301
|
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive Review on the Applications of Exosomes and Liposomes in Regenerative Medicine and Tissue Engineering. Polymers (Basel) 2021; 13:2529. [PMID: 34372132 PMCID: PMC8347192 DOI: 10.3390/polym13152529] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
Collapse
Affiliation(s)
- Mojtaba Shafiei
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | | | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | - Muhammad Umar Aslam Khan
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| |
Collapse
|
302
|
Lin CY, Kang JH. Mechanical Properties of Compact Bone Defined by the Stress-Strain Curve Measured Using Uniaxial Tensile Test: A Concise Review and Practical Guide. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4224. [PMID: 34361418 PMCID: PMC8347989 DOI: 10.3390/ma14154224] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022]
Abstract
Mechanical properties are crucial parameters for scaffold design for bone tissue engineering; therefore, it is important to understand the definitions of the mechanical properties of bones and relevant analysis methods, such that tissue engineers can use this information to properly design the mechanical properties of scaffolds for bone tissue engineering. The main purpose of this article is to provide a review and practical guide to understand and analyze the mechanical properties of compact bone that can be defined and extracted from the stress-strain curve measured using uniaxial tensile test until failure. The typical stress-strain curve of compact bone measured using uniaxial tensile test until failure is a bilinear, monotonically increasing curve. The associated mechanical properties can be obtained by analyzing this bilinear stress-strain curve. In this article, a computer programming code for analyzing the bilinear stress-strain curve of compact bone for quantifying the associated mechanical properties is provided, such that the readers can use this computer code to perform the analysis directly. In addition to being applied to compact bone, the information provided by this article can also be applied to quantify the mechanical properties of any material having a bilinear stress-strain curve, such as a whole bone, some metals and biomaterials. The information provided by this article can be applied by tissue engineers, such that they can have a reference to properly design the mechanical properties of scaffolds for bone tissue engineering. The information can also be applied by researchers in biomechanics and orthopedics to compare the mechanical properties of bones in different physiological or pathological conditions.
Collapse
Affiliation(s)
- Che-Yu Lin
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jiunn-Horng Kang
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, 252 Wuxing Str., Taipei 11031, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Str., Taipei 11031, Taiwan
- Research Center of Artificial Intelligence in Medicine, Taipei Medical University, 250 Wuxing Str., Taipei 11031, Taiwan
| |
Collapse
|
303
|
Park W, Gao G, Cho DW. Tissue-Specific Decellularized Extracellular Matrix Bioinks for Musculoskeletal Tissue Regeneration and Modeling Using 3D Bioprinting Technology. Int J Mol Sci 2021; 22:7837. [PMID: 34360604 PMCID: PMC8346156 DOI: 10.3390/ijms22157837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The musculoskeletal system is a vital body system that protects internal organs, supports locomotion, and maintains homeostatic function. Unfortunately, musculoskeletal disorders are the leading cause of disability worldwide. Although implant surgeries using autografts, allografts, and xenografts have been conducted, several adverse effects, including donor site morbidity and immunoreaction, exist. To overcome these limitations, various biomedical engineering approaches have been proposed based on an understanding of the complexity of human musculoskeletal tissue. In this review, the leading edge of musculoskeletal tissue engineering using 3D bioprinting technology and musculoskeletal tissue-derived decellularized extracellular matrix bioink is described. In particular, studies on in vivo regeneration and in vitro modeling of musculoskeletal tissue have been focused on. Lastly, the current breakthroughs, limitations, and future perspectives are described.
Collapse
Affiliation(s)
- Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China;
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
304
|
Brassolatti P, Bossini PS, de Andrade ALM, Luna GLF, da Silva JV, Almeida-Lopes L, Napolitano MA, de Avó LRDS, Leal ÂMDO, Anibal FDF. Comparison of two different biomaterials in the bone regeneration (15, 30 and 60 days) of critical defects in rats. Acta Cir Bras 2021; 36:e360605. [PMID: 34287608 PMCID: PMC8291905 DOI: 10.1590/acb360605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To evaluate and compare two types of different scaffolds in critical bone defects in rats. METHODS Seventy male Wistar rats (280 ± 20 grams) divided into three groups: control group (CG), untreated animals; biomaterial group 1 (BG1), animals that received the scaffold implanted hydroxyapatite (HA)/poly(lactic-co-glycolic) acid (PLGA); and biomaterial group 2 (BG2), animals that received the scaffolds HA/PLGA/Bleed. The critical bone defect was induced in the medial region of the skull calotte with the aid of an 8-mm-diameter trephine drill. The biomaterial was implanted in the form of 1.5 mm thick scaffolds, and samples were collected after 15, 30 and 60 days. Non-parametric Mann-Whitney test was used, with the significance level of 5% (p ≤ 0.05). RESULTS Histology revealed morphological and structural differences of the neoformed tissue between the experimental groups. Collagen-1 (Col-1) findings are consistent with the histological ones, in which BG2 presented the highest amount of fibers in its tissue matrix in all evaluated periods. In contrast, the results of receptor activator of nuclear factor kappa-Β ligand (Rank-L) immunoexpression were higher in BG2 in the periods of 30 and 60 days, indicating an increase of the degradation of the biomaterial and the remodeling activity of the bone. CONCLUSIONS The properties of the HA/PLGA/Bleed scaffold were superior when compared to the scaffold composed only by HA/PLGA.
Collapse
Affiliation(s)
- Patricia Brassolatti
- PhD in Biotechnology. Postgraduate Program in Evolutionary Genetics
and Molecular Biology – Department of Morphology and Pathology – Universidade
Federal de São Carlos – Sao Carlos (SP), Brazil
| | - Paulo Sérgio Bossini
- PhD in Physiotherapy. NUPEN - Research and Education Center in
Health Science and DMC Equipment Import and Export-Co. Ltda – Sao Carlos (SP),
Brazil
| | - Ana Laura Martins de Andrade
- PhD in Physiotherapy. Department of Physiotherapy – Universidade
Federal de São Carlos – Sao Carlos (SP), Brazil
| | - Genoveva Lourdes Flores Luna
- PhD in Biotechnology. Metabolic Endocrine Research Laboratory –
Department of Medicine – Universidade Federal University de São Carlos – Sao Carlos
(SP), Brazil
| | - Juliana Virginio da Silva
- Graduate student in Biotechnology. Institute of Physics of Sao
Carlos– Universidade de São Paulo – Sao Carlos (SP), Brazil
| | - Luciana Almeida-Lopes
- PhD in Science and Materials Engineering. NUPEN - Research and
Education Center in Health Science and DMC Equipment Import and Export-Co. Ltda –
Sao Carlos (SP), Brazil
| | | | | | | | - Fernanda de Freitas Anibal
- Associate Professor. Department of Morphology and Pathology –
Universidade Federal de São Carlos – Sao Carlos (SP), Brazil
| |
Collapse
|
305
|
Flegeau K, Gauthier O, Rethore G, Autrusseau F, Schaefer A, Lesoeur J, Veziers J, Brésin A, Gautier H, Weiss P. Injectable silanized hyaluronic acid hydrogel/biphasic calcium phosphate granule composites with improved handling and biodegradability promote bone regeneration in rabbits. Biomater Sci 2021; 9:5640-5651. [PMID: 34254604 DOI: 10.1039/d1bm00403d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biphasic calcium phosphate (BCP) granules are osteoconductive biomaterials used in clinics to favor bone reconstruction. Yet, poor cohesivity, injectability and mechanical properties restrain their use as bone fillers. In this study, we incorporated BCP granules into in situ forming silanized hyaluronic acid (Si-HA) and hydroxypropylmethylcellulose (Si-HPMC) hydrogels. Hydrogel composites were shown to be easily injectable (F < 30 N), with fast hardening properties (<5 min), and similar mechanical properties (E∼ 60 kPa). In vivo, both hydrogels were well tolerated by the host, but showed different biodegradability with Si-HA gels being partially degraded after 21d, while Si-HPMC gels remained stable. Both composites were easily injected into critical size rabbit defects and remained cohesive. After 4 weeks, Si-HPMC/BCP led to poor bone healing due to a lack of degradation. Conversely, Si-HA/BCP composites were fully degraded and beneficially influenced bone regeneration by increasing the space available for bone ingrowth, and by accelerating BCP granules turnover. Our study demonstrates that the degradation rate is key to control bone regeneration and that Si-HA/BCP composites are promising biomaterials to regenerate bone defects.
Collapse
Affiliation(s)
- Killian Flegeau
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and HTL S.A.S, Javené, France
| | - Olivier Gauthier
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and Department of Experimental Surgery, CRIP, Oniris, Nantes, F-44300, France
| | - Gildas Rethore
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and CHU Nantes, PHU4 OTONN, Nantes F-44093, France
| | - Florent Autrusseau
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and Ecole Polytechnique de l'Université de Nantes, rue Ch. Pauc, Nantes, F-44300, France
| | - Aurélie Schaefer
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and SC3M, SFR Santé F. Bonamy, FED 4203, UMS Inserm 016, CNRS 3556, Nantes F-44042, France
| | - Julie Lesoeur
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and SC3M, SFR Santé F. Bonamy, FED 4203, UMS Inserm 016, CNRS 3556, Nantes F-44042, France
| | - Joëlle Veziers
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and CHU Nantes, PHU4 OTONN, Nantes F-44093, France and SC3M, SFR Santé F. Bonamy, FED 4203, UMS Inserm 016, CNRS 3556, Nantes F-44042, France
| | | | - Hélène Gautier
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and Université de Nantes, Faculté de Pharmacie, Laboratoire de Pharmacie Galénique, Nantes F-44042, France
| | - Pierre Weiss
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and CHU Nantes, PHU4 OTONN, Nantes F-44093, France
| |
Collapse
|
306
|
Banimohamad-Shotorbani B, Rahmani Del Bakhshayesh A, Mehdipour A, Jarolmasjed S, Shafaei H. The efficiency of PCL/HAp electrospun nanofibers in bone regeneration: a review. J Med Eng Technol 2021; 45:511-531. [PMID: 34251971 DOI: 10.1080/03091902.2021.1893396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrospinning is a method which produces various nanofiber scaffolds for different tissues was attractive for researchers. Nanofiber scaffolds could be made from several biomaterials and polymers. Quality and virtues of final scaffolds depend on used biomaterials (even about single substance, the origin is effective), additives (such as some molecules, ions, drugs, and inorganic materials), electrospinning parameter (voltage, injection speed, temperature, …), etc. In addition to its benefits, which makes it more attractive is the possibility of modifications. Common biomaterials in bone tissue engineering such as poly-caprolactone (PCL), hydroxyapatite (HAp), and their important features, electrospinning nanofibers were widely studied. Related investigations indicate the critical role of even small parameters (like the concentration of PCL or HAp) in final product properties. These changes also, cause deference in cell proliferation, adhesion, differentiation, and in vivo repair process. In this review was focussed on PCL/HAp based nanofibers and additives that researchers used for scaffold improvement. Then, reviewing properties of gained nanofibers, their effect on cell behaviour, and finally, their valency in bone tissue engineering studies (in vitro and in vivo).
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
307
|
Proliferation and osteogenic differentiation of mesenchymal stem cells on three-dimensional scaffolds made by thermal sintering method. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01774-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
308
|
Karimi-Soflou R, Mohseni-Vadeghani E, Karkhaneh A. Controlled release of resveratrol from a composite nanofibrous scaffold: Effect of resveratrol on antioxidant activity and osteogenic differentiation. J Biomed Mater Res A 2021; 110:21-30. [PMID: 34228402 DOI: 10.1002/jbm.a.37262] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
Biocompatibility, mechanical strength, and osteogenesis properties of three-dimensional scaffolds are critical for bone tissue engineering. In addition, reactive oxygen species accumulate around bone defects and limit the activities of surrounding cells and bone formation. Therefore, the presence of an antioxidant in a bone tissue scaffold is also essential to address this issue. This study aimed to evaluate a composite nanofibrous scaffold similar to the natural extracellular matrix with antioxidant and osteogenic properties. To this end, polylactic acid (PLA)/organophilic montmorillonite (OMMT)/resveratrol (RSV) nanofibers were fabricated using the electrospinning method and characterized. RSV was used as an antioxidant, which promotes osteogenic differentiation, and OMMT was used as a mineral phase to increase the mechanical strength and control the release of RSV. The scaffolds' antioxidant activity was measured using DPPH assay and found 83.75% for PLA/OMMT/RSV nanofibers. The mechanical strength was increased by adding OMMT to the neat PLA. The biocompatibility of the scaffolds was investigated using an MTT assay, and the results did not show any toxic effects on human adipose mesenchymal stem cells (hASCs). Moreover, the Live/Dead assay indicated the appropriate distribution of live cells after 5 days. Cell culture results displayed that hASCs could adhere and spread on the surface of composite nanofibers. Meanwhile, the level of alkaline phosphatase, osteocalcin, and osteopontin was increased for hASCs cultured on the PLA/OMMT/RSV nanofibrous scaffold. Therefore, this study concludes that the RSV-loaded composite nanofibers with antioxidant and osteogenesis properties and appropriate mechanical strength can be introduced for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Reza Karimi-Soflou
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elham Mohseni-Vadeghani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
309
|
Günday C, Anand S, Gencer HB, Munafò S, Moroni L, Fusco A, Donnarumma G, Ricci C, Hatir PC, Türeli NG, Türeli AE, Mota C, Danti S. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv Transl Res 2021; 10:706-720. [PMID: 32100267 DOI: 10.1007/s13346-020-00736-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Presented work focuses on the development of biodegradable polymer nanoparticles loaded with antibiotics as drug delivery systems deposited on electrospun scaffolds for tissue engineering. The innovative ciprofloxacin-loaded poly(DL-lactide-co-glycolide) NPs ensure a continuous slow release and high local concentration at the site of action for an optimal therapy. The local delivery of antibiotics as an integrated part of electrospun scaffolds offers an effective, safe, and smart enhancement supporting tissue regeneration. Presented data provides solid scientific evidence for fulfilling the requirements of local nano antibiotic delivery systems with biodegradability and biocompatibility for a wide range of tissue engineering applications, including middle ear tissues (e.g., tympanic membranes) which are subject to bacterial infections. Further characterization of such systems, including in vivo studies, is required to ensure successful transfer from lab to clinical applications. Graphical abstract .
Collapse
Affiliation(s)
- Cemre Günday
- MJR PharmJet GmbH, Industriestr. 1B, 66802, Überherrn, Germany
| | - Shivesh Anand
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Hikmet Burcu Gencer
- Department of Biomedical Engineering, Istanbul Arel University, 34537, İstanbul, Turkey
| | - Sara Munafò
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands.,Department of Civil and Industrial Engineering, University of Pisa, 56122, Pisa, Italy
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Claudio Ricci
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Pinar Cakir Hatir
- Department of Biomedical Engineering, Istanbul Arel University, 34537, İstanbul, Turkey
| | | | | | - Carlos Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122, Pisa, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| |
Collapse
|
310
|
Sochilina AV, Savelyev AG, Akasov RA, Zubov VP, Khaydukov EV, Generalova AN. Preparing Modified Hyaluronic Acid with Tunable Content of Vinyl Groups for Use in Fabrication of Scaffolds by Photoinduced Crosslinking. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021040191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Materials based on hyaluronic acid (HA) are extensively used in tissue engineering as scaffolds. Photoinduced crosslinking is one way to prepare them, and, for this, HA must be modified with vinyl groups, which are capable of participating in free-radical reactions upon exposure to light. The quantity of grafted vinyl groups, represented as the degree of substitution (DS), is an important parameter of modified HA (mHA) that is related to the mechanical, chemical, and biological properties of scaffolds. Here, we demonstrate the feasibility of tuning DS by varying the reaction parameters (composition and concentration of reaction components and reaction conditions) and investigate the effect of DS on the viscosity of mHA solutions. As example, we consider the photoinduced reaction of mHA in the presence of flavin mononucleotide as the initiator, which can be used in fabrication of noncytotoxic scaffolds by 3D printing. The growth behavior of fibroblasts on the scaffold surface is studied.
Collapse
|
311
|
|
312
|
Krticka M, Planka L, Vojtova L, Nekuda V, Stastny P, Sedlacek R, Brinek A, Kavkova M, Gopfert E, Hedvicakova V, Rampichova M, Kren L, Liskova K, Ira D, Dorazilová J, Suchy T, Zikmund T, Kaiser J, Stary D, Faldyna M, Trunec M. Lumbar Interbody Fusion Conducted on a Porcine Model with a Bioresorbable Ceramic/Biopolymer Hybrid Implant Enriched with Hyperstable Fibroblast Growth Factor 2. Biomedicines 2021; 9:733. [PMID: 34202232 PMCID: PMC8301420 DOI: 10.3390/biomedicines9070733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Many growth factors have been studied as additives accelerating lumbar fusion rates in different animal models. However, their low hydrolytic and thermal stability both in vitro and in vivo limits their workability and use. In the proposed work, a stabilized vasculogenic and prohealing fibroblast growth factor-2 (FGF2-STAB®) exhibiting a functional half-life in vitro at 37 °C more than 20 days was applied for lumbar fusion in combination with a bioresorbable scaffold on porcine models. An experimental animal study was designed to investigate the intervertebral fusion efficiency and safety of a bioresorbable ceramic/biopolymer hybrid implant enriched with FGF2-STAB® in comparison with a tricortical bone autograft used as a gold standard. Twenty-four experimental pigs underwent L2/3 discectomy with implantation of either the tricortical iliac crest bone autograft or the bioresorbable hybrid implant (BHI) followed by lateral intervertebral fixation. The quality of spinal fusion was assessed by micro-computed tomography (micro-CT), biomechanical testing, and histological examination at both 8 and 16 weeks after the surgery. While 8 weeks after implantation, micro-CT analysis demonstrated similar fusion quality in both groups, in contrast, spines with BHI involving inorganic hydroxyapatite and tricalcium phosphate along with organic collagen, oxidized cellulose, and FGF2- STAB® showed a significant increase in a fusion quality in comparison to the autograft group 16 weeks post-surgery (p = 0.023). Biomechanical testing revealed significantly higher stiffness of spines treated with the bioresorbable hybrid implant group compared to the autograft group (p < 0.05). Whilst histomorphological evaluation showed significant progression of new bone formation in the BHI group besides non-union and fibrocartilage tissue formed in the autograft group. Significant osteoinductive effects of BHI based on bioceramics, collagen, oxidized cellulose, and FGF2-STAB® could improve outcomes in spinal fusion surgery and bone tissue regeneration.
Collapse
Affiliation(s)
- Milan Krticka
- Trauma Surgery Department, Faculty of Medicine, Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (V.N.); (D.I.)
| | - Ladislav Planka
- Department of Paediatric Surgery, Orthopedics and Traumatology, Faculty of Medicine, Masaryk University and The University Hospital Brno, 662 63 Brno, Czech Republic; (L.P.); (D.S.)
| | - Lucy Vojtova
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Vladimir Nekuda
- Trauma Surgery Department, Faculty of Medicine, Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (V.N.); (D.I.)
| | - Premysl Stastny
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Radek Sedlacek
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 160 00 Prague, Czech Republic;
| | - Adam Brinek
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Michaela Kavkova
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Eduard Gopfert
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (E.G.); (M.F.)
| | - Vera Hedvicakova
- University Center for Energy Efficient Buildings, Czech Technical University in Prague, 273 43 Bustehrad, Czech Republic; (V.H.); (M.R.)
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Michala Rampichova
- University Center for Energy Efficient Buildings, Czech Technical University in Prague, 273 43 Bustehrad, Czech Republic; (V.H.); (M.R.)
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Leos Kren
- Department of Pathology, Faculty of Medicine of Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (L.K.); (K.L.)
| | - Kvetoslava Liskova
- Department of Pathology, Faculty of Medicine of Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (L.K.); (K.L.)
| | - Daniel Ira
- Trauma Surgery Department, Faculty of Medicine, Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (V.N.); (D.I.)
| | - Jana Dorazilová
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Tomas Suchy
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, 182 09 Prague, Czech Republic;
| | - Tomas Zikmund
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Jozef Kaiser
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - David Stary
- Department of Paediatric Surgery, Orthopedics and Traumatology, Faculty of Medicine, Masaryk University and The University Hospital Brno, 662 63 Brno, Czech Republic; (L.P.); (D.S.)
| | - Martin Faldyna
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (E.G.); (M.F.)
| | - Martin Trunec
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| |
Collapse
|
313
|
Cheng L, Suresh K S, He H, Rajput RS, Feng Q, Ramesh S, Wang Y, Krishnan S, Ostrovidov S, Camci-Unal G, Ramalingam M. 3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives. Int J Nanomedicine 2021; 16:4289-4319. [PMID: 34211272 PMCID: PMC8239380 DOI: 10.2147/ijn.s311001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.
Collapse
Affiliation(s)
- Lijia Cheng
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Shoma Suresh K
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hongyan He
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Ritu Singh Rajput
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Qiyang Feng
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Saravanan Ramesh
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Yuzhuang Wang
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Sasirekha Krishnan
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Serge Ostrovidov
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
314
|
Rastegar A, Mahmoodi M, Mirjalili M, Nasirizadeh N. Platelet-rich fibrin-loaded PCL/chitosan core-shell fibers scaffold for enhanced osteogenic differentiation of mesenchymal stem cells. Carbohydr Polym 2021; 269:118351. [PMID: 34294355 DOI: 10.1016/j.carbpol.2021.118351] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/27/2021] [Accepted: 06/13/2021] [Indexed: 01/18/2023]
Abstract
Here, we fabricated the platelet-rich fibrin (PRF)-loaded PCL/chitosan (PCL/CS-PRF) core-shell nanofibrous scaffold through a coaxial electrospinning method. Our goal was to evaluate the effect of CS-RPF in the core layer of the nanofibrous on the osteogenic differentiation of human mesenchymal stem cells (HMSCs). The elastic modulus of PCL/CS-PRF core-shell scaffold (44 MPa) was about 1.5-fold of PCL/CS scaffold (25 MPa). The specific surface area of the scaffolds increased from 9.98 m2/g for PCL/CS scaffold to 16.66 m2/g for the PCL/CS-PRF core-shell nanofibrous scaffold. Moreover, the release rate of PRF from PCL/CS-PRF nanofibrous scaffold was measured to be 24.50% after 10 days which showed slow and sustained release of PRF from the nanofibrous. The formation of Ca-P on the surface of scaffold immersed in simulated body fluid solution indicated the suitable osteoconductivity of PCL/CS-PRF core-shell nanofibrous scaffold. Also, the value of ALP activity and calcium deposited on the surface of PCL/CS-PRF core-shell nanofibrous scaffold were 81.97 U/L and 40.33 μg/scaffold, respectively after 14 days, which confirmed the significantly higher amounts of ALP and calcium deposition on the scaffold containing PRF compared to PCL/CS scaffold. Due to higher hydrophilicity and porosity of PCL/CS-PRF core-shell nanofibrous scaffold compared to PCL/CS scaffold, a better bone cell growth on surface of PCL/CS-PRF scaffold was observed. The Alizarin red-positive area was significantly higher on PCL/CS-PRF scaffold compared to PCL/CS scaffold, indicating more calcium deposition and osteogenic differentiation of HMSCs in the presence of PRF. Our findings demonstrate that PCL/CS-PRF core-shell scaffolds can provide a strong construct with improved osteogenic for bone tissue engineering applications.
Collapse
Affiliation(s)
- Amirabbas Rastegar
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
| | - Mohammad Mirjalili
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Navid Nasirizadeh
- Department of Chemical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| |
Collapse
|
315
|
Hajiali H, Ouyang L, Llopis-Hernandez V, Dobre O, Rose FRAJ. Review of emerging nanotechnology in bone regeneration: progress, challenges, and perspectives. NANOSCALE 2021; 13:10266-10280. [PMID: 34085085 DOI: 10.1039/d1nr01371h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The application of nanotechnology to regenerative medicine has increased over recent decades. The development of materials that can influence biology at the nanoscale has gained interest as our understanding of the interactions between cells and biomaterials at the nanoscale has grown. Materials that are either nanostructured or influence the nanostructure of the cellular microenvironment have been developed and shown to have advantages over their microscale counterparts. There are several reviews which have been published that discuss how nanomaterials have been used in regenerative medicine, particularly in bone regeneration. Most of these studies have explored this concept in specific areas, such as the application of glass-based nanocomposites, nanotechnology for targeted drug delivery to stimulate bone repair, and the progress in nanotechnology for the treatment of osteoporosis. In this review paper, the impact of nanotechnology in biomaterials development for bone regeneration will be discussed highlighting specifically, nanostructured materials that influence mechanical properties, biocompatibility, and osteoinductivity.
Collapse
Affiliation(s)
- Hadi Hajiali
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University Park, University of Nottingham, NG7 2RD, UK.
| | - Liliang Ouyang
- Department of Materials, Imperial College London, London, SW7 2AZ, UK and Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | | | - Oana Dobre
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, UK
| | - Felicity R A J Rose
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University Park, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
316
|
Core-shell PLA/Kef hybrid scaffolds for skin tissue engineering applications prepared by direct kefiran coating on PLA electrospun fibers optimized via air-plasma treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112248. [PMID: 34225887 DOI: 10.1016/j.msec.2021.112248] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Over the recent years, there is a growing interest in electrospun hybrid scaffolds composed of synthetic and natural polymers that can support cell attachment and proliferation. In this work, the physical and biological properties of polylactic acid (PLA) electrospun mats coated with kefiran (Kef) were evaluated. Gravimetric, spectroscopic (FTIR-ATR) and morphological investigations via scanning electron microscopy confirmed the effective formation of a thin kefiran layer wrapped on the PLA fibers with an easy-tunable thickness. Air plasma pre-treatment carried out on PLA (P-PLA) affected both the morphology and the crystallinity of Kef coating as confirmed by differential scanning calorimetry and X-ray diffraction analyses. Scaffolds were mechanically characterized with tensile tests to evaluate the reinforcing action of the Kef coating. The water resistance of Kefiran coating in distilled water at 37 °C evaluated on both PLA/Kef and P-PLA/Kef was carried out by gravimetric and morphological analyses. Finally, cell culture assays with embryonic fibroblast cells were conducted on selected hybrid scaffolds to compare the cell proliferation, morphology, and collagen production with PLA and P-PLA electrospun scaffolds. Based on the results, we can demonstrate that direct coating of PLA from Kef/water solutions is an effective approach to prepare hybrid scaffolds with tunable properties and that the plasma pre-treatment enhances the affinity between PLA and Kefiran. In vitro tests demonstrated the great potential of PLA/Kef hybrid scaffolds for skin tissue engineering.
Collapse
|
317
|
Abstract
Smart scaffolds based on shape memory polymer (SMPs) have been increasingly studied in tissue engineering. The unique shape actuating ability of SMP scaffolds has been utilized to improve delivery and/or tissue defect filling. In this regard, these scaffolds may be self-deploying, self-expanding, or self-fitting. Smart scaffolds are generally thermoresponsive or hydroresponsive wherein shape recovery is driven by an increase in temperature or by hydration, respectively. Most smart scaffolds have been directed towards regenerating bone, cartilage, and cardiovascular tissues. A vast variety of smart scaffolds can be prepared with properties targeted for a specific tissue application. This breadth of smart scaffolds stems from the variety of compositions employed as well as the numerous methods used to fabricated scaffolds with the desired morphology. Smart scaffold compositions span across several distinct classes of SMPs, affording further tunability of properties using numerous approaches. Specifically, these SMPs include those based on physically cross-linked and chemically cross-linked networks and include widely studied shape memory polyurethanes (SMPUs). Various additives, ranging from nanoparticles to biologicals, have also been included to impart unique functionality to smart scaffolds. Thus, given their unique functionality and breadth of tunable properties, smart scaffolds have tremendous potential in tissue engineering.
Collapse
Affiliation(s)
- Michaela R Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA and Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
318
|
Romo-Herrera J, Juarez-Moreno K, Guerrini L, Kang Y, Feliu N, Parak W, Alvarez-Puebla R. Paper-based plasmonic substrates as surface-enhanced Raman scattering spectroscopy platforms for cell culture applications. Mater Today Bio 2021; 11:100125. [PMID: 34485892 PMCID: PMC8397899 DOI: 10.1016/j.mtbio.2021.100125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
The engineering of advanced materials capable of mimicking the cellular micro-environment while providing cells with physicochemical cues is central for cell culture applications. In this regard, paper meets key requirements in terms of biocompatibility, hydrophilicity, porosity, mechanical strength, ease of physicochemical modifications, cost, and ease of large-scale production, to be used as a scaffold material for biomedical applications. Most notably, paper has demonstrated the potential to become an attractive alternative to conventional biomaterials for creating two-dimensional (2D) and three-dimensional (3D) biomimetic cell culture models that mimic the features of in vivo tissue environments for improving our understanding of cell behavior (e.g. growth, cell migration, proliferation, differentiation and tumor metastasis) in their natural state. On the other hand, integration of plasmonic nanomaterials (e.g. gold nanoparticles) within the fibrous structure of paper opens the possibility to generate multifunctional scaffolds equipped with biosensing tools for monitoring different cell cues through physicochemical signals. Among different plasmonic based detection techniques, surface-enhanced Raman scattering (SERS) spectroscopy emerged as a highly specific and sensitive optical tool for its extraordinary sensitivity and the ability for multidimensional and accurate molecular identification. Thus, paper-based plasmonic substrates in combination with SERS optical detection represent a powerful future platform for monitoring cell cues during cell culture processes. To this end, in this review, we will describe the different methods for fabricating hybrid paper-plasmonic nanoparticle substrates and their use in combination with SERS spectroscopy for biosensing and, more specifically, in cell culture applications.
Collapse
Affiliation(s)
- J.M. Romo-Herrera
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Km 107 Carretera Tijuana-Ensenada, CP 22800 Ensenada, B.C., México
| | - K. Juarez-Moreno
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Km 107 Carretera Tijuana-Ensenada, CP 22800 Ensenada, B.C., México
- CONACYT, Catedras at Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Km 107 Carretera Tijuana-Ensenada, CP 22800 Ensenada, B.C., México
| | - L. Guerrini
- Department of Inorganic and Physical Chemistry, Universitat Rovira i Virgili. C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Y. Kang
- CHyN, Universität Hamburg, Luruper Chausse 149, 22761 Hamburg, Germany
| | - N. Feliu
- CHyN, Universität Hamburg, Luruper Chausse 149, 22761 Hamburg, Germany
- CAN, Fraunhofer Institute for Applied Polymer Research IAP, Grindelallee 117, 20146 Hamburg, Germany
| | - W.J. Parak
- CHyN, Universität Hamburg, Luruper Chausse 149, 22761 Hamburg, Germany
| | - R.A. Alvarez-Puebla
- Department of Inorganic and Physical Chemistry, Universitat Rovira i Virgili. C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- ICREA, Passeja Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
319
|
Tripathi Y, Shukla M, Bhatt AD. Idealization through interactive modeling and experimental assessment of 3D-printed gyroid for trabecular bone scaffold. Proc Inst Mech Eng H 2021; 235:1025-1034. [PMID: 34058889 DOI: 10.1177/09544119211022988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Porous scaffolds assisted bone tissue engineering is a viable alternative for reconstruction of large segmental bone defects caused by bone pathologies or trauma. In the current study, we intend to develop trabecular bone scaffolds using gyroid architecture. An interactive modeling framework is developed for the design of three-dimensional gyroid scaffolds using advanced generative tools including K3DSurf, MeshLab, and Netfabb. The suggested modeling approach resulted in uniform and interconnected pores. Subsequently, fused deposition modeling 3D-printing is employed to fabricate the scaffolds using poly lactic acid material. The pores interconnectivity, porosity, and surface finish of the fabricated scaffolds are characterized using micro-computer tomography and scanning electron microscopy. Additionally, to assess the performance of scaffolds as a bone substitute, compression, and in-vitro biocompatibility tests on sterilized scaffolds are conducted. Compression tests reveal mechanical strength in the range of native bone while human adipose-derived mesenchymal stem cells show high proliferation after 72 h of incubation. Based on these results, the fabricated gyroid scaffolds can be said to possess favorable properties for trabecular bone scaffold.
Collapse
Affiliation(s)
- Yogesh Tripathi
- CAD Laboratory, Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Allahabad, UP, India
| | - Mukul Shukla
- CAD Laboratory, Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Allahabad, UP, India
| | - Amba D Bhatt
- CAD Laboratory, Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Allahabad, UP, India
| |
Collapse
|
320
|
Muzzio N, Moya S, Romero G. Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:792. [PMID: 34073311 PMCID: PMC8230126 DOI: 10.3390/pharmaceutics13060792] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| |
Collapse
|
321
|
Mancuso E, Shah L, Jindal S, Serenelli C, Tsikriteas ZM, Khanbareh H, Tirella A. Additively manufactured BaTiO 3 composite scaffolds: A novel strategy for load bearing bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112192. [PMID: 34082989 DOI: 10.1016/j.msec.2021.112192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Piezoelectric ceramics, such as BaTiO3, have gained considerable attention in bone tissue engineering applications thanks to their biocompatibility, ability to sustain a charged surface as well as improve bone cells' adhesion and proliferation. However, the poor processability and brittleness of these materials hinder the fabrication of three-dimensional scaffolds for load bearing tissue engineering applications. For the first time, this study focused on the fabrication and characterisation of BaTiO3 composite scaffolds by using a multi-material 3D printing technology. Polycaprolactone (PCL) was selected and used as dispersion phase for its low melting point, easy processability and wide adoption in bone tissue engineering. The proposed single-step extrusion-based strategy enabled a faster and solvent-free process, where raw materials in powder forms were mechanically mixed and subsequently fed into the 3D printing system for further processing. PCL, PCL/hydroxyapatite and PCL/BaTiO3 composite scaffolds were successfully produced with high level of consistency and an inner architecture made of seamlessly integrated layers. The inclusion of BaTiO3 ceramic particles (10% wt.) significantly improved the mechanical performance of the scaffolds (54 ± 0.5 MPa) compared to PCL/hydroxyapatite scaffolds (40.4 ± 0.1 MPa); moreover, the presence of BaTiO3 increased the dielectric permittivity over the entire frequency spectrum and tested temperatures. Human osteoblasts Saos-2 were seeded on scaffolds and cellular adhesion, proliferation, differentiation and deposition of bone-like extracellular matrix were evaluated. All tested scaffolds (PCL, PCL/hydroxyapatite and PCL/BaTiO3) supported cell growth and viability, preserving the characteristic cellular osteoblastic phenotype morphology, with PCL/BaTiO3 composite scaffolds exhibiting higher mineralisation (ALP activity) and deposited bone-like extracellular matrix (osteocalcin and collagen I). The single-step multi-material additive manufacturing technology used for the fabrication of electroactive PCL/BaTiO3 composite scaffolds holds great promise for sustainability (reduced material waste and manufacturing costs) and it importantly suggests PCL/BaTiO3 scaffolds as promising candidates for load bearing bone tissue engineering applications to solve unmet clinical needs.
Collapse
Affiliation(s)
- Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, BT37 0QB Newtownabbey, United Kingdom.
| | - Lekha Shah
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health (FMBH), University of Manchester, Oxford Road, M13 9PT Manchester, United Kingdom
| | - Swati Jindal
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, BT37 0QB Newtownabbey, United Kingdom
| | - Cecile Serenelli
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, BT37 0QB Newtownabbey, United Kingdom
| | | | - Hamideh Khanbareh
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, United Kingdom
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health (FMBH), University of Manchester, Oxford Road, M13 9PT Manchester, United Kingdom.
| |
Collapse
|
322
|
Milan EP, Rodrigues MÁV, Martins VCA, Plepis AMG, Fuhrmann-Lieker T, Horn MM. Mineralization of Phosphorylated Fish Skin Collagen/Mangosteen Scaffolds as Potential Materials for Bone Tissue Regeneration. Molecules 2021; 26:2899. [PMID: 34068232 PMCID: PMC8153159 DOI: 10.3390/molecules26102899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022] Open
Abstract
In this study, a potential hard tissue substitute was mimicked using collagen/mangosteen porous scaffolds. Collagen was extracted from Tilapia fish skin and mangosteen from the waste peel of the respective fruit. Sodium trimetaphosphate was used for the phosphorylation of these scaffolds to improve the nucleation sites for the mineralization process. Phosphate groups were incorporated in the collagen structure as confirmed by their attenuated total reflection Fourier transform infrared (ATR-FTIR) bands. The phosphorylation and mangosteen addition increased the thermal stability of the collagen triple helix structure, as demonstrated by differential scanning calorimetry (DSC) and thermogravimetry (TGA) characterizations. Mineralization was successfully achieved, and the presence of calcium phosphate was visualized by scanning electron microscopy (SEM). Nevertheless, the porous structure was maintained, which is an essential characteristic for the desired application. The deposited mineral was amorphous calcium phosphate, as confirmed by energy dispersive X-ray spectroscopy (EDX) results.
Collapse
Affiliation(s)
- Eduardo P. Milan
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13560-970, Brazil; (E.P.M.); (A.M.G.P.)
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany;
| | - Murilo Á. V. Rodrigues
- São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos 13560-970, Brazil; (M.Á.V.R.); (V.C.A.M.)
| | - Virginia C. A. Martins
- São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos 13560-970, Brazil; (M.Á.V.R.); (V.C.A.M.)
| | - Ana M. G. Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13560-970, Brazil; (E.P.M.); (A.M.G.P.)
- São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos 13560-970, Brazil; (M.Á.V.R.); (V.C.A.M.)
| | - Thomas Fuhrmann-Lieker
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany;
| | - Marilia M. Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany;
| |
Collapse
|
323
|
Im SH, Im DH, Park SJ, Chung JJ, Jung Y, Kim SH. Stereocomplex Polylactide for Drug Delivery and Biomedical Applications: A Review. Molecules 2021; 26:2846. [PMID: 34064789 PMCID: PMC8150862 DOI: 10.3390/molecules26102846] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Polylactide (PLA) is among the most common biodegradable polymers, with applications in various fields, such as renewable and biomedical industries. PLA features poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) enantiomers, which form stereocomplex crystals through racemic blending. PLA emerged as a promising material owing to its sustainable, eco-friendly, and fully biodegradable properties. Nevertheless, PLA still has a low applicability for drug delivery as a carrier and scaffold. Stereocomplex PLA (sc-PLA) exhibits substantially improved mechanical and physical strength compared to the homopolymer, overcoming these limitations. Recently, numerous studies have reported the use of sc-PLA as a drug carrier through encapsulation of various drugs, proteins, and secondary molecules by various processes including micelle formation, self-assembly, emulsion, and inkjet printing. However, concerns such as low loading capacity, weak stability of hydrophilic contents, and non-sustainable release behavior remain. This review focuses on various strategies to overcome the current challenges of sc-PLA in drug delivery systems and biomedical applications in three critical fields, namely anti-cancer therapy, tissue engineering, and anti-microbial activity. Furthermore, the excellent potential of sc-PLA as a next-generation polymeric material is discussed.
Collapse
Affiliation(s)
- Seung Hyuk Im
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- enoughU Inc., 114 Goryeodae-ro, Seongbuk-gu, Seoul 02856, Korea
| | - Dam Hyeok Im
- Department of Mechanical Engineering, Graduate School, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Su Jeong Park
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
| | - Justin Jihong Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
- School of Electrical and Electronic Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Korea
| | - Soo Hyun Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
- Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrueken, Germany
| |
Collapse
|
324
|
Li Z, Du T, Ruan C, Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater 2021; 6:1491-1511. [PMID: 33294729 PMCID: PMC7680706 DOI: 10.1016/j.bioactmat.2020.11.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Successful regeneration of large segmental bone defects remains a major challenge in clinical orthopedics, thus it is of important significance to fabricate a suitable alternative material to stimulate bone regeneration. Due to their excellent biocompatibility, sufficient mechanical strength, and similar structure and composition of natural bone, the mineralized collagen scaffolds (MCSs) have been increasingly used as bone substitutes via tissue engineering approaches. Herein, we thoroughly summarize the state of the art of MCSs as tissue-engineered scaffolds for acceleration of bone repair, including their fabrication methods, critical factors for osteogenesis regulation, current opportunities and challenges in the future. First, the current fabrication methods for MCSs, mainly including direct mineral composite, in-situ mineralization and 3D printing techniques, have been proposed to improve their biomimetic physical structures in this review. Meanwhile, three aspects of physical (mechanics and morphology), biological (cells and growth factors) and chemical (composition and cross-linking) cues are described as the critical factors for regulating the osteogenic feature of MCSs. Finally, the opportunities and challenges associated with MCSs as bone tissue-engineered scaffolds are also discussed to point out the future directions for building the next generation of MCSs that should be endowed with satisfactorily mimetic structures and appropriately biological characters for bone regeneration.
Collapse
Affiliation(s)
- Zhengwei Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Tianming Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, PR China
- Research Institute of Beihang University in Shenzhen, Shenzhen, 518057, PR China
| |
Collapse
|
325
|
Marcello E, Maqbool M, Nigmatullin R, Cresswell M, Jackson PR, Basnett P, Knowles JC, Boccaccini AR, Roy I. Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Front Bioeng Biotechnol 2021; 9:647007. [PMID: 33898403 PMCID: PMC8059794 DOI: 10.3389/fbioe.2021.647007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
Due to the threat posed by the rapid growth in the resistance of microbial species to antibiotics, there is an urgent need to develop novel materials for biomedical applications capable of providing antibacterial properties without the use of such drugs. Bone healing represents one of the applications with the highest risk of postoperative infections, with potential serious complications in case of bacterial contaminations. Therefore, tissue engineering approaches aiming at the regeneration of bone tissue should be based on the use of materials possessing antibacterial properties alongside with biological and functional characteristics. In this study, we investigated the combination of polyhydroxyalkanoates (PHAs) with a novel antimicrobial hydroxyapatite (HA) containing selenium and strontium. Strontium was chosen for its well-known osteoinductive properties, while selenium is an emerging element investigated for its multi-functional activity as an antimicrobial and anticancer agent. Successful incorporation of such ions in the HA structure was obtained. Antibacterial activity against Staphylococcus aureus 6538P and Escherichia coli 8739 was confirmed for co-substituted HA in the powder form. Polymer-matrix composites based on two types of PHAs, P(3HB) and P(3HO-co-3HD-co-3HDD), were prepared by the incorporation of the developed antibacterial HA. An in-depth characterization of the composite materials was conducted to evaluate the effect of the filler on the physicochemical, thermal, and mechanical properties of the films. In vitro antibacterial testing showed that the composite samples induce a high reduction of the number of S. aureus 6538P and E. coli 8739 bacterial cells cultured on the surface of the materials. The films are also capable of releasing active ions which inhibited the growth of both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Elena Marcello
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Muhammad Maqbool
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
- Lucideon Ltd., Stoke-on-Trent, United Kingdom
- CAM Bioceramics B.V., Leiden, Netherlands
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, United Kingdom
| | | | | | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, Faculty of Medical Sciences, University College London Eastman Dental Institute, London, United Kingdom
- Department of Nanobiomedical Science and BK21 Plus NBM, Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- The Discoveries Centre for Regenerative and Precision Medicine, University College London, London, United Kingdom
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ipsita Roy
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Department of Materials Science and Engineering, Faculty of Engineering, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
326
|
Zhang B, Huang J, Narayan RJ. Gradient scaffolds for osteochondral tissue engineering and regeneration. J Mater Chem B 2021; 8:8149-8170. [PMID: 32776030 DOI: 10.1039/d0tb00688b] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tissue engineering approach for repairing osteochondral (OC) defects involves the fabrication of a biological tissue scaffold that mimics the physiological properties of natural OC tissue (e.g., the gradient transition between the cartilage surface and the subchondral bone). The OC tissue scaffolds described in many research studies exhibit a discrete gradient (e.g., a biphasic or tri/multiphasic structure) or a continuous gradient to mimic OC tissue attributes such as biochemical composition, structure, and mechanical properties. One advantage of a continuous gradient scaffold over biphasic or tri/multiphasic tissue scaffolds is that it more closely mimics natural OC tissue since there is no distinct interface between each layer. Although research studies to this point have yielded good results related to OC regeneration with tissue scaffolds, differences between engineered scaffolds and natural OC tissue remain; due to these differences, current clinical therapies to repair OC defects with engineered scaffolds have not been successful. This paper provides an overview of both discrete and continuous gradient OC tissue scaffolds in terms of cell type, scaffold material, microscale structure, mechanical properties, fabrication methods, and scaffold stimuli. Fabrication of gradient scaffolds with three-dimensional (3D) printing is given special emphasis due to its ability to accurately control scaffold pore geometry. Moreover, the application of computational modeling in OC tissue engineering is considered; for example, efforts to optimize the scaffold structure, mechanical properties, and physical stimuli generated within the scaffold-bioreactor system to predict tissue regeneration are considered. Finally, challenges associated with the repair of OC defects and recommendations for future directions in OC tissue regeneration are proposed.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Mechanical Engineering, University College London, London, UK.
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London, UK.
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
327
|
Sabouri E, Rezaie Z, Enderami SE, Mirahmadi M, Askari M. Different osteoconductivity of
PLLA
/
PHB
composite nanofibers prepared by one‐ and two‐nozzle electrospinning. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Elham Sabouri
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | - Zahra Rezaie
- SinaCell Research and Production Company Tehran Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell biology Research Center, Faculty of Medicine Mazandaran University of Medical Sciences Sari Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Mazandaran University of Medical Sciences Sari Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Department Iranian Academic Center for Education, Culture Research (ACECR) Mashhad Iran
| | | |
Collapse
|
328
|
Qu L, Dubey N, Ribeiro JS, Bordini EAF, Ferreira JA, Xu J, Castilho RM, Bottino MC. Metformin-loaded nanospheres-laden photocrosslinkable gelatin hydrogel for bone tissue engineering. J Mech Behav Biomed Mater 2021; 116:104293. [PMID: 33588247 PMCID: PMC8275125 DOI: 10.1016/j.jmbbm.2020.104293] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022]
Abstract
The aim of this investigation was to engineer metformin (MF)-loaded mesoporous silica nanospheres (MSNs)-laden gelatin methacryloyl (GelMA) photocrosslinkable hydrogels and test their effects on the mechanical properties, swelling ratio, drug release, cytocompatibility, and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs). As-received and carboxylated MSNs (MSNs-COOH) were characterized by scanning and transmission electron microscopies (SEM and TEM), as well as Fourier-transform infrared spectroscopy (FTIR) prior to hydrogel modification. MF-MSNs-COOH were obtained by loading MF into MSNs at a 1:1 mass ratio. Upon MSNs-COOH laden-hydrogels fabrication, the mechanical properties, swelling ratio and MF release were evaluated. SHEDs were seeded on the hydrogels and cytocompatibility was examined. The effects of the MF-MSNs-COOH/GelMA on the osteogenic differentiation of SHEDs were measured by ALP activity, Alizarin Red assay, and Real-time PCR. Statistics were performed using one-way ANOVA (α = 0.05). Morphological (SEM and TEM) analyses of pristine and carboxylated MSNs revealed a mean particle size of 200 nm and 218 nm, respectively. Importantly, an intrinsic nanoporous structure was noticed. Incorporation of MSNs-COOH at 1.5 mg/mL in GelMA led to the highest compressive modulus and swelling ratio. The addition of MSNs-COOH (up to 3 mg/mL) in GelMA did not impact cell viability. The presence of MF in MSNs-COOH/GelMA significantly promoted cell proliferation. Significant upregulation of osteogenic-related genes (except OCN) were seen for modified (MSNs-COOH and MF-MSNs-COOH) hydrogels when compared to GelMA. Altogether, the engineered MF-MSNs-COOH/GelMA shows great promise in craniomaxillofacial applications as an injectable, cell-free and bioactive therapeutics for bone regeneration.
Collapse
Affiliation(s)
- Liu Qu
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Juliana S Ribeiro
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ester A F Bordini
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jinping Xu
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
329
|
Low Frequency Dielectric and Optical Behavior on Physicochemical Properties of Hydroxyapatite/Cornstarch Composite. J Colloid Interface Sci 2021; 600:187-198. [PMID: 34015511 DOI: 10.1016/j.jcis.2021.03.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 11/20/2022]
Abstract
An investigation on relationship among the physicochemical, optical and dielectric properties of the hydroxyapatite/cornstarch (HA/Cs) composites with the starch proportion of 30, 40, 50, 60, 70, 80 and 90 wt% is presented in this work. The HA/Cs composites have been characterized via FTIR, XRD, DRS and impedance analyzer. This work depicts that the strong interaction is exhibited between the hydroxyapatite nanoparticles and starch as the starch proportion increases. This increment trend results in the higher crystallinity of the HA/Cs composites. The highly crystallized HA/Cs with hydroxyapatite nucleation center presents low optical properties (diffuse reflectance and optical band gap energy). The HA/Cs composite with 80 wt% starch proportion (H2C8) show higher dielectric properties (dielectric constant, loss factor and conductivity) due to the stronger interfacial interaction and close-packed HA/Cs crystalline structure. The relationship among the physicochemical, optical and dielectric properties of the HA/Cs composite is studied in this work for potential of instrumentation design.
Collapse
|
330
|
Jagdale P, Serino G, Oza G, Audenino AL, Bignardi C, Tagliaferro A, Alvarez-Gayosso C. Physical Characterization of Bismuth Oxide Nanoparticle Based Ceramic Composite for Future Biomedical Application. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1626. [PMID: 33810492 PMCID: PMC8036668 DOI: 10.3390/ma14071626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022]
Abstract
Employment and the effect of eco-friendly bismuth oxide nanoparticles (BiONPs) in bio-cement were studied. The standard method was adopted to prepare BiONPs-composite. Water was adopted for dispersing BiONPs in the composite. A representative batch (2 wt. % of BiONPs) was prepared without water to study the impact of water on composite properties. For each batch, 10 samples were prepared and tested. TGA (thermogravimetric analysis) performed on composite showed 0.8 wt. % losses in samples prepared without water whereas, maximum 2 wt. % weight losses observed in the water-based composite. Presence of BiONPs resulted in a decrease in depth of curing. Three-point bending flexural strength decreased for increasing BiONPs content. Comparative study between 2 wt. % samples with and without water showed 10.40 (±0.91) MPa and 28.45 (±2.50) MPa flexural strength values, respectively, indicating a significant (p < 0.05) increase of the mechanical properties at the macroscale. Nanoindentation revealed that 2 wt. % without water composites showed significant (p < 0.05) highest nanoindentation modulus 26.4 (±1.28) GPa and hardness 0.46 (±0.013) GPa. Usage of water as dispersion media was found to be deleterious for the overall characteristics of the composite but, at the same time, the BiONPs acted as a very promising filler that can be used in this class of composites.
Collapse
Affiliation(s)
- Pravin Jagdale
- Center for Sustainable Future Technologies—IIT@PoliTO Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy;
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| | - Gianpaolo Serino
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy; (A.L.A.); (C.B.)
- PolitoMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Goldie Oza
- National Laboratory for Microfluidics and Nanofluidics (LABMyN), Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), 76703 Queretaro, Mexico;
| | - Alberto Luigi Audenino
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy; (A.L.A.); (C.B.)
- PolitoMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Cristina Bignardi
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy; (A.L.A.); (C.B.)
- PolitoMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Alberto Tagliaferro
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| | - Carlos Alvarez-Gayosso
- Laboratorio de Investigacion de Materiles Dentales, Division de Estudios de Posgrado e Investigacion, Facultad de Odontologia, UNAM, Circuito de la Investigacion Cientifica, Alcaldia de Coyoacan, Ciudad Universitaria, 04510 Mexico, Mexico;
| |
Collapse
|
331
|
Argentati C, Morena F, Fontana C, Tortorella I, Emiliani C, Latterini L, Zampini G, Martino S. Functionalized Silica Star-Shaped Nanoparticles and Human Mesenchymal Stem Cells: An In Vitro Model. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:779. [PMID: 33803869 PMCID: PMC8003255 DOI: 10.3390/nano11030779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
The biomedical translational applications of functionalized nanoparticles require comprehensive studies on their effect on human stem cells. Here, we have tested neat star-shaped mesoporous silica nanoparticles (s-MSN) and their chemically functionalized derivates; we examined nanoparticles (NPs) with similar dimensions but different surface chemistry, due to the amino groups grafted on silica nanoparticles (s-MSN-NH2), and gold nanoseeds chemically adsorbed on silica nanoparticles (s-MSN-Au). The different samples were dropped on glass coverslips to obtain a homogeneous deposition differing only for NPs' chemical functionalization and suitable for long-term culture of human Bone Marrow-Mesenchymal stem cells (hBM-MSCs) and Adipose stem cells (hASCs). Our model allowed us to demonstrate that hBM-MSCs and hASCs have comparable growth curves, viability, and canonical Vinculin Focal adhesion spots on functionalized s-MSN-NH2 and s-MSN-Au as on neat s-MSN and control systems, but also to show morphological changes on all NP types compared to the control counterparts. The new shape was stem-cell-specific and was maintained on all types of NPs. Compared to the other NPs, s-MSN-Au exerted a small genotoxic effect on both stem cell types, which, however, did not affect the stem cell behavior, likely due to a peculiar stem cell metabolic restoration response.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| | - Chiara Fontana
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (C.F.); (L.L.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (C.F.); (L.L.)
| | - Giulia Zampini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (C.F.); (L.L.)
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| |
Collapse
|
332
|
Zennifer A, Senthilvelan P, Sethuraman S, Sundaramurthi D. Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications. Carbohydr Polym 2021; 256:117561. [PMID: 33483063 DOI: 10.1016/j.carbpol.2020.117561] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Carboxymethyl cellulose (CMC) is a water-soluble derivative of cellulose and a major type of cellulose ether prepared by the chemical attack of alkylating reagents on the activated non-crystalline regions of cellulose. It is the first FDA approved cellulose derivative which can be targeted for desired chemical modifications. In this review, the properties along with current advances in the physical and chemical modifications of CMC are discussed. Further, CMC and modified CMC could be engineered to fabricate scaffolds for tissue engineering applications. In recent times, CMC and its derivatives have been developed as smart bioinks for 3D bioprinting applications. From these perspectives, the applications of CMC in tissue engineering and current knowledge on peculiar features of CMC in 3D and 4D bioprinting applications are elaborated in detail. Lastly, future perspectives of CMC for wider applications in tissue engineering and 3D/4D bioprinting are highlighted.
Collapse
Affiliation(s)
- Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Praseetha Senthilvelan
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India.
| |
Collapse
|
333
|
Rachmiel D, Anconina I, Rudnick-Glick S, Halperin-Sternfeld M, Adler-Abramovich L, Sitt A. Hyaluronic Acid and a Short Peptide Improve the Performance of a PCL Electrospun Fibrous Scaffold Designed for Bone Tissue Engineering Applications. Int J Mol Sci 2021; 22:2425. [PMID: 33808946 PMCID: PMC7975971 DOI: 10.3390/ijms22052425] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/12/2023] Open
Abstract
Bone tissue engineering is a rapidly developing, minimally invasive technique for regenerating lost bone with the aid of biomaterial scaffolds that mimic the structure and function of the extracellular matrix (ECM). Recently, scaffolds made of electrospun fibers have aroused interest due to their similarity to the ECM, and high porosity. Hyaluronic acid (HA) is an abundant component of the ECM and an attractive material for use in regenerative medicine; however, its processability by electrospinning is poor, and it must be used in combination with another polymer. Here, we used electrospinning to fabricate a composite scaffold with a core/shell morphology composed of polycaprolactone (PCL) polymer and HA and incorporating a short self-assembling peptide. The peptide includes the arginine-glycine-aspartic acid (RGD) motif and supports cellular attachment based on molecular recognition. Electron microscopy imaging demonstrated that the fibrous network of the scaffold resembles the ECM structure. In vitro biocompatibility assays revealed that MC3T3-E1 preosteoblasts adhered well to the scaffold and proliferated, with significant osteogenic differentiation and calcium mineralization. Our work emphasizes the potential of this multi-component approach by which electrospinning, molecular self-assembly, and molecular recognition motifs are combined, to generate a leading candidate to serve as a scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Dana Rachmiel
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.R.); (S.R.-G.); (M.H.-S.)
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Inbar Anconina
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Physical Chemistry, The School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Safra Rudnick-Glick
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.R.); (S.R.-G.); (M.H.-S.)
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.R.); (S.R.-G.); (M.H.-S.)
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.R.); (S.R.-G.); (M.H.-S.)
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Amit Sitt
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Physical Chemistry, The School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
334
|
Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5030078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preventive and regenerative techniques have been suggested to minimize the aesthetic and functional effects caused by intraoral bone defects, enabling the installation of dental implants. Among them, porous three-dimensional structures (scaffolds) composed mainly of bioabsorbable ceramics, such as hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) stand out for reducing the use of autogenous, homogeneous, and xenogenous bone grafts and their unwanted effects. In order to stimulate bone formation, biodegradable polymers such as cellulose, collagen, glycosaminoglycans, polylactic acid (PLA), polyvinyl alcohol (PVA), poly-ε-caprolactone (PCL), polyglycolic acid (PGA), polyhydroxylbutyrate (PHB), polypropylenofumarate (PPF), polylactic-co-glycolic acid (PLGA), and poly L-co-D, L lactic acid (PLDLA) have also been studied. More recently, hybrid scaffolds can combine the tunable macro/microporosity and osteoinductive properties of ceramic materials with the chemical/physical properties of biodegradable polymers. Various methods are suggested for the manufacture of scaffolds with adequate porosity, such as conventional and additive manufacturing techniques and, more recently, 3D and 4D printing. The purpose of this manuscript is to review features concerning biomaterials, scaffolds macro and microstructure, fabrication techniques, as well as the potential interaction of the scaffolds with the human body.
Collapse
|
335
|
Malysheva K, Kwaśniak K, Gnilitskyi I, Barylyak A, Zinchenko V, Fahmi A, Korchynskyi O, Bobitski Y. Functionalization of Polycaprolactone Electrospun Osteoplastic Scaffolds with Fluorapatite and Hydroxyapatite Nanoparticles: Biocompatibility Comparison of Human Versus Mouse Mesenchymal Stem Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1333. [PMID: 33802003 PMCID: PMC8001513 DOI: 10.3390/ma14061333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
A capability for effective tissue reparation is a living requirement for all multicellular organisms. Bone exits as a precisely orchestrated balance of bioactivities of bone forming osteoblasts and bone resorbing osteoclasts. The main feature of osteoblasts is their capability to produce massive extracellular matrix enriched with calcium phosphate minerals. Hydroxyapatite and its composites represent the most common form of bone mineral providing mechanical strength and significant osteoinductive properties. Herein, hydroxyapatite and fluorapatite functionalized composite scaffolds based on electrospun polycaprolactone have been successfully fabricated. Physicochemical properties, biocompatibility and osteoinductivity of generated matrices have been validated. Both the hydroxyapatite and fluorapatite containing polycaprolactone composite scaffolds demonstrated good biocompatibility towards mesenchymal stem cells. Moreover, the presence of both hydroxyapatite and fluorapatite nanoparticles increased scaffolds' wettability. Furthermore, incorporation of fluorapatite nanoparticles enhanced the ability of the composite scaffolds to interact and support the mesenchymal stem cells attachment to their surfaces as compared to hydroxyapatite enriched composite scaffolds. The study of osteoinductive properties showed the capacity of fluorapatite and hydroxyapatite containing composite scaffolds to potentiate the stimulation of early stages of mesenchymal stem cells' osteoblast differentiation. Therefore, polycaprolactone based composite scaffolds functionalized with fluorapatite nanoparticles generates a promising platform for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Khrystyna Malysheva
- Department of Human Immunology, Faculty of Medicine, University of Rzeszow, Warzywna 1A, 35-959 Rzeszow, Poland; (K.M.); (K.K.)
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, Warzywna 1A, 35-959 Rzeszow, Poland
| | - Konrad Kwaśniak
- Department of Human Immunology, Faculty of Medicine, University of Rzeszow, Warzywna 1A, 35-959 Rzeszow, Poland; (K.M.); (K.K.)
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, Warzywna 1A, 35-959 Rzeszow, Poland
| | - Iaroslav Gnilitskyi
- “NoviNano Lab” LLC, Pasternaka 5, 79015 Lviv, Ukraine;
- Department of Photonics, Lviv Polytechnic National University, S. Bandera 12, 79013 Lviv, Ukraine;
| | - Adriana Barylyak
- Department of Therapeutic Dentistry, Danylo Halytsky Lviv National Medical University, Pekarska 69b, 79010 Lviv, Ukraine;
| | - Viktor Zinchenko
- Department of Chemistry of Functional Inorganic Materials, Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Lustdorfska doroga 86, 65080 Odessa, Ukraine;
| | - Amir Fahmi
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Marie-Curie 1, 47533 Kleve, Germany;
| | - Olexandr Korchynskyi
- Department of Human Immunology, Faculty of Medicine, University of Rzeszow, Warzywna 1A, 35-959 Rzeszow, Poland; (K.M.); (K.K.)
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, Warzywna 1A, 35-959 Rzeszow, Poland
- Department of Biotechnology and Radiology, S.Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 79010 Lviv, Ukraine
- Department of Molecular Immunology, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 01161 Kyiv, Ukraine
| | - Yaroslav Bobitski
- Department of Photonics, Lviv Polytechnic National University, S. Bandera 12, 79013 Lviv, Ukraine;
- Institute of Physics, Centrum of Microelectronics and Nanotechnology, University of Rzeszow, S. Pigonia 1, 35-959 Rzeszow, Poland
| |
Collapse
|
336
|
Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft. Ann Biomed Eng 2021; 49:1128-1150. [PMID: 33674908 DOI: 10.1007/s10439-021-02752-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/14/2021] [Indexed: 12/26/2022]
Abstract
The need for bone grafts is tremendous, and that leads to the use of autograft, allograft, and bone graft substitutes. The biology of the bone is quite complex regarding cellular composition and architecture, hence developing a mineralized connective tissue graft is challenging. Traditionally used bone graft substitutes including metals, biomaterial coated metals and biodegradable scaffolds, suffer from persistent limitations. With the advent and rise of additive manufacturing technologies, the future of repairing bone trauma and defects seems to be optimistic. 3D printing has significant advantages, the foremost of all being faster manipulation of various biocompatible materials and live cells or tissues into the complex natural geometries necessary to mimic and stimulate cellular bone growth. The advent of new-generation bioprinters working with high-precision, micro-dispensing and direct digital manufacturing is aiding in ground-breaking organ and tissue printing, including the bone. The future bone replacement for patients holds excellent promise as scientists are moving closer to the generation of better 3D printed bio-bone grafts that will be safer and more effective. This review aims to summarize the advances in scaffold fabrication techniques, emphasizing 3D printing of biomimetic bone grafts.
Collapse
|
337
|
Li N, Guo R, Zhang ZJ. Bioink Formulations for Bone Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:630488. [PMID: 33614614 PMCID: PMC7892967 DOI: 10.3389/fbioe.2021.630488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Unlike the conventional techniques used to construct a tissue scaffolding, three-dimensional (3D) bioprinting technology enables fabrication of a porous structure with complex and diverse geometries, which facilitate evenly distributed cells and orderly release of signal factors. To date, a range of cell-laden materials, such as natural or synthetic polymers, have been deployed by the 3D bioprinting technique to construct the scaffolding systems and regenerate substitutes for the natural extracellular matrix (ECM). Four-dimensional (4D) bioprinting technology has attracted much attention lately because it aims to accommodate the dynamic structural and functional transformations of scaffolds. However, there remain challenges to meet the technical requirements in terms of suitable processability of the bioink formulations, desired mechanical properties of the hydrogel implants, and cell-guided functionality of the biomaterials. Recent bioprinting techniques are reviewed in this article, discussing strategies for hydrogel-based bioinks to mimic native bone tissue-like extracellular matrix environment, including properties of bioink formulations required for bioprinting, structure requirements, and preparation of tough hydrogel scaffolds. Stimulus mechanisms that are commonly used to trigger the dynamic structural and functional transformations of the scaffold are analyzed. At the end, we highlighted the current challenges and possible future avenues of smart hydrogel-based bioink/scaffolds for bone tissue regeneration.
Collapse
Affiliation(s)
- Na Li
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zhenyu Jason Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
338
|
Abstract
AbstractAlginate is a polysaccharide of natural origin, which shows outstanding properties of biocompatibility, gel forming ability, non-toxicity, biodegradability and easy to process. Due to these excellent properties of alginate, sodium alginate, a hydrogel form of alginate, oxidized alginate and other alginate based materials are used in various biomedical fields, especially in drug delivery, wound healing and tissue engineering. Alginate can be easily processed as the 3D scaffolding materials which includes hydrogels, microcapsules, microspheres, foams, sponges, and fibers and these alginate based bio-polymeric materials have particularly used in tissue healing, healing of bone injuries, scars, wound, cartilage repair and treatment, new bone regeneration, scaffolds for the cell growth. Alginate can be easily modified and blended by adopting some physical and chemical processes and the new alginate derivative materials obtained have new different structures, functions, and properties having improved mechanical strength, cell affinity and property of gelation. This can be attained due to combination with other different biomaterials, chemical and physical crosslinking, and immobilization of definite ligands (sugar and peptide molecules). Hence alginate, its modified forms, derivative and composite materials are found to be more attractive towards tissue engineering. This article provides a comprehensive outline of properties, structural aspects, and application in tissue engineering.
Collapse
|
339
|
Bicer M, Cottrell GS, Widera D. Impact of 3D cell culture on bone regeneration potential of mesenchymal stromal cells. Stem Cell Res Ther 2021; 12:31. [PMID: 33413646 PMCID: PMC7791873 DOI: 10.1186/s13287-020-02094-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
As populations age across the world, osteoporosis and osteoporosis-related fractures are becoming the most prevalent degenerative bone diseases. More than 75 million patients suffer from osteoporosis in the USA, the EU and Japan. Furthermore, it is anticipated that the number of patients affected by osteoporosis will increase by a third by 2050. Although conventional therapies including bisphosphonates, calcitonin and oestrogen-like drugs can be used to treat degenerative diseases of the bone, they are often associated with serious side effects including the development of oesophageal cancer, ocular inflammation, severe musculoskeletal pain and osteonecrosis of the jaw.The use of autologous mesenchymal stromal cells/mesenchymal stem cells (MSCs) is a possible alternative therapeutic approach to tackle osteoporosis while overcoming the limitations of traditional treatment options. However, osteoporosis can cause a decrease in the numbers of MSCs, induce their senescence and lower their osteogenic differentiation potential.Three-dimensional (3D) cell culture is an emerging technology that allows a more physiological expansion and differentiation of stem cells compared to cultivation on conventional flat systems.This review will discuss current understanding of the effects of different 3D cell culture systems on proliferation, viability and osteogenic differentiation, as well as on the immunomodulatory and anti-inflammatory potential of MSCs.
Collapse
Affiliation(s)
- Mesude Bicer
- Stem Cell Biology and Regenerative Medicine Group, Reading School of Pharmacy, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP, UK
| | - Graeme S Cottrell
- Cellular and Molecular Neuroscience, School of Pharmacy, University of Reading, Reading, UK
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, Reading School of Pharmacy, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP, UK.
| |
Collapse
|
340
|
Nair PR, Sreeja S, Sailaja GS. Early biomineralizing chitosan–collagen hybrid scaffold with Cissus quadrangularis extract for regenerative bone tissue engineering. NEW J CHEM 2021. [DOI: 10.1039/d1nj03687d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study demonstrates the strategic fabrication of CQ hexane extract integrated porous, biodegradable CH–CO–HE scaffold crosslinked with biocompatible glyoxal enabling sufficient mechanical stability and assists early biomineralization (day 7).
Collapse
Affiliation(s)
- Praseetha R. Nair
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - S. Sreeja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - G. S. Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
- Inter-University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India
- Centre of Excellence in Advanced Materials, Cochin University of Science and Technology, Kerala, 682022, India
| |
Collapse
|
341
|
Vaidhyanathan B, Vincent P, Vadivel S, Karuppiah P, AL-Dhabi NA, Sadhasivam DR, Vimalraj S, Saravanan S. Fabrication and Investigation of the Suitability of Chitosan-Silver Composite Scaffolds for Bone Tissue Engineering Applications. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
342
|
Ercal P, Pekozer GG. A Current Overview of Scaffold-Based Bone Regeneration Strategies with Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1288:61-85. [PMID: 32185698 DOI: 10.1007/5584_2020_505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone defects due to trauma or diseases still pose a clinical challenge to be resolved in the current tissue engineering approaches. As an alternative to traditional methods to restore bone defects, such as autografts, bone tissue engineering aims to achieve new bone formation via novel biomaterials used in combination with multipotent stem cells and bioactive molecules. Mesenchymal stem cells (MSCs) can be successfully isolated from various dental tissues at different stages of development including dental pulp, apical papilla, dental follicle, tooth germ, deciduous teeth, periodontal ligament and gingiva. A wide range of biomaterials including polymers, ceramics and composites have been investigated for their potential as an ideal bone scaffold material. This article reviews the properties and the manufacturing methods of biomaterials used in bone tissue engineering, and provides an overview of bone tissue regeneration approaches of scaffold and dental stem cell combinations as well as their limitations.
Collapse
Affiliation(s)
- Pınar Ercal
- Faculty of Dentistry, Department of Oral Surgery, Altinbas University, Istanbul, Turkey.
| | - Gorke Gurel Pekozer
- Faculty of Electrical and Electronics Engineering, Department of Biomedical Engineering, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
343
|
Well-defined polyester-grafted silica nanoparticles for biomedical applications: Synthesis and quantitative characterization. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
344
|
Melčová V, Svoradová K, Menčík P, Kontárová S, Rampichová M, Hedvičáková V, Sovková V, Přikryl R, Vojtová L. FDM 3D Printed Composites for Bone Tissue Engineering Based on Plasticized Poly(3-hydroxybutyrate)/poly(d,l-lactide) Blends. Polymers (Basel) 2020; 12:E2806. [PMID: 33260879 PMCID: PMC7761374 DOI: 10.3390/polym12122806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Tissue engineering is a current trend in the regenerative medicine putting pressure on scientists to develop highly functional materials and methods for scaffolds' preparation. In this paper, the calibrated filaments for Fused Deposition Modeling (FDM) based on plasticized poly(3-hydroxybutyrate)/poly(d,l-lactide) 70/30 blend modified with tricalcium phosphate bioceramics were prepared. Two different plasticizers, Citroflex (n-Butyryl tri-n-hexyl citrate) and Syncroflex (oligomeric adipate ester), both used in the amount of 12 wt%, were compared. The printing parameters for these materials were optimized and the printability was evaluated by recently published warping test. The samples were studied with respect to their thermal and mechanical properties, followed by biological in vitro tests including proliferation, viability, and osteogenic differentiation of human mesenchymal stem cells. According to the results from differential scanning calorimetry and tensile measurements, the Citroflex-based plasticizer showed very good softening effect at the expense of worse printability and unsatisfactory performance during biological testing. On the other hand, the samples with Syncroflex demonstrated lower warping tendency compared to commercial polylactide filament with the warping coefficient one third lower. Moreover, the Syncroflex-based samples exhibited the non-cytotoxicity and promising biocompatibility.
Collapse
Affiliation(s)
- Veronika Melčová
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (K.S.); (P.M.); (S.K.); (R.P.)
| | - Kateřina Svoradová
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (K.S.); (P.M.); (S.K.); (R.P.)
| | - Přemysl Menčík
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (K.S.); (P.M.); (S.K.); (R.P.)
| | - Soňa Kontárová
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (K.S.); (P.M.); (S.K.); (R.P.)
| | - Michala Rampichová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.R.); (V.H.); (V.S.)
| | - Věra Hedvičáková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.R.); (V.H.); (V.S.)
| | - Věra Sovková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.R.); (V.H.); (V.S.)
| | - Radek Přikryl
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (K.S.); (P.M.); (S.K.); (R.P.)
| | - Lucy Vojtová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Advanced Biomaterials, Purkyňova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
345
|
Murizan NIS, Mustafa NS, Ngadiman NHA, Mohd Yusof N, Idris A. Review on Nanocrystalline Cellulose in Bone Tissue Engineering Applications. Polymers (Basel) 2020; 12:E2818. [PMID: 33261121 PMCID: PMC7761060 DOI: 10.3390/polym12122818] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Nanocrystalline cellulose is an abundant and inexhaustible organic material on Earth. It can be derived from many lignocellulosic plants and also from agricultural residues. They endowed exceptional physicochemical properties, which have promoted their intensive exploration in biomedical application, especially for tissue engineering scaffolds. Nanocrystalline cellulose has been acknowledged due to its low toxicity and low ecotoxicological risks towards living cells. To explore this field, this review provides an overview of nanocrystalline cellulose in designing materials of bone scaffolds. An introduction to nanocrystalline cellulose and its isolation method of acid hydrolysis are discussed following by the application of nanocrystalline cellulose in bone tissue engineering scaffolds. This review also provides comprehensive knowledge and highlights the contribution of nanocrystalline cellulose in terms of mechanical properties, biocompatibility and biodegradability of bone tissue engineering scaffolds. Lastly, the challenges for future scaffold development using nanocrystalline cellulose are also included.
Collapse
Affiliation(s)
- Nur Ilyana Sahira Murizan
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia; (N.I.S.M.); (N.S.M.); (N.M.Y.)
| | - Nur Syahirah Mustafa
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia; (N.I.S.M.); (N.S.M.); (N.M.Y.)
| | - Nor Hasrul Akhmal Ngadiman
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia; (N.I.S.M.); (N.S.M.); (N.M.Y.)
| | - Noordin Mohd Yusof
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia; (N.I.S.M.); (N.S.M.); (N.M.Y.)
| | - Ani Idris
- c/o Institute of Bioproduct Development, School of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia;
| |
Collapse
|
346
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
347
|
Pan Q, Li Y, Xu J, Kang Y, Li Y, Wang B, Yang YP, Lin S, Li G. The effects of tubular structure on biomaterial aided bone regeneration in distraction osteogenesis. J Orthop Translat 2020. [DOI: 10.1016/j.jot.2020.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
348
|
Kirsh I, Frolova Y, Beznaeva O, Bannikova O, Gubanova M, Tveritnikova I, Romanova V, Filinskaya Y. Influence of the Ultrasonic Treatment on the Properties of Polybutylene Adipate Terephthalate, Modified by Antimicrobial Additive. Polymers (Basel) 2020; 12:E2412. [PMID: 33086696 PMCID: PMC7589592 DOI: 10.3390/polym12102412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/25/2022] Open
Abstract
Particular attention is paid to biodegradable materials from the environmental point of view and antimicrobial materials that ensure the microbiological safety of packaged products. The aim of the work was to study the properties of the composition, based on biodegradable polybutylene adipate terephthalate (PBAT) and the antimicrobial additive-birch bark extract (BBE). Test samples of materials were obtained on the laboratory extruder by extrusion with ultrasonic treatment of the melt. The concentration of the antimicrobial additive in the polymer matrix was 1 wt %. A complex research was carried out to study the structural, physico-mechanical characteristics, antimicrobial properties and biodegradability of the modified PBAT. Comparative assessment of the physico-mechanical characteristics of samples based on PBAT showed that the strength and elongation at break indices slightly decrease when the ultrasonic treatment of the melt is introduced. It was found out, that the antimicrobial additive in the composition of the polymer matrix at the concentration of 1 wt % has a static effect on the development of microorganisms on the surface of the studied modified films. Studies of the biodegradability of modified PBAT by composting for 4 months have shown that the decomposition period of modified materials increased, compared to pure PBAT. The developed modified polymer material can be recommended as an alternative replacement for materials based on polyethylene for food packaging.
Collapse
Affiliation(s)
- Irina Kirsh
- Scientific and Educational Center Advanced Packaging Materials and Recycling Technologies, Center of the Collective Use, Moscow State University of Food Production, 125080 Moscow, Russia; (O.B.); (M.G.); (I.T.); (V.R.)
| | - Yuliya Frolova
- Laboratory of Food Biotechnology and Specialized Products, Federal Research Center of Nutrition and Biotechnology, 109240 Moscow, Russia;
| | - Olga Beznaeva
- Scientific and Educational Center Advanced Packaging Materials and Recycling Technologies, Center of the Collective Use, Moscow State University of Food Production, 125080 Moscow, Russia; (O.B.); (M.G.); (I.T.); (V.R.)
| | - Olga Bannikova
- Scientific and Educational Center Advanced Packaging Materials and Recycling Technologies, Center of the Collective Use, Moscow State University of Food Production, 125080 Moscow, Russia; (O.B.); (M.G.); (I.T.); (V.R.)
| | - Marina Gubanova
- Scientific and Educational Center Advanced Packaging Materials and Recycling Technologies, Center of the Collective Use, Moscow State University of Food Production, 125080 Moscow, Russia; (O.B.); (M.G.); (I.T.); (V.R.)
| | - Isabella Tveritnikova
- Scientific and Educational Center Advanced Packaging Materials and Recycling Technologies, Center of the Collective Use, Moscow State University of Food Production, 125080 Moscow, Russia; (O.B.); (M.G.); (I.T.); (V.R.)
| | - Valentina Romanova
- Scientific and Educational Center Advanced Packaging Materials and Recycling Technologies, Center of the Collective Use, Moscow State University of Food Production, 125080 Moscow, Russia; (O.B.); (M.G.); (I.T.); (V.R.)
| | - Yulia Filinskaya
- Department of Automated Control Systems, Moscow State University of Technologies and Management K.G. Razumovsky, 109004 Moscow, Russia;
| |
Collapse
|
349
|
Wang J, Chen J, Ran Y, He Q, Jiang T, Li W, Yu X. Utility of Air Bladder-Derived Nanostructured ECM for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:553529. [PMID: 33178669 PMCID: PMC7594528 DOI: 10.3389/fbioe.2020.553529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022] Open
Abstract
Exploration for ideal bone regeneration materials still remains a hot research topic due to the unmet clinical challenge of large bone defect healing. Bone grafting materials have gradually evolved from single component to multiple-component composite, but their functions during bone healing still only regulate one or two biological processes. Therefore, there is an urgent need to develop novel materials with more complex composition, which convey multiple biological functions during bone regeneration. Here, we report an naturally nanostructured ECM based composite scaffold derived from fish air bladder and combined with dicalcium phosphate (DCP) microparticles to form a new type of bone grafting material. The DCP/acellular tissue matrix (DCP/ATM) scaffold demonstrated porous structure with porosity over 65% and great capability of absorbing water and other biologics. In vitro cell culture study showed that DCP/ATM scaffold could better support osteoblast proliferation and differentiation in comparison with DCP/ADC made from acid extracted fish collagen. Moreover, DCP/ATM also demonstrated more potent bone regenerative properties in a rat calvarial defect model, indicating incorporation of ECM based matrix in the scaffolds could better support bone formation. Taken together, this study demonstrates a new avenue toward the development of new type of bone regeneration biomaterial utilizing ECM as its key components.
Collapse
Affiliation(s)
- Jianwei Wang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jiayu Chen
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Yongfeng Ran
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Qianhong He
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Tao Jiang
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Weixu Li
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xiaohua Yu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
350
|
Jensen G, Holloway JL, Stabenfeldt SE. Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine. Cells 2020; 9:E2113. [PMID: 32957463 PMCID: PMC7565873 DOI: 10.3390/cells9092113] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA) is a primary component of the brain extracellular matrix and functions through cellular receptors to regulate cell behavior within the central nervous system (CNS). These behaviors, such as migration, proliferation, differentiation, and inflammation contribute to maintenance and homeostasis of the CNS. However, such equilibrium is disrupted following injury or disease leading to significantly altered extracellular matrix milieu and cell functions. This imbalance thereby inhibits inherent homeostatic processes that support critical tissue health and functionality in the CNS. To mitigate the damage sustained by injury/disease, HA-based tissue engineering constructs have been investigated for CNS regenerative medicine applications. HA's effectiveness in tissue healing and regeneration is primarily attributed to its impact on cell signaling and the ease of customizing chemical and mechanical properties. This review focuses on recent findings to highlight the applications of HA-based materials in CNS regenerative medicine.
Collapse
Affiliation(s)
- Gregory Jensen
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Julianne L. Holloway
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|