301
|
Matos J, Lipp JJ, Bogdanova A, Guillot S, Okaz E, Junqueira M, Shevchenko A, Zachariae W. Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I. Cell 2008; 135:662-78. [PMID: 19013276 DOI: 10.1016/j.cell.2008.10.026] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/08/2008] [Accepted: 10/27/2008] [Indexed: 01/29/2023]
Abstract
Meiosis differs from mitosis in that DNA replication is followed by the segregation of homologous chromosomes but not sister chromatids. This depends on the formation of interhomolog connections through crossover recombination and on the attachment of sister kinetochores to microtubules emanating from the same spindle pole. We show that in yeast, the Dbf4-dependent Cdc7 kinase (DDK) provides a link between premeiotic S phase, recombination, and monopolar attachment. Independently from its established role in initiating DNA replication, DDK promotes double-strand break formation, the first step of recombination, and the recruitment of the monopolin complex to kinetochores, which is essential for monopolar attachment. DDK regulates monopolin localization together with the polo-kinase Cdc5 bound to Spo13, probably through phosphorylation of the monopolin subunit Lrs4. Thus, activation of DDK both initiates DNA replication and commits meiotic cells to reductional chromosome segregation in the first division of meiosis.
Collapse
Affiliation(s)
- Joao Matos
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
302
|
Abstract
Centromeres are an essential and conserved feature of eukaryotic chromosomes, yet recent research indicates that we are just beginning to understand the numerous roles that centromeres have in chromosome segregation. During meiosis I, in particular, centromeres seem to function in many processes in addition to their canonical role in assembling kinetochores, the sites of microtubule attachment. Here we summarize recent advances that place centromeres at the centre of meiosis I, and discuss how these studies affect a variety of basic research fields and thus hold promise for increasing our understanding of human reproductive defects and disease states.
Collapse
Affiliation(s)
- Gloria A. Brar
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute Massachusetts Institute of Technology, E17-233 40 Ames Street Cambridge MA 02139 USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute Massachusetts Institute of Technology, E17-233 40 Ames Street Cambridge MA 02139 USA
| |
Collapse
|
303
|
Karamysheva Z, Diaz-Martinez LA, Crow SE, Li B, Yu H. Multiple anaphase-promoting complex/cyclosome degrons mediate the degradation of human Sgo1. J Biol Chem 2008; 284:1772-80. [PMID: 19015261 PMCID: PMC2615523 DOI: 10.1074/jbc.m807083200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion in early
mitosis and, thus, prevents premature sister-chromatid separation. The protein
level of Sgo1 is regulated during the cell cycle; it peaks in mitosis and is
down-regulated in G1/S. Here we show that Sgo1 is degraded during
the exit from mitosis, and its degradation depends on the anaphase-promoting
complex/cyclosome (APC/C). Overexpression of Cdh1 reduces the protein levels
of ectopically expressed Sgo1 in human cells. Sgo1 is ubiquitinated by APC/C
bound to Cdh1 (APC/CCdh1) in vitro. We have further
identified two functional degradation motifs in Sgo1; that is, a KEN
(Lys-Glu-Asn) box and a destruction box (D box). Although removal of either
motif is not sufficient to stabilize Sgo1, Sgo1 with both KEN box and D box
deleted is stable in cells. Surprisingly, mitosis progresses normally in the
presence of non-degradable Sgo1, indicating that degradation of Sgo1 is not
required for sister-chromatid separation or mitotic exit. Finally, we show
that the spindle checkpoint kinase Bub1 contributes to the maintenance of Sgo1
steady-state protein levels in an APC/C-independent mechanism.
Collapse
Affiliation(s)
- Zemfira Karamysheva
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA
| | | | | | | | | |
Collapse
|
304
|
Abstract
Cohesin is a chromosome-associated multisubunit protein complex that is highly conserved in eukaryotes and has close homologs in bacteria. Cohesin mediates cohesion between replicated sister chromatids and is therefore essential for chromosome segregation in dividing cells. Cohesin is also required for efficient repair of damaged DNA and has important functions in regulating gene expression in both proliferating and post-mitotic cells. Here we discuss how cohesin associates with DNA, how these interactions are controlled during the cell cycle; how binding of cohesin to DNA may mediate sister chromatid cohesion, DNA repair, and gene regulation; and how defects in these processes can lead to human disease.
Collapse
Affiliation(s)
- Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria.
| | | | | |
Collapse
|
305
|
Yin S, Ai JS, Shi LH, Wei L, Yuan J, Ouyang YC, Hou Y, Chen DY, Schatten H, Sun QY. Shugoshin1 may play important roles in separation of homologous chromosomes and sister chromatids during mouse oocyte meiosis. PLoS One 2008; 3:e3516. [PMID: 18949044 PMCID: PMC2567865 DOI: 10.1371/journal.pone.0003516] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 10/01/2008] [Indexed: 11/29/2022] Open
Abstract
Background Homologous chromosomes separate in meiosis I and sister chromatids separate in meiosis II, generating haploid gametes. To address the question why sister chromatids do not separate in meiosis I, we explored the roles of Shogoshin1 (Sgo1) in chromosome separation during oocyte meiosis. Methodology/Principal Findings Sgo1 function was evaluated by exogenous overexpression to enhance its roles and RNAi to suppress its roles during two meioses of mouse oocytes. Immunocytochemistry and chromosome spread were used to evaluate phenotypes. The exogenous Sgo1 overexpression kept homologous chromosomes and sister chromatids not to separate in meiosis I and meiosis II, respectively, while the Sgo1 RNAi promoted premature separation of sister chromatids. Conclusions Our results reveal that prevention of premature separation of sister chromatids in meiosis I requires the retention of centromeric Sgo1, while normal separation of sister chromatids in meiosis II requires loss of centromeric Sgo1.
Collapse
Affiliation(s)
- Shen Yin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Jun-Shu Ai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Li-Hong Shi
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Liang Wei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Ju Yuan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Da-Yuan Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
306
|
Martinez-Perez E, Schvarzstein M, Barroso C, Lightfoot J, Dernburg AF, Villeneuve AM. Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev 2008; 22:2886-901. [PMID: 18923085 PMCID: PMC2569886 DOI: 10.1101/gad.1694108] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 08/18/2008] [Indexed: 12/23/2022]
Abstract
Segregation of homologous chromosomes during meiosis depends on linkages (chiasmata) created by crossovers and on selective release of a subset of sister chromatid cohesion at anaphase I. During Caenorhabditis elegans meiosis, each chromosome pair forms a single crossover, and the position of this event determines which chromosomal regions will undergo cohesion release at anaphase I. Here we provide insight into the basis of this coupling by uncovering a large-scale regional change in chromosome axis composition that is triggered by crossovers. We show that axial element components HTP-1 and HTP-2 are removed during late pachytene, in a crossover-dependent manner, from the regions that will later be targeted for anaphase I cohesion release. We demonstrate correspondence in position and number between chiasmata and HTP-1/2-depleted regions and provide evidence that HTP-1/2 depletion boundaries mark crossover sites. In htp-1 mutants, diakinesis bivalents lack normal asymmetrical features, and sister chromatid cohesion is prematurely lost during the meiotic divisions. We conclude that HTP-1 is central to the mechanism linking crossovers with late-prophase bivalent differentiation and defines the domains where cohesion will be protected until meiosis II. Further, we discuss parallels between the pattern of HTP-1/2 removal in response to crossovers and the phenomenon of crossover interference.
Collapse
Affiliation(s)
- Enrique Martinez-Perez
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
307
|
de Carvalho CE, Zaaijer S, Smolikov S, Gu Y, Schumacher JM, Colaiácovo MP. LAB-1 antagonizes the Aurora B kinase in C. elegans. Genes Dev 2008; 22:2869-85. [PMID: 18923084 PMCID: PMC2569883 DOI: 10.1101/gad.1691208] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/18/2008] [Indexed: 11/24/2022]
Abstract
The Shugoshin/Aurora circuitry that controls the timely release of cohesins from sister chromatids in meiosis and mitosis is widely conserved among eukaryotes, although little is known about its function in organisms whose chromosomes lack a localized centromere. Here we show that Caenorhabditis elegans chromosomes rely on an alternative mechanism to protect meiotic cohesin that is shugoshin-independent and instead involves the activity of a new chromosome-associated protein named LAB-1 (Long Arm of the Bivalent). LAB-1 preserves meiotic sister chromatid cohesion by restricting the localization of the C. elegans Aurora B kinase, AIR-2, to the interface between homologs via the activity of the PP1/Glc7 phosphatase GSP-2. The localization of LAB-1 to chromosomes of dividing embryos and the suppression of mitotic-specific defects in air-2 mutant embryos with reduced LAB-1 activity support a global role of LAB-1 in antagonizing AIR-2 in both meiosis and mitosis. Although the localization of a GFP fusion and the analysis of mutants and RNAi-mediated knockdowns downplay a role for the C. elegans shugoshin protein in cohesin protection, shugoshin nevertheless helps to ensure the high fidelity of chromosome segregation at metaphase I. We propose that, in C. elegans, a LAB-1-mediated mechanism evolved to offset the challenges of providing protection against separase activity throughout a larger chromosome area.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Amino Acid Sequence
- Animals
- Aurora Kinase B
- Aurora Kinases
- Caenorhabditis elegans
- Caenorhabditis elegans Proteins/antagonists & inhibitors
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Cell Cycle Proteins/metabolism
- Chromatids/genetics
- Chromatids/metabolism
- Chromosomal Proteins, Non-Histone/antagonists & inhibitors
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Segregation
- DNA-Binding Proteins/metabolism
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Fluorescent Antibody Technique
- Gene Expression Regulation, Developmental
- Immunoglobulin G/immunology
- Meiosis/physiology
- Meiotic Prophase I/physiology
- Mitosis/physiology
- Molecular Sequence Data
- Multiprotein Complexes/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Sister Chromatid Exchange
- Cohesins
Collapse
Affiliation(s)
| | - Sophie Zaaijer
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sarit Smolikov
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yanjie Gu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jill M. Schumacher
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
308
|
Mailhes JB. Faulty spindle checkpoint and cohesion protein activities predispose oocytes to premature chromosome separation and aneuploidy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:642-58. [PMID: 18626998 DOI: 10.1002/em.20412] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aneuploidy accounts for a major proportion of human reproductive failures, mental and physical anomalies, and neoplasms. To heighten our understanding of normal and abnormal chromosome segregation, additional information is needed about the underlying molecular mechanisms of chromosome segregation. Although many hypotheses have been proposed for the etiology of human aneuploidy, there has not been general acceptance of any specific hypothesis. Moreover, it is important to recognize that many potential mechanisms exist whereby chromosome missegregation may occur. One area for investigating aneuploidy centers on the biochemical changes that take place during oocyte maturation. In this regard, recent results have shown that faulty mRNA of spindle-assembly checkpoint proteins and chromosome cohesion proteins may lead to aneuploidy. Also, postovulatory and in vitro aging of mouse oocytes has been shown to lead to decreased levels of Mad2 transcripts and elevated frequencies of premature centromere separation. The intent of this review is to highlight the major events surrounding chromosome segregation and to present the published results that support the premise that faulty chromosome cohesion proteins and spindle checkpoint proteins compromise accurate chromosome segregation.
Collapse
Affiliation(s)
- John B Mailhes
- Department of Obstetrics and Gynecology, LSU Health Sciences Center, Shreveport, Louisiana 71130, USA.
| |
Collapse
|
309
|
Yamagishi Y, Sakuno T, Shimura M, Watanabe Y. Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 2008; 455:251-5. [PMID: 18716626 DOI: 10.1038/nature07217] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 06/27/2008] [Indexed: 02/08/2023]
Abstract
The centromere of a chromosome is composed mainly of two domains, a kinetochore assembling core centromere and peri-centromeric heterochromatin regions. The crucial role of centromeric heterochromatin is still unknown, because even in simpler unicellular organisms such as the fission yeast Schizosaccharomyces pombe, the heterochromatin protein Swi6 (HP1 homologue) has several functions at centromeres, including silencing gene expression and recombination, enriching cohesin, promoting kinetochore assembly, and, ultimately, preventing erroneous microtubule attachment to the kinetochores. Here we show that the requirement of heterochromatin for mitotic chromosome segregation is largely replaced by forcibly enriching cohesin at centromeres in fission yeast. However, this enrichment of cohesin is not sufficient to replace the meiotic requirement for heterochromatin. We find that the heterochromatin protein Swi6 associates directly with meiosis-specific shugoshin Sgo1, a protector of cohesin at centromeres. A point mutation of Sgo1 (V242E), which abolishes the interaction with Swi6, impairs the centromeric localization and function of Sgo1. The forced centromeric localization of Sgo1 restores proper meiotic chromosome segregation in swi6 cells. We also show that the direct link between HP1 and shugoshin is conserved in human cells. Taken together, our findings suggest that the recruitment of shugoshin is the important primary role for centromeric heterochromatin in ensuring eukaryotic chromosome segregation.
Collapse
Affiliation(s)
- Yuya Yamagishi
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
310
|
Vialard F, Pellestor F. Intérêt de la cytogénétique des gamètes humains : résultats et perspectives. ACTA ACUST UNITED AC 2008; 56:388-99. [DOI: 10.1016/j.patbio.2008.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
|
311
|
Llano E, Gómez R, Gutiérrez-Caballero C, Herrán Y, Sánchez-Martín M, Vázquez-Quiñones L, Hernández T, de Álava E, Cuadrado A, Barbero JL, Suja JA, Pendás AM. Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice. Genes Dev 2008; 22:2400-13. [PMID: 18765791 PMCID: PMC2532928 DOI: 10.1101/gad.475308] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 07/04/2008] [Indexed: 01/09/2023]
Abstract
Shugoshin-2 (SGOL2) is one of the two mammalian orthologs of the Shugoshin/Mei-S322 family of proteins that regulate sister chromatid cohesion by protecting the integrity of the multiprotein cohesin complexes. This protective system is essential for faithful chromosome segregation during mitosis and meiosis, which is the physical basis of Mendelian inheritance. Regardless of its evolutionary conservation from yeast to mammals, little is known about the in vivo relevance and specific role that SGOL2 plays in mammals. Here we show that disruption of the gene encoding mouse SGOL2 does not cause any alteration in sister chromatid cohesion in embryonic cultured fibroblasts and adult somatic tissues. Moreover, mutant mice develop normally and survive to adulthood without any apparent alteration. However, both male and female Sgol2-deficient mice are infertile. We demonstrate that SGOL2 is necessary for protecting centromeric cohesion during mammalian meiosis I. In vivo, the loss of SGOL2 promotes a premature release of the meiosis-specific REC8 cohesin complexes from anaphase I centromeres. This molecular alteration is manifested cytologically by the complete loss of centromere cohesion at metaphase II leading to single chromatids and physiologically with the formation of aneuploid gametes that give rise to infertility.
Collapse
Affiliation(s)
- Elena Llano
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Fisiología, Campus Miguel de Unamuno S/N, 37007 Salamanca, Spain
| | - Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Gutiérrez-Caballero
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Yurema Herrán
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | - Luis Vázquez-Quiñones
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Teresa Hernández
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Enrique de Álava
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ana Cuadrado
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José Luis Barbero
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José A. Suja
- Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto M. Pendás
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
312
|
McNairn AJ, Gerton JL. The chromosome glue gets a little stickier. Trends Genet 2008; 24:382-9. [PMID: 18602182 DOI: 10.1016/j.tig.2008.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 12/25/2022]
Abstract
Since their discovery, the cohesin proteins have been intensely studied in multiple model systems to determine the mechanism of chromosome cohesion. Recent studies have demonstrated that cohesin is much more than a molecular glue that holds chromosomes together in mitosis. Indeed, cohesin performs critical roles in gene regulation, possibly through the formation of higher-order chromatin structure. Moreover, this newly appreciated role is necessary for proper development in metazoan species, with mutations in the cohesin pathway resulting in human developmental disorders.
Collapse
Affiliation(s)
- Adrian J McNairn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
313
|
Vader G, Lens SMA. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta Rev Cancer 2008; 1786:60-72. [PMID: 18662747 DOI: 10.1016/j.bbcan.2008.07.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 12/15/2022]
Abstract
The Aurora protein kinase family (consisting of Aurora-A, -B and -C) is an important group of enzymes that controls several aspects of cell division in mammalian cells. Dysfunction of these kinases has been associated with a failure to maintain a stable chromosome content, a state that can contribute to tumourigenesis. Additionally, Aurora-A is frequently found amplified in a variety of tumour types and displays oncogenic activity. On the other hand, therapeutic inhibition of these kinases has shown great promise as potential anti-cancer treatment, most likely because of their essential roles during cell division. This review will focus on our present understanding of the different roles played by these kinases, their regulation throughout cell division, their deregulation in human cancers and on the progress that is made in targeting these important regulators in the treatment of cancer.
Collapse
Affiliation(s)
- Gerben Vader
- Laboratory of Experimental Oncology, Department of Medical Oncology, University Medical Center Utrecht, Stratenum 2.125, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
314
|
Saitoh S, Kobayashi Y, Ogiyama Y, Takahashi K. Dual regulation of Mad2 localization on kinetochores by Bub1 and Dam1/DASH that ensure proper spindle interaction. Mol Biol Cell 2008; 19:3885-97. [PMID: 18632983 DOI: 10.1091/mbc.e08-03-0298] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The spindle assembly checkpoint monitors the state of spindle-kinetochore interaction to prevent premature onset of anaphase. Although checkpoint proteins, such as Mad2, are localized on kinetochores that do not interact properly with the spindle, it remains unknown how the checkpoint proteins recognize abnormalities in spindle-kinetochore interaction. Here, we report that Mad2 localization on kinetochores in fission yeast is regulated by two partially overlapping but distinct pathways: the Dam1/DASH and the Bub1 pathways. We show that Mad2 is localized on "unattached" as well as "tensionless" kinetochores. Our observations suggest that Bub1 is required for Mad2 to detect tensionless kinetochores, whereas Dam1/DASH is crucial for Mad2 to detect unattached kinetochores. In cells lacking both Bub1 and Dam1/DASH, Mad2 localization on kinetochores is diminished, and mitotic progression appears to be accelerated despite the frequent occurrence of abnormal chromosome segregation. Furthermore, we found that Dam1/DASH is required for promotion of spindle association with unattached kinetochores. In contrast, there is accumulating evidence that Bub1 is involved in resolution of erroneous spindle attachment on tensionless kinetochores. These pathways may act as molecular sensors determining the state of spindle association on each kinetochore, enabling proper regulation of the checkpoint activation as well as promotion/resolution of spindle attachment.
Collapse
Affiliation(s)
- Shigeaki Saitoh
- Division of Cell Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0864, Japan.
| | | | | | | |
Collapse
|
315
|
Boateng KA, Yang X, Dong F, Owen HA, Makaroff CA. SWI1 is required for meiotic chromosome remodeling events. MOLECULAR PLANT 2008; 1:620-33. [PMID: 19825567 DOI: 10.1093/mp/ssn030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Arabidopsis dsy10 mutant was previously identified as being defective in the synapsis of meiotic chromosomes resulting in male and female sterility. We report here the molecular analysis of the mutation and show that it represents a T-DNA insertion in the third exon of the SWI1 gene. Four mutations have now been identified in SWI1, several of which exhibit different phenotypes. For example, the swi1-1 and dyad mutations only affect meiosis in megasporocytes, while the swi1-2 and dsy10 mutations block both male and female meiosis. Furthermore, as part of a detailed cytological characterization of dsy10 meiocytes, we identified several differences during male meiosis between the swi1-2 and dys10 mutants, including variations in the formation of axial elements, the distribution of cohesin proteins and the timing of the premature loss of sister chromatid cohesion. We demonstrate that dsy10 represents a complete loss-of-function mutation, while a truncated form of SWI1 is expressed during meiosis in swi1-2 plants. We further show that dys10 meiocytes exhibit alterations in modified histone patterns, including acetylated histone H3 and dimethylated histone H3-Lysine 4.
Collapse
Affiliation(s)
- Kingsley A Boateng
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | | | |
Collapse
|
316
|
Yan H, Ge W, Chew TG, Chow JY, McCollum D, Neiman AM, Balasubramanian MK. The meiosis-specific Sid2p-related protein Slk1p regulates forespore membrane assembly in fission yeast. Mol Biol Cell 2008; 19:3676-90. [PMID: 18562696 DOI: 10.1091/mbc.e07-10-1060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cytokinesis in all organisms involves the creation of membranous barriers that demarcate individual daughter cells. In fission yeast, a signaling module termed the septation initiation network (SIN) plays an essential role in the assembly of new membranes and cell wall during cytokinesis. In this study, we have characterized Slk1p, a protein-kinase related to the SIN component Sid2p. Slk1p is expressed specifically during meiosis and localizes to the spindle pole bodies (SPBs) during meiosis I and II in a SIN-dependent manner. Slk1p also localizes to the forespore membrane during sporulation. Cells lacking Slk1p display defects associated with sporulation, leading frequently to the formation of asci with smaller and/or fewer spores. The ability of slk1 Delta cells to sporulate, albeit inefficiently, is fully abolished upon compromise of function of Sid2p, suggesting that Slk1p and Sid2p play overlapping roles in sporulation. Interestingly, increased expression of the syntaxin Psy1p rescues the sporulation defect of sid2-250 slk1 Delta. Thus, it is likely that Slk1p and Sid2p play a role in forespore membrane assembly by facilitating recruitment of components of the secretory apparatus, such as Psy1p, to allow membrane expansion. These studies thereby provide a novel link between the SIN and vesicle trafficking during cytokinesis.
Collapse
Affiliation(s)
- Hongyan Yan
- Cell Division Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
317
|
Gregan J, Spirek M, Rumpf C. Solving the shugoshin puzzle. Trends Genet 2008; 24:205-7. [PMID: 18378037 PMCID: PMC3041985 DOI: 10.1016/j.tig.2008.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 02/14/2008] [Accepted: 02/14/2008] [Indexed: 01/24/2023]
Abstract
Shugoshin proteins form a complex with protein phosphatase 2A (PP2A) that protects centromeric cohesin from separase-mediated cleavage during yeast meiosis I. Recent work shows that this mechanism is conserved from yeast to mammals. Importantly, a model emerges that explains a long-standing puzzle, namely why the shugoshin-PP2A complex mediates protection of centromeric cohesin from separase cleavage specifically during meiosis I, but not during meiosis II or mitosis.
Collapse
Affiliation(s)
- Juraj Gregan
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria.
| | | | | |
Collapse
|
318
|
Koch B, Kueng S, Ruckenbauer C, Wendt KS, Peters JM. The Suv39h-HP1 histone methylation pathway is dispensable for enrichment and protection of cohesin at centromeres in mammalian cells. Chromosoma 2008; 117:199-210. [PMID: 18075750 DOI: 10.1007/s00412-007-0139-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/11/2007] [Accepted: 11/12/2007] [Indexed: 11/29/2022]
Abstract
Sister chromatids are physically connected by cohesin complexes. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic and meiotic spindle. In many species, cohesion between chromosome arms is partly dissolved in prophase of mitosis, whereas cohesion is protected at centromeres until the onset of anaphase. In vertebrates, the protein Sgo1, protein phosphatase 2A, and several other proteins are required for protection of centromeric cohesin in early mitosis. In fission yeast, the recruitment of heterochromatin protein Swi6/HP1 to centromeres by the histone-methyltransferase Clr4/Suv39h is required for enrichment of cohesin at centromeres already in interphase. We have tested if the Suv39h-HP1 histone methylation pathway is also required for enrichment and mitotic protection of cohesin at centromeres in mammalian cells. We show that cohesin and HP1 proteins partially colocalize at mitotic centromeres but that cohesin localization is not detectably altered in mouse embryonic fibroblasts that lack Suv39h genes and in which HP1 proteins can, therefore, not be properly enriched in pericentric heterochromatin. Our data indicate that the Suv39h-HP1 pathway is not essential for enrichment and mitotic protection of cohesin at centromeres in mammalian cells.
Collapse
Affiliation(s)
- Birgit Koch
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
319
|
Wang X, Yang Y, Duan Q, Jiang N, Huang Y, Darzynkiewicz Z, Dai W. sSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1. Dev Cell 2008; 14:331-41. [PMID: 18331714 PMCID: PMC2279080 DOI: 10.1016/j.devcel.2007.12.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 10/18/2007] [Accepted: 12/07/2007] [Indexed: 12/19/2022]
Abstract
Shugoshin 1 (Sgo1) functions as a protector of centromeric cohesion of sister chromatids in higher eukaryotes. Here, we provide evidence for a previously unrecognized role for Sgo1 in centriole cohesion. Sgo1 depletion via RNA interference induces the formation of multiple centrosome-like structures in mitotic cells that result from the separation of paired centrioles. Sgo1+/- mitotic murine embryonic fibroblasts display split centrosomes. Localization study of two major endogenous splice variants of Sgo1 indicates that the smaller variant, sSgo1, is found at the centrosome in interphase and at spindle poles in mitosis. sSgo1 interacts with Plk1 and its spindle pole localization is Plk1 dependent. Centriole splitting induced by Sgo1 depletion or expression of a dominant negative mutant is suppressed by ectopic expression of sSgo1 or by Plk1 knockdown. Our studies strongly suggest that sSgo1 plays an essential role in protecting centriole cohesion, which is partly regulated by Plk1.
Collapse
Affiliation(s)
- Xiaoxing Wang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| | - Yali Yang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| | - Qing Duan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| | - Ning Jiang
- Tepnel Lifecodes Corporation, Stamford, CT 06902
| | - Ying Huang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| | | | - Wei Dai
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| |
Collapse
|
320
|
Gause M, Webber HA, Misulovin Z, Haller G, Rollins RA, Eissenberg JC, Bickel SE, Dorsett D. Functional links between Drosophila Nipped-B and cohesin in somatic and meiotic cells. Chromosoma 2008; 117:51-66. [PMID: 17909832 PMCID: PMC2258212 DOI: 10.1007/s00412-007-0125-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 01/11/2023]
Abstract
Drosophila Nipped-B is an essential protein that has multiple functions. It facilitates expression of homeobox genes and is also required for sister chromatid cohesion. Nipped-B is conserved from yeast to man, and its orthologs also play roles in deoxyribonucleic acid repair and meiosis. Mutation of the human ortholog, Nipped-B-Like (NIPBL), causes Cornelia de Lange syndrome (CdLS), associated with multiple developmental defects. The Nipped-B protein family is required for the cohesin complex that mediates sister chromatid cohesion to bind to chromosomes. A key question, therefore, is whether the Nipped-B family regulates gene expression, meiosis, and development by controlling cohesin. To gain insights into Nipped-B's functions, we compared the effects of several Nipped-B mutations on gene expression, sister chromatid cohesion, and meiosis. We also examined association of Nipped-B and cohesin with somatic and meiotic chromosomes by immunostaining. Missense Nipped-B alleles affecting the same HEAT repeat motifs as CdLS-causing NIPBL mutations have intermediate effects on both gene expression and mitotic chromatid cohesion, linking these two functions and the role of NIPBL in human development. Nipped-B colocalizes extensively with cohesin on chromosomes in both somatic and meiotic cells and is present in soluble complexes with cohesin subunits in nuclear extracts. In meiosis, Nipped-B also colocalizes with the synaptonemal complex and contributes to maintenance of meiotic chromosome cores. These results support the idea that direct regulation of cohesin function underlies the diverse functions of Nipped-B and its orthologs.
Collapse
Affiliation(s)
- Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Hayley A. Webber
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Gabe Haller
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | | | - Joel C. Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA, e-mail:
| |
Collapse
|
321
|
Gregan J, Rumpf C, Li Z, Cipak L. What makes centromeric cohesion resistant to separase cleavage during meiosis I but not during meiosis II? Cell Cycle 2008; 7:151-3. [PMID: 18256525 PMCID: PMC2956405 DOI: 10.4161/cc.7.2.5325] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Segregation of chromosomes during meiosis I is triggered by separase cleavage of the cohesin's Rec8 subunit along chromosome arms. Centromeric cohesin is protected from separase cleavage during meiosis I by Sgo1/MEI-S332 proteins in complex with protein phosphatase 2A (PP2A). This retention of centromeric sister chromatid cohesion is essential for faithful segregation of chromatids during the second meiotic division. While Sgo1/PP2A complex is required for protecting centromeric sister chromatid cohesion during meiosis I, it is not known what renders the centromeric cohesion sensitive to separase cleavage during meiosis II. Our data suggest that the absence of Sgo1 and PP2A from meiosis II centromeres is not sufficient to render centromeric cohesion sensitive to cleavage by separase and additional factors are required to ensure the removal of centromeric cohesion during meiosis II.
Collapse
Affiliation(s)
- Juraj Gregan
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
322
|
Cromie G, Smith GR. Meiotic Recombination in Schizosaccharomyces pombe: A Paradigm for Genetic and Molecular Analysis. GENOME DYNAMICS AND STABILITY 2008; 3:195. [PMID: 20157622 PMCID: PMC2820269 DOI: 10.1007/7050_2007_025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is especially well-suited for both genetic and biochemical analysis of meiotic recombination. Recent studies have revealed ~50 gene products and two DNA intermediates central to recombination, which we place into a pathway from parental to recombinant DNA. We divide recombination into three stages - chromosome alignment accompanying nuclear "horsetail" movement, formation of DNA breaks, and repair of those breaks - and we discuss the roles of the identified gene products and DNA intermediates in these stages. Although some aspects of recombination are similar to those in the distantly related budding yeast Saccharomyces cerevisiae, other aspects are distinctly different. In particular, many proteins required for recombination in one species have no clear ortholog in the other, and the roles of identified orthologs in regulating recombination often differ. Furthermore, in S. pombe the dominant joint DNA molecule intermediates contain single Holliday junctions, and intersister joint molecules are more frequent than interhomolog types, whereas in S. cerevisiae interhomolog double Holliday junctions predominate. We speculate that meiotic recombination in other organisms shares features of each of these yeasts.
Collapse
Affiliation(s)
- Gareth Cromie
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U. S. A
| | - Gerald R. Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U. S. A
| |
Collapse
|
323
|
Mohammed A, Karasiewicz J, Modliński J. Developmental potential of selectively enucleated immature mouse oocytes upon nuclear transfer. Mol Reprod Dev 2008; 75:1269-80. [DOI: 10.1002/mrd.20870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
324
|
Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE. Sister chromatid cohesion: a simple concept with a complex reality. Annu Rev Cell Dev Biol 2008; 24:105-29. [PMID: 18616427 DOI: 10.1146/annurev.cellbio.24.110707.175350] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, the process of sister chromatid cohesion holds the two sister chromatids (the replicated chromosomes) together from DNA replication to the onset of chromosome segregation. Cohesion is mediated by cohesin, a four-subunit SMC (structural maintenance of chromosome) complex. Cohesin and cohesion are required for proper chromosome segregation, DNA repair, and gene expression. To carry out these functions, cohesion is regulated by elaborate mechanisms involving a growing list of cohesin auxiliary factors. These factors control the timing and position of cohesin binding to chromatin, activate chromatin-bound cohesin to become cohesive, and orchestrate the orderly dissolution of cohesion. The 45-nm ringlike architecture of soluble cohesin is compatible with dramatically different mechanisms for both chromatin binding and cohesion generation. Solving the mechanism of cohesion and its complex regulation presents significant challenges but offers the potential to provide important insights into higher-order chromosome organization and chromosome biology.
Collapse
Affiliation(s)
- Itay Onn
- Howard Hughes Medical Institute, Carnegie Institution, Baltimore, Maryland 21218, USA.
| | | | | | | | | |
Collapse
|
325
|
Lee J, Kitajima TS, Tanno Y, Yoshida K, Morita T, Miyano T, Miyake M, Watanabe Y. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol 2008; 10:42-52. [PMID: 18084284 DOI: 10.1038/ncb1667] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 11/29/2007] [Indexed: 12/24/2022]
Abstract
Reductional chromosome segregation in germ cells, where sister chromatids are pulled to the same pole, accompanies the protection of cohesin at centromeres from separase cleavage. Here, we show that mammalian shugoshin Sgo2 is expressed in germ cells and is solely responsible for the centromeric localization of PP2A and the protection of cohesin Rec8 in oocytes, proving conservation of the mechanism from yeast to mammals. However, this role of Sgo2 contrasts with its mitotic role in protecting centromeric cohesin only from prophase dissociation, but never from anaphase cleavage. We demonstrate that, in somatic cells, shugoshin colocalizes with cohesin in prophase or prometaphase, but their localizations become separate when centromeres are pulled oppositely at metaphase. Remarkably, if tension is artificially removed from the centromeres at the metaphase-anaphase transition, cohesin at the centromeres can be protected from separase cleavage even in somatic cells, as in germ cells. These results argue for a unified view of centromeric protection by shugoshin in mitosis and meiosis.
Collapse
Affiliation(s)
- Jibak Lee
- Laboratory of Reproductive Biology and Biotechnology, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
326
|
Gregan J, Riedel CG, Pidoux A, Katou Y, Rumpf C, Schleiffer A, Kearsey SE, Shirahige K, Allshire RC, Nasmyth K. The kinetochore proteins Pcs1 and Mde4 and heterochromatin are required to prevent merotelic orientation. Curr Biol 2007; 17:1190-200. [PMID: 17627824 PMCID: PMC1931489 DOI: 10.1016/j.cub.2007.06.044] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 06/06/2007] [Accepted: 06/14/2007] [Indexed: 01/25/2023]
Abstract
Background Accurate chromosome segregation depends on the establishment of correct—amphitelic—kinetochore orientation. Merotelic kinetochore orientation is an error that occurs when a single kinetochore attaches to microtubules emanating from opposite spindle poles, a condition that hinders segregation of the kinetochore to a spindle pole in anaphase. To avoid chromosome missegregation resulting from merotelic kinetochore orientation, cells have developed mechanisms to prevent or correct merotelic attachment. A protein called Pcs1 has been implicated in preventing merotelic attachment in mitosis and meiosis II in the fission yeast S. pombe. Results We report that Pcs1 forms a complex with a protein called Mde4. Both Pcs1 and Mde4 localize to the central core of centromeres. Deletion of mde4+, like that of pcs1+, causes the appearance of lagging chromosomes during the anaphases of mitotic and meiosis II cells. We provide evidence that the kinetochores of lagging chromosomes in both pcs1 and mde4 mutant cells are merotelically attached. In addition, we find that lagging chromosomes in cells with defective centromeric heterochromatin also display features consistent with merotelic attachment. Conclusions We suggest that the Pcs1/Mde4 complex is the fission yeast counterpart of the budding yeast monopolin subcomplex Csm1/Lrs4, which promotes the segregation of sister kinetochores to the same pole during meiosis I. We propose that the Pcs1/Mde4 complex acts in the central kinetochore domain to clamp microtubule binding sites together, the centromeric heterochromatin coating the flanking domains provides rigidity, and both systems contribute to the prevention of merotelic attachment.
Collapse
Affiliation(s)
- Juraj Gregan
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Dr. Bohr-Gasse 1, 1030 Vienna, Austria
- Corresponding author
| | - Christian G. Riedel
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alison L. Pidoux
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Yuki Katou
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Cornelia Rumpf
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Dr. Bohr-Gasse 1, 1030 Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Stephen E. Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Division of Gene Research, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Robin C. Allshire
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
- Corresponding author
| | - Kim Nasmyth
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
- Corresponding author
| |
Collapse
|
327
|
Kiburz BM, Amon A, Marston AL. Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae. Mol Biol Cell 2007; 19:1199-209. [PMID: 18094053 DOI: 10.1091/mbc.e07-06-0584] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chromosome segregation must be executed accurately during both mitotic and meiotic cell divisions. Sgo1 plays a key role in ensuring faithful chromosome segregation in at least two ways. During meiosis this protein regulates the removal of cohesins, the proteins that hold sister chromatids together, from chromosomes. During mitosis, Sgo1 is required for sensing the absence of tension caused by sister kinetochores not being attached to microtubules emanating from opposite poles. Here we describe a differential requirement for Sgo1 in the segregation of homologous chromosomes and sister chromatids. Sgo1 plays only a minor role in segregating homologous chromosomes at meiosis I. In contrast, Sgo1 is important to bias sister kinetochores toward biorientation. We suggest that Sgo1 acts at sister kinetochores to promote their biorientation.
Collapse
Affiliation(s)
- Brendan M Kiburz
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
328
|
Han F, Gao Z, Yu W, Birchler JA. Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. THE PLANT CELL 2007; 19:3853-63. [PMID: 18083907 PMCID: PMC2217637 DOI: 10.1105/tpc.107.055905] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/18/2007] [Accepted: 11/24/2007] [Indexed: 05/19/2023]
Abstract
With the advent of engineered minichromosome technology in plants, an understanding of the properties of small chromosomes is desirable. Twenty-two minichromosomes of related origin but varying in size are described that provide a unique resource to study such behavior. Fourteen minichromosomes from this set could pair with each other in meiotic prophase at frequencies between 25 and 100%, but for the smaller chromosomes, the sister chromatids precociously separated in anaphase I. The other eight minichromosomes did not pair with themselves, and the sister chromatids divided equationally at meiosis I. In plants containing one minichromosome, the sister chromatids also separated at meiosis I. In anaphase II, the minichromosomes progressed to one pole or the other. The maize (Zea mays) Shugoshin protein, which has been hypothesized to protect centromere cohesion in meiosis I, is still present at anaphase I on minichromosomes that divide equationally. Also, there were no differences in the level of phosphorylation of Ser-10 of histone H3, a correlate of cohesion, in the minichromosomes in which sister chromatids separated during anaphase I compared with the normal chromosomes. These analyses suggest that meiotic centromeric cohesion is compromised in minichromosomes depending on their size and cannot be maintained by the mechanisms used by normal-sized chromosomes.
Collapse
Affiliation(s)
- Fangpu Han
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211-7400, USA
| | | | | | | |
Collapse
|
329
|
Nakajima M, Kumada K, Hatakeyama K, Noda T, Peters JM, Hirota T. The complete removal of cohesin from chromosome arms depends on separase. J Cell Sci 2007; 120:4188-96. [PMID: 18003702 DOI: 10.1242/jcs.011528] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cohesin needs to be removed from chromosomes to allow sister chromatid separation in mitosis. In vertebrates, two pathways contribute to this process. The prophase pathway, which requires phosphorylation of the cohesin subunit SA2 and a cohesin-binding protein, called Wapl, removes the bulk of cohesin from the chromosome arms in early mitosis and allows the resolution of the chromosome arms. At anaphase onset, the protease separase removes centromere-enriched cohesin by proteolytic cleavage of another cohesin subunit, Scc1 (Rad21, Mcd1), which allows the separation of sister chromatids. When anaphase onset is delayed by the spindle-assembly checkpoint, the complete removal of cohesin from chromosome arms but not from centromeres generates typical X- or V-shaped chromosomes. Here, we found that cohesion between chromosome arms is preserved if mitosis is arrested with the proteasome inhibitor MG132. This arm cohesion depends on cohesin complexes that are protected by the shugoshin protein Sgo1, which appears to be distributed on chromosome arms as well as on centromeres in early mitosis. In cells lacking separase or expressing non-cleavable Scc1, arm cohesion was not efficiently removed during nocodazole arrest. Our observations suggest that a fraction of arm cohesin is protected by Sgo1, which prevents cohesin from being removed by the prophase pathway, and that separase is partly activated in nocodazole-arrested cells and removes the arm cohesin protected by Sgo1.
Collapse
Affiliation(s)
- Masato Nakajima
- Department of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
330
|
Tomita K, Cooper JP. The telomere bouquet controls the meiotic spindle. Cell 2007; 130:113-26. [PMID: 17632059 DOI: 10.1016/j.cell.2007.05.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 03/07/2007] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
Bouquet formation, in which telomeres gather to a small region of the nuclear membrane in early meiosis, has been observed in diverse eukaryotes, but the function of the bouquet has remained a mystery. Here, we demonstrate that the telomere bouquet plays a crucial role in controlling the behavior of the fission yeast microtubule-organizing center (known as the spindle pole body or SPB) and the meiotic spindle. Using mutations that specifically disrupt the bouquet, we analyze chromosome, SPB, and spindle dynamics throughout meiosis. If the bouquet fails to form, the SPB becomes fragmented at meiosis I, leading to monopolar, multiple, and mislocalized spindles. Correct SPB and spindle behavior require not only the SPB recruitment of telomere proteins but also that the proteins are properly bound to telomeric DNA. This discovery illuminates an unanticipated level of communication between chromosomes and the spindle apparatus that may be widely conserved among eukaryotes.
Collapse
Affiliation(s)
- Kazunori Tomita
- Telomere Biology Laboratory, Cancer Research UK, London WC2A 3PX, UK
| | | |
Collapse
|
331
|
Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis. PLoS Genet 2007; 3:e213. [PMID: 18081426 PMCID: PMC2098806 DOI: 10.1371/journal.pgen.0030213] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 10/11/2007] [Indexed: 01/10/2023] Open
Abstract
During cell division all chromosomes must be segregated accurately to each daughter cell. Errors in this process give rise to aneuploidy, which leads to birth defects and is implicated in cancer progression. The spindle checkpoint is a surveillance mechanism that ensures high fidelity of chromosome segregation by inhibiting anaphase until all kinetochores have established bipolar attachments to spindle microtubules. Bub1 kinase is a core component of the spindle checkpoint, and cells lacking Bub1 fail to arrest in response to microtubule drugs and precociously segregate their DNA. The mitotic role(s) of Bub1 kinase activity remain elusive, and it is controversial whether this C-terminal domain of Bub1p is required for spindle checkpoint arrest. Here we make a detailed analysis of budding yeast cells lacking the kinase domain (bub1DeltaK). We show that despite being able to arrest in response to microtubule depolymerisation and kinetochore-microtubule attachment defects, bub1DeltaK cells are sensitive to microtubule drugs. This is because bub1DeltaK cells display significant chromosome mis-segregation upon release from nocodazole arrest. bub1DeltaK cells mislocalise Sgo1p, and we demonstrate that both the Bub1 kinase domain and Sgo1p are required for accurate chromosome biorientation after nocodazole treatment. We propose that Bub1 kinase and Sgo1p act together to ensure efficient biorientation of sister chromatids during mitosis.
Collapse
|
332
|
Aurora controls sister kinetochore mono-orientation and homolog bi-orientation in meiosis-I. EMBO J 2007; 26:4475-86. [PMID: 17932486 PMCID: PMC2034495 DOI: 10.1038/sj.emboj.7601880] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/13/2007] [Indexed: 11/15/2022] Open
Abstract
Aurora-B kinases are important regulators of mitotic chromosome segregation, where they are required for the faithful bi-orientation of sister chromatids. In contrast to mitosis, sister chromatids have to be oriented toward the same spindle pole in meiosis-I, while homologous chromosomes are bi-oriented. We find that the fission yeast Aurora kinase Ark1 is required for the faithful bi-orientation of sister chromatids in mitosis and of homologous chromosomes in meiosis-I. Unexpectedly, Ark1 is also necessary for the faithful mono-orientation of sister chromatids in meiosis-I, even though the canonical mono-orientation pathway, which depends on Moa1 and Rec8, seems intact. Our data suggest that Ark1 prevents unified sister kinetochores during metaphase-I from merotelic attachment to both spindle poles and thus from being torn apart during anaphase-I, revealing a novel mechanism promoting monopolar attachment. Furthermore, our results provide an explanation for the previously enigmatic observation that fission yeast Shugoshin Sgo2, which assists in loading Aurora to centromeres, and its regulator Bub1 are required for the mono-orientation of sister chromatids in meiosis-I.
Collapse
|
333
|
Fu G, Ding X, Yuan K, Aikhionbare F, Yao J, Cai X, Jiang K, Yao X. Phosphorylation of human Sgo1 by NEK2A is essential for chromosome congression in mitosis. Cell Res 2007; 17:608-18. [PMID: 17621308 DOI: 10.1038/cr.2007.55] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation in mitosis is orchestrated by the interaction of the kinetochore with spindle microtubules. Our recent study shows that NEK2A interacts with MAD1 at the kinetochore and possibly functions as a novel integrator of spindle checkpoint signaling. However, it is unclear how NEK2A regulates kinetochore-microtubule attachment in mitosis. Here we show that NEK2A phosphorylates human Sgo1 and such phosphorylation is essential for faithful chromosome congression in mitosis. NEK2A binds directly to HsSgo1 in vitro and co-distributes with HsSgo1 to the kinetochore of mitotic cells. Our in vitro phosphorylation experiment demonstrated that HsSgo1 is a substrate of NEK2A and the phosphorylation sites were mapped to Ser(14) and Ser(507) as judged by the incorporation of (32)P. Although such phosphorylation is not required for assembly of HsSgo1 to the kinetochore, expression of non-phosphorylatable mutant HsSgo1 perturbed chromosome congression and resulted in a dramatic increase in microtubule attachment errors, including syntelic and monotelic attachments. These findings reveal a key role for the NEK2A-mediated phosphorylation of HsSgo1 in orchestrating dynamic kinetochore-microtubule interaction. We propose that NEK2A-mediated phosphorylation of human Sgo1 provides a link between centromeric cohesion and spindle microtubule attachment at the kinetochores.
Collapse
Affiliation(s)
- Guosheng Fu
- Laboratory of Cellular Dynamics, Hefei National Laboratory, University of Science & Technology of China, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
334
|
Perera D, Tilston V, Hopwood JA, Barchi M, Boot-Handford RP, Taylor S. Bub1 Maintains Centromeric Cohesion by Activation of the Spindle Checkpoint. Dev Cell 2007; 13:566-79. [DOI: 10.1016/j.devcel.2007.08.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/31/2007] [Accepted: 08/16/2007] [Indexed: 12/19/2022]
|
335
|
Yong-Gonzalez V, Wang BD, Butylin P, Ouspenski I, Strunnikov A. Condensin function at centromere chromatin facilitates proper kinetochore tension and ensures correct mitotic segregation of sister chromatids. Genes Cells 2007; 12:1075-90. [PMID: 17825050 PMCID: PMC2674963 DOI: 10.1111/j.1365-2443.2007.01109.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The condensin complex is essential for sister chromatid segregation in eukaryotic mitosis. Nevertheless, in budding yeast, condensin mutations result in massive mis-segregation of chromosomes containing the nucleolar organizer, while other chromosomes, which also contain condensin binding sites, remain genetically stable. To investigate this phenomenon we analyzed the mechanism of the cell-cycle arrest elicited by condensin mutations. Under restrictive conditions, the majority of condensin-deficient cells arrest in metaphase. This metaphase arrest is mediated by the spindle checkpoint, particularly by the spindle-kinetochore tension-controlling pathway. Inactivation of the spindle checkpoint in condensin mutants resulted in frequent chromosome non-disjunction, eliminating the bias in chromosome mis-segregation towards rDNA-containing chromosomes. The spindle tension defect in condensin-impaired cells is likely mediated by structural defects in centromere chromatin reflected by the partial loss of the centromere histone Cse4p. These findings show that, in addition to its essential role in rDNA segregation, condensin mediates segregation of the whole genome by maintaining the centromere structure in Saccharomyces cerevisiae.
Collapse
|
336
|
Takata H, Matsunaga S, Morimoto A, Ma N, Kurihara D, Ono-Maniwa R, Nakagawa M, Azuma T, Uchiyama S, Fukui K. PHB2 protects sister-chromatid cohesion in mitosis. Curr Biol 2007; 17:1356-61. [PMID: 17656096 DOI: 10.1016/j.cub.2007.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/30/2007] [Accepted: 07/02/2007] [Indexed: 10/23/2022]
Abstract
Cohesion between sister chromatids is essential for proper chromosome segregation in mitosis. In vertebrate mitotic cells, most cohesin is removed from the chromosome arms [1-4], but centromeric cohesin is protected by shugoshin until the onset of anaphase [5]. However, the mechanism of this protection of centromeric cohesion is not well understood. Here, we demonstrate that prohibitin 2 (PHB2) is involved in the regulation of sister-chromatid cohesion during mitosis in HeLa cells. PHB2 is an evolutionarily conserved protein in eukaryotes and has multiple functions, such as transcriptional regulation and cell viability and development [6-8]. However, its functions in mitosis have not yet been determined. We show that depletion of PHB2 by RNA interference (RNAi) causes premature sister-chromatid separation and defects in chromosome congression accompanied by mitotic arrest by spindle-checkpoint activation. In the absence of PHB2, cohesin is dissociated from centromeres during early mitosis, although the centromeric localization of shugoshin is preserved. Thus, our findings suggest that, in addition to the shugoshin, PHB2 is also required to protect the centromeric cohesion from phosphorylation by Plk1 during early mitosis and that its function is essential for proper mitotic progression.
Collapse
Affiliation(s)
- Hideaki Takata
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Huang H, Feng J, Famulski J, Rattner JB, Liu ST, Kao GD, Muschel R, Chan GKT, Yen TJ. Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. ACTA ACUST UNITED AC 2007; 177:413-24. [PMID: 17485487 PMCID: PMC2064832 DOI: 10.1083/jcb.200701122] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
hSgo2 (previously annotated as Tripin) was recently reported to be a new inner centromere protein that is essential for centromere cohesion (Kitajima et al., 2006). In this study, we show that hSgo2 exhibits a dynamic distribution pattern, and that its localization depends on the BUB1 and Aurora B kinases. hSgo2 is concentrated at the inner centromere of unattached kinetochores, but extends toward the kinetochores that are under tension. This localization pattern is reminiscent of MCAK, which is a microtubule depolymerase that is believed to be a key component of the error correction mechanism at kinetochores. Indeed, we found that hSgo2 is essential for MCAK to localize to the centromere. Delocalization of MCAK accounts for why cells depleted of hSgo2 exhibit kinetochore attachment defects that go uncorrected, despite a transient delay in the onset of anaphase. Consequently, these cells exhibit a high frequency of lagging chromosomes when they enter anaphase. We confirmed that hSgo2 is associated with PP2A, and we propose that it contributes to the spatial regulation of MCAK activity within inner centromere and kinetochore.
Collapse
Affiliation(s)
- Haomin Huang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Asakawa H, Haraguchi T, Hiraoka Y. Reconstruction of the kinetochore: a prelude to meiosis. Cell Div 2007; 2:17. [PMID: 17550626 PMCID: PMC1899494 DOI: 10.1186/1747-1028-2-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 06/06/2007] [Indexed: 11/10/2022] Open
Abstract
In eukaryotic organisms, chromosomes are spatially organized within the nucleus. Such nuclear architecture provides a physical framework for the genetic activities of chromosomes, and changes its functional organization as the cell moves through the phases of the cell cycle. The fission yeast Schizosaccharomyces pombe provides a striking example of nuclear reorganization during the transition from mitosis to meiosis. In this organism, centromeres remain clustered at the spindle-pole body (SPB; a centrosome-equivalent structure in fungi) during mitotic interphase. In contrast, during meiotic prophase, centromeres dissociate from the SPB and telomeres cluster to the SPB. Recent studies revealed that this repositioning of chromosomes is regulated by mating pheromone signaling. Some centromere proteins disappear from the centromere in response to mating pheromone, leading to dissociation of centromeres from the SPB. Interestingly, mating pheromone signaling is also required for monopolar orientation of the kinetochore which is crucial for proper segregation of sister chromatids during meiosis. When meiosis is induced in the absence of mating pheromone signaling, aberrant chromosome behaviors are observed: the centromere proteins remain at the centromere; the centromere remains associated with the SPB; and sister chromatids segregate precociously in the first meiotic division. These aberrant chromosome behaviors are all normalized by activating the mating pheromone signaling pathway. Thus, action of mating pheromone on the centromere is important for coherent behavior of chromosomes in meiosis. Here we discuss repositioning and reconstruction of the centromere during the transition from mitosis to meiosis, and highlight its significance for proper progression of meiosis.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Yasushi Hiraoka
- Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
339
|
Ohtaka A, Saito TT, Okuzaki D, Nojima H. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe. Cell Div 2007; 2:14. [PMID: 17509158 PMCID: PMC1885245 DOI: 10.1186/1747-1028-2-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Accepted: 05/18/2007] [Indexed: 01/07/2023] Open
Abstract
Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.
Collapse
Affiliation(s)
- Ayami Ohtaka
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takamune T Saito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Genetics, Harvard Medical School 77 Avenue Louis Pasteur, New Research Building, Room 334, Boston, MA 02115, USA
| | - Daisuke Okuzaki
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
340
|
Sullivan M, Morgan DO. A novel destruction sequence targets the meiotic regulator Spo13 for anaphase-promoting complex-dependent degradation in anaphase I. J Biol Chem 2007; 282:19710-5. [PMID: 17493939 DOI: 10.1074/jbc.m701507200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anaphase-promoting complex (APC) or cyclosome is a multisubunit ubiquitin-protein ligase that ubiquitinates and thereby promotes the destruction of the mitotic cyclins and the separase inhibitor, securin. The contributions of the APC to progression through the meiotic program are not clear. To clarify the function of the APC in meiosis, we screened several yeast meiotic proteins as APC substrates in vitro. We found that the meiotic regulator Spo13 is an APC substrate that is degraded during anaphase I. Spo13 is expressed only in meiotic cells, where it has multiple functions, including the promotion of monopolar chromosome attachment in the first division. Spo13 ubiquitination by the APC depends on an LxExxxN sequence (residues 26-32) that is distinct from previously described destruction sequences of APC substrates. Mutation of one residue, leucine 26, prevented Spo13 ubiquitination by the APC in vitro and stabilized the protein through the meiotic divisions. Analysis of meiotic progression and spore viability of yeast containing the stabilized Spo13 mutant revealed no significant defects, indicating that Spo13 destruction in anaphase I is not essential for meiosis. We propose that Spo13 destruction is one of multiple mechanisms underlying the switch from monopolar to bipolar chromosome attachment between the meiotic divisions.
Collapse
Affiliation(s)
- Matt Sullivan
- Department of Physiology, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
341
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007; 2:e430. [PMID: 17487278 PMCID: PMC1855986 DOI: 10.1371/journal.pone.0000430] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 04/19/2007] [Indexed: 11/19/2022] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of γ-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Olivier Pichon
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Sylvain Fochesato
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Philippe Ortet
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Marie-Hélène Montané
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
342
|
Gjoerup OV, Wu J, Chandler-Militello D, Williams GL, Zhao J, Schaffhausen B, Jat PS, Roberts TM. Surveillance mechanism linking Bub1 loss to the p53 pathway. Proc Natl Acad Sci U S A 2007; 104:8334-9. [PMID: 17488820 PMCID: PMC1895950 DOI: 10.1073/pnas.0703164104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bub1 is a kinase believed to function primarily in the mitotic spindle checkpoint. Mutation or aberrant Bub1 expression is associated with chromosomal instability, aneuploidy, and human cancer. We now find that targeting Bub1 by RNAi or simian virus 40 (SV40) large T antigen in normal human diploid fibroblasts results in premature senescence. Interestingly, cells undergoing replicative senescence were also low in Bub1 expression, although ectopic Bub1 expression in presenescent cells was insufficient to extend lifespan. Premature senescence caused by lower Bub1 levels depends on p53. Senescence induction was blocked by dominant negative p53 expression or depletion of p21(CIP1), a p53 target. Importantly, cells with lower Bub1 levels and inactivated p53 became highly aneuploid. Taken together, our data highlight a role for p53 in monitoring Bub1 function, which may be part of a more general spindle checkpoint surveillance mechanism. Our data support the hypothesis that Bub1 compromise triggers p53-dependent senescence, which limits the production of aneuploid and potentially cancerous cells.
Collapse
Affiliation(s)
- Ole V. Gjoerup
- *Molecular Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
- To whom correspondence may be addressed. E-mail: or
| | - Jiaping Wu
- Department of Cancer Biology, Dana–Farber Cancer Institute and Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115
| | - Devin Chandler-Militello
- Department of Cancer Biology, Dana–Farber Cancer Institute and Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115
| | - Grace L. Williams
- Department of Cancer Biology, Dana–Farber Cancer Institute and Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115
| | - Jean Zhao
- Department of Cancer Biology, Dana–Farber Cancer Institute and Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115
| | - Brian Schaffhausen
- Department of Biochemistry, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Parmjit S. Jat
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, United Kingdom
| | - Thomas M. Roberts
- Department of Cancer Biology, Dana–Farber Cancer Institute and Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
343
|
Kawashima SA, Tsukahara T, Langegger M, Hauf S, Kitajima TS, Watanabe Y. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev 2007; 21:420-35. [PMID: 17322402 PMCID: PMC1804331 DOI: 10.1101/gad.1497307] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fission yeast shugoshin Sgo1 is meiosis specific and cooperates with protein phosphatase 2A to protect centromeric cohesin at meiosis I. The other shugoshin-like protein Sgo2, which requires the heterochromatin protein Swi6/HP1 for full viability, plays a crucial role for proper chromosome segregation at both mitosis and meiosis; however, the underlying mechanisms are totally elusive. We here demonstrate that, unlike Sgo1, Sgo2 is dispensable for centromeric protection of cohesin. Instead, Sgo2 interacts with Bir1/Survivin and promotes Aurora kinase complex localization to the pericentromeric region, to correct erroneous attachment of kinetochores and thereby enable tension-generating attachment. Forced localization of Bir1 to centromeres partly restored the defects of sgo2Delta. This newly identified interaction of shugoshin with Survivin is conserved between mitosis and meiosis and presumably across eukaryotes. We propose that ensuring bipolar attachment of kinetochores is the primary role of shugoshin and the role of cohesion protection might have codeveloped to facilitate this process.
Collapse
Affiliation(s)
- Shigehiro A. Kawashima
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Tatsuya Tsukahara
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Maria Langegger
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tuebingen, Germany
| | - Silke Hauf
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tuebingen, Germany
| | - Tomoya S. Kitajima
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
- Corresponding author.E-MAIL ; FAX 81-3-5841-1468
| |
Collapse
|
344
|
Fu G, Hua S, Ward T, Ding X, Yang Y, Guo Z, Yao X. D-box is required for the degradation of human Shugoshin and chromosome alignment. Biochem Biophys Res Commun 2007; 357:672-8. [PMID: 17448445 DOI: 10.1016/j.bbrc.2007.03.204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 03/31/2007] [Indexed: 10/23/2022]
Abstract
Chromosome segregation and proper alignment in mitosis relies on cohesion between sister chromatids and the interaction of the kinetochore with spindle microtubules. Vertebrate Sgo 1 localizes to kinetochores and is required to prevent premature sister centromere separation in mitosis. Sgo 1 is degraded by the anaphase-promoting complex, allowing the separation of sister centromeres in anaphase. However, little is known about the molecular basis of Sgo 1 degradation and its temporal control during mitosis. Here, we show that APC/C targets human Sgo 1 for degradation through a destruction box motif (D-box) in its C-terminus. Mutation in the D-box causes transient metaphase arrest, and mutation in the D-box leads to defects in chromosome alignment and segregation through its effect on the localization of Aurora B and CENP-E. These results provide a link between sister centromere cohesion and bipolar attachment of kinetochores.
Collapse
Affiliation(s)
- Guosheng Fu
- Laboratory of Cellular Dynamics, University of Science & Technology of China, Hefei National Laboratory, Hefei 230027, China
| | | | | | | | | | | | | |
Collapse
|
345
|
Boyarchuk Y, Salic A, Dasso M, Arnaoutov A. Bub1 is essential for assembly of the functional inner centromere. J Cell Biol 2007; 176:919-28. [PMID: 17389228 PMCID: PMC2064078 DOI: 10.1083/jcb.200609044] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 02/21/2007] [Indexed: 01/24/2023] Open
Abstract
During mitosis, the inner centromeric region (ICR) recruits protein complexes that regulate sister chromatid cohesion, monitor tension, and modulate microtubule attachment. Biochemical pathways that govern formation of the inner centromere remain elusive. The kinetochore protein Bub1 was shown to promote assembly of the outer kinetochore components, such as BubR1 and CENP-F, on centromeres. Bub1 was also implicated in targeting of Shugoshin (Sgo) to the ICR. We show that Bub1 works as a master organizer of the ICR. Depletion of Bub1 from Xenopus laevis egg extract or from HeLa cells resulted in both destabilization and displacement of chromosomal passenger complex (CPC) from the ICR. Moreover, soluble Bub1 controls the binding of Sgo to chromatin, whereas the CPC restricts loading of Sgo specifically onto centromeres. We further provide evidence that Bub1 kinase activity is pivotal for recruitment of all of these components. Together, our findings demonstrate that Bub1 acts at multiple points to assure the correct kinetochore formation.
Collapse
Affiliation(s)
- Yekaterina Boyarchuk
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
346
|
Yu HG, Koshland D. The Aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis. J Cell Biol 2007; 176:911-8. [PMID: 17371833 PMCID: PMC2064077 DOI: 10.1083/jcb.200609153] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 02/09/2007] [Indexed: 11/22/2022] Open
Abstract
Homologue segregation during the first meiotic division requires the proper spatial regulation of sister chromatid cohesion and its dissolution along chromosome arms, but its protection at centromeric regions. This protection requires the conserved MEI-S332/Sgo1 proteins that localize to centromeric regions and also recruit the PP2A phosphatase by binding its regulatory subunit, Rts1. Centromeric Rts1/PP2A then locally prevents cohesion dissolution possibly by dephosphorylating the protein complex cohesin. We show that Aurora B kinase in Saccharomyces cerevisiae (Ipl1) is also essential for the protection of meiotic centromeric cohesion. Coupled with a previous study in Drosophila melanogaster, this meiotic function of Aurora B kinase appears to be conserved among eukaryotes. Furthermore, we show that Sgo1 recruits Ipl1 to centromeric regions. In the absence of Ipl1, Rts1 can initially bind to centromeric regions but disappears from these regions after anaphase I onset. We suggest that centromeric Ipl1 ensures the continued centromeric presence of active Rts1/PP2A, which in turn locally protects cohesin and cohesion.
Collapse
Affiliation(s)
- Hong-Guo Yu
- Howard Hughes Medical Institute, Carnegie Institution, Baltimore, MD 21210, USA.
| | | |
Collapse
|
347
|
Lipp JJ, Hirota T, Poser I, Peters JM. Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J Cell Sci 2007; 120:1245-55. [PMID: 17356064 DOI: 10.1242/jcs.03425] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The assembly of mitotic chromosomes is controlled by condensin complexes. In vertebrates, condensin I binds to chromatin in prometaphase, confers rigidity to chromosomes and enables the release of cohesin complexes from chromosome arms, whereas condensin II associates with chromosomes in prophase and promotes their condensation. Both complexes are essential for chromosome segregation in anaphase. Although the association of condensins with chromatin is important for the assembly and segregation of mitotic chromosomes, it is poorly understood how this process is controlled. Here we show that the mitotic kinase Aurora B regulates the association of condensin I, but not the interaction of condensin II with chromatin. Quantitative time-lapse imaging of cells expressing GFP-tagged condensin subunits revealed that Aurora B is required for efficient loading of condensin I onto chromosomes in prometaphase and for maintenance of the complex on chromosomes in later stages of mitosis. The three non-SMC subunits of condensin I are Aurora B substrates in vitro and their mitosis-specific phosphorylation depends on Aurora B in vivo. Our data indicate that Aurora B contributes to chromosome rigidity and segregation by promoting the binding of condensin I to chromatin. We have also addressed how Aurora B might mediate the dissociation of cohesin from chromosome arms.
Collapse
Affiliation(s)
- Jesse J Lipp
- Research Institute of Molecular Pathology, Dr Bohrgasse 7, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
348
|
Swan A, Schüpbach T. The Cdc20 (Fzy)/Cdh1-related protein, Cort, cooperates with Fzy in cyclin destruction and anaphase progression in meiosis I and II in Drosophila. Development 2007; 134:891-9. [PMID: 17251266 PMCID: PMC2787194 DOI: 10.1242/dev.02784] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meiosis is a highly specialized cell division that requires significant reorganization of the canonical cell-cycle machinery and the use of meiosis-specific cell-cycle regulators. The anaphase-promoting complex (APC) and a conserved APC adaptor, Cdc20 (also known as Fzy), are required for anaphase progression in mitotic cells. The APC has also been implicated in meiosis, although it is not yet understood how it mediates these non-canonical divisions. Cortex (Cort) is a diverged Fzy homologue that is expressed in the female germline of Drosophila, where it functions with the Cdk1-interacting protein Cks30A to drive anaphase in meiosis II. Here, we show that Cort functions together with the canonical mitotic APC adaptor Fzy to target the three mitotic cyclins (A, B and B3) for destruction in the egg and drive anaphase progression in both meiotic divisions. In addition to controlling cyclin destruction globally in the egg, Cort and Fzy appear to both be required for the local destruction of cyclin B on spindles. We find that cyclin B associates with spindle microtubules throughout meiosis I and meiosis II, and dissociates from the meiotic spindle in anaphase II. Fzy and Cort are required for this loss of cyclin B from the meiotic spindle. Our results lead to a model in which the germline-specific APC(Cort) cooperates with the more general APC(Fzy), both locally on the meiotic spindle and globally in the egg cytoplasm, to target cyclins for destruction and drive progression through the two meiotic divisions.
Collapse
Affiliation(s)
- Andrew Swan
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Trudi Schüpbach
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
349
|
Kuznetsov S, Pellegrini M, Shuda K, Fernandez-Capetillo O, Liu Y, Martin BK, Burkett S, Southon E, Pati D, Tessarollo L, West SC, Donovan PJ, Nussenzweig A, Sharan SK. RAD51C deficiency in mice results in early prophase I arrest in males and sister chromatid separation at metaphase II in females. ACTA ACUST UNITED AC 2007; 176:581-92. [PMID: 17312021 PMCID: PMC2064017 DOI: 10.1083/jcb.200608130] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RAD51C is a member of the RecA/RAD51 protein family, which is known to play an important role in DNA repair by homologous recombination. In mice, it is essential for viability. Therefore, we have generated a hypomorphic allele of Rad51c in addition to a null allele. A subset of mice expressing the hypomorphic allele is infertile. This infertility is caused by sexually dimorphic defects in meiotic recombination, revealing its two distinct functions. Spermatocytes undergo a developmental arrest during the early stages of meiotic prophase I, providing evidence for the role of RAD51C in early stages of RAD51-mediated recombination. In contrast, oocytes can progress normally to metaphase I after superovulation but display precocious separation of sister chromatids, aneuploidy, and broken chromosomes at metaphase II. These defects suggest a possible late role of RAD51C in meiotic recombination. Based on the marked reduction in Holliday junction (HJ) resolution activity in Rad51c-null mouse embryonic fibroblasts, we propose that this late function may be associated with HJ resolution.
Collapse
Affiliation(s)
- Sergey Kuznetsov
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
350
|
Vanoosthuyse V, Prykhozhij S, Hardwick KG. Shugoshin 2 regulates localization of the chromosomal passenger proteins in fission yeast mitosis. Mol Biol Cell 2007; 18:1657-69. [PMID: 17301288 PMCID: PMC1855032 DOI: 10.1091/mbc.e06-10-0890] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fission yeast has two members of the Shugoshin family, Sgo1 and Sgo2. Although Sgo1 has clearly been established as a protector of centromere cohesion in meiosis I, the roles of Sgo2 remain elusive. Here we show that Sgo2 is required to ensure proper chromosome biorientation upon recovery from a prolonged spindle checkpoint arrest. Consistent with this, Sgo2 is essential for maintaining the Passenger proteins on centromeres upon checkpoint activation. Interestingly, lack of Sgo2 has a more penetrant effect on the localization of Survivin than on the two other Passenger proteins INCENP and Aurora B, and the Survivin-INCENP complex but not the INCENP-Aurora B complex is destabilized in the absence of Sgo2. Finally we show that the conserved C-terminus of Sgo2 is crucial to maintain Sgo2 and Passenger proteins localization on centromeres upon prolonged checkpoint activation. Taken together, our results demonstrate that Sgo2 is important for chromosome biorientation and that it controls docking of the Passenger proteins on chromosomes in early mitotic cells.
Collapse
Affiliation(s)
- Vincent Vanoosthuyse
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | | | | |
Collapse
|