest that DeltaNp73beta may have distinct functions under certain cellular circumstances.
Collapse
Affiliation(s)
- Gang Liu
- Department of Cell Biology, The University of Alabama at Birmingham, 1530 3rd Avenue, Birmingham, AL 35294-0005, USA
| | | | | | | |
Collapse
|
331
|
Marinelli F, La Sala D, Cicciotti G, Cattini L, Trimarchi C, Putti S, Zamparelli A, Giuliani L, Tomassetti G, Cinti C. Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells. J Cell Physiol 2004; 198:324-32. [PMID: 14603534 DOI: 10.1002/jcp.10425] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has been recently established that low-frequency electromagnetic field (EMFs) exposure induces biological changes and could be associated with increased incidence of cancer, while the issue remains unresolved as to whether high-frequency EMFs can have hazardous effect on health. Epidemiological studies on association between childhood cancers, particularly leukemia and brain cancer, and exposure to low- and high-frequency EMF suggested an etiological role of EMFs in inducing adverse health effects. To investigate whether exposure to high-frequency EMFs could affect in vitro cell survival, we cultured acute T-lymphoblastoid leukemia cells (CCRF-CEM) in the presence of unmodulated 900 MHz EMF, generated by a transverse electromagnetic (TEM) cell, at various exposure times. We evaluated the effects of high-frequency EMF on cell growth rate and apoptosis induction, by cell viability (MTT) test, FACS analysis and DNA ladder, and we investigated pro-apoptotic and pro-survival signaling pathways possibly involved as a function of exposure time by Western blot analysis. At short exposure times (2-12 h), unmodulated 900 MHz EMF induced DNA breaks and early activation of both p53-dependent and -independent apoptotic pathways while longer continuous exposure (24-48 h) determined silencing of pro-apoptotic signals and activation of genes involved in both intracellular (Bcl-2) and extracellular (Ras and Akt1) pro-survival signaling. Overall our results indicate that exposure to 900 MHz continuous wave, after inducing an early self-defense response triggered by DNA damage, could confer to the survivor CCRF-CEM cells a further advantage to survive and proliferate.
Collapse
Affiliation(s)
- F Marinelli
- Institute for Organ Transplantation and Immunocytology, ITOI-CNR, Bologna unit, c/o IOR, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Asgharian B, Chen YJ, Patronas NJ, Peghini PL, Reynolds JC, Vortmeyer A, Zhuang Z, Venzon DJ, Gibril F, Jensen RT. Meningiomas may be a component tumor of multiple endocrine neoplasia type 1. Clin Cancer Res 2004; 10:869-880. [PMID: 14871962 DOI: 10.1158/1078-0432.ccr-0938-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Recently, an increased incidence of some nonendocrine tumors are reported in patients with multiple endocrine neoplasia type 1 (MEN 1). There are rare reports of meningiomas and other central nervous system tumors in these patients, but it is unknown if they are more frequent or if allelic loss of the MEN1 gene is important in their pathogenesis. The aim of this study was to address these two latter questions. EXPERIMENTAL DESIGN Results from a prospective study of 74 MEN 1 patients with suspected/proven pancreatic endocrine tumors (PETs) were analyzed, as well as molecular studies performed on a resected meningioma. All patients had serial brain imaging studies (computed tomography, magnetic resonance imaging, and octreoscanning since 1994) and yearly studies evaluating MEN 1 involvement with a mean follow-up of 7.2 years. Results were compared with 185 patients with sporadic Zollinger-Ellison syndrome. RESULTS Six patients (8%) had meningiomas. Meningiomas were single and found late in the MEN 1 course (mean age = 51 years). Magnetic resonance imaging/computed tomography were more sensitive than octreoscanning. Their diagnosis averaged 18 years after the onset of hyperparathyroidism, 10-15 years after pituitary disease or PETs. Meningiomas were 11 times more frequent in patients with PETs with MEN 1 than without MEN 1 (P = 0.017). No clinical, laboratory, or MEN 1 feature distinguished patients with meningiomas. Meningiomas were asymptomatic and 60% showed no growth. A resected meningioma showed loss of heterozygosity at 11q13 and 1p, including at p73 and ARHI/NOEY2 locus, but not at the neurofibromatosis 2 gene locus. CONCLUSIONS These results show meningiomas are not an infrequent occurrence in MEN 1, and loss of the function of the MEN1 gene product plays a role in their pathogenesis in these patients.
Collapse
Affiliation(s)
- Behnam Asgharian
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Building 10, 10 Center Drive MSC 1804, Bethesda, MD 20892-1804, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Abstract
Apoptosis is upregulated in early myelodysplastic syndromes (MDS) and may contribute to the peripheral cytopenias commonly observed. Conversely, leukemic progression is associated with abrogation of programmed cell death (PCD). The stage of hematopoietic cell maturation at which defects in PCD arise and the underlying causes of apoptosis dysregulation remain unknown. This paper outlines the apoptotic process in normal hematopoietic cells and summarizes current data regarding the role, potential causes and clinical implications of altered apoptosis in MDS.
Collapse
Affiliation(s)
- Jane E Parker
- Department of Haematological Medicine, Norfolk & Norwich University Hospital, Norwich, UK.
| | | |
Collapse
|
334
|
Abstract
The p53 tumor suppressor acts to integrate multiple stress signals into a series of diverse antiproliferative responses. One of the most important p53 functions is its ability to activate apoptosis, and disruption of this process can promote tumor progression and chemoresistance. p53 apparently promotes apoptosis through transcription-dependent and -independent mechanisms that act in concert to ensure that the cell death program proceeds efficiently. Moreover, the apoptotic activity of p53 is tightly controlled, and is influenced by a series of quantitative and qualitative events that influence the outcome of p53 activation. Interestingly, other p53 family members can also promote apoptosis, either in parallel or in concert with p53. Although incomplete, our current understanding of p53 illustrates how apoptosis can be integrated into a larger tumor suppressor network controlled by different signals, environmental factors, and cell type. Understanding this network in more detail will provide insights into cancer and other diseases, and will identify strategies to improve their therapeutic treatment.
Collapse
|
335
|
Abstract
The tumor suppressor p53-related p73 shares significant amino-acid sequence identity with p53. Like p53, p73 recognizes canonical p53 DNA-binding sites and activates p53-responsive target genes and induces apoptosis. Moreover, transcription coactivator p300/CBP binds to and coactivates with both p53 and p73 in stimulating the expression of their target genes. Here, we report that coactivator PCAF binds to p73. The N-terminal transactivation domain (TAD) and the conserved oligomerization domain (OD) of p73 are both required for its interaction with PCAF. Conversely, PCAF's HAT-domain is required for and both the N-terminal region and Bromo domain enhance binding of PCAF to p73. Significantly, PCAF stimulates p73-mediated transactivation, and binding of PCAF to p73 is necessary for p73's transactivation activity. PCAF-specific siRNA dramatically reduces p73-mediated transactivation. Stimulation of p73-mediated transactivation by PCAF requires the HAT domain of PCAF and the p53-binding site within the p21 promoter. In vivo, coexpression of wild-type, but not HAT-deficient PCAF with p73beta markedly increases p21 expression. Furthermore, cotransfection of PCAF and p73 leads to increased apoptosis and reduced colony formation. Collectively, these data suggest that p73 recruit PCAF to specific promoters to activate the transcription of p73 target genes.
Collapse
Affiliation(s)
- Lisa Y Zhao
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610-0235, USA
| | | | | | | | | |
Collapse
|
336
|
Tuve S, Wagner SN, Schittek B, Pützer BM. Alterations of DeltaTA-p 73 splice transcripts during melanoma development and progression. Int J Cancer 2003; 108:162-6. [PMID: 14618632 DOI: 10.1002/ijc.11552] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the last 2 years, it has become apparent that the p53-family members p53 and p73 play fundamentally different roles in human malignancies. In contrast to p53, many studies on cancer patients failed to detect mutational inactivation of p73 and reported overexpression of wild-type p73 instead. A possible explanation was provided by the recent discovery of N-terminal truncated isoforms of p73 (DeltaTA-p73) that act as dominant-negative inhibitors of wild-type p53 and TA-p73 and result in tumor growth in nude mice. We investigated the role of DeltaTA-p73 in the development and progression of human melanomas, which lack p53 mutations. We analyzed 8 benign melanocytic nevi, 8 primary melanomas and 19 melanoma metastases for alterations of TA-p73 and DeltaTA-p73 expression using isoform-specific real-time RT-PCR. Based on our results, p73Deltaex2 and Deltaex2/3 spliced transcripts derived from the first promoter were significantly up-regulated in melanoma metastases, whereas DeltaN-p73 generated from the second promoter was the predominant isoform in benign nevi. Moreover, increased expression of p73Deltaex2 and p73Deltaex2/3 correlated with high-levels of both TA-p73 and E2F1. Our data suggest a potential function of DeltaTA-p73 splice isoforms in melanoma progression.
Collapse
Affiliation(s)
- Sebastian Tuve
- Center for Cancer Research and Cancer Therapy, Institute of Molecular Biology, University of Essen Medical School, Essen, Germany
| | | | | | | |
Collapse
|
337
|
Hershko T, Ginsberg D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 2003; 279:8627-34. [PMID: 14684737 DOI: 10.1074/jbc.m312866200] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The E2F1 transcription factor is a critical downstream target of the tumor suppressor pRB. The retinoblastoma (RB) pathway is often inactivated in human tumors, resulting in deregulated E2F activity that can induce both proliferation and apoptosis. Bcl-2 homology 3 (BH3)-only proteins are pro-apoptotic members of the Bcl-2 protein family that trigger apoptosis in response to diverse stimuli. We show here that E2F1 up-regulates the expression of the pro-apoptotic BH3-only proteins PUMA, Noxa, Bim, and Hrk/DP5 through a direct transcriptional mechanism. Expression of the E7 protein of HPV16, which disrupts RB/E2F complexes, also up-regulates the expression of these four BH3-only proteins, implicating endogenous E2F in this phenomenon. Indeed, endogenous E2F1 binds the promoters of these four genes. Furthermore, inhibition of E2F1-induced expression of either Noxa or PUMA results in a significant reduction in E2F1-induced apoptosis, indicating that increased Noxa and PUMA levels mediate this E2F1-induced apoptosis. Importantly, inhibition of E2F activity abolishes DNA damage-induced elevation of PUMA levels, implicating E2F in the physiological regulation of PUMA expression. These data provide a novel direct link between E2F and the apoptotic machinery and may explain the increased sensitivity of cells with a defective RB/E2F pathway to chemotherapy.
Collapse
Affiliation(s)
- Tzippi Hershko
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
338
|
Fulco M, Costanzo A, Merlo P, Mangiacasale R, Strano S, Blandino G, Balsano C, Lavia P, Levrero M. p73 is regulated by phosphorylation at the G2/M transition. J Biol Chem 2003; 278:49196-202. [PMID: 12920125 DOI: 10.1074/jbc.m304921200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p73 is a p53 paralog that encodes proapoptotic (transactivation-competent (TA)) and antiapoptotic (dominant negative) isoforms. TAp73 transcription factors mediate cell cycle arrest and/or apoptosis in response to DNA damage and are involved in developmental processes in the central nervous system and the immune system. p73 proteins may also play a role in the regulation of cell growth. Indeed, p73 expression is itself modulated during the cell cycle and TAp73 proteins accumulate in S phase cells. In addition, the function of p73 proteins is also regulated by post-translational modifications and protein-protein interactions in different cellular and pathophysiological contexts. Here we show that p73 is a physiological target of the p34cdc2-cyclin B mitotic kinase complex in vivo. Both p73beta and p73alpha isoforms are hyperphosphorylated in normal mitotic cells and during mitotic arrest induced by microtubule-targeting drugs. p34cdc2-cyclin B phosphorylates and associates with p73 in vivo, which results in a decreased ability of p73 to both bind DNA and activate transcription in mitotic cells. Indeed, p73 is excluded from condensed chromosomes in meta- and anaphase, redistributes throughout the mitotic cytoplasm, and unlike p53, shows no association with centrosomes. Together these results indicate that M phase-specific phosphorylation of p73 by p34cdc2-cyclin B is associated with negative regulation of its transcriptional activating function.
Collapse
Affiliation(s)
- Marcella Fulco
- Laboratory of Gene Expression, Fondazione Andrea Cesalpino, University of Rome "La Sapienza," 00161 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Freie B, Li X, Ciccone SLM, Nawa K, Cooper S, Vogelweid C, Schantz L, Haneline LS, Orazi A, Broxmeyer HE, Lee SH, Clapp DW. Fanconi anemia type C and p53 cooperate in apoptosis and tumorigenesis. Blood 2003; 102:4146-52. [PMID: 12855557 DOI: 10.1182/blood-2003-03-0971] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fanconi anemia (FA) is a recessive genomic instability syndrome characterized by developmental defects, progressive bone marrow failure, and cancer. FA is genetically heterogeneous, however; the proteins encoded by different FA loci interact functionally with each other and with the BRCA1, BRCA2, and ATM gene products. Although patients with FA are highly predisposed to the development of myeloid leukemia and solid tumors, the alterations in biochemical pathways responsible for the progression of tumorigenesis in these patients remain unknown. FA cells are hypersensitive to a range of genotoxic and cellular stresses that activate signaling pathways mediating apoptosis. Here we show that ionizing radiation (IR) induces modestly elevated levels of p53 in cells from FA type C (Fancc) mutant mice and that inactivation of Trp53 rescues tumor necrosis factor alpha-induced apoptosis in myeloid cells from Fancc-/- mice. Further, whereas Fancc-/- mice failed to form hematopoietic or solid malignancies, mice mutant at both Fancc and Trp53 developed tumors more rapidly than mice mutant at Trp53 alone. This shortened latency was associated with the appearance of tumor types that are found in patients with FA but not in mice mutant at Trp53 only. Collectively, these data demonstrate that p53 and Fancc interact functionally to regulate apoptosis and tumorigenesis in Fancc-deficient cells.
Collapse
Affiliation(s)
- Brian Freie
- Cancer Research Institute, 1044 W Walnut St, R4/408, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Tullo A, Mastropasqua G, Bourdon JC, Centonze P, Gostissa M, Costanzo A, Levrero M, Del Sal G, Saccone C, Sbisà E. Adenosine deaminase, a key enzyme in DNA precursors control, is a new p73 target. Oncogene 2003; 22:8738-48. [PMID: 14647469 DOI: 10.1038/sj.onc.1206967] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of the p73 and p63 genes, homologous to p53 tumor suppressor has uncovered a family of transcription factors and widened the scenario of cell cycle control and apoptosis. We have identified a putative p53-responsive element in the human adenosine deaminase (ADA) gene, an important enzyme involved in nucleotide metabolism, the deficit of which causes the inhibition of DNA synthesis and repair. Here, we demonstrate that the ectopic expression of p73 isoforms leads to the ADA gene upregulation, showing for the first time a correlation between p73 and ADA. We found that p73 promotes ADA gene expression following a dNTP unbalance generated by ADA enzyme deficiency and 2'deoxyadenosine accumulation. The abrogation of p73 transcriptional activity by the specific dominant-negative p73DD abolishes ADA induction. By contrast, the ADA gene does not appear to be a functional p53 target in the physiological conditions we tested. On the whole, our results contribute to the emerging picture that p73 could play a different role from p53 in normal growth and development by inducing alternative target genes, which are not shared by p53.
Collapse
Affiliation(s)
- Apollonia Tullo
- Istituto di Tecnologie Biomediche, Sezione di Bari di Bioinformatica e Genomica CNR, Via Amendola, 165/A Bari 70126, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Maisse C, Guerrieri P, Melino G. p73 and p63 protein stability: the way to regulate function? Biochem Pharmacol 2003; 66:1555-61. [PMID: 14555234 DOI: 10.1016/s0006-2952(03)00511-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
While the p53 homologue p73 has been found to be involved in tumorigenesis, the molecular mechanisms involved in this function are still not fully evident. The presence of two distinct promoters allows the formation of two proteins with opposite effects: while TA-p73 shows pro-apoptotic effects, DeltaN-p73 has an evident anti-apoptotic function. The relative expression of the two proteins is in fact related to the prognosis of several cancers. Since both p73 and p63, the other member of the same family, share the ability to interact with each other, it is important to understand the mechanisms that control the degradation and stability of both proteins, and their relative isoforms. p73 and p63 stability is regulated not only by protein modifications (phosphorylation, acetylation) but also by its degradation in the proteasome. To this end, the interaction with Mdm2, p300/CBP, and SUMO-1 are discussed in details.
Collapse
Affiliation(s)
- Carine Maisse
- Department of Experimental Medicine, Biochemistry Laboratory, IDI-IRCCS, University of Rome Tor Vergata, Rome, Italy
| | | | | |
Collapse
|
342
|
Marabese M, Vikhanskaya F, Rainelli C, Sakai T, Broggini M. DNA damage induces transcriptional activation of p73 by removing C-EBPalpha repression on E2F1. Nucleic Acids Res 2003; 31:6624-32. [PMID: 14602923 PMCID: PMC275563 DOI: 10.1093/nar/gkg869] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 09/16/2003] [Accepted: 09/30/2003] [Indexed: 12/17/2022] Open
Abstract
p73 is a member of the p53 family often overexpressed in human cancer. Its regulation, particularly following DNA damage, is different from that of p53. Following DNA damage, we found induction of p73 at both the protein and mRNA levels. Furthermore, by using different p73 promoter fragments, we found a role for E2F1 in mediating transcription of p73. However, this observation alone does not account for the observed DNA damage-induced activation of p73 in the cells used in these experiments. By analyzing the p73 promoter sequence, we revealed a new mechanism of p73 induction associated with the removal of transcriptional repression from the p73 promoter. We found, in fact, that treatment of cells with DNA damaging agents induced nuclear export of the transcription factor C-EBPalpha and blockage of this export abolished drug-induced p73 activation. We also show that C-EBPalpha has a direct repressive activity on transfactor E2F1, and for this repression the binding of C-EBPalpha to its consensus sequence in the DNA is required. These data suggest that in normal conditions a repressor complex involving C-EBPalpha, E2F1 and perhaps other proteins is present on the p73 promoter. This repressor complex is destroyed following damage by removal of C-EBPalpha from nuclei.
Collapse
Affiliation(s)
- Mirko Marabese
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, via Eritrea 62, 20157 Milan, Italy
| | | | | | | | | |
Collapse
|
343
|
Dick FA, Dyson N. pRB contains an E2F1-specific binding domain that allows E2F1-induced apoptosis to be regulated separately from other E2F activities. Mol Cell 2003; 12:639-49. [PMID: 14527410 DOI: 10.1016/s1097-2765(03)00344-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interaction between pRB and E2F is critical for control of the cell cycle and apoptosis. Here we report that pRB contains two distinct E2F binding sites. The previously identified E2F binding site on pRB is necessary for stable association with E2Fs on DNA. A second E2F interaction site is located entirely within the C-terminal domain of pRB and is specific for E2F1. E2F1/pRB complexes formed through this site have low affinity for DNA, but the interaction is sufficient for pRB to regulate E2F1-induced apoptosis, and E2F1 loses the ability to interact with this site following DNA damage. These results show that pRB interacts with individual E2F proteins in different ways and suggest that pRB's regulation of E2F1-induced apoptosis is physically separable from its transcriptional control of other E2F proteins.
Collapse
Affiliation(s)
- Frederick A Dick
- Massachusetts General Hospital Cancer Center, 149 13th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
344
|
Mu X, Chang C. TR3 orphan nuclear receptor mediates apoptosis through up-regulating E2F1 in human prostate cancer LNCaP cells. J Biol Chem 2003; 278:42840-5. [PMID: 12947120 DOI: 10.1074/jbc.m305594200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early studies suggested both TR3 orphan receptor (TR3) and apoptosis mediator E2F1 might play an important role in mediating prostate cancer cell apoptosis. Their linkage and relationship, however, remain unclear. Here we found that 12-O-tetradecanoylphorbol-13-acetate (TPA) could induce cell apoptosis via induction of TR3 and E2F1 expression in LNCaP prostate cancer cells. Addition of antisense E2F1 could partially rescue the TR3-mediated cell apoptosis, and transfection of the TR3 dominant-negative plasmid could block the TR3-induced E2F1 expression. These data suggest that TPA is able to induce LNCaP cell apoptosis via induction of TR3 resulting in the induction of E2F1. Promoter reporter assays show that TR3 can induce E2F1 expression via binding to the TR3 response element (TR3RE) in the E2F1 promoter -316 to -324 bp region. TR3 can bind specifically to this TR3RE with a Kd of 6.29 nm, and mutations of this E2F1-TR3RE can partially block the TR3-mediated E2F1 expression. Taken together, these data suggest that TPA is able to induce cell apoptosis via a TPA --> TR3 --> E2F1 --> apoptosis pathway in LNCaP cells. Further studies of how to modulate this pathway may allow us to better understand how to control the prostate cancer growth.
Collapse
MESH Headings
- Amino Acid Motifs
- Apoptosis
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Cell Cycle Proteins
- Cell Line, Tumor
- Cell Survival
- DNA Mutational Analysis
- DNA-Binding Proteins
- E2F Transcription Factors
- E2F1 Transcription Factor
- Gene Deletion
- Genes, Dominant
- Genes, Reporter
- Humans
- Kinetics
- Luciferases/metabolism
- Male
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Oligonucleotides, Antisense/chemistry
- Plasmids/metabolism
- Promoter Regions, Genetic
- Prostatic Neoplasms/metabolism
- Protein Binding
- Receptors, Steroid/metabolism
- Receptors, Steroid/physiology
- Receptors, Thyroid Hormone/metabolism
- Receptors, Thyroid Hormone/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Xiaomin Mu
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
345
|
Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 2003; 278:47853-61. [PMID: 14500729 DOI: 10.1074/jbc.m305171200] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prohibitin, a potential tumor suppressor protein, has been shown to inhibit cell proliferation and repress E2F transcriptional activity. Though prohibitin has potent transcriptional functions in the nucleus, a mitochondrial role for prohibitin has also been proposed. Here we show that prohibitin is predominantly nuclear in two breast cancer cell lines where it co-localizes with E2F1 and p53. Upon apoptotic stimulation by camptothecin, prohibitin is exported to perinuclear regions where it localizes to mitochondria. The data presented here also show that prohibitin is capable of physically interacting with p53 in vivo and in vitro. Prohibitin was found to enhance p53-mediated transcriptional activity and cotransfection of an antisense prohibitin construct reduces p53-mediated transcriptional activation. Prohibitin appears to induce p53-mediated transcription by enhancing its recruitment to promoters, as detected by chromatin immunoprecipitation assays. These results suggest that prohibitin is capable of modulating Rb/E2F as well as p53 regulatory pathways.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Binding Sites
- Blotting, Western
- Camptothecin/metabolism
- Camptothecin/pharmacology
- Cell Cycle Proteins
- Cell Division
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatin/metabolism
- Cytosol/metabolism
- DNA-Binding Proteins
- E2F Transcription Factors
- E2F1 Transcription Factor
- Enzyme Inhibitors/pharmacology
- Genes, Reporter
- Glutathione Transferase/metabolism
- Humans
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Nuclear Proteins
- Oligonucleotides, Antisense/chemistry
- Precipitin Tests
- Prohibitins
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proteins/metabolism
- Proteins/physiology
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-mdm2
- Repressor Proteins
- Retinoblastoma Protein/metabolism
- Signal Transduction
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Gina Fusaro
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
346
|
Hallstrom TC, Nevins JR. Specificity in the activation and control of transcription factor E2F-dependent apoptosis. Proc Natl Acad Sci U S A 2003; 100:10848-53. [PMID: 12954980 PMCID: PMC196891 DOI: 10.1073/pnas.1831408100] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous work has demonstrated a role for the E2F1 gene product in signaling apoptosis, both as a result of the deregulation of the Rb/E2F pathway as well as in response to DNA damage. We now show that the ability of cells to suppress the apoptotic potential of E2F1, as might occur during the course of normal cellular proliferation, requires the action of the Ras-phosphoinositide 3-kinase-Akt signaling pathway. In addition, we also identify a domain within the E2F1 protein, previously termed the marked-box domain, that is essential for the apoptotic activity of E2F1 and that distinguishes the E2F1 protein from E2F3. We also show that the E2F1-marked-box domain is essential for the induction of both p53 and p73 accumulation. Importantly, a role for the marked-box domain in the specificity of E2F1-mediated apoptosis coincides with recent work demonstrating a role for this domain in achieving specificity in the activation of transcription. We conclude that the unique capacity of E2F1 to trigger apoptosis reflects a specificity of transcriptional activation potential, and that this role for E2F1 is regulated through the action of the Akt protein kinase.
Collapse
Affiliation(s)
- Timothy C Hallstrom
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
347
|
Bai YQ, Miyake S, Iwai T, Yuasa Y. CDX2, a homeobox transcription factor, upregulates transcription of the p21/WAF1/CIP1 gene. Oncogene 2003; 22:7942-9. [PMID: 12970742 DOI: 10.1038/sj.onc.1206634] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CDX2 homeobox transcription factor plays key roles in intestinal development and homeostasis. CDX2 is downregulated during colorectal carcinogenesis, whereas overexpression of CDX2 results in growth inhibition and differentiation of colon carcinoma and intestinal cells. However, the means by which CDX2 functions remain poorly understood. p21/WAF1/CIP1 is one of the cyclin-dependent kinase inhibitors. In addition to its role in cell cycle control, p21 plays critical roles in differentiation and tumor suppression. The overlapping in both the expression and function of CDX2 and p21 in the small intestine and colon strongly suggests a link between these two genes. By means of luciferase reporter and electrophoretic mobility shift assays, we show here that CDX2 transactivated and physically interacted with the promoter of p21 in a p53-independent manner. Moreover, overexpression of CDX2 increased the mRNA expression of p21 in HT-29 colon carcinoma cells, as demonstrated by reverse transcription-polymerase chain reaction. These data suggest that p21 is a transcriptional target of CDX2. Our results may thus provide a new mechanism underlying the functions of CDX2.
Collapse
Affiliation(s)
- Yun-Qing Bai
- Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
348
|
Nath N, Wang S, Betts V, Knudsen E, Chellappan S. Apoptotic and mitogenic stimuli inactivate Rb by differential utilization of p38 and cyclin-dependent kinases. Oncogene 2003; 22:5986-94. [PMID: 12955077 DOI: 10.1038/sj.onc.1206843] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inactivation of the retinoblastoma (Rb) tumor suppressor protein is essential for the G1/S transition during mammalian cell cycle progression. Although Rb is inactivated by phosphorylation by cyclins D and E and their associated kinases during cell cycle progression, we find that Rb is inactivated upon apoptotic stimulation by Fas through the mediation of p38 kinase, independent of cyclins and cyclin-dependent kinases (cdks). Inactivation by p38 kinase coincided with increased phosphorylation of Rb leading to dissociation of E2F and increased transcriptional activity; such p38-mediated changes in Rb function occurred only during Fas stimulation but not mitogenic progression. p38 kinase targets Rb preferentially and had minimal effects on p107 and had no effect on p130 function. We also find that phosphorylation site mutants of Rb (PSM7LP and PSM9-Rb) that cannot be inactivated by cdks can be targeted by Fas and p38 kinase, suggesting that Rb inactivation by these kinases is biochemically and functionally distinct. It appears that Rb inactivation is achieved by different kinase cascades in response to mitogenic and apoptotic signals.
Collapse
Affiliation(s)
- Niharika Nath
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
349
|
Abstract
The double-strand break (DSB) is believed to be one of the most severe types of DNA damage, and if left unrepaired is lethal to the cell. Several different types of repair act on the DSB. The most important in mammalian cells are nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR). NHEJ is the predominant type of DSB repair in mammalian cells, as opposed to lower eucaryotes, but HRR has recently been implicated in critical cell signaling and regulatory functions that are essential for cell viability. Whereas NHEJ repair appears constitutive, HRR is regulated by the cell cycle and inducible signal transduction pathways. More is known about the molecular details of NHEJ than HRR in mammalian cells. This review focuses on the mechanisms and regulation of DSB repair in mammalian cells, the signaling pathways that regulate these processes and the potential crosstalk between NHEJ and HRR, and between repair and other stress-induced pathways with emphasis on the regulatory circuitry associated with the ataxia telangiectasia mutated (ATM) protein.
Collapse
Affiliation(s)
- Kristoffer Valerie
- Department of Radiation Oncology, Medical College of Virginia Commonwealth University, Richmond, VA 23298-0058, USA.
| | | |
Collapse
|
350
|
Löhr K, Möritz C, Contente A, Dobbelstein M. p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 2003; 278:32507-16. [PMID: 12748190 DOI: 10.1074/jbc.m212517200] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor p53 regulates transcription positively and negatively, depending on the target gene. Whereas p53 induces transcription through direct interaction with promoter DNA, the mechanism of p53-mediated transcriptional repression is less well understood. Early reports described the alleviation of p53-mediated repression by inhibitors of apoptosis, suggesting that negative regulation of transcription might occur only in conjunction with programmed cell death. More recently, it has been proposed that certain genes, such as survivin, are repressed by direct association of p53 with their promoters, followed by recruitment of a repressor complex. We show here that p53-mediated negative regulation of transcription could occur independently of apoptosis. In contrast, the amino-terminal transactivation domain of p53 was required for negative regulation of transcription. Similarly, the p53 homologue p73 diminished the expression of survivin and stathmin, depending on its transactivation domain. Mutation of the putative p53 binding site within the survivin promoter did not impair its repression. These observations raised the hypothesis that activation of an effector gene might be required for repression by p53. Strikingly, when the p53-inducible p21/CDKN1A gene was deleted, p53 no longer repressed any one among 11 genes that it down-regulates otherwise. Most of these genes were also repressed by ectopic p21 in the absence of p53. Overexpressed c-Myc reduced the transcription of p21/CDKN1A and impaired p53-mediated repression but did not abolish repression by ectopic p21. Taken together, these results strongly suggest that increased expression of p21/CDKN1A is necessary and sufficient for the negative regulation of gene expression by p53.
Collapse
Affiliation(s)
- Kristina Löhr
- Institut für Virologie, Philipps-Universität Marburg, Robert Koch Str. 17, 35037 Marburg, Germany
| | | | | | | |
Collapse
|