301
|
Li J, Richards MR, Kitova EN, Klassen JS. Delivering Transmembrane Peptide Complexes to the Gas Phase Using Nanodiscs and Electrospray Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2054-2065. [PMID: 28681358 DOI: 10.1007/s13361-017-1735-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
The gas-phase conformations of dimers of the channel-forming membrane peptide gramicidin A (GA), produced from isobutanol or aqueous solutions of GA-containing nanodiscs (NDs), are investigated using electrospray ionization-ion mobility separation-mass spectrometry (ESI-IMS-MS) and molecular dynamics (MD) simulations. The IMS arrival times measured for (2GA + 2Na)2+ ions from isobutanol reveal three different conformations, with collision cross-sections (Ω) of 683 Å2 (conformation 1, C1), 708 Å2 (C2), and 737 Å2 (C3). The addition of NH4CH3CO2 produced (2GA + 2Na)2+ and (2GA + H + Na)2+ ions, with Ω similar to those of C1, C2, and C3, as well as (2GA + 2H)2+, (2GA + 2NH4)2+, and (2GA + H + NH4)2+ ions, which adopt a single conformation with a Ω similar to that of C2. These results suggest that the nature of the charging agents, imparted by the ESI process, can influence dimer conformation in the gas phase. Notably, the POPC NDs produced exclusively (2GA + 2NH4)2+ dimer ions; the DMPC NDs produced both (2GA + 2H)2+ and (2GA + 2NH4)2+ dimer ions. While the Ω of (2GA + 2H)2+ is similar to that of C2, the (2GA + 2NH4)2+ ions from NDs adopt a more compact structure, with a Ω of 656 Å2. It is proposed that this compact structure corresponds to the ion conducting single stranded head-to-head helical GA dimer. These findings highlight the potential of NDs, combined with ESI, for transferring transmembrane peptide complexes directly from lipid bilayers to the gas phase. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jun Li
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Alberta, Canada
| | - Michele R Richards
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Alberta, Canada
| | - Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Alberta, Canada
| | - John S Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Alberta, Canada.
| |
Collapse
|
302
|
Earl LA, Falconieri V, Milne JL, Subramaniam S. Cryo-EM: beyond the microscope. Curr Opin Struct Biol 2017; 46:71-78. [PMID: 28646653 PMCID: PMC5683925 DOI: 10.1016/j.sbi.2017.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 01/18/2023]
Abstract
The pace at which cryo-EM is being adopted as a mainstream tool in structural biology has continued unabated over the past year. Initial successes in obtaining near-atomic resolution structures with cryo-EM were enabled to a large extent by advances in microscope and detector technology. Here, we review some of the complementary technical improvements that are helping sustain the cryo-EM revolution. We highlight advances in image processing that permit high resolution structure determination even in the presence of structural and conformational heterogeneity. We also review selected examples where biochemical strategies for membrane protein stabilization facilitate cryo-EM structure determination, and discuss emerging approaches for further improving the preparation of reliable plunge-frozen specimens.
Collapse
Affiliation(s)
- Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica Falconieri
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacqueline Ls Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
303
|
Malhotra K, Modak A, Nangia S, Daman TH, Gunsel U, Robinson VL, Mokranjac D, May ER, Alder NN. Cardiolipin mediates membrane and channel interactions of the mitochondrial TIM23 protein import complex receptor Tim50. SCIENCE ADVANCES 2017; 3:e1700532. [PMID: 28879236 PMCID: PMC5580885 DOI: 10.1126/sciadv.1700532] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/04/2017] [Indexed: 05/07/2023]
Abstract
The phospholipid cardiolipin mediates the functional interactions of proteins that reside within energy-conserving biological membranes. However, the molecular basis by which this lipid performs this essential cellular role is not well understood. We address this role of cardiolipin using the multisubunit mitochondrial TIM23 protein transport complex as a model system. The early stages of protein import by this complex require specific interactions between the polypeptide substrate receptor, Tim50, and the membrane-bound channel-forming subunit, Tim23. Using analyses performed in vivo, in isolated mitochondria, and in reductionist nanoscale model membrane systems, we show that the soluble receptor domain of Tim50 interacts with membranes and with specific sites on the Tim23 channel in a manner that is directly modulated by cardiolipin. To obtain structural insights into the nature of these interactions, we obtained the first small-angle x-ray scattering-based structure of the soluble Tim50 receptor in its entirety. Using these structural insights, molecular dynamics simulations combined with a range of biophysical measurements confirmed the role of cardiolipin in driving the association of the Tim50 receptor with lipid bilayers with concomitant structural changes, highlighting the role of key structural elements in mediating this interaction. Together, these results show that cardiolipin is required to mediate specific receptor-channel associations in the TIM23 complex. Our results support a new working model for the dynamic structural changes that occur within the complex during transport. More broadly, this work strongly advances our understanding of how cardiolipin mediates interactions among membrane-associated proteins.
Collapse
Affiliation(s)
- Ketan Malhotra
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Arnab Modak
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Shivangi Nangia
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Tyler H. Daman
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Umut Gunsel
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Victoria L. Robinson
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Dejana Mokranjac
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Eric R. May
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
- Corresponding author.
| |
Collapse
|
304
|
Wade JH, Jones JD, Lenov IL, Riordan CM, Sligar SG, Bailey RC. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification. LAB ON A CHIP 2017; 17:2951-2959. [PMID: 28767110 PMCID: PMC5589448 DOI: 10.1039/c7lc00601b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipid bilayer environment. The successful incorporation of membrane proteins within Nanodiscs requires experimental optimization of conditions. Standard protocols for Nanodisc formation can require large amounts of time and input material, limiting the facile screening of formation conditions. Capitalizing on the miniaturization and efficient mass transport inherent to microfluidics, we have developed a microfluidic platform for efficient Nanodisc assembly and purification, and demonstrated the ability to incorporate functional membrane proteins into the resulting Nanodiscs. In addition to working with reduced sample volumes, this platform simplifies membrane protein incorporation from a multi-stage protocol requiring several hours or days into a single platform that outputs purified Nanodiscs in less than one hour. To demonstrate the utility of this platform, we incorporated Cytochrome P450 into Nanodiscs of variable size and lipid composition, and present spectroscopic evidence for the functional active site of the membrane protein. This platform is a promising new tool for membrane protein biology and biochemistry that enables tremendous versatility for optimizing the incorporation of membrane proteins using microfluidic gradients to screen across diverse formation conditions.
Collapse
Affiliation(s)
- James H Wade
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
305
|
Gacasan SB, Baker DL, Parrill AL. G protein-coupled receptors: the evolution of structural insight. AIMS BIOPHYSICS 2017; 4:491-527. [PMID: 29951585 DOI: 10.3934/biophy.2017.3.491] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptors (GPCR) comprise a diverse superfamily of over 800 proteins that have gained relevance as biological targets for pharmaceutical drug design. Although these receptors have been investigated for decades, three-dimensional structures of GPCR have only recently become available. In this review, we focus on the technological advancements that have facilitated efforts to gain insights into GPCR structure. Progress in these efforts began with the initial crystal structure determination of rhodopsin (PDB: 1F88) in 2000 and has continued to the most recently published structure of the A1AR (PDB: 5UEN) in 2017. Numerous experimental developments over the past two decades have opened the door for widespread GPCR structural characterization. These efforts have resulted in the determination of three-dimensional structures for over 40 individual GPCR family members. Herein we present a comprehensive list and comparative analysis of over 180 individual GPCR structures. This includes a summary of different GPCR functional states crystallized with agonists, dual agonists, partial agonists, inverse agonists, antagonists, and allosteric modulators.
Collapse
Affiliation(s)
- Samantha B Gacasan
- Department of Chemistry, University of Memphis, 3744 Walker Ave, Memphis, TN 38152, USA
| | - Daniel L Baker
- Department of Chemistry, University of Memphis, 3744 Walker Ave, Memphis, TN 38152, USA
| | - Abby L Parrill
- Department of Chemistry, University of Memphis, 3744 Walker Ave, Memphis, TN 38152, USA
| |
Collapse
|
306
|
Ravula T, Ramadugu SK, Di Mauro G, Ramamoorthy A. Bioinspired, Size-Tunable Self-Assembly of Polymer-Lipid Bilayer Nanodiscs. Angew Chem Int Ed Engl 2017; 56:11466-11470. [PMID: 28714233 DOI: 10.1002/anie.201705569] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 11/08/2022]
Abstract
Polymer-based nanodiscs are valuable tools in biomedical research that can offer a detergent-free solubilization of membrane proteins maintaining their native lipid environment. Herein, we introduce a novel ca. 1.6 kDa SMA-based polymer with styrene:maleic acid moieties that can form nanodiscs containing a planar lipid bilayer which are useful to reconstitute membrane proteins for structural and functional studies. The physicochemical properties and the mechanism of formation of polymer-based nanodiscs are characterized by light scattering, NMR, FT-IR, and TEM. A remarkable feature is that nanodiscs of different sizes, from nanometer to sub-micrometer diameter, can be produced by varying the lipid-to-polymer ratio. The small-size nanodiscs (up to ca. 30 nm diameter) can be used for solution NMR spectroscopy studies whereas the magnetic-alignment of macro-nanodiscs (diameter of > ca. 40 nm) can be exploited for solid-state NMR studies on membrane proteins.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Sudheer Kumar Ramadugu
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Giacomo Di Mauro
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, 48109-1055, USA
| |
Collapse
|
307
|
Gentry KA, Prade E, Barnaba C, Zhang M, Mahajan M, Im SC, Anantharamaiah GM, Nagao S, Waskell L, Ramamoorthy A. Kinetic and Structural Characterization of the Effects of Membrane on the Complex of Cytochrome b 5 and Cytochrome c. Sci Rep 2017; 7:7793. [PMID: 28798301 PMCID: PMC5552742 DOI: 10.1038/s41598-017-08130-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cytochrome b5 (cytb5) is a membrane protein vital for the regulation of cytochrome P450 (cytP450) metabolism and is capable of electron transfer to many redox partners. Here, using cyt c as a surrogate for cytP450, we report the effect of membrane on the interaction between full-length cytb5 and cyt c for the first time. As shown through stopped-flow kinetic experiments, electron transfer capable cytb5 - cyt c complexes were formed in the presence of bicelles and nanodiscs. Experimentally measured NMR parameters were used to map the cytb5-cyt c binding interface. Our experimental results identify differences in the binding epitope of cytb5 in the presence and absence of membrane. Notably, in the presence of membrane, cytb5 only engaged cyt c at its lower and upper clefts while the membrane-free cytb5 also uses a distal region. Using restraints generated from both cytb5 and cyt c, a complex structure was generated and a potential electron transfer pathway was identified. These results demonstrate the importance of studying protein-protein complex formation in membrane mimetic systems. Our results also demonstrate the successful preparation of novel peptide-based lipid nanodiscs, which are detergent-free and possesses size flexibility, and their use for NMR structural studies of membrane proteins.
Collapse
Affiliation(s)
| | - Elke Prade
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlo Barnaba
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Meng Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mukesh Mahajan
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan, and Veterans Affairs Medical Center, Ann Arbor, Michigan, 48105, USA
| | - G M Anantharamaiah
- Department of Medicine, UAB Medical Center, Birmingham, Alabama, 35294, USA
| | - Satoshi Nagao
- Graduate School of Material Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan, and Veterans Affairs Medical Center, Ann Arbor, Michigan, 48105, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
308
|
Ravula T, Ramadugu SK, Di Mauro G, Ramamoorthy A. Bioinspired, Size-Tunable Self-Assembly of Polymer-Lipid Bilayer Nanodiscs. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705569] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thirupathi Ravula
- Biophysics Program and Department of Chemistry; The University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Sudheer Kumar Ramadugu
- Biophysics Program and Department of Chemistry; The University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Giacomo Di Mauro
- Biophysics Program and Department of Chemistry; The University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry; The University of Michigan; Ann Arbor MI 48109-1055 USA
| |
Collapse
|
309
|
Zoghbi ME, Altenberg GA. Luminescence resonance energy transfer spectroscopy of ATP-binding cassette proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:854-867. [PMID: 28801111 DOI: 10.1016/j.bbamem.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
The ATP-binding cassette (ABC) superfamily includes regulatory and transport proteins. Most human ABC exporters pump substrates out of cells using energy from ATP hydrolysis. Although major advances have been made toward understanding the molecular mechanism of ABC exporters, there are still many issues unresolved. During the last few years, luminescence resonance energy transfer has been used to detect conformational changes in real time, with atomic resolution, in isolated ABC nucleotide binding domains (NBDs) and full-length ABC exporters. NBDs are particularly interesting because they provide the power stroke for substrate transport. Luminescence resonance energy transfer (LRET) is a spectroscopic technique that can provide dynamic information with atomic-resolution of protein conformational changes under physiological conditions. Using LRET, it has been shown that NBD dimerization, a critical step in ABC proteins catalytic cycle, requires binding of ATP to two nucleotide binding sites. However, hydrolysis at just one of the sites can drive dissociation of the NBD dimer. It was also found that the NBDs of the bacterial ABC exporter MsbA reconstituted in a lipid bilayer membrane and studied at 37°C never separate as much as suggested by crystal structures. This observation stresses the importance of performing structural/functional studies of ABC exporters under physiologic conditions. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Maria E Zoghbi
- School of Natural Sciences, University of California, Merced, 4225 N. Hospital Road, Atwater, CA, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79423-6551, USA.
| |
Collapse
|
310
|
Lakomek NA, Frey L, Bibow S, Böckmann A, Riek R, Meier BH. Proton-Detected NMR Spectroscopy of Nanodisc-Embedded Membrane Proteins: MAS Solid-State vs Solution-State Methods. J Phys Chem B 2017; 121:7671-7680. [PMID: 28737919 DOI: 10.1021/acs.jpcb.7b06944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structural and dynamical characterization of membrane proteins in a lipid bilayer at physiological pH and temperature and free of crystal constraints is crucial for the elucidation of a structure/dynamics-activity relationship. Toward this aim, we explore here the properties of the outer-membrane protein OmpX embedded in lipid bilayer nanodiscs using proton-detected magic angle spinning (MAS) solid-state NMR at 60 and 110 kHz. [1H,15N]-correlation spectra overlay well with the corresponding solution-state NMR spectra. Line widths as well as line intensities in solid and solution both depend critically on the sample temperature and, in particular, on the crossing of the lipid phase transition temperature. MAS (110 kHz) experiments yield well-resolved NMR spectra also for fully protonated OmpX and both below and above the lipid phase transition temperature.
Collapse
Affiliation(s)
| | - Lukas Frey
- ETH Zürich , Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stefan Bibow
- ETH Zürich , Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon , 7 passage du Vercors, 69367 Lyon, France
| | - Roland Riek
- ETH Zürich , Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Beat H Meier
- ETH Zürich , Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
311
|
Polymer-encased nanodiscs with improved buffer compatibility. Sci Rep 2017; 7:7432. [PMID: 28785023 PMCID: PMC5547149 DOI: 10.1038/s41598-017-07110-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/23/2017] [Indexed: 01/07/2023] Open
Abstract
Styrene-maleic acid copolymers allow for solubilization and reconstitution of membrane proteins into nanodiscs. These polymer-encased nanodiscs are promising platforms for studies of membrane proteins in a near-physiologic environment without the use of detergents. However, current styrene-maleic acid copolymers display severe limitations in terms of buffer compatibility and ensued flexibility for various applications. Here, we present a new family of styrene-maleic acid copolymers that do not aggregate at low pH or in the presence of polyvalent cations, and can be used to solubilize membrane proteins and produce nanodiscs of controlled sizes.
Collapse
|
312
|
Hsu PC, Bruininks BMH, Jefferies D, Cesar Telles de Souza P, Lee J, Patel DS, Marrink SJ, Qi Y, Khalid S, Im W. CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides. J Comput Chem 2017; 38:2354-2363. [PMID: 28776689 DOI: 10.1002/jcc.24895] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022]
Abstract
A complex cell envelope, composed of a mixture of lipid types including lipopolysaccharides, protects bacteria from the external environment. Clearly, the proteins embedded within the various components of the cell envelope have an intricate relationship with their local environment. Therefore, to obtain meaningful results, molecular simulations need to mimic as far as possible this chemically heterogeneous system. However, setting up such systems for computational studies is far from trivial, and consequently the vast majority of simulations of outer membrane proteins still rely on oversimplified phospholipid membrane models. This work presents an update of CHARMM-GUI Martini Maker for coarse-grained modeling and simulation of complex bacterial membranes with lipopolysaccharides. The qualities of the outer membrane systems generated by Martini Maker are validated by simulating them in bilayer, vesicle, nanodisc, and micelle environments (with and without outer membrane proteins) using the Martini force field. We expect this new feature in Martini Maker to be a useful tool for modeling large, complicated bacterial outer membrane systems in a user-friendly manner. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pin-Chia Hsu
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Damien Jefferies
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Paulo Cesar Telles de Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Yifei Qi
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| |
Collapse
|
313
|
Wang P, Chang AY, Novosad V, Chupin VV, Schaller RD, Rozhkova EA. Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion. ACS NANO 2017; 11:6739-6745. [PMID: 28602073 DOI: 10.1021/acsnano.7b01142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on an entirely man-made nano-bio architecture fabricated through noncovalent assembly of a cell-free expressed transmembrane proton pump and TiO2 semiconductor nanoparticles as an efficient nanophotocatalyst for H2 evolution. The system produces hydrogen at a turnover of about 240 μmol of H2 (μmol protein)-1 h-1 and 17.74 mmol of H2 (μmol protein)-1 h-1 under monochromatic green and white light, respectively, at ambient conditions, in water at neutral pH and room temperature, with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allow for systemic manipulation at the nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.
Collapse
Affiliation(s)
- Peng Wang
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439-4855, United States
- State Key Laboratory of Crystal Materials, Shandong University , Jinan, Shandong 250100, People's Republic of China
| | - Angela Y Chang
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Valentyn Novosad
- Materials Science Division, Argonne National Laboratory , Argonne, Illinois 60439-4855, United States
| | - Vladimir V Chupin
- Laboratory Chemistry and Physics of Lipids, Department of General and Applied Physics, Moscow Institute of Physics and Technology , Dolgoprudny, Moscow Region 141701, Russia
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439-4855, United States
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439-4855, United States
| |
Collapse
|
314
|
Heberle FA, Pabst G. Complex biomembrane mimetics on the sub-nanometer scale. Biophys Rev 2017; 9:353-373. [PMID: 28717925 PMCID: PMC5578918 DOI: 10.1007/s12551-017-0275-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain-forming lipid mixtures to asymmetric lipid bilayers. Here, we review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. In particular, we focus on: (1) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function of a size transition from nanoscopic to macroscopic domains; (2) membrane-mediated protein partitioning into lipid domains; (3) the role of the aqueous medium in tuning interactions between membranes and domains; and (4) leaflet-specific structure in asymmetric bilayers and passive lipid flip-flop.
Collapse
Affiliation(s)
- Frederick A Heberle
- The Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA.,Joint Institute for Biological Sciences and Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, 8010, Graz, Austria. .,BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
315
|
Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 2017; 16:787-810. [PMID: 28706220 DOI: 10.1038/nrd.2017.91] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands, from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and have key roles in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery. The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including cancer, immune and inflammatory disorders as well as neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review. Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.
Collapse
|
316
|
Rouck J, Krapf J, Roy J, Huff H, Das A. Recent advances in nanodisc technology for membrane protein studies (2012-2017). FEBS Lett 2017; 591:2057-2088. [PMID: 28581067 PMCID: PMC5751705 DOI: 10.1002/1873-3468.12706] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 01/01/2023]
Abstract
Historically, the main barrier to membrane protein investigations has been the tendency of membrane proteins to aggregate (due to their hydrophobic nature), in aqueous solution as well as on surfaces. The introduction of biomembrane mimetics has since stimulated momentum in the field. One such mimetic, the nanodisc (ND) system, has proved to be an exceptional system for solubilizing membrane proteins. Herein, we critically evaluate the advantages and imperfections of employing nanodiscs in biophysical and biochemical studies. Specifically, we examine the techniques that have been modified to study membrane proteins in nanodiscs. Techniques discussed here include fluorescence microscopy, solution-state/solid-state nuclear magnetic resonance, electron microscopy, small-angle X-ray scattering, and several mass spectroscopy methods. Newer techniques such as SPR, charge-sensitive optical detection, and scintillation proximity assays are also reviewed. Lastly, we cover how nanodiscs are advancing nanotechnology through nanoplasmonic biosensing, lipoprotein-nanoplatelets, and sortase-mediated labeling of nanodiscs.
Collapse
Affiliation(s)
- John Rouck
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - John Krapf
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Jahnabi Roy
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Hannah Huff
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Beckman Institute for Advanced Science, Division of Nutritional Sciences, Neuroscience Program and Department of Bioengineering, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| |
Collapse
|
317
|
Abstract
To study integral membrane proteins, one has to extract them from the membrane—the step that is typically achieved by the application of detergents. In this mini-review, we summarize the top 10 detergents used for the structural analysis of membrane proteins based on the published results. The aim of this study is to provide the reader with an overview of the main properties of available detergents (critical micelle concentration (CMC) value, micelle size, etc.) and provide an idea of what detergents to may merit further study. Furthermore, we briefly discuss alternative solubilization and stabilization agents, such as polymers.
Collapse
|
318
|
Cai Y, Liu Y, Culhane KJ, DeVree BT, Yang Y, Sunahara RK, Yan ECY. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor. PLoS One 2017; 12:e0179568. [PMID: 28609478 PMCID: PMC5469476 DOI: 10.1371/journal.pone.0179568] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022] Open
Abstract
Family B G protein-coupled receptors (GPCRs) play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1) receptor (GLP1R), whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL) particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms.
Collapse
Affiliation(s)
- Yingying Cai
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| | - Yuting Liu
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| | - Kelly J. Culhane
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Brian T. DeVree
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yang Yang
- Nanobiology Institute, Yale University, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Roger K. Sunahara
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
319
|
Rehan S, Paavilainen VO, Jaakola VP. Functional reconstitution of human equilibrative nucleoside transporter-1 into styrene maleic acid co-polymer lipid particles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1059-1065. [DOI: 10.1016/j.bbamem.2017.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/30/2017] [Accepted: 02/26/2017] [Indexed: 12/14/2022]
|
320
|
From Gene to Function: Cell-Free Electrophysiological and Optical Analysis of Ion Pumps in Nanodiscs. Biophys J 2017; 113:1331-1341. [PMID: 28450130 DOI: 10.1016/j.bpj.2017.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Nanodiscs that hold a lipid bilayer surrounded by a boundary of scaffold proteins have emerged as a powerful tool for membrane protein solubilization and analysis. By combining nanodiscs and cell-free expression technologies, even completely detergent-free membrane protein characterization protocols can be designed. Nanodiscs are compatible with various techniques, and due to their bilayer environment and increased stability, they are often superior to detergent micelles or liposomes for membrane protein solubilization. However, transport assays in nanodiscs have not been conducted so far, due to limitations of the two-dimensional nature of nanodisc membranes that offers no compartmentalization. Here, we study Krokinobacter eikastus rhodopsin-2 (KR2), a microbial light-driven sodium or proton pump, with noncovalent mass-spectrometric, electrophysiological, and flash photolysis measurements after its cotranslational insertion into nanodiscs. We demonstrate the feasibility of adsorbing nanodiscs containing KR2 to an artificial bilayer. This allows us to record light-induced capacitive currents that reflect KR2's ion transport activity. The solid-supported membrane assay with nanodisc samples provides reliable control over the ionic condition and information of the relative ion activity of this promiscuous pump. Our strategy is complemented with flash photolysis data, where the lifetimes of different photointermediates were determined at different ionic conditions. The advantage of using identical samples to three complementary approaches allows for a comprehensive comparability. The cell-free synthesis in combination with nanodiscs provides a defined hydrophobic lipid environment minimizing the detergent dependence often seen in assays with membrane proteins. KR2 is a promising tool for optogenetics, thus directed engineering to modify ion selectivity can be highly beneficial. Our approach, using the fast generation of functional ion pumps incorporated into nanodiscs and their subsequent analysis by several biophysical techniques, can serve as a versatile screening and engineering platform. This may open new avenues for the study of ion pumps and similar electrogenic targets.
Collapse
|
321
|
Peripheral membrane associations of matrix metalloproteinases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1964-1973. [PMID: 28442379 DOI: 10.1016/j.bbamcr.2017.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Water soluble matrix metalloproteinases (MMPs) have been regarded as diffusing freely in the extracellular matrix. Yet multiple MMPs are also observed at cell surfaces. Their membrane-proximal activities include sheddase activities, collagenolysis, bacterial killing, and intracellular trafficking reaching as far as the nucleus. The catalytic domains of MMP-7 and MMP-12 bind bilayers peripherally, each in two different orientations, by presenting positive charges and a few hydrophobic groups to the surface. Related peripheral membrane associations are predicted for other soluble MMPs. The peripheral membrane associations may support pericellular proteolysis and endocytosis. The isolated soluble domains of MT1-MMP can also associate with membranes. NMR assays suggest transient association of the hemopexin-like domains of MT1-MMP and MMP-12 with lipid bilayers. Peripheral association of soluble MMP domains with bilayers or heparin sulfate proteoglycans probably concentrates them near the membrane. This could increase the probability of forming complexes with membrane-associated proteins, such as those targeted for proteolysis. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
|
322
|
Hussain H, Du Y, Tikhonova E, Mortensen JS, Ribeiro O, Santillan C, Das M, Ehsan M, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Resorcinarene-Based Facial Glycosides: Implication of Detergent Flexibility on Membrane-Protein Stability. Chemistry 2017; 23:6724-6729. [PMID: 28303608 DOI: 10.1002/chem.201605016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 11/08/2022]
Abstract
As a membrane-mimetic system, detergent micelles are popularly used to extract membrane proteins from lipid environments and to maintain their solubility and stability in an aqueous medium. However, many membrane proteins encapsulated in conventional detergents tend to undergo structural degradation during extraction and purification, thus necessitating the development of new agents with enhanced properties. In the current study, two classes of new amphiphiles are introduced, resorcinarene-based glucoside and maltoside amphiphiles (designated RGAs and RMAs, respectively), for which the alkyl chains are facially segregated from the carbohydrate head groups. Of these facial amphiphiles, two RGAs (RGA-C11 and RGA-C13) conferred markedly enhanced stability to four tested membrane proteins compared to a gold-standard conventional detergent. The relatively high water solubility and micellar stability of the RGAs compared to the RMAs, along with their generally favourable behaviours for membrane protein stabilisation described here, are likely to be, at least in part, a result of the high conformational flexibility of these glucosides. This study suggests that flexibility could be an important factor in determining the suitability of new detergents for membrane protein studies.
Collapse
Affiliation(s)
- Hazrat Hussain
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Elena Tikhonova
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jonas S Mortensen
- Center of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Orquidea Ribeiro
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Claudia Santillan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Manabendra Das
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Claus J Loland
- Center of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| |
Collapse
|
323
|
Geiss AF, Bliem C, Frank P, Reiner-Rozman C, Kewney J, Boersch M, Naumann RLC. Proteo-lipobeads to encapsulate cytochrome c oxidase from Paracoccus denitrificans. J Colloid Interface Sci 2017; 500:119-125. [PMID: 28407595 DOI: 10.1016/j.jcis.2017.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 01/08/2023]
Abstract
Proteo-lipobeads (PLBs) are investigated as cell-free model systems to encapsulate membrane proteins such as ion channels and transporters. PLBs are based on nickel nitrile tri-acetic acid (Ni-NTA)-functionalized agarose beads, onto which membrane proteins (MP) are bound via histidine(his)-tag. Composite beads thus obtained (subsequently called proteobeads) are dialyzed in the presence of lipid micelles to form PLBs. As an example we employed cytochrome c oxidase from P. denitrificans with a his-tag fused to the C-terminus of subunitI. In this orientation the P side of CcO faces the outside of the PLB and hence protons are released to the outer aqueous phase, when electron transfer is initiated by light excitation of Ru complexes. Proton release kinetics was probed by fluorescence microscopy using the pH-sensitive sensor molecule fluorescein DHPE inserted into the lipid layer. In order to monitor the generation of membrane potentials we performed a FLIPR assay on the CcO embedded in PLBs using the FRET pair CC2-DMPE/DiSBAC2(3). The combined results show that PLBs can be used as a model system designed to quantify the kinetic parameters of membrane proteins. In addition, the FLIPR assay demonstrates the feasibility of PLBs for high throughput screening applications.
Collapse
Affiliation(s)
- Andreas F Geiss
- Biosensor Technologies, Austrian Institute of Technology GmbH, AIT, Donau-City-Str. 1, 1220 Vienna, Austria; University of Natural Resources and Life Sciences, Gregor-Mendel-Straβe 33, 1180 Wien, Austria.
| | - Christina Bliem
- Biosensor Technologies, Austrian Institute of Technology GmbH, AIT, Donau-City-Str. 1, 1220 Vienna, Austria; Center of Electrochemical Surface Technology, CEST, Viktor-Kaplan-Str. 2, 2700 Wiener Neustadt, Austria.
| | - Pinar Frank
- Biosensor Technologies, Austrian Institute of Technology GmbH, AIT, Donau-City-Str. 1, 1220 Vienna, Austria.
| | - Ciril Reiner-Rozman
- Biosensor Technologies, Austrian Institute of Technology GmbH, AIT, Donau-City-Str. 1, 1220 Vienna, Austria; Center of Electrochemical Surface Technology, CEST, Viktor-Kaplan-Str. 2, 2700 Wiener Neustadt, Austria.
| | - Justin Kewney
- Telford Pavilion, Todd Campus, West of Scotland Science Park, Glasgow G20 OXA, Scotland, UK.
| | - Michael Boersch
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany.
| | - Renate L C Naumann
- Biosensor Technologies, Austrian Institute of Technology GmbH, AIT, Donau-City-Str. 1, 1220 Vienna, Austria.
| |
Collapse
|
324
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
325
|
Shukla S, Abel B, Chufan EE, Ambudkar SV. Effects of a detergent micelle environment on P-glycoprotein (ABCB1)-ligand interactions. J Biol Chem 2017; 292:7066-7076. [PMID: 28283574 DOI: 10.1074/jbc.m116.771634] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/06/2017] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp) is a multidrug transporter that uses energy from ATP hydrolysis to export many structurally dissimilar hydrophobic and amphipathic compounds, including anticancer drugs from cells. Several structural studies on purified P-gp have been reported, but only limited and sometimes conflicting information is available on ligand interactions with the isolated transporter in a dodecyl-maltoside detergent environment. In this report we compared the biochemical properties of P-gp in native membranes, detergent micelles, and when reconstituted in artificial membranes. We found that the modulators zosuquidar, tariquidar, and elacridar stimulated the ATPase activity of purified human or mouse P-gp in a detergent micelle environment. In contrast, these drugs inhibited ATPase activity in native membranes or in proteoliposomes, with IC50 values in the 10-40 nm range. Similarly, a 30-150-fold decrease in the apparent affinity for verapamil and cyclic peptide inhibitor QZ59-SSS was observed in detergent micelles compared with native or artificial membranes. Together, these findings demonstrate that the high-affinity site is inaccessible because of either a conformational change or binding of detergent at the binding site in a detergent micelle environment. The ligands bind to a low-affinity site, resulting in altered modulation of P-gp ATPase activity. We, therefore, recommend studying structural and functional aspects of ligand interactions with purified P-gp and other ATP-binding cassette transporters that transport amphipathic or hydrophobic substrates in a detergent-free native or artificial membrane environment.
Collapse
Affiliation(s)
- Suneet Shukla
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Biebele Abel
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Eduardo E Chufan
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Suresh V Ambudkar
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
326
|
B Kumar R, Zhu L, Hebert H, Jegerschöld C. Method to Visualize and Analyze Membrane Interacting Proteins by Transmission Electron Microscopy. J Vis Exp 2017. [PMID: 28287545 DOI: 10.3791/55148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Monotopic proteins exert their function when attached to a membrane surface, and such interactions depend on the specific lipid composition and on the availability of enough area to perform the function. Nanodiscs are used to provide a membrane surface of controlled size and lipid content. In the absence of bound extrinsic proteins, sodium phosphotungstate-stained nanodiscs appear as stacks of coins when viewed from the side by transmission electron microscopy (TEM). This protocol is therefore designed to intentionally promote stacking; consequently, the prevention of stacking can be interpreted as the binding of the membrane-binding protein to the nanodisc. In a further step, the TEM images of the protein-nanodisc complexes can be processed with standard single-particle methods to yield low-resolution structures as a basis for higher resolution cryoEM work. Furthermore, the nanodiscs provide samples suitable for either TEM or non-denaturing gel electrophoresis. To illustrate the method, Ca2+-induced binding of 5-lipoxygenase on nanodiscs is presented.
Collapse
Affiliation(s)
| | - Lin Zhu
- School of Technology and Health, KTH Royal Institute of Technology
| | - Hans Hebert
- Department of Biosciences and Nutrition, Karolinska Institutet; School of Technology and Health, KTH Royal Institute of Technology
| | - Caroline Jegerschöld
- Department of Biosciences and Nutrition, Karolinska Institutet; School of Technology and Health, KTH Royal Institute of Technology; ;
| |
Collapse
|
327
|
Penny WM, Steele HB, Ross JBA, Palmer CP. Phospholipid bilayer affinities and solvation characteristics by electrokinetic chromatography with a nanodisc pseudostationary phase. Electrophoresis 2017; 38:738-746. [PMID: 27859480 PMCID: PMC5500191 DOI: 10.1002/elps.201600381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
Phospholipid bilayer nanodiscs composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and synthetic maleic acid-styrene copolymer belts have been introduced as a pseudostationary phase (PSP) in electrokinetic chromatography and demonstrated good performance. The nanodiscs provide a suitable migration range and high theoretical plate counts. Using this nanodisc pseudostationary phase, the affinity of the bilayer structure for probe solutes was determined and characterized. Good correlation is observed between retention factors and octanol water partition coefficients for particular categories of solutes, but the general correlation is weak primarily because the nanodiscs show stronger affinity than octanol for hydrogen bond donors. This suggests that a more appropriate application of this technology is to measure and characterize interactions between solutes and lipid bilayers directly. Linear solvation energy relationship analysis of the nanodisc-solute interactions in this study demonstrates that the nanodiscs provide a solvation environment with low cohesivity and weak hydrogen bond donating ability, and provide relatively strong hydrogen bond acceptor strength.
Collapse
Affiliation(s)
- William M Penny
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA
| | - Harmen B Steele
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA
| | - J B Alexander Ross
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA
| | - Christopher P Palmer
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA
| |
Collapse
|
328
|
Puthenveetil R, Nguyen K, Vinogradova O. Nanodiscs and Solution NMR: preparation, application and challenges. NANOTECHNOLOGY REVIEWS 2017; 6:111-126. [PMID: 28373928 PMCID: PMC5375033 DOI: 10.1515/ntrev-2016-0076] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanodiscs provide an excellent system for the structure-function investigation of membrane proteins. Its direct advantage lies in presenting a water soluble form of an otherwise hydrophobic molecule, making it amenable to a plethora of solution techniques. Nuclear Magnetic Resonance is one such high resolution approach that looks at the structure and dynamics of a protein with atomic level precision. Recently, there has been a breakthrough in making nanodiscs more susceptible for structure determination by solution NMR, yet it still remains to become the preferred choice for a membrane mimetic. In this practical review, we provide a general discourse on nanodisc and its application to solution NMR. We also offer potential solutions to remediate the technical challenges associated with nanodisc preparation and the choice of proper experimental set-ups. Along with discussing several structural applications, we demonstrate an alternative use of nanodiscs for functional studies, where we investigated the phosphorylation of a cell surface receptor, Integrin. This is the first successful manifestation of observing activated receptor phosphorylation in nanodiscs through NMR. We additionally present an on-column method for nanodisc preparation with multiple strategies and discuss the potential use of alternative nanoscale phospholipid bilayer systems like SMA lipid discs and Saposin-A lipoprotein discs.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Department of Molecular and Cell Biology, CLAS, University of Connecticut at Storrs, Storrs, CT 06269
| | - Khiem Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, CT 06269
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, CT 06269
| |
Collapse
|
329
|
Saurel O, Iordanov I, Nars G, Demange P, Le Marchand T, Andreas LB, Pintacuda G, Milon A. Local and Global Dynamics in Klebsiella pneumoniae Outer Membrane Protein a in Lipid Bilayers Probed at Atomic Resolution. J Am Chem Soc 2017; 139:1590-1597. [DOI: 10.1021/jacs.6b11565] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olivier Saurel
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Iordan Iordanov
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Guillaume Nars
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Pascal Demange
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Tanguy Le Marchand
- Institut de Sciences
Analytiques (UMR 5280 CNRS/ENS-Lyon/UCB Lyon 1), Université
de Lyon, 69007 Lyon, France
| | - Loren B. Andreas
- Institut de Sciences
Analytiques (UMR 5280 CNRS/ENS-Lyon/UCB Lyon 1), Université
de Lyon, 69007 Lyon, France
| | - Guido Pintacuda
- Institut de Sciences
Analytiques (UMR 5280 CNRS/ENS-Lyon/UCB Lyon 1), Université
de Lyon, 69007 Lyon, France
| | - Alain Milon
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
330
|
Henrich E, Peetz O, Hein C, Laguerre A, Hoffmann B, Hoffmann J, Dötsch V, Bernhard F, Morgner N. Analyzing native membrane protein assembly in nanodiscs by combined non-covalent mass spectrometry and synthetic biology. eLife 2017; 6. [PMID: 28067619 PMCID: PMC5291076 DOI: 10.7554/elife.20954] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/04/2017] [Indexed: 01/01/2023] Open
Abstract
Membrane proteins frequently assemble into higher order homo- or hetero-oligomers within their natural lipid environment. This complex formation can modulate their folding, activity as well as substrate selectivity. Non-disruptive methods avoiding critical steps, such as membrane disintegration, transfer into artificial environments or chemical modifications are therefore essential to analyze molecular mechanisms of native membrane protein assemblies. The combination of cell-free synthetic biology, nanodisc-technology and non-covalent mass spectrometry provides excellent synergies for the analysis of membrane protein oligomerization within defined membranes. We exemplify our strategy by oligomeric state characterization of various membrane proteins including ion channels, transporters and membrane-integrated enzymes assembling up to hexameric complexes. We further indicate a lipid-dependent dimer formation of MraY translocase correlating with the enzymatic activity. The detergent-free synthesis of membrane protein/nanodisc samples and the analysis by LILBID mass spectrometry provide a versatile platform for the analysis of membrane proteins in a native environment.
Collapse
Affiliation(s)
- Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J W Goethe-University, Frankfurt am Main, Germany
| | - Oliver Peetz
- Institute of Physical and Theoretical Chemistry, J W Goethe-University, Frankfurt am Main, Germany
| | - Christopher Hein
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J W Goethe-University, Frankfurt am Main, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J W Goethe-University, Frankfurt am Main, Germany
| | - Beate Hoffmann
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J W Goethe-University, Frankfurt am Main, Germany
| | - Jan Hoffmann
- Institute of Physical and Theoretical Chemistry, J W Goethe-University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J W Goethe-University, Frankfurt am Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J W Goethe-University, Frankfurt am Main, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, J W Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
331
|
Lento C, Wilson DJ. Unravelling the mysteries of sub-second biochemical processes using time-resolved mass spectrometry. Analyst 2017; 142:1640-1653. [DOI: 10.1039/c7an00338b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many important chemical and biochemical phenomena proceed on sub-second time scales.
Collapse
Affiliation(s)
| | - Derek J. Wilson
- Department of Chemistry
- York University
- Toronto
- Canada
- Centre for Research of Biomolecular Interactions
| |
Collapse
|
332
|
Marcink TC, Koppisetti RK, Fulcher YG, Van Doren SR. Mapping Lipid Bilayer Recognition Sites of Metalloproteinases and Other Prospective Peripheral Membrane Proteins. Methods Mol Biol 2017; 1579:61-86. [PMID: 28299733 DOI: 10.1007/978-1-4939-6863-3_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Peripheral binding of proteins to lipid bilayers is critical not only in intracellular signaling but also in metalloproteinase shedding of signaling proteins from cell surfaces. Assessment of how proteins recognize fluid bilayers peripherally using crystallography or structure-based predictions has been important but incomplete. Assay of dynamic protein-bilayer interactions in solution has become feasible and reliable using paramagnetic NMR and site-directed fluor labeling. Details of preparations and assay protocols for these spectroscopic measurements of bilayer proximity or contact, respectively, are described.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Rama K Koppisetti
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
- Department of Medical Microbiology and Immunology, Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Yan G Fulcher
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
333
|
Veugelen S, Dewilde M, De Strooper B, Chávez-Gutiérrez L. Screening and Characterization Strategies for Nanobodies Targeting Membrane Proteins. Methods Enzymol 2016; 584:59-97. [PMID: 28065273 DOI: 10.1016/bs.mie.2016.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The study of membrane protein function and structure requires their successful detection, expression, solubilization, and/or reconstitution, which poses a challenging task and relies on the availability of suitable tools. Several research groups have successfully applied Nanobodies in the purification, as well as the functional and structural characterization of membrane proteins. Nanobodies are small, single-chain antibody fragments originating from camelids presenting on average a longer CDR3 which enables them to bind in cavities and clefts (such as active and allosteric sites). Notably, Nanobodies generally bind conformational epitopes making them very interesting tools to stabilize, dissect, and characterize specific protein conformations. In the clinic, several Nanobodies are under evaluation either as potential drug candidates or as diagnostic tools. In recent years, we have successfully generated high-affinity, conformation-sensitive anti-γ-secretase Nanobodies. γ-Secretase is a multimeric membrane protease involved in processing of the amyloid precursor protein with high clinical relevance as mutations in its catalytic subunit (Presenilin) cause early-onset Alzheimer's disease. Advancing our knowledge on the mechanisms governing γ-secretase intramembrane proteolysis through various strategies may lead to novel therapeutic avenues for Alzheimer's disease. In this chapter, we present the strategies we have developed and applied for the screening and characterization of anti-γ-secretase Nanobodies. These protocols could be of help in the generation of Nanobodies targeting other membrane proteins.
Collapse
Affiliation(s)
- S Veugelen
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - M Dewilde
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - B De Strooper
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium; UCL Institute of Neurology, London, United Kingdom
| | - L Chávez-Gutiérrez
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium.
| |
Collapse
|
334
|
Waberer L, Henrich E, Peetz O, Morgner N, Dötsch V, Bernhard F, Volknandt W. The synaptic vesicle protein SV31 assembles into a dimer and transports Zn 2. J Neurochem 2016; 140:280-293. [PMID: 27917477 DOI: 10.1111/jnc.13886] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/25/2016] [Accepted: 10/29/2016] [Indexed: 01/20/2023]
Abstract
The integral synaptic vesicle protein SV31 has been shown to bind divalent cations. Here, we demonstrate that SV31 protein synthesized within a cell-free system binds Zn2+ and to a lower extent Ni2+ and Cu2+ ions. Expression with Zn2+ stabilized the protein and increased solubility. SV31 was preferentially monomeric in detergent and revealed specific binding of Zn2+ . When co-translationally inserted into defined nanodisc bilayers, SV31 assembled into dimeric complexes, resulting in increased binding of Zn2+ . Putative Zn2+ -binding motifs within SV31 comprise aspartic acid and histidine residues. Site-directed mutagenesis of two conserved aspartic acid residues leads to a potent decrease in Zn2+ binding but did not affect dimerization. Chemical modification of histidine residues abolished some of the Zn2+ -binding capacity. We demonstrate proton-dependent transport of Zn2+ as by accumulation of fluorescent FluoZin-1 inside of SV31-containing proteoliposomes. Transport activity has a Km value of 44.3 μM and required external Zn2+ and internal acidic pH. Our results demonstrate that the synaptic vesicle-integral protein SV31 functions as a proton-dependent Zn2+ transporter. SV31 may attribute specific and yet undiscovered functions to subsets of synapses.
Collapse
Affiliation(s)
- Lisa Waberer
- Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt am Main, Germany
| | - Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
| | - Oliver Peetz
- Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
| | - Walter Volknandt
- Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
335
|
The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol Chem 2016; 397:1335-1354. [DOI: 10.1515/hsz-2016-0224] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Abstract
The choice of a suitable membrane mimicking environment is of fundamental importance for the characterization of structure and function of membrane proteins. In this respect, usage of the lipid bilayer nanodisc technology provides a unique potential for nuclear magnetic resonance (NMR)-based studies. This review summarizes the recent advances in this field, focusing on (i) the strengths of the system, (ii) the bottlenecks that may be faced, and (iii) promising capabilities that may be explored in future studies.
Collapse
|
336
|
Grewal Y, Shiddiky MJA, Mahler SM, Cangelosi GA, Trau M. Nanoyeast and Other Cell Envelope Compositions for Protein Studies and Biosensor Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30649-30664. [PMID: 27762541 PMCID: PMC5114700 DOI: 10.1021/acsami.6b09263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 05/06/2023]
Abstract
Rapid progress in disease biomarker discovery has increased the need for robust detection technologies. In the past several years, the designs of many immunoaffinity reagents have focused on lowering costs and improving specificity while also promoting stability. Antibody fragments (scFvs) have long been displayed on the surface of yeast and phage libraries for selection; however, the stable production of such fragments presents challenges that hamper their widespread use in diagnostics. Membrane and cell wall proteins similarly suffer from stability problems when solubilized from their native environment. Recently, cell envelope compositions that maintain membrane proteins in native or native-like lipid environment to improve their stability have been developed. This cell envelope composition approach has now been adapted toward stabilizing antibody fragments by retaining their native cell wall environment. A new class of immunoaffinity reagents has been developed that maintains antibody fragment attachment to yeast cell wall. Herein, we review recent strategies that incorporate cell wall fragments with functional scFvs, which are designed for easy production while maintaining specificity and stability when in use with simple detection platforms. These cell wall based antibody fragments are globular in structure, and heterogeneous in size, with fragments ranging from tens to hundreds of nanometers in size. These fragments appear to retain activity once immobilized onto biosensor surfaces for the specific and sensitive detection of pathogen antigens. They can be quickly and economically generated from a yeast display library and stored lyophilized, at room temperature, for up to a year with little effect on stability. This new format of scFvs provides stability, in a simple and low-cost manner toward the use of scFvs in biosensor applications. The production and "panning" of such antibody cell wall composites are also extremely facile, enabling the rapid adoption of stable and inexpensive affinity reagents for emerging infectious threats.
Collapse
Affiliation(s)
- Yadveer
S. Grewal
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Muhammad J. A. Shiddiky
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen M. Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology
(AIBN), University of Queensland, Brisbane, Queensland 4072, Australia
- School
of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerard A. Cangelosi
- School
of Public Health, University of Washington, Seattle, Washington 98195, United States
| | - Matt Trau
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
- School
of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
337
|
Affiliation(s)
- Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Hoa Q. Do
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Collin G. Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Emily P. Hardy
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|