301
|
Sohn D, Budach W, Jänicke RU. Caspase-2 is required for DNA damage-induced expression of the CDK inhibitor p21(WAF1/CIP1). Cell Death Differ 2011; 18:1664-74. [PMID: 21475302 DOI: 10.1038/cdd.2011.34] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although caspase-2 represents the most conserved caspase across species and was the second caspase identified, its precise function remains enigmatic. In several cell types we show that knockdown of caspase-2 specifically impaired DNA damage-induced p21 expression, whereas overexpression of a caspase-2 mutant increased p21 levels. Caspase-2 did not influence p21 mRNA transcription; moreover, various inhibitors targeting proteasomal or non-proteasomal proteases, including caspases, could not restore p21 protein levels following knockdown of caspase-2. As, however, silencing of caspase-2 impaired exogenous expression of p21 constructs containing 3'-UTR sequences, our results strongly indicate that caspase-2 regulates p21 expression at the translational level. Intriguingly, unlike depletion of caspase-2, which prevented p21 expression and thereby reverted the γ-IR-induced senescent phenotype of wild-type HCT116 colon carcinoma cells into apoptosis, knockdown of none of the caspase-2-interacting components RAIDD, RIP or DNA-PKcs was able to mimic these processes. Together, our data suggest that this novel role of caspase-2 as a translational regulator of p21 expression occurs not only independently of its enzymatic activity but also does not require known caspase-2-activating platforms.
Collapse
Affiliation(s)
- D Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, University of Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| | | | | |
Collapse
|
302
|
Morrison FS, Johnstone KA, Harries LW. Physiological effects of Type 2 diabetes on mRNA processing and gene expression. Expert Rev Endocrinol Metab 2011; 6:255-267. [PMID: 30290446 DOI: 10.1586/eem.10.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Characteristics of Type 2 diabetes include both high blood glucose (hyperglycemia) and raised cholesterol and triglycerides (hyperlipidemia). Several studies have now shown that both hyperglycemia and hyperlipidemia can alter gene expression by disrupting physiological mechanisms of gene regulation, including alternative mRNA splicing, epigenetic gene regulation and miRNA-mediated regulation of gene expression. These processes may also be influenced by intracellular oxidative stress, which is increased in diabetes and in response to hyperglycemia and hyperlipidemia. Many pathways relevant to diabetes are affected by altered gene expression, including lipid and glucose metabolism and oxidative phosphorylation. This article considers how hyperglycemia and hyperlipidemia can alter gene expression in diabetes, which could potentially contribute to the worsening of the diabetic phenotype and diabetic complications.
Collapse
Affiliation(s)
- Faer S Morrison
- a Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, EX2 5DW, UK
| | - Karen A Johnstone
- a Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, EX2 5DW, UK
| | - Lorna W Harries
- a Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, EX2 5DW, UK
- b
| |
Collapse
|
303
|
Östling P, Leivonen SK, Aakula A, Kohonen P, Mäkelä R, Hagman Z, Edsjö A, Kangaspeska S, Edgren H, Nicorici D, Bjartell A, Ceder Y, Perälä M, Kallioniemi O. Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res 2011; 71:1956-67. [PMID: 21343391 DOI: 10.1158/0008-5472.can-10-2421] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Androgen receptor (AR) is expressed in all stages of prostate cancer progression, including in castration-resistant tumors. Eliminating AR function continues to represent a focus of therapeutic investigation, but AR regulatory mechanisms remain poorly understood. To systematically characterize mechanisms involving microRNAs (miRNAs), we conducted a gain-of function screen of 1129 miRNA molecules in a panel of human prostate cancer cell lines and quantified changes in AR protein content using protein lysate microarrays. In this way, we defined 71 unique miRNAs that influenced the level of AR in human prostate cancer cells. RNA sequencing data revealed that the 3'UTR of AR (and other genes) is much longer than currently used in miRNA target prediction programs. Our own analyses predicted that most of the miRNA regulation of AR would target an extended 6 kb 3'UTR. 3'UTR-binding assays validated 13 miRNAs that are able to regulate this long AR 3'UTR (miR-135b, miR-185, miR-297, miR-299-3p, miR-34a, miR-34c, miR-371-3p, miR-421, miR-449a, miR-449b, miR-634, miR-654-5p, and miR-9). Fifteen AR downregulating miRNAs decreased androgen-induced proliferation of prostate cancer cells. In particular, analysis of clinical prostate cancers confirmed a negative correlation of miR-34a and miR-34c expression with AR levels. Our findings establish that miRNAs interacting with the long 3'UTR of the AR gene are important regulators of AR protein levels, with implications for developing new therapeutic strategies to inhibit AR function and androgen-dependent cell growth.
Collapse
Affiliation(s)
- Päivi Östling
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Molecular targets of alcohol action: Translational research for pharmacotherapy development and screening. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:293-347. [PMID: 21199775 DOI: 10.1016/b978-0-12-385506-0.00007-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alcohol abuse and dependence are multifaceted disorders with neurobiological, psychological, and environmental components. Research on other complex neuropsychiatric diseases suggests that genetically influenced intermediate characteristics affect the risk for heavy alcohol consumption and its consequences. Diverse therapeutic interventions can be developed through identification of reliable biomarkers for this disorder and new pharmacological targets for its treatment. Advances in the fields of genomics and proteomics offer a number of possible targets for the development of new therapeutic approaches. This brain-focused review highlights studies identifying neurobiological systems associated with these targets and possible pharmacotherapies, summarizing evidence from clinically relevant animal and human studies, as well as sketching improvements and challenges facing the fields of proteomics and genomics. Concluding thoughts on using results from these profiling technologies for medication development are also presented.
Collapse
|
305
|
Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol 2011; 223:102-15. [PMID: 21125669 PMCID: PMC3069496 DOI: 10.1002/path.2806] [Citation(s) in RCA: 768] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 10/06/2010] [Accepted: 10/09/2010] [Indexed: 12/13/2022]
Abstract
Mature microRNAs (miRNAs) are single-stranded RNA molecules of 20-23 nucleotide (nt) length that control gene expression in many cellular processes. These molecules typically reduce the stability of mRNAs, including those of genes that mediate processes in tumorigenesis, such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis and invasion. miRNA targeting is mostly achieved through specific base-pairing interactions between the 5' end ('seed' region) of the miRNA and sites within coding and untranslated regions (UTRs) of mRNAs; target sites in the 3' UTR lead to more effective mRNA destabilization. Since miRNAs frequently target hundreds of mRNAs, miRNA regulatory pathways are complex. To provide a critical overview of miRNA dysregulation in cancer, we first discuss the methods currently available for studying the role of miRNAs in cancer and then review miRNA genomic organization, biogenesis and mechanism of target recognition, examining how these processes are altered in tumorigenesis. Given the critical role miRNAs play in tumorigenesis processes and their disease-specific expression, they hold potential as therapeutic targets and novel biomarkers.
Collapse
Affiliation(s)
- Thalia A. Farazi
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Jessica I. Spitzer
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Pavel Morozov
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
306
|
Beckman JD, Chen C, Nguyen J, Thayanithy V, Subramanian S, Steer CJ, Vercellotti GM. Regulation of heme oxygenase-1 protein expression by miR-377 in combination with miR-217. J Biol Chem 2010; 286:3194-202. [PMID: 21106538 DOI: 10.1074/jbc.m110.148726] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Heme oxygenase-1 (HO-1) enzyme plays a critical role in metabolizing the excess heme generated during hemolysis. Our previous studies suggested that during intravascular hemolysis the expression of HO-1 protein is not sufficient to reduce the oxidative burden of free heme in the vasculature. This led us to hypothesize that a post-translational mechanism of control exists for HO-1 expression. Micro-RNAs (miRNA) affect gene expression by post-transcriptional gene regulation of transcripts. We performed in silico analysis for the human HMOX1-3' untranslated region (3' UTR) and identified candidate miRNA binding sites. Two candidate miRNAs, miR-377 and miR-217, were cloned and co-transfected with a luciferase vector containing the human HMOX1-3'UTR region. The combination of miR-377 and miR-217 produced a 58% reduction in HMOX1-3'UTR luciferase reporter expression compared with controls. The same constructs were then used to assess how overexpression of miR-217 and miR-377 affected HO-1 levels after induction with hemin. Cells transfected with the combination of miR-377 and miR-217 exhibited no change in HMOX1 mRNA levels, but a significant reduction in HMOX1 (HO-1) protein expression and enzyme activity compared with non-transfected hemin-stimulated controls. Transfection with either miR-377 or miR-217 alone did not produce a significant decrease in HO-1 protein expression or enzyme activity. Knockdown of miR-217 and miR-377 in combination leads to up-regulation of HO-1 protein. Exposure to hemin induced a significant reduction in miR-217 expression and a trend toward decreased miR-377 expression in two different cells lines. In summary, these data suggests that the combination of miR-377 and miR-217 help regulate HO-1 protein expression in the presence of hemin.
Collapse
Affiliation(s)
- Joan D Beckman
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
307
|
Qavi AJ, Kindt JT, Bailey RC. Sizing up the future of microRNA analysis. Anal Bioanal Chem 2010; 398:2535-49. [PMID: 20680616 PMCID: PMC2965821 DOI: 10.1007/s00216-010-4018-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/07/2010] [Accepted: 07/07/2010] [Indexed: 12/14/2022]
Abstract
In less than 20 years, our appreciation for micro-RNA molecules (miRNAs) has grown from an original, curious observation in worms to their current status as incredibly important global regulators of gene expression that play key roles in many transformative biological processes. As our understanding of these small, non-coding transcripts continues to evolve, new approaches for their analysis are emerging. In this critical review we describe recent improvements to classical methods of detection as well as innovative new technologies that are poised to help shape the future landscape of miRNA analysis.
Collapse
Affiliation(s)
- Abraham J. Qavi
- Department of Chemistry, Institute for Genomic Biology, and Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Jared T. Kindt
- Department of Chemistry, Institute for Genomic Biology, and Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Ryan C. Bailey
- Department of Chemistry, Institute for Genomic Biology, and Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| |
Collapse
|
308
|
Hirsch CL, Ellis DJP, Bonham K. Histone deacetylase inhibitors mediate post-transcriptional regulation of p21WAF1 through novel cis-acting elements in the 3' untranslated region. Biochem Biophys Res Commun 2010; 402:687-92. [PMID: 20977880 DOI: 10.1016/j.bbrc.2010.10.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 12/11/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) are promising anti-tumor agents that selectively induce cell cycle arrest, differentiation and/or apoptosis of tumor cells. Fundamentally, HDACIs are proposed to function by activating the transcription of genes, including the potent cyclin dependent kinase inhibitor p21(WAF1). However, HDACIs primarily increase p21(WAF1) expression at the post-transcriptional level in HepG2 cells, implying that these anti-tumor agents regulate genes at multiple levels. Here, two novel cis-acting elements in the 3' untranslated region (UTR) of p21(WAF1) are identified that control the ability of HDACIs to induce p21(WAF1) mRNA stabilization. Collectively, these studies highlight the complexity of HDACIs in gene regulation.
Collapse
Affiliation(s)
- Calley L Hirsch
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | |
Collapse
|
309
|
Allen KE, Weiss GJ. Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 2010; 9:3126-36. [PMID: 20940321 DOI: 10.1158/1535-7163.mct-10-0397] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chemoresistance to many commercially available cancer therapeutic drugs is a common occurrence and contributes to cancer mortality as it often leads to disease progression. There have been a number of studies evaluating the mechanisms of resistance and the biological factors involved. microRNAs have recently been identified as playing a role in the regulation of key genes implicated as cancer therapeutic targets or in mechanisms of chemoresistance including EGFR, MDR1, PTEN, Bak1, and PDCD4 among others. This article briefly reviews chemoresistance mechanisms, discusses how microRNAs can play a role in those mechanisms, and summarizes current research involving microRNAs as both regulators of key target genes for chemoresistance and biomarkers for treatment response. It is clear from the accumulating literature that microRNAs can play an important role in chemoresistance and hold much promise for the development of targeted therapies and personalized medicine. This review brings together much of this new research as a starting point for identifying key areas of interest and potentials for future study.
Collapse
Affiliation(s)
- Kristi E Allen
- The Translational Genomics Research Institute,Phoenix, Arizona, USA
| | | |
Collapse
|
310
|
Xu J, Li CX, Li YS, Lv JY, Ma Y, Shao TT, Xu LD, Wang YY, Du L, Zhang YP, Jiang W, Li CQ, Xiao Y, Li X. MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res 2010; 39:825-36. [PMID: 20929877 PMCID: PMC3035454 DOI: 10.1093/nar/gkq832] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Synergistic regulations among multiple microRNAs (miRNAs) are important to understand the mechanisms of complex post-transcriptional regulations in humans. Complex diseases are affected by several miRNAs rather than a single miRNA. So, it is a challenge to identify miRNA synergism and thereby further determine miRNA functions at a system-wide level and investigate disease miRNA features in the miRNA–miRNA synergistic network from a new view. Here, we constructed a miRNA–miRNA functional synergistic network (MFSN) via co-regulating functional modules that have three features: common targets of corresponding miRNA pairs, enriched in the same gene ontology category and close proximity in the protein interaction network. Predicted miRNA synergism is validated by significantly high co-expression of functional modules and significantly negative regulation to functional modules. We found that the MFSN exhibits a scale free, small world and modular architecture. Furthermore, the topological features of disease miRNAs in the MFSN are distinct from non-disease miRNAs. They have more synergism, indicating their higher complexity of functions and are the global central cores of the MFSN. In addition, miRNAs associated with the same disease are close to each other. The structure of the MFSN and the features of disease miRNAs are validated to be robust using different miRNA target data sets.
Collapse
Affiliation(s)
- Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Barron N, Sanchez N, Kelly P, Clynes M. MicroRNAs: tiny targets for engineering CHO cell phenotypes? Biotechnol Lett 2010; 33:11-21. [PMID: 20872159 DOI: 10.1007/s10529-010-0415-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/09/2010] [Indexed: 12/21/2022]
Abstract
The ability of microRNAs to influence gene expression is now recognized as a fundamental layer of regulation within the cell. MicroRNAs have a major impact on most biological processes and have generated considerable interest as potential biomarkers as well as therapeutic or engineering targets. In this review we provide a brief overview of their biogenesis, genomic organization and mode of action, followed by a description of the methods and approaches to studying their expression. We go on to consider some of the approaches to utilizing them as tools and their potential application in the bioprocessing area, with particular emphasis on Chinese hamster ovary cell engineering.
Collapse
Affiliation(s)
- Niall Barron
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | | | | | | |
Collapse
|
312
|
Gantier MP. New perspectives in MicroRNA regulation of innate immunity. J Interferon Cytokine Res 2010; 30:283-9. [PMID: 20477549 DOI: 10.1089/jir.2010.0037] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fine-tuning of the innate immune response by microRNAs (miRNAs) is a concept now supported by a rapidly growing body of evidence. Target prediction analyses indicate that up to a half of innate immune genes could be under the direct regulation of miRNAs. However, the extent to which miRNAs regulate innate immunity remains poorly defined and is currently limited to a handful of target genes. This review highlights several important parameters of miRNA regulation, mostly neglected in the field, which underpin the relevance of miRNAs in the regulation of innate immunity.
Collapse
Affiliation(s)
- Michael P Gantier
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University , Clayton, Victoria, Australia.
| |
Collapse
|
313
|
Hildebrand J, Rütze M, Walz N, Gallinat S, Wenck H, Deppert W, Grundhoff A, Knott A. A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol 2010; 131:20-9. [PMID: 20827281 DOI: 10.1038/jid.2010.268] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here, we report a comprehensive investigation of changes in microRNA (miRNA) expression profiles on human keratinocyte (HK) differentiation in vitro and in vivo. We have monitored expression patterns of 377 miRNAs during calcium-induced differentiation of primary HKs, and have compared these patterns with miRNA expression profiles of epidermal stem cells, transient amplifying cells, and terminally differentiated HKs from human skin. Apart from the previously described miR-203, we found an additional nine miRNAs (miR-23b, miR-95, miR-210, miR-224, miR-26a, miR-200a, miR-27b, miR-328, and miR-376a) that are associated with HK differentiation in vitro and in vivo. In situ hybridization experiments confirmed miR-23b as a marker of HK differentiation in vivo. Additionally, gene ontology analysis and functional validation of predicted miRNA targets using 3'-untranslated region-luciferase assays suggest that multiple miRNAs that are upregulated on HK differentiation cooperate to regulate gene expression during skin development. Our results thus provide the basis for further analysis of miRNA functions during epidermal differentiation.
Collapse
|
314
|
Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 2010; 585:2087-99. [PMID: 20708002 DOI: 10.1016/j.febslet.2010.08.009] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 12/13/2022]
Abstract
MicroRNAs have emerged as key post-transcriptional regulators of gene expression, involved in various physiological and pathological processes. It was found that several miRNAs are directly involved in human cancers, including lung, breast, brain, liver, colon cancer and leukemia. In addition, some miRNAs may function as oncogenes or tumor suppressors in tumor development. Furthermore, a widespread down-regulation of miRNAs is commonly observed in human cancers and promotes cellular transformation and tumorigenesis. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites, frequently amplified or deleted in human cancer, suggesting an important role in malignant transformation. A better understanding of the miRNA regulation and misexpression in cancer may ultimately yield further insight into the molecular mechanisms of tumorigenesis and new therapeutic strategies may arise against cancer. Here, we discuss the occurrence of the deregulated expression of miRNAs in human cancers and their importance in the tumorigenic process.
Collapse
Affiliation(s)
- Sonia A Melo
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | | |
Collapse
|
315
|
BCL6 promoter interacts with far upstream sequences with greatly enhanced activating histone modifications in germinal center B cells. Proc Natl Acad Sci U S A 2010; 107:11930-5. [PMID: 20547840 DOI: 10.1073/pnas.1004962107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BCL6 encodes a transcriptional repressor that is essential for the germinal center (GC) reaction and important in lymphomagenesis. Although its promoter has been well studied, little is known concerning its possible regulation by more distal elements. To gain such information, we mapped critical histone modifications associated with active transcription within BCL6 as well as far upstream sequences at nucleosomal resolution in B-cell lines and in normal naive and GC B cells. Promoter-associated and intronic CpG islands (CGIs) in BCL6 showed a reciprocal pattern of histone modifications. Gene expression correlated with a paradoxical loss from the intronic CGI of histone H3 lysine-4 trimethylation, normally associated with transcription, suggesting that the intronic CGI may interfere with transcription. In an approximately 110-kb region extending 150-260 kb upstream of BCL6, highly active histone modifications were present only in normal GC B cells and a GC B-cell line; this region overlaps with an alternative breakpoint region for chromosomal translocations and contains a GC-specific noncoding RNA gene. By chromosome conformation capture, we determined that the BCL6 promoter interacts with this distant upstream region. It is likely that transcriptional enhancers in this region activate BCL6 and overcome strong autorepression in GC B cells.
Collapse
|
316
|
MicroRNA-1285 inhibits the expression of p53 by directly targeting its 3' untranslated region. Biochem Biophys Res Commun 2010; 396:435-9. [PMID: 20417621 DOI: 10.1016/j.bbrc.2010.04.112] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Accepted: 04/20/2010] [Indexed: 01/07/2023]
Abstract
The well-known tumor suppressor p53 plays critical roles in the modulation of multiple cellular processes. The regulation of p53 is complicated and remains elusive. In this study, we used a high-throughput luciferase reporter screen to demonstrate that p53 can be regulated by microRNA-1285 (miR-1285). Notably, miR-612, which has the same seed sequence as miR-1285, cannot bind to the 3' untranslated region (3' UTR) of p53. Mutational analyses confirmed that the 3' UTR of p53 mRNA contains two miR-1285 target sites, which are nearly perfectly complementary to the mature miR-1285 sequence. Ectopic expression of miR-1285 inhibits expression of p53 mRNA and protein. In contrast, silencing of miR-1285 increases p53 expression. Furthermore, miR-1285 inhibits the transcription of p21, a master gene downstream of p53. In conclusion, our findings provide the first evidence that miR-1285 directly regulates the expression of p53 by directly targeting its 3' UTR.
Collapse
|
317
|
|