301
|
Chávez Zobel AT, Lambert H, Thériault JR, Landry J. Structural instability caused by a mutation at a conserved arginine in the alpha-crystallin domain of Chinese hamster heat shock protein 27. Cell Stress Chaperones 2005; 10:157-66. [PMID: 16038412 PMCID: PMC1176474 DOI: 10.1379/csc-102.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 02/24/2005] [Indexed: 11/24/2022] Open
Abstract
Mutations in the alpha-crystallin domain of 4 of the small heat shock proteins (sHsp) (Hsp27/HspB1, alphaA-crystallin/ HspB4, alphaB-crystallin/HspB5, and HspB8) are responsible for dominant inherited diseases in humans. One such mutation at a highly conserved arginine residue was shown to cause major conformational defects and intracellular aggregation of alphaA- and alphaB-crystallins and HspB8. Here, we studied the effect of this Arg mutation on the structure and function of Hsp27. Chinese hamster Hsp27 with Arg148 replaced by Gly (Hsp27R148G) formed dimers in vitro and in vivo, which contrasted with the 12- or 24-subunit oligomers formed by the wild-type protein (Hsp27WT). Despite these alterations, Hsp27R148G had a chaperone activity almost as high as Hsp27WT. The dimers of Hsp27R148G did not further deoligomerize on phosphorylation and like the dimers formed by phosphorylated Hsp27WT were not affected by the deletion of the N-terminal WD/EPF (single letter amino acid code) motif, suggesting that mutation of Arg148, deletion of the N-terminal WD/EPF motif, and phosphorylation of Ser90 may produce similar structural perturbations. Nevertheless, the structure of Hsp27R148G appeared unstable, and the mutated protein accumulated as aggregates in many cells. Both a lower basal level of phosphorylation of Hsp27R148G and the coexpression of Hsp27WT could reduce the frequency of formation of these aggregates, suggesting possible mechanisms regulating the onset of the sHsp-mediated inherited diseases.
Collapse
Affiliation(s)
- Aura T Chávez Zobel
- Departamento de Morfología, Universidad Centroccidental Lisandro Alvarado, Decanato de Medicina, Sección de Anatomía Microscópica, Avenida Libertador con Avenida Andrés Bello, Barquisimeto, Estado Lara, Venezuela
| | | | | | | |
Collapse
|
302
|
Tarrade A, Fassier C, Melki J. [Neuropathies and small heat shock proteins]. Med Sci (Paris) 2004; 20:1073-5. [PMID: 15581457 DOI: 10.1051/medsci/200420121073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
303
|
Abstract
Exposure to stressors is an omnipresent variable for all living organisms, which have evolved anti-stress mechanisms to deal with the consequences of stress. The chaperoning systems are among these mechanisms, and their central components are the molecular chaperones that play important roles in protein biogenesis. Recent data suggest that failure of the chaperoning systems due to defective chaperones, for example, leads to pathology. Consequently, medical researchers and practitioners must now also consider the chaperoning systems, both as potentially major players in pathogenesis and as diagnostic-prognostic indicators.
Collapse
Affiliation(s)
- Alberto J L Macario
- Wadsworth Center, Division of Molecular Medicine, New York State Department of Health, The University at Albany (SUNY), Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, USA.
| | | |
Collapse
|
304
|
Kim MV, Seit-Nebi AS, Gusev NB. The problem of protein kinase activity of small heat shock protein Hsp22 (H11 or HspB8). Biochem Biophys Res Commun 2004; 325:649-52. [PMID: 15541337 DOI: 10.1016/j.bbrc.2004.10.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Indexed: 11/23/2022]
Abstract
The recently described protein denoted H11, Hsp22 or HspB8 seems to participate in regulation of proliferation, apoptosis, and cardiac hypertrophy. Mutation of Hsp22 causes distal motor neuropathy. Multitude action of Hsp22 is supposed to be due to its protein kinase and/or chaperone-like activities. There are many indirect evidences indicating that Hsp22 possesses intrinsic protein kinase activity. However, low homology to protein kinases, low extent of autophosphorylation, lack of significant protein kinase activity with commonly used substrates, and lack of information on stoichiometry, kinetics, and substrate specificity make the existence of intrinsic protein kinase activity of Hsp22 questionable. It is supposed that protein kinase activity ascribed to Hsp22 is due to contaminating protein kinases. Hsp22 is highly homologous to small heat shock proteins and effectively prevents aggregation of denatured protein both in vitro and in vivo. Therefore, it is supposed that chaperone-like activity is of great importance for Hsp22 functioning.
Collapse
Affiliation(s)
- Maria V Kim
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119992, Russia
| | | | | |
Collapse
|
305
|
Tang BS, Zhao GH, Luo W, Xia K, Cai F, Pan Q, Zhang RX, Zhang FF, Liu XM, Chen B, Zhang C, Shen L, Jiang H, Long ZG, Dai HP. Small heat-shock protein 22 mutated in autosomal dominant Charcot-Marie-Tooth disease type 2L. Hum Genet 2004; 116:222-4. [PMID: 15565283 DOI: 10.1007/s00439-004-1218-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 10/20/2004] [Indexed: 01/30/2023]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common inherited motor and sensory neuropathy. We have previously described a large Chinese CMT family and assigned the locus underlying the disease (CMT2L; OMIM 608673) to chromosome 12q24. Here, we report a novel c.423G-->T (Lys141Asn) missense mutation of small heat-shock protein 22-kDa protein 8 (encoded by HSPB8), which is also responsible for distal hereditary motor neuropathy type (dHMN) II. No disease-causing mutations have been identified in another 114 CMT families.
Collapse
Affiliation(s)
- Bei-sha Tang
- National Laboratory of Medical Genetics of China, Central South University, 410078, Changsha, Hunan, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Passamonti L, Muglia M, Magariello A, Bellesi M, Conforti FL, Mazzei R, Patitucci A, Gabriele AL, Sprovieri T, Peluso G, Caracciolo M, Medici E, Logullo F, Provinciali L, Quattrone A. Further evidence of genetic heterogeneity in autosomal dominant distal motor neuronopathy. Neuromuscul Disord 2004; 14:705-10. [PMID: 15482954 DOI: 10.1016/j.nmd.2004.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 06/30/2004] [Accepted: 07/07/2004] [Indexed: 10/26/2022]
Abstract
Distal hereditary motor neuronopathy is a genetically and clinically heterogeneous disorder. To date, five loci, and their relative genes, have been mapped on chromosomes 7p14, 7q11, 9q34, 11q12 and 12q24, respectively. We describe an Italian family with autosomal dominant distal HMN starting at around 30 years of age with weakness and atrophy of distal leg muscles and pyramidal features. We performed genetic linkage analysis on chromosomes 7p14, 9q34, 11q12 and 12q24. Moreover we sequenced the genes mapped to 7q11 and 12q24. Negative LOD scores excluded linkage to 7p14, 9q34, and 11q12 chromosomes in our family. No mutations were found in genes mapped to 7q11 and 12q24. In addition, because of pyramidal features, we performed the linkage analysis to all the known loci for autosomal dominant hereditary spastic paraparesis. The analysis was negative thus excluding a complicated form of autosomal dominant hereditary spastic paraparesis. These data further confirm a genetic heterogeneity within inherited motor neuronopathy.
Collapse
Affiliation(s)
- Luca Passamonti
- Institute of Neurological Sciences, Ospedale Regionale Torrette, University Ancona, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Golenhofen N, Perng MD, Quinlan RA, Drenckhahn D. Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochem Cell Biol 2004; 122:415-25. [PMID: 15480735 DOI: 10.1007/s00418-004-0711-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2004] [Indexed: 01/23/2023]
Abstract
Seven members of the small heat shock protein (sHSP) family are exceptional with respect to their constitutive high abundance in muscle tissue. It has been suggested that sHSPs displaying chaperone-like properties may stabilize myofibrillar proteins during stress conditions and prevent them from loss of function. In the present study five sHSPs (alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP) were investigated with respect to similarities and differences of their expression in heart and skeletal muscle under normal and ischemic conditions. In ischemic heart and skeletal muscle these five sHSPs translocated from cytosol to the Z-/I-area of myofibrils. Myofibrillar binding of all sHSPs was very tight and resisted for the most part extraction with 1 M NaSCN or 1 M urea. MKBP and HSP20 became extracted by 1 M NaSCN to a significant extent indicating that these two sHSPs may bind partially to actin-associated proteins which were completely extracted by this treatment. Ultrastructural localization of alphaB-crystallin showed diffuse distribution of immunogold label throughout the entire I-band in skeletal muscle fibers whereas in cardiomyocytes alphaB-crystallin was preferentially located at the N-line position of the I-band. These observations indicate different myofibrillar binding sites of alphaB-crystallin in cardiomyocytes versus skeletal muscle fibers. Further differences of the properties of sHSPs could be observed regarding fiber type distribution of sHSPs. Thus sHSPs form a complex stress-response system in striated muscle tissue with some common as well as some distinct functions in different muscle types.
Collapse
Affiliation(s)
- Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany.
| | | | | | | |
Collapse
|
308
|
Kaldis A, Atkinson BG, Heikkila JJ. Molecular chaperone function of the Rana catesbeiana small heat shock protein, hsp30. Comp Biochem Physiol A Mol Integr Physiol 2004; 139:175-82. [PMID: 15528166 DOI: 10.1016/j.cbpb.2004.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/17/2004] [Accepted: 08/31/2004] [Indexed: 11/17/2022]
Abstract
Eukaryotic small heat shock proteins (shps) act as molecular chaperones by binding to denaturing proteins, preventing their heat-induced aggregation and maintaining their solubility until they can be refolded back to their normal state by other chaperones. In this study we report on the functional characterization of a developmentally regulated shsp, hsp30, from the American bullfrog, Rana catesbeiana. An expression vector containing the open reading frame of the hsp30 gene was expressed in Escherichia coli. Purified recombinant hsp30 was recovered as multimeric complexes and was composed of a mixture of alpha-helical and beta-sheet-like structures as determined by circular dichroism analysis. Hsp30 displayed chaperone activity since it inhibited heat-induced aggregation of citrate synthase. Furthermore hsp30 maintained heat-treated luciferase in a folding competent state. For example, heat denatured luciferase when microinjected into Xenopus oocytes did not regain enzyme activity whereas luciferase heat denatured with hsp30 regained 100% enzyme activity. Finally, hsp30 protected the DNA restriction endonuclease, PstI, from heat inactivation. PstI incubated alone at 42 degrees C lost its enzymatic function after 1 h whereas PstI supplemented with hsp30 accurately digested plasmid DNA after 4 h at the elevated temperature. These results clearly indicate a molecular chaperone role for R. catesbeiana hsp30.
Collapse
Affiliation(s)
- Angelo Kaldis
- Department of Biology, University of Waterloo, Ontario, Canada, N2L 3G1
| | | | | |
Collapse
|
309
|
Lee SS, Leavitt BR. Turning up the heat on hereditary neuropathies. Clin Genet 2004. [DOI: 10.1111/j.1399-0004.2004.00347b.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
310
|
Abstract
Mutations in HSPB1 and HSPB8, members of the small heat shock protein family, have recently been shown to cause some distal motor neuropathies. Their function in motor neurones is now under scrutiny.
Collapse
Affiliation(s)
- Ming Der Perng
- School of Biological and Biomedical Science, South Road Science Site, The University, Durham DH1 3LE, UK
| | | |
Collapse
|
311
|
|
312
|
Evgrafov OV, Mersiyanova I, Irobi J, Van Den Bosch L, Dierick I, Leung CL, Schagina O, Verpoorten N, Van Impe K, Fedotov V, Dadali E, Auer-Grumbach M, Windpassinger C, Wagner K, Mitrovic Z, Hilton-Jones D, Talbot K, Martin JJ, Vasserman N, Tverskaya S, Polyakov A, Liem RKH, Gettemans J, Robberecht W, De Jonghe P, Timmerman V. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 2004; 36:602-6. [PMID: 15122254 DOI: 10.1038/ng1354] [Citation(s) in RCA: 436] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 04/12/2004] [Indexed: 01/30/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common inherited neuromuscular disease and is characterized by considerable clinical and genetic heterogeneity. We previously reported a Russian family with autosomal dominant axonal CMT and assigned the locus underlying the disease (CMT2F; OMIM 606595) to chromosome 7q11-q21 (ref. 2). Here we report a missense mutation in the gene encoding 27-kDa small heat-shock protein B1 (HSPB1, also called HSP27) that segregates in the family with CMT2F. Screening for mutations in HSPB1 in 301 individuals with CMT and 115 individuals with distal hereditary motor neuropathies (distal HMNs) confirmed the previously observed mutation and identified four additional missense mutations. We observed the additional HSPB1 mutations in four families with distal HMN and in one individual with CMT neuropathy. Four mutations are located in the Hsp20-alpha-crystallin domain, and one mutation is in the C-terminal part of the HSP27 protein. Neuronal cells transfected with mutated HSPB1 were less viable than cells expressing the wild-type protein. Cotransfection of neurofilament light chain (NEFL) and mutant HSPB1 resulted in altered neurofilament assembly in cells devoid of cytoplasmic intermediate filaments.
Collapse
Affiliation(s)
- Oleg V Evgrafov
- Department of Psychiatry, New York State Psychiatric Institute/Research Foundation for Mental Hygiene, Unit 28, 1051 Riverside Drive, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|