301
|
The amyloid precursor protein interacts with Go heterotrimeric protein within a cell compartment specialized in signal transduction. J Neurosci 1999. [PMID: 10024358 DOI: 10.1523/jneurosci.19-05-01717.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The function of the beta-amyloid protein precursor (betaAPP), a transmembrane molecule involved in Alzheimer pathologies, is poorly understood. We recently reported the presence of a fraction of betaAPP in cholesterol and sphingoglycolipid-enriched microdomains (CSEM), a caveolae-like compartment specialized in signal transduction. To investigate whether betaAPP actually interferes with cell signaling, we reexamined the interaction between betaAPP and Go GTPase. In strong contrast with results obtained with reconstituted phospholipid vesicles (Okamoto et al., 1995), we find that incubating total neuronal membranes with 22C11, an antibody that recognizes an N-terminal betaAPP epitope, reduces high-affinity Go GTPase activity. This inhibition is specific of Galphao and is reproduced, in the absence of 22C11, by the addition of the betaAPP C-terminal domain but not by two distinct mutated betaAPP C-terminal domains that do not bind Galphao. This inhibition of Galphao GTPase activity by either 22C11 or wild-type betaAPP cytoplasmic domain suggests that intracellular interactions between betaAPP and Galphao could be regulated by extracellular signals. To verify whether this interaction is preserved in CSEM, we first used biochemical, immunocytochemical, and ultrastructural techniques to unambiguously confirm the colocalization of Galphao and betaAPP in CSEM. We show that inhibition of basal Galphao GTPase activity also occurs within CSEM and correlates with the coimmunoprecipitation of Galphao and betaAPP. The regulation of Galphao GTPase activity by betaAPP in a compartment specialized in signaling may have important consequences for our understanding of the physiopathological functions of betaAPP.
Collapse
|
302
|
Puertollano R, Martín-Belmonte F, Millán J, de Marco MC, Albar JP, Kremer L, Alonso MA. The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. J Biophys Biochem Cytol 1999; 145:141-51. [PMID: 10189374 PMCID: PMC2148211 DOI: 10.1083/jcb.145.1.141] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The MAL (MAL/VIP17) proteolipid is a nonglycosylated integral membrane protein expressed in a restricted pattern of cell types, including T lymphocytes, myelin-forming cells, and polarized epithelial cells. Transport of the influenza virus hemagglutinin (HA) to the apical surface of epithelial Madin-Darby canine kidney (MDCK) cells appears to be mediated by a pathway involving glycolipid- and cholesterol- enriched membranes (GEMs). In MDCK cells, MAL has been proposed previously as being an element of the protein machinery for the GEM-dependent apical transport pathway. Using an antisense oligonucleotide-based strategy and a newly generated monoclonal antibody to canine MAL, herein we have approached the effect of MAL depletion on HA transport in MDCK cells. We have found that MAL depletion diminishes the presence of HA in GEMs, reduces the rate of HA transport to the cell surface, inhibits the delivery of HA to the apical surface, and produces partial missorting of HA to the basolateral membrane. These effects were corrected by ectopic expression of MAL in MDCK cells whose endogenous MAL protein was depleted. Our results indicate that MAL is necessary for both normal apical transport and accurate sorting of HA.
Collapse
Affiliation(s)
- R Puertollano
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid and Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
303
|
Nishimura M, Yu G, St George-Hyslop PH. Biology of presenilins as causative molecules for Alzheimer disease. Clin Genet 1999; 55:219-25. [PMID: 10361981 DOI: 10.1034/j.1399-0004.1999.550401.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many missense mutations in the presenilins are associated with autosomal dominant forms of familial Alzheimer disease (AD). Presenilin genes encode polytopic transmembrane proteins, which are processed by proteolytic cleavage and form high-molecular-weight complexes under physiological conditions. The presenilins have been suggested to be functionally involved in developmental morphogenesis, apoptosis signal pathways, and processing of selected proteins including beta-amyloid precursor protein. Although the underlying mechanism in which presenilin mutations lead to development of AD remains elusive, one consistent mutational effect is an overproduction of long-tailed amyloid beta-peptides. Furthermore, presenilins interact with beta-catenin to form presenilin complexes and presenilin mutations effect beta-catenin signalling pathways.
Collapse
Affiliation(s)
- M Nishimura
- Centre for Research in Neurodegenerative Diseases, Department of Medicine, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
304
|
Parkin ET, Hussain I, Karran EH, Turner AJ, Hooper NM. Characterization of detergent-insoluble complexes containing the familial Alzheimer's disease-associated presenilins. J Neurochem 1999; 72:1534-43. [PMID: 10098859 DOI: 10.1046/j.1471-4159.1999.721534.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many cases of early-onset familial Alzheimer's disease have been linked to mutations within two genes encoding the proteins presenilin-1 and presenilin-2. The presenilins are 48-56-kDa proteins that can be proteolytically cleaved to generate an N-terminal fragment (approximately 25-35 kDa) and a C-terminal fragment (approximately 17-20 kDa). The N- and C-terminal fragments of presenilin-1, but not full-length presenilin-1, were readily detected in both human and mouse cerebral cortex and in neuronal and glioma cell lines. In contrast, presenilin-2 was detected almost exclusively in cerebral cortex as the full-length molecule with a molecular mass of 56 kDa. The association of the presenilins with detergent-insoluble, low-density membrane microdomains, following the isolation of these structures from cerebral cortex by solubilization in Triton X-100 and subsequent sucrose density gradient centrifugation, was also examined. A minor fraction (10%) of both the N- and C-terminal fragments of presenilin-1 was associated with the detergent-insoluble, low-density membrane microdomains, whereas a considerably larger proportion of full-length presenilin-2 was present in the same membrane microdomains. In addition, a significant proportion of full-length presenilin-2 was present in a high-density, detergent-insoluble cytoskeletal pellet enriched in beta-actin. The presence of the presenilins in detergent-insoluble, low-density membrane microdomains indicates a possible role for these specialized regions of the membrane in the lateral separation of Alzheimer's disease-associated proteins within the lipid bilayer and/or in the distinct functions of these proteins.
Collapse
Affiliation(s)
- E T Parkin
- School of Biochemistry and Molecular Biology, University of Leeds, England, UK
| | | | | | | | | |
Collapse
|
305
|
Hooper NM. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol 1999; 16:145-56. [PMID: 10417979 DOI: 10.1080/096876899294607] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Within the cell membrane glycosphingolipids and cholesterol cluster together in distinct domains or lipid rafts, along with glycosyl-phosphatidylinositol (GPI)-anchored proteins in the outer leaflet and acylated proteins in the inner leaflet of the bilayer. These lipid rafts are characterized by insolubility in detergents such as Triton X-100 at 4 degrees C. Studies on model membrane systems have shown that the clustering of glycosphingolipids and GPI-anchored proteins in lipid rafts is an intrinsic property of the acyl chains of these membrane components, and that detergent extraction does not artefactually induce clustering. Cholesterol is not required for clustering in model membranes but does enhance this process. Single particle tracking, chemical cross-linking, fluorescence resonance energy transfer and immunofluorescence microscopy have been used to directly visualize lipid rafts in membranes. The sizes of the rafts observed in these studies range from 70-370 nm, and depletion of cellular cholesterol levels disrupts the rafts. Caveolae, flask-shaped invaginations of the plasma membrane, that contain the coat protein caveolin, are also enriched in cholesterol and glycosphingolipids. Although caveolae are also insoluble in Triton X-100, more selective isolation procedures indicate that caveolae do not equate with detergent-insoluble lipid rafts. Numerous proteins involved in cell signalling have been identified in caveolae, suggesting that these structures may function as signal transduction centres. Depletion of membrane cholesterol with cholesterol binding drugs or by blocking cellular cholesterol biosynthesis disrupts the formation and function of both lipid rafts and caveolae, indicating that these membrane domains are involved in a range of biological processes.
Collapse
Affiliation(s)
- N M Hooper
- School of Biochemistry and Molecular Biology, University of Leeds, UK.
| |
Collapse
|
306
|
Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A 1999; 96:3228-33. [PMID: 10077666 PMCID: PMC15924 DOI: 10.1073/pnas.96.6.3228] [Citation(s) in RCA: 888] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant forms of familial Alzheimer's disease (FAD) are associated with increased production of the amyloid beta peptide, Abeta42, which is derived from the amyloid protein precursor (APP). In FAD, as well as in sporadic forms of the illness, Abeta peptides accumulate abnormally in the brain in the form of amyloid plaques. Here, we show that overexpression of FAD(717V-->F)-mutant human APP in neurons of transgenic mice decreases the density of presynaptic terminals and neurons well before these mice develop amyloid plaques. Electrophysiological recordings from the hippocampus revealed prominent deficits in synaptic transmission, which also preceded amyloid deposition by several months. Although in young mice, functional and structural neuronal deficits were of similar magnitude, functional deficits became predominant with advancing age. Increased Abeta production in the context of decreased overall APP expression, achieved by addition of the Swedish FAD mutation to the APP transgene in a second line of mice, further increased synaptic transmission deficits in young APP mice without plaques. These results suggest a neurotoxic effect of Abeta that is independent of plaque formation.
Collapse
Affiliation(s)
- A Y Hsia
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94143-0450, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Affiliation(s)
- K S Kosik
- Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston MA 02115, USA.
| |
Collapse
|
308
|
Morelli L, Giambartolomei GH, Prat MI, Castaño EM. Internalization and resistance to degradation of Alzheimer's A beta 1-42 at nanomolar concentrations in THP-1 human monocytic cell line. Neurosci Lett 1999; 262:5-8. [PMID: 10076859 DOI: 10.1016/s0304-3940(99)00023-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Microglial cell involvement in Alzheimer's disease has been related to amyloid beta (A beta) internalization, the release of inflammatory cytokines and the development of neuritic plaques. The human monocyte/macrophage THP-1 cell line has been widely used as a model of human microglial cells. We used THP-1 cells to study the adsorption, internalization and resistance to degradation of A beta1-40 and A beta1-42 isoforms offered at nanomolar concentrations and free of large aggregates, conditions that may mimic a pre-fibrillar stage of A beta in the brain. Under these conditions, A betas did not induce THP-1 activation, as assessed by interleukin-1beta expression. A beta1-42 showed a preferential adsorption and intracellular accumulation as compared to A beta1-40, supporting that competent nuclei for A beta1-42 ordered aggregation may be formed inside microglial cells. In light of the possible neurotoxicity of soluble A beta1-42, we propose that amyloid formation within brain phagocytic cells may be a protective mechanism in early stages of the disease.
Collapse
Affiliation(s)
- L Morelli
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
309
|
|
310
|
Kaufman RJ. Molecular chaperones and the heat shock response. Sponsored by Cold Spring Harbor Laboratory, 6-10 May 1998. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1423:R13-27. [PMID: 9989210 DOI: 10.1016/s0304-419x(98)00029-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- R J Kaufman
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109, USA.
| |
Collapse
|
311
|
Engelman JA, Zhang X, Galbiati F, Volonte D, Sotgia F, Pestell RG, Minetti C, Scherer PE, Okamoto T, Lisanti MP. Molecular genetics of the caveolin gene family: implications for human cancers, diabetes, Alzheimer disease, and muscular dystrophy. Am J Hum Genet 1998; 63:1578-87. [PMID: 9837809 PMCID: PMC1377628 DOI: 10.1086/302172] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- J A Engelman
- Department of Molecular Pharmacology, Albert Einstein Cancer Center, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Kuo YM, Emmerling MR, Bisgaier CL, Essenburg AD, Lampert HC, Drumm D, Roher AE. Elevated low-density lipoprotein in Alzheimer's disease correlates with brain abeta 1-42 levels. Biochem Biophys Res Commun 1998; 252:711-5. [PMID: 9837771 DOI: 10.1006/bbrc.1998.9652] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sera obtained in the immediate postmortem from 100 individuals, 64 neuropathologically diagnosed Alzheimer's disease (AD) cases and 36 nondemented controls, were analyzed for cholesterol, lipoproteins, apolipoproteins (Apo), and triglycerides. All individuals were ApoE genotyped, and the amounts of Abeta (N-40 and N-42) in cerebral cortex of AD and control subjects were determined. When compared to controls, AD individuals had significantly higher LDL cholesterol (P = 0.006), ApoB (P = 0.018), Abeta N-40 (P = 0.024) and Abeta N-42 (P < 0.001), and significantly lower HDL cholesterol (P = 0.040). There were positive correlations between the levels of serum total cholesterol (r = 0.359, P = 0.004), LDL cholesterol (r = 0.328, P = 0.008), and ApoB (r = 0.395, P = 0.001) to the amount of Abeta N-42 in AD brains, but not to Abeta N-40. These correlations were independent of ApoE genotype and were not seen in the control group. The present results suggest for the first time that elevated serum cholesterol, especially in the form of LDL, influences the expression of AD-related pathology.
Collapse
Affiliation(s)
- Y M Kuo
- Haldeman Laboratory for Alzheimer Disease Research, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, Arizona, 85351, USA
| | | | | | | | | | | | | |
Collapse
|