301
|
Felsky D, Roostaei T, Nho K, Risacher SL, Bradshaw EM, Petyuk V, Schneider JA, Saykin A, Bennett DA, De Jager PL. Neuropathological correlates and genetic architecture of microglial activation in elderly human brain. Nat Commun 2019; 10:409. [PMID: 30679421 PMCID: PMC6345810 DOI: 10.1038/s41467-018-08279-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
Microglia, the resident immune cells of the brain, have important roles in brain health. However, little is known about the regulation and consequences of microglial activation in the aging human brain. Here we report that the proportion of morphologically activated microglia (PAM) in postmortem cortical tissue is strongly associated with β-amyloid, tau-related neuropathology, and the rate of cognitive decline. Effect sizes for PAM measures are substantial, comparable to that of APOE ε4, the strongest genetic risk factor for Alzheimer's disease, and mediation models support an upstream role for microglial activation in Alzheimer's disease via accumulation of tau. Further, we identify a common variant (rs2997325) influencing PAM that also affects in vivo microglial activation measured by [11C]-PBR28 PET in an independent cohort. Thus, our analyses begin to uncover pathways regulating resident neuroinflammation and identify overlaps of PAM's genetic architecture with those of Alzheimer's disease and several other traits.
Collapse
Affiliation(s)
- Daniel Felsky
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
- Program in Population and Medical Genetics, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, MA, 02141, USA
| | - Tina Roostaei
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Center, Center for Neuroimaging, Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN, 46202, USA
| | - Shannon L Risacher
- Indiana Alzheimer's Disease Center, Center for Neuroimaging, Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN, 46202, USA
| | - Elizabeth M Bradshaw
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Vlad Petyuk
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Julie A Schneider
- Department of Neurology, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL, 60612, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL, 60612, USA
| | - Andrew Saykin
- Indiana Alzheimer's Disease Center, Center for Neuroimaging, Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN, 46202, USA
| | - David A Bennett
- Department of Neurology, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL, 60612, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL, 60612, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
- Program in Population and Medical Genetics, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, MA, 02141, USA.
| |
Collapse
|
302
|
Gatt A, Lee H, Williams G, Thuret S, Ballard C. Expression of neurogenic markers in Alzheimer's disease: a systematic review and metatranscriptional analysis. Neurobiol Aging 2019; 76:166-180. [PMID: 30716542 DOI: 10.1016/j.neurobiolaging.2018.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by substantial neuronal loss and progressive brain atrophy. Animal studies have suggested that the process of adult neurogenesis might be altered at the earliest phases of disease onset. The relationship between AD progression and adult neurogenesis in the human brain is, however, not well understood. Here, we present a systematic review of the postmortem studies that investigated changes in human adult neurogenesis in the AD brain. We present findings from 11 postmortem studies that were identified by a systematic search within the literature, focusing on what markers of neurogenesis were used, which stages of AD were investigated, and whether the studies had any confounding information that could potentially hinder clear interpretation of the presented data. In addition, we also review studies that examined transcriptomic changes in human AD postmortem brains and reveal upregulated expression of neural progenitor and proliferation markers and downregulated expression of later neurogenic markers in AD. Taken together, the existing literature seems to suggest that the overall level of human adult neurogenesis is reduced during the later stages of AD, potentially due to failed maturation and integration of new-born neurons. Further investigations using complementary methods such as in vitro disease modeling will be helpful to understand the exact molecular mechanisms underlying such pattern of change and to determine whether neurogenesis can be an effective therapeutic target for early intervention.
Collapse
Affiliation(s)
- Ariana Gatt
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Hyunah Lee
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gareth Williams
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandrine Thuret
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Clive Ballard
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
303
|
Chiquita S, Rodrigues-Neves AC, Baptista FI, Carecho R, Moreira PI, Castelo-Branco M, Ambrósio AF. The Retina as a Window or Mirror of the Brain Changes Detected in Alzheimer's Disease: Critical Aspects to Unravel. Mol Neurobiol 2019; 56:5416-5435. [PMID: 30612332 DOI: 10.1007/s12035-018-1461-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease is the most frequent cause of dementia worldwide, representing a global health challenge, with a massive impact on the quality of life of Alzheimer's disease patients and their relatives. The diagnosis of Alzheimer's disease constitutes a real challenge, because the symptoms manifest years after the first degenerative changes occurring in the brain and the diagnosis is based on invasive and/or expensive techniques. Therefore, there is an urgent need to identify new reliable biomarkers to detect Alzheimer's disease at an early stage. Taking into account the evidence for visual deficits in Alzheimer's disease patients, sometimes even before the appearance of the first disease symptoms, and that the retina is an extension of the brain, the concept of the retina as a window to look into the brain or a mirror of the brain has received increasing interest in recent years. However, only a few studies have assessed the changes occurring in the retina and the brain at the same time points. Unlike previous reviews on this subject, which are mainly focused on brain changes, we organized this review by comprehensively summarizing findings related with structural, functional, cellular, and molecular parameters in the retina reported in both Alzheimer's disease patients and animal models. Moreover, we separated the studies that assessed only the retina, and those that assessed both the retina and brain, which are few but allow establishing correlations between the retina and brain. This review also highlights some inconsistent results in the literature as well as relevant missing gaps in this field.
Collapse
Affiliation(s)
- Samuel Chiquita
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana C Rodrigues-Neves
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Filipa I Baptista
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Rafael Carecho
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- CIBIT, Coimbra Institute for Biomedical Imaging and Translational Research, ICNAS, Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
304
|
Nanowired delivery of cerebrolysin with neprilysin and p-Tau antibodies induces superior neuroprotection in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:145-200. [DOI: 10.1016/bs.pbr.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
305
|
Anderson SR, Vetter ML. Developmental roles of microglia: A window into mechanisms of disease. Dev Dyn 2019; 248:98-117. [PMID: 30444278 PMCID: PMC6328295 DOI: 10.1002/dvdy.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are engineers of the central nervous system (CNS) both in health and disease. In addition to the canonical immunological roles of clearing damaging entities and limiting the spread of toxicity and death, microglia remodel the CNS throughout life. While they have been extensively studied in disease and injury, due to their highly variable functions, their precise role in these contexts still remains uncertain. Over the past decade, we have greatly expanded our understanding of microglial function, including their essential homeostatic roles during development. Here, we review these developmental roles, identify parallels in disease, and speculate whether developmental mechanisms re-emerge in disease and injury. Developmental Dynamics 248:98-117, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah R Anderson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| |
Collapse
|
306
|
Li H, Liu CC, Zheng H, Huang TY. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer's disease -conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener 2018; 7:34. [PMID: 30603085 PMCID: PMC6306008 DOI: 10.1186/s40035-018-0139-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a fatal disease that threatens the quality of life of an aging population at a global scale. Various hypotheses on the etiology of AD have been developed over the years to guide efforts in search of therapeutic strategies. MAIN BODY In this review, we focus on four AD hypotheses currently relevant to AD onset: the prevailing amyloid cascade hypothesis, the well-recognized tau hypothesis, the increasingly popular pathogen (viral infection) hypothesis, and the infection-related antimicrobial protection hypothesis. In briefly reviewing the main evidence supporting each hypothesis and discussing the questions that need to be addressed, we hope to gain a better understanding of the complicated multi-layered interactions in potential causal and/or risk factors in AD pathogenesis. As a defining feature of AD, the existence of amyloid deposits is likely fundamental to AD onset but is insufficient to wholly reproduce many complexities of the disorder. A similar belief is currently also applied to hyperphosphorylated tau aggregates within neurons, where tau has been postulated to drive neurodegeneration in the presence of pre-existing Aβ plaques in the brain. Although infection of the central nerve system by pathogens such as viruses may increase AD risk, it is yet to be determined whether this phenomenon is applicable to all cases of sporadic AD and whether it is a primary trigger for AD onset. Lastly, the antimicrobial protection hypothesis provides insight into a potential physiological role for Aβ peptides, but how Aβ/microbial interactions affect AD pathogenesis during aging awaits further validation. Nevertheless, this hypothesis cautions potential adverse effects in Aβ-targeting therapies by hindering potential roles for Aβ in anti-viral protection. CONCLUSION AD is a multi-factor complex disorder, which likely requires a combinatorial therapeutic approach to successfully slow or reduce symptomatic memory decline. A better understanding of how various causal and/or risk factors affecting disease onset and progression will enhance the likelihood of conceiving effective treatment paradigms, which may involve personalized treatment strategies for individual patients at varying stages of disease progression.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX USA
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA USA
| |
Collapse
|
307
|
Artemisinin B Improves Learning and Memory Impairment in AD Dementia Mice by Suppressing Neuroinflammation. Neuroscience 2018; 395:1-12. [DOI: 10.1016/j.neuroscience.2018.10.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/30/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022]
|
308
|
Lana D, Ugolini F, Wenk GL, Giovannini MG, Zecchi-Orlandini S, Nosi D. Microglial distribution, branching, and clearance activity in aged rat hippocampus are affected by astrocyte meshwork integrity: evidence of a novel cell-cell interglial interaction. FASEB J 2018; 33:4007-4020. [PMID: 30496700 DOI: 10.1096/fj.201801539r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging and neurodegenerative diseases share a condition of neuroinflammation entailing the production of endogenous cell debris in the CNS that must be removed by microglia ( i.e., resident macrophages), to restore tissue homeostasis. In this context, extension of microglial cell branches toward cell debris underlies the mechanisms of microglial migration and phagocytosis. Amoeboid morphology and the consequent loss of microglial branch functionality characterizes dysregulated microglia. Microglial migration is assisted by another glial population, the astroglia, which forms a dense meshwork of cytoplasmic projections. Amoeboid microglia and disrupted astrocyte meshwork are consistent traits in aged CNS. In this study, we assessed a possible correlation between microglia and astroglia morphology in rat models of chronic neuroinflammation and aging, by 3-dimensional confocal analysis implemented with particle analysis. Our findings suggest that a microglia-astroglia interaction occurs in rat hippocampus via cell-cell contacts, mediating microglial cell branching in the presence of inflammation. In aged rats, the impairment of such an interaction correlates with altered distribution, morphology, and inefficient clearance by microglia. These data support the idea that generally accepted functional boundaries between microglia and astrocytes should be re-evaluated to better understand how their functions overlap and interact.-Lana, D., Ugolini, F., Wenk, G. L., Giovannini, M. G., Zecchi-Orlandini, S., Nosi, D. Microglial distribution, branching, and clearance activity in aged rat hippocampus are affected by astrocyte meshwork integrity: evidence of a novel cell-cell interglial interaction.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Gary L Wenk
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
309
|
Thome AD, Faridar A, Beers DR, Thonhoff JR, Zhao W, Wen S, Pascual B, Masdeu JC, Appel SH. Functional alterations of myeloid cells during the course of Alzheimer's disease. Mol Neurodegener 2018; 13:61. [PMID: 30424785 PMCID: PMC6233576 DOI: 10.1186/s13024-018-0293-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuroinflammation is a hallmark of neurodegenerative disease and a significant component of the pathology of Alzheimer's disease (AD). Patients present with extensive microgliosis along with elevated pro-inflammatory signaling in the central nervous system and periphery. However, the role of peripheral myeloid cells in mediating and influencing AD pathogenesis remains unresolved. METHODS Peripheral myeloid cells were isolated from peripheral blood of patients with prodromal AD (n = 44), mild AD dementia (n = 25), moderate/severe AD dementia (n = 28), and age-matched controls (n = 54). Patients were evaluated in the clinic for AD severity and categorized using Clinical Dementia Rating (CDR) scale resulting in separation of patients into prodromal AD (CDR0.5) and advancing forms of AD dementia (mild-CDR1 and moderate/severe-CDR2/3). Separation of peripheral myeloid cells into mature monocytes or immature MDSCs permitted the delineation of population changes from flow cytometric analysis, RNA phenotype analysis, and functional studies using T cell suppression assays and monocyte suppression assays. RESULTS During stages of AD dementia (CDR1 and 2/3) peripheral myeloid cells increase their pro-inflammatory gene expression while at early stages of disease (prodromal AD-CDR0.5) pro-inflammatory gene expression is decreased. MDSCs are increased in prodromal AD compared with controls (16.81% vs 9.53%) and have markedly increased suppressive functions: 42.4% suppression of activated monocyte-produced IL-6 and 78.16% suppression of T cell proliferation. In AD dementia, MDSC populations are reduced with decreased suppression of monocyte IL-6 (5.22%) and T cell proliferation (37.61%); the reduced suppression coincides with increased pro-inflammatory signaling in AD dementia monocytes. CONCLUSIONS Peripheral monocyte gene expression is pro-inflammatory throughout the course of AD, except at the earliest, prodromal stages when pro-inflammatory gene expression is suppressed. This monocyte biphasic response is associated with increased numbers and suppressive functions of MDSCs during the early stages and decreased numbers and suppressive functions in later stages of disease. Prolonging the early protective suppression and reversing the later loss of suppressive activity may offer a novel therapeutic strategy.
Collapse
Affiliation(s)
- Aaron D Thome
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin St. Suite 802, Houston, TX, 77030, USA
| | - Alireza Faridar
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin St. Suite 802, Houston, TX, 77030, USA
| | - David R Beers
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin St. Suite 802, Houston, TX, 77030, USA
| | - Jason R Thonhoff
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin St. Suite 802, Houston, TX, 77030, USA
| | - Weihua Zhao
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin St. Suite 802, Houston, TX, 77030, USA
| | - Shixiang Wen
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin St. Suite 802, Houston, TX, 77030, USA
| | - Belen Pascual
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin St. Suite 802, Houston, TX, 77030, USA
| | - Joseph C Masdeu
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin St. Suite 802, Houston, TX, 77030, USA
| | - Stanley H Appel
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin St. Suite 802, Houston, TX, 77030, USA.
| |
Collapse
|
310
|
Marzi SJ, Leung SK, Ribarska T, Hannon E, Smith AR, Pishva E, Poschmann J, Moore K, Troakes C, Al-Sarraj S, Beck S, Newman S, Lunnon K, Schalkwyk LC, Mill J. A histone acetylome-wide association study of Alzheimer's disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nat Neurosci 2018; 21:1618-1627. [PMID: 30349106 DOI: 10.1038/s41593-018-0253-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/12/2018] [Indexed: 12/17/2022]
Abstract
We quantified genome-wide patterns of lysine H3K27 acetylation (H3K27ac) in entorhinal cortex samples from Alzheimer's disease (AD) cases and matched controls using chromatin immunoprecipitation and highly parallel sequencing. We observed widespread acetylomic variation associated with AD neuropathology, identifying 4,162 differential peaks (false discovery rate < 0.05) between AD cases and controls. Differentially acetylated peaks were enriched in disease-related biological pathways and included regions annotated to genes involved in the progression of amyloid-β and tau pathology (for example, APP, PSEN1, PSEN2, and MAPT), as well as regions containing variants associated with sporadic late-onset AD. Partitioned heritability analysis highlighted a highly significant enrichment of AD risk variants in entorhinal cortex H3K27ac peak regions. AD-associated variable H3K27ac was associated with transcriptional variation at proximal genes including CR1, GPR22, KMO, PIM3, PSEN1, and RGCC. In addition to identifying molecular pathways associated with AD neuropathology, we present a framework for genome-wide studies of histone modifications in complex disease.
Collapse
Affiliation(s)
- Sarah J Marzi
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Blizard Institute, Queen Mary University of London, London, UK
| | - Szi Kay Leung
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | | | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Adam R Smith
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ehsan Pishva
- University of Exeter Medical School, University of Exeter, Exeter, UK
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jeremie Poschmann
- University of Exeter Medical School, University of Exeter, Exeter, UK
- Centre de Recherche en Transplantation et Immunologie, Inserm, Université de Nantes, Nantes, France
| | - Karen Moore
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Claire Troakes
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stephan Beck
- UCL Cancer Institute, University College London, London, UK
| | | | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | | | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK.
| |
Collapse
|
311
|
Hüttenrauch M, Ogorek I, Klafki H, Otto M, Stadelmann C, Weggen S, Wiltfang J, Wirths O. Glycoprotein NMB: a novel Alzheimer's disease associated marker expressed in a subset of activated microglia. Acta Neuropathol Commun 2018; 6:108. [PMID: 30340518 PMCID: PMC6194687 DOI: 10.1186/s40478-018-0612-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible, devastating neurodegenerative brain disorder characterized by the loss of neurons and subsequent cognitive decline. Despite considerable progress in the understanding of the pathophysiology of AD, the precise molecular mechanisms that cause the disease remain elusive. By now, there is ample evidence that activated microglia have a critical role in the initiation and progression of AD. The present study describes the identification of Glycoprotein nonmetastatic melanoma protein B (GPNMB) as a novel AD-related factor in both transgenic mice and sporadic AD patients by expression profiling, immunohistochemistry and ELISA measurements. We show that GPNMB levels increase in an age-dependent manner in transgenic AD models showing profound cerebral neuron loss and demonstrate that GPNMB co-localizes with a distinct population of IBA1-positive microglia cells that cluster around amyloid plaques. Our data further indicate that GPNMB is part of a microglia activation state that is only present under neurodegenerative conditions and that is characterized by the up-regulation of a subset of genes including TREM2, APOE and CST7. In agreement, we provide in vitro evidence that soluble Aβ has a direct effect on GPNMB expression in an immortalized microglia cell line. Importantly, we show for the first time that GPNMB is elevated in brain samples and cerebrospinal fluid (CSF) of sporadic AD patients when compared to non-demented controls. The current findings indicate that GPNMB represents a novel disease-associated marker that appears to play a role in the neuroinflammatory response of AD.
Collapse
|
312
|
Krbot K, Hermann P, Skorić MK, Zerr I, Sepulveda-Falla D, Goebel S, Matschke J, Krasemann S, Glatzel M. Distinct microglia profile in Creutzfeldt-Jakob disease and Alzheimer's disease is independent of disease kinetics. Neuropathology 2018; 38:591-600. [PMID: 30318820 DOI: 10.1111/neup.12517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/16/2018] [Accepted: 08/25/2018] [Indexed: 12/15/2022]
Abstract
Activated microglia represent a common pathological feature of neurodegenerative diseases. Sporadic Creutzfeldt-Jakob disease (sCJD) patients show more pronounced microglial activation than Alzheimer's disease (AD) patients. Whether these differences are due to differences in disease kinetics or represent disease-specific changes is unknown. We investigated microglial phenotypes in brains of rapidly progressive AD (rpAD) and sCJD patients matched for clinical presentation, including disease duration. We immunostained the frontal cortex, basal ganglia and cerebellum in 16 patients with rpAD and sCJD using antibodies against markers of microglia and recruited monocytes (ionized calcium-binding adaptor molecule 1, human leukocyte antigen DPQR, Cluster of Differentiation 68), an antibody unique to brain-resident microglia (transmembrane protein 119 (TMEM119)), in addition to antibodies against a marker of astrocytes (glial fibrillary acidic protein), amyloid-β (Aβ) and pathological prion protein. rpAD patients showed a distinct microglial phenotype with a high abundance of TMEM119-positive microglia in all investigated regions. Presence of Aβ deposits seen in a sCJD patient with concomitant deposition of Aβ led to increase of TMEM119-positive microglia. Our data suggest that in rpAD, activation of brain-resident microglia significantly contributes to microgliosis, whereas in sCJD the TMEM119 signature of resident microglial cells is barely detectable. This is irrespective of disease duration and may indicate disease-specific microglial reaction.
Collapse
Affiliation(s)
- Katarina Krbot
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Hermann
- National TSE Reference Centre, Department of Neurology, Georg-August University Goettingen, Germany
| | | | - Inga Zerr
- National TSE Reference Centre, Department of Neurology, Georg-August University Goettingen, Germany
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Goebel
- National TSE Reference Centre, Department of Neurology, Georg-August University Goettingen, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
313
|
Aliseychik MP, Andreeva TV, Rogaev EI. Immunogenetic Factors of Neurodegenerative Diseases: The Role of HLA Class II. BIOCHEMISTRY (MOSCOW) 2018; 83:1104-1116. [DOI: 10.1134/s0006297918090122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
314
|
Protective effects of Withania somnifera extract in SOD1 G93A mouse model of amyotrophic lateral sclerosis. Exp Neurol 2018; 309:193-204. [PMID: 30134145 DOI: 10.1016/j.expneurol.2018.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/21/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Abstract
Withania somnifera (WS; commonly known as Ashwagandha or Indian ginseng) is a medicinal plant whose extracts have been in use for centuries in various regions of the world as a rejuvenator. There is now a growing body of evidence documenting neuroprotective functions of the plant extracts or its purified compounds in several models of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Based on the extract's beneficial effect in a mouse model of ALS with TDP-43 proteinopathy, the current study was designed to test its efficacy in another model of familial ALS. Our results show that administration of WS extracts by gavage to mice expressing G93A mutant form of superoxide dismutase (SOD1) resulted in increased longevity, improved motor performance and increased number of motor neurons in lumbar spinal cord. The WS treatment caused substantial reduction in levels of misfolded SOD1whereas it enhanced expression of cellular chaperons in spinal cord of SOD1G93A mice. WS markedly reduced glial activation and prevented phosphorylation of nuclear factor kappaB (NF-κB). The overall immunomodulatory effect of WS was further evidenced by changes in expression of multiple cytokines/chemokines. WS also served as an autophagy inducer which may be beneficial at early stages of the disease. These results suggest that WS extracts might constitute promising therapeutics for treatment of ALS with involvement of misfolded SOD1.
Collapse
|
315
|
Spatial Dynamics of Vascular and Biochemical Injury in Rat Hippocampus Following Striatal Injury and Aβ Toxicity. Mol Neurobiol 2018; 56:2714-2727. [DOI: 10.1007/s12035-018-1225-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/05/2018] [Indexed: 01/09/2023]
|
316
|
Vos SJ, Visser PJ. Preclinical Alzheimer’s Disease: Implications for Refinement of the Concept. J Alzheimers Dis 2018; 64:S213-S227. [DOI: 10.3233/jad-179943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Stephanie J.B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, Netherlands
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, Netherlands
- Department of Neurology, Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
317
|
Gauthier S, Zhang H, Ng KP, Pascoal T, Rosa-Neto P. Impact of the biological definition of Alzheimer's disease using amyloid, tau and neurodegeneration (ATN): what about the role of vascular changes, inflammation, Lewy body pathology? Transl Neurodegener 2018; 7:12. [PMID: 29876101 PMCID: PMC5977549 DOI: 10.1186/s40035-018-0117-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The NIA-AA research framework proposes a biological definition of Alzheimer's disease, where asymptomatic persons with amyloid deposition would be considered as having this disease prior to symptoms. DISCUSSION Notwithstanding the fact that amyloid deposition in isolation is not associated with dementia, even the combined association of amyloid and tau pathology does not inevitably need to dementia over age 65. Other pathological factors may play a leading or an accelerating role in age-associated cognitive decline, including vascular small vessel disease, neuroinflammation and Lewy Body pathology. CONCLUSION Research should aim at understanding the interaction between all these factors, rather than focusing on them individually. Hopefully this will lead to a personalized approach to the prevention of brain aging, based on individual biological, genetic and cognitive profiles.
Collapse
Affiliation(s)
- S. Gauthier
- McGill Center for Studies in Aging, Douglas Mental Health Research Institute, Montreal, Canada
| | - H. Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - K. P. Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - T.A. Pascoal
- McGill Center for Studies in Aging, Douglas Mental Health Research Institute, Montreal, Canada
| | - P. Rosa-Neto
- McGill Center for Studies in Aging, Douglas Mental Health Research Institute, Montreal, Canada
| |
Collapse
|
318
|
Ren HL, Lv CN, Xing Y, Geng Y, Zhang F, Bu W, Wang MW. Downregulated Nuclear Factor E2-Related Factor 2 (Nrf2) Aggravates Cognitive Impairments via Neuroinflammation and Synaptic Plasticity in the Senescence-Accelerated Mouse Prone 8 (SAMP8) Mouse: A Model of Accelerated Senescence. Med Sci Monit 2018; 24:1132-1144. [PMID: 29474348 PMCID: PMC5833362 DOI: 10.12659/msm.908954] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background We observed the effects of nuclear factor E2-related factor 2 (Nrf2) downregulation via intrahippocampal injection of a lentiviral vector on cognition in senescence-accelerated mouse prone 8 (SAMP8) to investigate the role of the (Nrf2)/antioxidant response element (ARE) pathway in age-related changes. Material/Methods Control lentivirus and Nrf2-shRNA-lentivirus were separately injected into the hippocampus of 4-month-old SAMR1 and SAMP8 mice and then successfully downregulated Nrf2 expression in this brain region. Five months later, cognitive function tests, including the novel object test, the Morris water maze test, and the passive avoidance task were conducted. Glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1) immunohistochemistry was performed to observe an inflammatory response. Presynaptic synapsin (SYN) were observed by immunofluorescence. We then determined the Nrf2-regulated, heme oxygenase-1 (HO-1), P65, postsynaptic density protein (PSD), and SYN protein levels. The ultrastructure of neurons and synapses in the hippocampal CA1 region was observed by transmission electron microscopy. Results Aging led to a decline in cognitive function compared with SAMR1 mice and the Nrf2-shRNA-lentivirus further exacerbated the cognitive impairment in SAMP8 mice. Nrf2, HO-1, PSD, and SYN levels were significantly reduced (all P<0.05) but high levels of inflammation were detected in SAMP8 mice with low expression of Nrf2. Furthermore, neurons were vacuolated, the number of organelles decreased, and the number of synapses decreased. Conclusions Downregulation of Nrf2 suppressed the Nrf2/ARE pathway, activated oxidative stress and neuroinflammation, and accelerated cognitive impairment in SAMP8 mice. Downregulation of Nrf2 accelerates the aging process through neuroinflammation and synaptic plasticity.
Collapse
Affiliation(s)
- Hui Ling Ren
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Chao Nan Lv
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, Hebei, China (mainland)
| | - Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yuan Geng
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, Hebei, China (mainland)
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Wei Bu
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ming Wei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|