301
|
Lee CK, Herbold CW, Polson SW, Wommack KE, Williamson SJ, McDonald IR, Cary SC. Groundtruthing next-gen sequencing for microbial ecology-biases and errors in community structure estimates from PCR amplicon pyrosequencing. PLoS One 2012; 7:e44224. [PMID: 22970184 PMCID: PMC3435322 DOI: 10.1371/journal.pone.0044224] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/03/2012] [Indexed: 11/18/2022] Open
Abstract
Analysis of microbial communities by high-throughput pyrosequencing of SSU rRNA gene PCR amplicons has transformed microbial ecology research and led to the observation that many communities contain a diverse assortment of rare taxa-a phenomenon termed the Rare Biosphere. Multiple studies have investigated the effect of pyrosequencing read quality on operational taxonomic unit (OTU) richness for contrived communities, yet there is limited information on the fidelity of community structure estimates obtained through this approach. Given that PCR biases are widely recognized, and further unknown biases may arise from the sequencing process itself, a priori assumptions about the neutrality of the data generation process are at best unvalidated. Furthermore, post-sequencing quality control algorithms have not been explicitly evaluated for the accuracy of recovered representative sequences and its impact on downstream analyses, reducing useful discussion on pyrosequencing reads to their diversity and abundances. Here we report on community structures and sequences recovered for in vitro-simulated communities consisting of twenty 16S rRNA gene clones tiered at known proportions. PCR amplicon libraries of the V3-V4 and V6 hypervariable regions from the in vitro-simulated communities were sequenced using the Roche 454 GS FLX Titanium platform. Commonly used quality control protocols resulted in the formation of OTUs with >1% abundance composed entirely of erroneous sequences, while over-aggressive clustering approaches obfuscated real, expected OTUs. The pyrosequencing process itself did not appear to impose significant biases on overall community structure estimates, although the detection limit for rare taxa may be affected by PCR amplicon size and quality control approach employed. Meanwhile, PCR biases associated with the initial amplicon generation may impose greater distortions in the observed community structure.
Collapse
Affiliation(s)
- Charles K. Lee
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Craig W. Herbold
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Shawn W. Polson
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, United States of America
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - K. Eric Wommack
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, Delaware, United States of America
| | | | - Ian R. McDonald
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - S. Craig Cary
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, Delaware, United States of America
- * E-mail:
| |
Collapse
|
302
|
Ray JL, Töpper B, An S, Silyakova A, Spindelböck J, Thyrhaug R, DuBow MS, Thingstad TF, Sandaa RA. Effect of increasedpCO2on bacterial assemblage shifts in response to glucose addition in Fram Strait seawater mesocosms. FEMS Microbiol Ecol 2012; 82:713-23. [DOI: 10.1111/j.1574-6941.2012.01443.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/20/2012] [Accepted: 06/29/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Birte Töpper
- Department of Biology; University of Bergen; Bergen; Norway
| | - Shu An
- CNRS UMR 8621; Institut de Génétique et Microbiologie, Univ Paris-Sud; Orsay; France
| | | | | | - Runar Thyrhaug
- Department of Biology; University of Bergen; Bergen; Norway
| | - Michael S. DuBow
- CNRS UMR 8621; Institut de Génétique et Microbiologie, Univ Paris-Sud; Orsay; France
| | | | | |
Collapse
|
303
|
Soil fungal community composition does not alter along a latitudinal gradient through the maritime and sub-Antarctic. FUNGAL ECOL 2012. [DOI: 10.1016/j.funeco.2011.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
304
|
Pontarp M, Canbäck B, Tunlid A, Lundberg P. Phylogenetic analysis suggests that habitat filtering is structuring marine bacterial communities across the globe. MICROBIAL ECOLOGY 2012; 64:8-17. [PMID: 22286378 PMCID: PMC3375428 DOI: 10.1007/s00248-011-0005-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/27/2011] [Indexed: 05/15/2023]
Abstract
The phylogenetic structure and community composition were analysed in an existing data set of marine bacterioplankton communities to elucidate the evolutionary and ecological processes dictating the assembly. The communities were sampled from coastal waters at nine locations distributed worldwide and were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes. The analyses show that the local communities are phylogenetically different from each other and that a majority of them are phylogenetically clustered, i.e. the species (operational taxonomic units) were more related to each other than expected by chance. Accordingly, the local communities were assembled non-randomly from the global pool of available bacterioplankton. Further, the phylogenetic structures of the communities were related to the water temperature at the locations. In agreement with similar studies, including both macroorganisms and bacteria, these results suggest that marine bacterial communities are structured by “habitat filtering”, i.e. through non-random colonization and invasion determined by environmental characteristics. Different bacterial types seem to have different ecological niches that dictate their survival in different habitats. Other eco-evolutionary processes that may contribute to the observed phylogenetic patterns are discussed. The results also imply a mapping between phenotype and phylogenetic relatedness which facilitates the use of community phylogenetic structure analysis to infer ecological and evolutionary assembly processes.
Collapse
Affiliation(s)
- Mikael Pontarp
- Theoretical Population Ecology and Evolution Group, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
305
|
Bryant JA, Stewart FJ, Eppley JM, DeLong EF. Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone. Ecology 2012; 93:1659-73. [DOI: 10.1890/11-1204.1] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
306
|
Sun MY, Dafforn KA, Brown MV, Johnston EL. Bacterial communities are sensitive indicators of contaminant stress. MARINE POLLUTION BULLETIN 2012; 64:1029-1038. [PMID: 22385752 DOI: 10.1016/j.marpolbul.2012.01.035] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/16/2012] [Accepted: 01/21/2012] [Indexed: 05/31/2023]
Abstract
With many environments worldwide experiencing at least some degree of anthropogenic modification, there is great urgency to identify sensitive indicators of ecosystem stress. Estuarine organisms are particularly vulnerable to anthropogenic contaminants. This study presents bacterial communities as sensitive indicators of contaminant stress. Sediments were collected from multiple sites within inner and outer zones of three heavily modified and three relatively unmodified estuaries. Bacterial communities were censused using Automated Ribosomal Intergenic Spacer Analysis and analysed for a suite of metal and PAH contaminants. Shifts in both bacterial community composition and diversity showed strong associations with sediment contaminant concentrations, particularly with metals. Importantly, these changes are discernable from environmental variation inherent to highly complex estuarine environments. Moreover, variation in bacterial communities within sites was limited. This allowed for differences between sites, zones and estuaries to be explained by variables of interest such as contaminants that vary between, but not within individual sites.
Collapse
Affiliation(s)
- Melanie Y Sun
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
307
|
Yilmaz P, Iversen MH, Hankeln W, Kottmann R, Quast C, Glöckner FO. Ecological structuring of bacterial and archaeal taxa in surface ocean waters. FEMS Microbiol Ecol 2012; 81:373-85. [PMID: 22416918 DOI: 10.1111/j.1574-6941.2012.01357.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/02/2011] [Accepted: 03/04/2012] [Indexed: 11/30/2022] Open
Abstract
The Global Ocean Sampling (GOS) expedition is currently the largest and geographically most comprehensive metagenomic dataset, including samples from the Atlantic, Pacific, and Indian Oceans. This study makes use of the wide range of environmental conditions and habitats encompassed within the GOS sites in order to investigate the ecological structuring of bacterial and archaeal taxon ranks. Community structures based on taxonomically classified 16S ribosomal RNA (rRNA) gene fragments at phylum, class, order, family, and genus rank levels were examined using multivariate statistical analysis, and the results were inspected in the context of oceanographic environmental variables and structured habitat classifications. At all taxon rank levels, community structures of neritic, oceanic, estuarine biomes, as well as other exotic biomes (salt marsh, lake, mangrove), were readily distinguishable from each other. A strong structuring of the communities with chlorophyll a concentration and a weaker yet significant structuring with temperature and salinity were observed. Furthermore, there were significant correlations between community structures and habitat classification. These results were used for further investigation of one-to-one relationships between taxa and environment and provided indications for ecological preferences shaped by primary production for both cultured and uncultured bacterial and archaeal clades.
Collapse
Affiliation(s)
- Pelin Yilmaz
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
308
|
Jamieson RE, Rogers AD, Billett DSM, Smale DA, Pearce DA. Patterns of marine bacterioplankton biodiversity in the surface waters of the Scotia Arc, Southern Ocean. FEMS Microbiol Ecol 2012; 80:452-68. [PMID: 22273466 DOI: 10.1111/j.1574-6941.2012.01313.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 01/06/2012] [Accepted: 01/12/2012] [Indexed: 11/30/2022] Open
Abstract
Spatial patchiness in marine surface bacterioplankton populations was investigated in the Southern Ocean, where the Antarctic Circumpolar Current meets the islands of the Scotia Arc and is subjected to terrestrial input, upwelling of nutrients and seasonal phytoplankton blooms. Total bacterioplankton population density, group-specific taxonomic distribution and six of eight dominant members of the bacterioplankton community were found to be consistent across 18 nearshore sites at eight locations around the Scotia Arc. Results from seven independent 16S rRNA gene clone libraries (1223 sequences in total) and fluorescent in situ hybridization suggested that microbial assemblages were predominantly homogeneous between Scotia Arc sites, where the Alphaproteobacteria, Gammaproteobacteria and the Cytophaga-Flavobacterium-Bacteroidetes cluster were the dominant bacterial groups. Of the 1223 useable sequences generated, 1087 (89%) shared ≥ 97% similarity with marine microorganisms and 331 (27%) matched published sequences previously detected in permanently cold Arctic and Antarctic marine environments. Taken together, results suggest that the dominant bacterioplankton groups are consistent between locations, but significant differences may be detected across the rare biodiversity.
Collapse
Affiliation(s)
- Rachel E Jamieson
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | | | | | | | | |
Collapse
|
309
|
Orsi W, Song YC, Hallam S, Edgcomb V. Effect of oxygen minimum zone formation on communities of marine protists. ISME JOURNAL 2012; 6:1586-601. [PMID: 22402396 DOI: 10.1038/ismej.2012.7] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Changes in ocean temperature and circulation patterns compounded by human activities are leading to oxygen minimum zone (OMZ) expansion with concomitant alteration in nutrient and climate active trace gas cycling. Here, we report the response of microbial eukaryote populations to seasonal changes in water column oxygen-deficiency using Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island British Columbia, as a model ecosystem. We combine small subunit ribosomal RNA gene sequencing approaches with multivariate statistical methods to reveal shifts in operational taxonomic units during successive stages of seasonal stratification and renewal. A meta-analysis is used to identify common and unique patterns of community composition between Saanich Inlet and the anoxic/sulfidic Cariaco Basin (Venezuela) and Framvaren Fjord (Norway) to show shared and unique responses of microbial eukaryotes to oxygen and sulfide in these three environments. Our analyses also reveal temporal fluctuations in rare populations of microbial eukaryotes, particularly anaerobic ciliates, that may be of significant importance to the biogeochemical cycling of methane in OMZs. Eukaryotic 18S rRNA gene sequences recovered from the Saanich Inlet water column on were deposited in Genbank under accession numbers HQ864863–HQ871151.
Collapse
Affiliation(s)
- William Orsi
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | | | |
Collapse
|
310
|
Abstract
Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.
Collapse
|
311
|
Gregoracci GB, Nascimento JR, Cabral AS, Paranhos R, Valentin JL, Thompson CC, Thompson FL. Structuring of bacterioplankton diversity in a large tropical bay. PLoS One 2012; 7:e31408. [PMID: 22363639 PMCID: PMC3283626 DOI: 10.1371/journal.pone.0031408] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/10/2012] [Indexed: 12/05/2022] Open
Abstract
Structuring of bacterioplanktonic populations and factors that determine the structuring of specific niche partitions have been demonstrated only for a limited number of colder water environments. In order to better understand the physical chemical and biological parameters that may influence bacterioplankton diversity and abundance, we examined their productivity, abundance and diversity in the second largest Brazilian tropical bay (Guanabara Bay, GB), as well as seawater physical chemical and biological parameters of GB. The inner bay location with higher nutrient input favored higher microbial (including vibrio) growth. Metagenomic analysis revealed a predominance of Gammaproteobacteria in this location, while GB locations with lower nutrient concentration favored Alphaproteobacteria and Flavobacteria. According to the subsystems (SEED) functional analysis, GB has a distinctive metabolic signature, comprising a higher number of sequences in the metabolism of phosphorus and aromatic compounds and a lower number of sequences in the photosynthesis subsystem. The apparent phosphorus limitation appears to influence the GB metagenomic signature of the three locations. Phosphorus is also one of the main factors determining changes in the abundance of planktonic vibrios, suggesting that nutrient limitation can be observed at community (metagenomic) and population levels (total prokaryote and vibrio counts).
Collapse
Affiliation(s)
- Gustavo B. Gregoracci
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Juliana R. Nascimento
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Anderson S. Cabral
- Laboratory of Hydrobiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rodolfo Paranhos
- Laboratory of Hydrobiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jean L. Valentin
- Laboratory of Zooplankton, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C. Thompson
- Laboratory of Molecular Genetics of Microorganisms, IOC-FIOCRUZ, Rio de Janeiro, Brazil
| | - Fabiano L. Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
312
|
Pečnerová P, Martínková N. Evolutionary history of tree squirrels (Rodentia, Sciurini) based on multilocus phylogeny reconstruction. ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2011.00528.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
313
|
Soininen J. Macroecology of unicellular organisms - patterns and processes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:10-22. [PMID: 23757224 DOI: 10.1111/j.1758-2229.2011.00308.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Macroecology examines the relationship between organisms and their environment at large spatial (and temporal) scales. Typically, macroecologists explain the large-scale patterns of abundance, distribution and diversity. Despite the difficulties in sampling and characterizing microbial diversity, macroecologists have recently also been interested in unicellular organisms. Here, I review the current advances made in microbial macroecology, as well as discuss related ecosystem functions. Overall, it seems that microorganisms suit surprisingly well to known species abundance distributions and show positive relationship between distribution and adundance. Microbial species-area and distance-decay relationships tend to be weaker than for macroorganisms, but nonetheless significant. Few findings on altitudinal gradients in unicellular taxa seem to differ greatly from corresponding findings for larger taxa, whereas latitudinal gradients among microorganisms have either been clearly evident or absent depending on the context. Literature also strongly emphasizes the role of spatial scale for the patterns of diversity and suggests that patterns are affected by species traits as well as ecosystem characteristics. Finally, I discuss the large role of local biotic and abiotic variables driving the community assembly in unicellular taxa and eventually dictating how multiple ecosystem processes are performed. Present review highlights the fact that most microorganisms may not differ fundamentally from larger taxa in their large-scale distribution patterns. Yet, review also shows that many aspects of microbial macroecology are still relatively poorly understood and specific patterns depend on focal taxa and ecosystem concerned.
Collapse
Affiliation(s)
- Janne Soininen
- Department of Environmental Sciences, P.O. Box 65, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
314
|
Wood SA, Taylor DI, McNabb P, Walker J, Adamson J, Cary SC. Tetrodotoxin concentrations in Pleurobranchaea maculata: temporal, spatial and individual variability from New Zealand populations. Mar Drugs 2012; 10:163-176. [PMID: 22363228 PMCID: PMC3280535 DOI: 10.3390/md10010163] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 11/16/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin that has been identified in a range of phylogenetically unrelated marine and terrestrial organisms. Tetrodotoxin was recently detected in New Zealand in Pleurobranchaea maculata (the grey side-gilled sea slug). From June 2010 to June 2011 wild specimens were collected from 10 locations around New Zealand. At one site (Narrow Neck Beach, Auckland) up to 10 individuals were collected monthly for 6 months. Attempts were also made to rear P. maculata in captivity. Tetrodotoxin was detected in samples from eight of the ten sites. The highest average (368.7 mg kg−1) and maximum (1414.0 mg kg−1) concentrations were measured in samples from Illiomama Rock (Auckland). Of the toxic populations tested there was significant variability in TTX concentrations among individuals, with the highest difference (62 fold) measured at Illiomama Rock. Tetrodotoxin concentrations in samples from Narrow Neck Beach varied temporally, ranging from an average of 184 mg kg−1 in June 2010 to 17.5 mg kg−1 by December 2010. There was no correlation between TTX levels and mass. The highest levels correspond with the egg laying season (June–August) and this, in concert with the detection of high levels of TTX in eggs and early larval stages, suggests that TTX may have a defensive function in P. maculata. Only one larva was successfully reared to full maturation and no TTX was detected.
Collapse
Affiliation(s)
- Susanna A. Wood
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (D.I.T.); (P.M.); (J.A.)
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
- Author to whom correspondence should be addressed; ; Tel.: +64-3-548-2319; Fax: +64-3-546-9464
| | - David I. Taylor
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (D.I.T.); (P.M.); (J.A.)
| | - Paul McNabb
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (D.I.T.); (P.M.); (J.A.)
- Department of Chemistry, Otago University, P.O. Box 56, Dunedin 9054, New Zealand
| | - Jarrod Walker
- Auckland Council, 1 The Strand, Level 4, Takapuna, Auckland 0622, New Zealand;
| | - Janet Adamson
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (D.I.T.); (P.M.); (J.A.)
| | - Stephen Craig Cary
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| |
Collapse
|
315
|
Stomp M, Huisman J, Mittelbach GG, Litchman E, Klausmeier CA. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 2012; 92:2096-107. [PMID: 22164834 DOI: 10.1890/10-1023.1] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our planet shows striking gradients in the species richness of plants and animals, from high biodiversity in the tropics to low biodiversity in polar and high-mountain regions. Recently, similar patterns have been described for some groups of microorganisms, but the large-scale biogeographical distribution of freshwater phytoplankton diversity is still largely unknown. We examined the species diversity of freshwater phytoplankton sampled from 540 lakes and reservoirs distributed across the continental United States and found strong latitudinal, longitudinal, and altitudinal gradients in phytoplankton biodiversity, demonstrating that microorganisms can show substantial geographic variation in biodiversity. Detailed analysis using structural equation models indicated that these large-scale biodiversity gradients in freshwater phytoplankton diversity were mainly driven by local environmental factors, although there were residual direct effects of latitude, longitude, and altitude as well. Specifically, we found that phytoplankton species richness was an increasing saturating function of lake chlorophyll a concentration, increased with lake surface area and possibly increased with water temperature, resembling effects of productivity, habitat area, and temperature on diversity patterns commonly observed for macroorganisms. In turn, these local environmental factors varied along latitudinal, longitudinal, and altitudinal gradients. These results imply that changes in land use or climate that affect these local environmental factors are likely to have major impacts on large-scale biodiversity patterns of freshwater phytoplankton.
Collapse
Affiliation(s)
- Maayke Stomp
- Kellogg Biological Station, Department of Plant Biology, Michigan State University, Hickory Corners, Michigan 49060, USA
| | | | | | | | | |
Collapse
|
316
|
|
317
|
Latitudinal gradients in degradation of marine dissolved organic carbon. PLoS One 2011; 6:e28900. [PMID: 22216139 PMCID: PMC3247214 DOI: 10.1371/journal.pone.0028900] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/16/2011] [Indexed: 11/25/2022] Open
Abstract
Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO2 reservoir, such a change could profoundly affect the global carbon cycle.
Collapse
|
318
|
Gonzalez A, King A, Robeson MS, Song S, Shade A, Metcalf JL, Knight R. Characterizing microbial communities through space and time. Curr Opin Biotechnol 2011; 23:431-6. [PMID: 22154467 DOI: 10.1016/j.copbio.2011.11.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 10/27/2011] [Accepted: 11/11/2011] [Indexed: 01/25/2023]
Abstract
Until recently, the study of microbial diversity has mainly been limited to descriptive approaches, rather than predictive model-based analyses. The development of advanced analytical tools and decreasing cost of high-throughput multi-omics technologies has made the later approach more feasible. However, consensus is lacking as to which spatial and temporal scales best facilitate understanding of the role of microbial diversity in determining both public and environmental health. Here, we review the potential for combining these new technologies with both traditional and nascent spatio-temporal analysis methods. The fusion of proper spatio-temporal sampling, combined with modern multi-omics and computational tools, will provide insight into the tracking, development and manipulation of microbial communities.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | | | |
Collapse
|
319
|
Ngugi DK, Antunes A, Brune A, Stingl U. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea. Mol Ecol 2011; 21:388-405. [PMID: 22133021 DOI: 10.1111/j.1365-294x.2011.05378.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the 'small-cell' and 'large-cell' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for ∼93% of all sequences, whereas a tail of 'rare' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions.
Collapse
Affiliation(s)
- David Kamanda Ngugi
- Red Sea Research Center, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955 6900, Saudi Arabia.
| | | | | | | |
Collapse
|
320
|
Wang J, Yang D, Zhang Y, Shen J, van der Gast C, Hahn MW, Wu Q. Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms? PLoS One 2011; 6:e27597. [PMID: 22125616 PMCID: PMC3220692 DOI: 10.1371/journal.pone.0027597] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 10/20/2011] [Indexed: 11/18/2022] Open
Abstract
It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE) with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers) of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline). For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity), the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns.
Collapse
Affiliation(s)
- Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Dongmei Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Yong Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Life Sciences College, Anhui Normal University, Wuhu, China
| | - Ji Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Christopher van der Gast
- National Environment Research Council (NERC) Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Martin W. Hahn
- Institute for Limnology, Austrian Academy of Sciences, Mondsee, Austria
| | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- * E-mail:
| |
Collapse
|
321
|
Abstract
Robust seasonal dynamics in microbial community composition have previously been observed in the English Channel L4 marine observatory. These could be explained either by seasonal changes in the taxa present at the L4 site, or by the continuous modulation of abundance of taxa within a persistent microbial community. To test these competing hypotheses, deep sequencing of 16S rRNA from one randomly selected time point to a depth of 10 729 927 reads was compared with an existing taxonomic survey data covering 6 years. When compared against the 6-year survey of 72 shallow sequenced time points, the deep sequenced time point maintained 95.4% of the combined shallow OTUs. Additionally, on average, 99.75%±0.06 (mean±s.d.) of the operational taxonomic units found in each shallow sequenced sample were also found in the single deep sequenced sample. This suggests that the vast majority of taxa identified in this ecosystem are always present, but just in different proportions that are predictable. Thus observed changes in community composition are actually variations in the relative abundance of taxa, not, as was previously believed, demonstrating extinction and recolonization of taxa in the ecosystem through time.
Collapse
|
322
|
Bienhold C, Boetius A, Ramette A. The energy-diversity relationship of complex bacterial communities in Arctic deep-sea sediments. ISME JOURNAL 2011; 6:724-32. [PMID: 22071347 PMCID: PMC3309351 DOI: 10.1038/ismej.2011.140] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The availability of nutrients and energy is a main driver of biodiversity for plant and animal communities in terrestrial and marine ecosystems, but we are only beginning to understand whether and how energy–diversity relationships may be extended to complex natural bacterial communities. Here, we analyzed the link between phytodetritus input, diversity and activity of bacterial communities of the Siberian continental margin (37–3427 m water depth). Community structure and functions, such as enzymatic activity, oxygen consumption and carbon remineralization rates, were highly related to each other, and with energy availability. Bacterial richness substantially increased with increasing sediment pigment content, suggesting a positive energy–diversity relationship in oligotrophic regions. Richness leveled off, forming a plateau, when mesotrophic sites were included, suggesting that bacterial communities and other benthic fauna may be structured by similar mechanisms. Dominant bacterial taxa showed strong positive or negative relationships with phytodetritus input and allowed us to identify candidate bioindicator taxa. Contrasting responses of individual taxa to changes in phytodetritus input also suggest varying ecological strategies among bacterial groups along the energy gradient. Our results imply that environmental changes affecting primary productivity and particle export from the surface ocean will not only affect bacterial community structure but also bacterial functions in Arctic deep-sea sediment, and that sediment bacterial communities can record shifts in the whole ocean ecosystem functioning.
Collapse
Affiliation(s)
- Christina Bienhold
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | | | | |
Collapse
|
323
|
Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. ISME JOURNAL 2011; 6:554-63. [PMID: 22011718 DOI: 10.1038/ismej.2011.135] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Few studies of microbial biogeography address variability across both multiple habitats and multiple seasons. Here we examine the spatial and temporal variability of bacterioplankton community composition of the Columbia River coastal margin using 16S amplicon pyrosequencing of 300 water samples collected in 2007 and 2008. Communities separated into seven groups (ANOSIM, P<0.001): river, estuary, plume, epipelagic, mesopelagic, shelf bottom (depth<350 m) and slope bottom (depth>850 m). The ordination of these samples was correlated with salinity (ρ=-0.83) and depth (ρ=-0.62). Temporal patterns were obscured by spatial variability among the coastal environments, and could only be detected within individual groups. Thus, structuring environmental factors (for example, salinity, depth) dominate over seasonal changes in determining community composition. Seasonal variability was detected across an annual cycle in the river, estuary and plume where communities separated into two groups, early year (April-July) and late year (August-Nov), demonstrating annual reassembly of communities over time. Determining both the spatial and temporal variability of bacterioplankton communities provides a framework for modeling these communities across environmental gradients from river to deep ocean.
Collapse
|
324
|
Ghiglione JF, Murray AE. Pronounced summer to winter differences and higher wintertime richness in coastal Antarctic marine bacterioplankton. Environ Microbiol 2011; 14:617-29. [PMID: 22003839 DOI: 10.1111/j.1462-2920.2011.02601.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Marine bacterioplankton studies over the annual cycle in polar systems are limited due to logistic constraints in site access and support. Here, we conducted a comparative study of marine bacterioplankton sampled at several time points over the annual cycle (12 occasions each) at sub-Antarctic Kerguelen Islands (KI) and Antarctic Peninsula (AP) coastal sites in order to establish a better understanding of the extent and nature of variation in diversity and community structure at these different latitudes (49-64S). Molecular methods targeting the 16S rRNA gene (DGGE, CE-SSCP and tag pyrosequencing) suggest a strong seasonal pattern with higher richness in winter and a clear influence of phytoplankton bloom events on bacterioplankton community structure and diversity in both locations. The distribution of sequence tags within Gammaproteobacteria, Alphaproteobacteria and Bacteriodetes differed between the two regions. At both sites, several abundant Rhodobacteraceae, uncultivated Gammaproteobacteria and Bacteriodetes-associated tags displayed intense seasonal variation often with similar trends at both sites. This enhanced understanding of variability in dominant groups of bacterioplankton over the annual cycle contributes to an expanding baseline to understand climate change impacts in the coastal zone of polar oceans and provides a foundation for comparison with open ocean polar systems.
Collapse
Affiliation(s)
- J F Ghiglione
- CNRS, UMR7621, Laboratoire d'Océanographie Microbienne LOMIC, F-66651 Banyuls-sur-Mer, France
| | | |
Collapse
|
325
|
Kostadinov I, Kottmann R, Ramette A, Waldmann J, Buttigieg PL, Glöckner FO. Quantifying the effect of environment stability on the transcription factor repertoire of marine microbes. MICROBIAL INFORMATICS AND EXPERIMENTATION 2011; 1:9. [PMID: 22587903 PMCID: PMC3372289 DOI: 10.1186/2042-5783-1-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/07/2011] [Indexed: 11/14/2022]
Abstract
Background DNA-binding transcription factors (TFs) regulate cellular functions in prokaryotes, often in response to environmental stimuli. Thus, the environment exerts constant selective pressure on the TF gene content of microbial communities. Recently a study on marine Synechococcus strains detected differences in their genomic TF content related to environmental adaptation, but so far the effect of environmental parameters on the content of TFs in bacterial communities has not been systematically investigated. Results We quantified the effect of environment stability on the transcription factor repertoire of marine pelagic microbes from the Global Ocean Sampling (GOS) metagenome using interpolated physico-chemical parameters and multivariate statistics. Thirty-five percent of the difference in relative TF abundances between samples could be explained by environment stability. Six percent was attributable to spatial distance but none to a combination of both spatial distance and stability. Some individual TFs showed a stronger relationship to environment stability and space than the total TF pool. Conclusions Environmental stability appears to have a clearly detectable effect on TF gene content in bacterioplanktonic communities described by the GOS metagenome. Interpolated environmental parameters were shown to compare well to in situ measurements and were essential for quantifying the effect of the environment on the TF content. It is demonstrated that comprehensive and well-structured contextual data will strongly enhance our ability to interpret the functional potential of microbes from metagenomic data.
Collapse
Affiliation(s)
- Ivaylo Kostadinov
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany.
| | | | | | | | | | | |
Collapse
|
326
|
Boyero L, Pearson RG, Dudgeon D, Graça MAS, Gessner MO, Albariño RJ, Ferreira V, Yule CM, Boulton AJ, Arunachalam M, Callisto M, Chauvet E, Ramírez A, Chará J, Moretti MS, Gonçalves JF, Helson JE, Chará-Serna AM, Encalada AC, Davies JN, Lamothe S, Cornejo A, Li AOY, Buria LM, Villanueva VD, Zúñiga MC, Pringle CM. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 2011; 92:1839-48. [DOI: 10.1890/10-2244.1] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
327
|
Abstract
Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.
Collapse
|
328
|
Coll-Lladó M, Acinas SG, Pujades C, Pedrós-Alió C. Transcriptome fingerprinting analysis: an approach to explore gene expression patterns in marine microbial communities. PLoS One 2011; 6:e22950. [PMID: 21857972 PMCID: PMC3153481 DOI: 10.1371/journal.pone.0022950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/01/2011] [Indexed: 11/18/2022] Open
Abstract
Microbial transcriptomics are providing new insights into the functional processes of microbial communities. However, analysis of each sample is still expensive and time consuming. A rapid and low cost method that would allow the identification of the most interesting samples for posterior in-depth metatranscriptomics analysis would be extremely useful. Here we present Transcriptome Fingerprinting Analysis (TFA) as an approach to fulfill this objective in microbial ecology studies. We have adapted the differential display technique for mRNA fingerprinting based on the PCR amplification of expressed transcripts to interrogate natural microbial eukaryotic communities. Unlike other techniques, TFA does not require prior knowledge of the mRNA sequences to be detected. We have used a set of arbitrary primers coupled with a fluorescence labeled primer targeting the poly(A) tail of the eukaryotic mRNA, with further detection of the resulting labeled cDNA products in an automated genetic analyzer. The output represented by electropherogram peak patterns allowed the comparison of a set of genes expressed at the time of sampling. TFA has been optimized by testing the sensitivity of the method for different initial RNA amounts, and the repeatability of the gene expression patterns with increasing time after sampling both with cultures and environmental samples. Results show that TFA is a promising approach to explore the dynamics of gene expression patterns in microbial communities.
Collapse
Affiliation(s)
- Montserrat Coll-Lladó
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Silvia G. Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Cristina Pujades
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Carlos Pedrós-Alió
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
- * E-mail:
| |
Collapse
|
329
|
Fortunato CS, Crump BC. Bacterioplankton community variation across river to ocean environmental gradients. MICROBIAL ECOLOGY 2011; 62:374-382. [PMID: 21286702 DOI: 10.1007/s00248-011-9805-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/12/2011] [Indexed: 05/30/2023]
Abstract
Coastal zones encompass a complex spectrum of environmental gradients that each impact the composition of bacterioplankton communities. Few studies have attempted to address these gradients comprehensively. We generated a synoptic, 16S rRNA gene-based bacterioplankton community profile of a coastal zone by applying the fingerprinting technique denaturing gradient gel electrophoresis to water samples collected from the Columbia River, estuary, and plume, and along coastal transects covering 360 km of the Oregon and Washington coasts and extending to the deep ocean (>2,000 m). Communities were found to cluster into five distinct groups based on location in the system (ANOSIM, p < 0.003): estuary, plume, epipelagic, shelf bottom (depth < 150 m), and slope bottom (depth > 650 m). Across all environments, abiotic factors (salinity, temperature, depth) explained most of the community variability (ρ = 0.734). But within each coastal environment, biotic factors explained most of the variability. Thus, structuring physical factors in coastal zones, such as salinity and temperature, define the boundaries of many distinct microbial habitats, but within these habitats variability in microbial communities is explained by biological gradients in primary and secondary productivity.
Collapse
Affiliation(s)
- Caroline S Fortunato
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, USA.
| | | |
Collapse
|
330
|
Raes J, Letunic I, Yamada T, Jensen LJ, Bork P. Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data. Mol Syst Biol 2011; 7:473. [PMID: 21407210 PMCID: PMC3094067 DOI: 10.1038/msb.2011.6] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 01/25/2011] [Indexed: 11/10/2022] Open
Abstract
Using metagenomic ‘parts lists' to study microbial ecology remains a significant challenge. This work proposes a molecular trait-based approach to biogeography by integrating metagenomic data with external metadata and using functional community composition as readout. Climatic factors drive functional and phylogenetic composition of ocean microbial communities. Function dispersal is controlled by environmental conditions. Functional richness has a clear latitudinal gradient and correlates with primary production. Metagenomic data can be used as a predictor for ecosystem processes. To understand the relationship between community composition and environment, functional readouts are the most direct. Metagenomic data enable such trait-based ecology at the molecular level.
Metagenomics (shotgun sequencing of pooled DNA of complete microbial communities) is widely used to investigate ecosystem functioning of environmental and clinical samples. However, the nature of this data (usually a gigantic collection of gene fragments of 1000s of organisms) makes it very hard to infer global patterns on microbial ecology of the environment at hand. To address important ecological questions such as ‘How do microbial communities adapt to the environmental conditions?', ‘What drives the functional variation across the globe and to what extent do genes disperse?' and ‘What drives variation of CO2 uptake across different locations and communities?', we integrated 25 ocean metagenomes from the Global Ocean Sampling project with geographical, meteorological and geophysicochemical data. We find that climatic factors (temperature, sunlight) are the major determinants of the functional and phylogenetic composition of an environment and the main limiting factor on whether functions dispersal across the planet. We find a distinct latitudinal gradient in the size and diversity of the functional repertoire of ocean microbial communities, peaking at 20°N, and which correlates with oceanic CO2 uptake. The latter can also be predicted from the molecular functional composition of an environmental sample. Together, our results show that the functional community composition derived from metagenomes can be used as quantitative predictor for molecular trait-based biogeography and ecology. Using metagenomic ‘parts lists' to infer global patterns on microbial ecology remains a significant challenge. To deduce important ecological indicators such as environmental adaptation, molecular trait dispersal, diversity variation and primary production from the gene pool of an ecosystem, we integrated 25 ocean metagenomes with geographical, meteorological and geophysicochemical data. We find that climatic factors (temperature, sunlight) are the major determinants of the biomolecular repertoire of each sample and the main limiting factor on functional trait dispersal (absence of biogeographic provincialism). Molecular functional richness and diversity show a distinct latitudinal gradient peaking at 20°N and correlate with primary production. The latter can also be predicted from the molecular functional composition of an environmental sample. Together, our results show that the functional community composition derived from metagenomes is an important quantitative readout for molecular trait-based biogeography and ecology.
Collapse
Affiliation(s)
- Jeroen Raes
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
331
|
Diversity of bacterial communities related to the nitrogen cycle in a coastal tropical bay. Mol Biol Rep 2011; 39:3401-7. [PMID: 21717060 DOI: 10.1007/s11033-011-1111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
A culture-independent molecular phylogenetic analysis was carried out to study for the first time the diversity of bacterial ammonia monooxygenase subunit A (amoA) and nitrogenase reductase subunit H (nifH) genes from Urca inlet at Guanabara Bay in Rio de Janeiro, Brazil. Most bacterial amoA and nifH sequences exhibited identities of less than 95% to those in the GenBank database revealing that novel ammonia-oxidizing bacteria and nitrogen-fixing microorganisms may exist in this tropical marine environment. The observation of a large number of clones related to uncultured bacteria also indicates the necessity to describe these microorganisms and to develop new cultivation methodologies.
Collapse
|
332
|
Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 2011; 92:797-804. [DOI: 10.1890/10-1170.1] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
333
|
Bowen JL, Ward BB, Morrison HG, Hobbie JE, Valiela I, Deegan LA, Sogin ML. Microbial community composition in sediments resists perturbation by nutrient enrichment. ISME JOURNAL 2011; 5:1540-8. [PMID: 21412346 DOI: 10.1038/ismej.2011.22] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply in our sampling locations, despite demonstrable and diverse nutrient-induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.
Collapse
Affiliation(s)
- Jennifer L Bowen
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
334
|
Orsi W, Edgcomb V, Jeon S, Leslin C, Bunge J, Taylor GT, Varela R, Epstein S. Protistan microbial observatory in the Cariaco Basin, Caribbean. II. Habitat specialization. ISME JOURNAL 2011; 5:1357-73. [PMID: 21390077 DOI: 10.1038/ismej.2011.7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This is the second paper in a series of three that investigates eukaryotic microbial diversity and taxon distribution in the Cariaco Basin, Venezuela, the ocean's largest anoxic marine basin. Here, we use phylogenetic information, multivariate community analyses and statistical richness predictions to test whether protists exhibit habitat specialization within defined geochemical layers of the water column. We also analyze spatio-temporal distributions of protists across two seasons and two geographic sites within the basin. Non-metric multidimensional scaling indicates that these two basin sites are inhabited by distinct protistan assemblages, an observation that is supported by the minimal overlap in observed and predicted richness of sampled sites. A comparison of parametric richness estimations indicates that protistan communities in closely spaced-but geochemically different-habitats are very dissimilar, and may share as few as 5% of total operational taxonomic units (OTUs). This is supported by a canonical correspondence analysis, indicating that the empirically observed OTUs are organized along opposing gradients in oxidants and reductants. Our phylogenetic analyses identify many new clades at species to class levels, some of which appear restricted to specific layers of the water column and have a significantly nonrandom distribution. These findings suggest many pelagic protists are restricted to specific habitats, and likely diversify, at least in part due to separation by geochemical barriers.
Collapse
Affiliation(s)
- William Orsi
- Department of Biology, Northeastern University, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
335
|
Fierer N, Lennon JT. The generation and maintenance of diversity in microbial communities. AMERICAN JOURNAL OF BOTANY 2011; 98:439-48. [PMID: 21613137 DOI: 10.3732/ajb.1000498] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Microorganisms play a central role in the regulation of ecosystem processes, and they comprise the vast majority of species on Earth. With recent developments in molecular methods, it has become tractable to quantify the extent of microbial diversity in natural environments. Here we examine this revolution in our understanding of microbial diversity, and we explore the factors that contribute to the seemingly astounding numbers of microbial taxa found within individual environmental samples. We conducted a meta-analysis of bacterial richness estimates from a variety of ecosystems. Nearly all environments contained hundreds to thousands of bacterial taxa, and richness levels increased with the number of individuals in a sample, a pattern consistent with those reported for nonmicrobial taxa. A cursory comparison might suggest that bacterial richness far exceeds the richness levels typically observed for plant and animal taxa. However, the apparent diversity of bacterial communities is influenced by phylogenetic breadth and allometric scaling issues. When these features are taken into consideration, the levels of microbial diversity may appear less astounding. Although the fields of ecology and biogeography have traditionally ignored microorganisms, there are no longer valid excuses for neglecting microorganisms in surveys of biodiversity. Many of the concepts developed to explain plant and animal diversity patterns can also be applied to microorganisms once we reconcile the scale of our analyses to the scale of the organisms being observed. Furthermore, knowledge from microbial systems may provide insight into the mechanisms that generate and maintain species richness in nonmicrobial systems.
Collapse
Affiliation(s)
- Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, UCB 216, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
336
|
Microbial community composition and function in permanently cold seawater and sediments from an arctic fjord of svalbard. Appl Environ Microbiol 2011; 77:2008-18. [PMID: 21257812 DOI: 10.1128/aem.01507-10] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterotrophic microbial communities in seawater and sediments metabolize much of the organic carbon produced in the ocean. Although carbon cycling and preservation depend critically on the capabilities of these microbial communities, their compositions and capabilities have seldom been examined simultaneously at the same site. To compare the abilities of seawater and sedimentary microbial communities to initiate organic matter degradation, we measured the extracellular enzymatic hydrolysis rates of 10 substrates (polysaccharides and algal extracts) in surface seawater and bottom water as well as in surface and anoxic sediments of an Arctic fjord. Patterns of enzyme activities differed between seawater and sediments, not just quantitatively, in accordance with higher cell numbers in sediments, but also in their more diversified enzyme spectrum. Sedimentary microbial communities hydrolyzed all of the fluorescently labeled polysaccharide and algal extracts, in most cases at higher rates in subsurface than surface sediments. In seawater, in contrast, only 5 of the 7 polysaccharides and 2 of the 3 algal extracts were hydrolyzed, and hydrolysis rates in surface and deepwater were virtually identical. To compare bacterial communities, 16S rRNA gene clone libraries were constructed from the same seawater and sediment samples; they diverged strongly in composition. Thus, the broader enzymatic capabilities of the sedimentary microbial communities may result from the compositional differences between seawater and sedimentary microbial communities, rather than from gene expression differences among compositionally similar communities. The greater number of phylum- and subphylum-level lineages and operational taxonomic units in sediments than in seawater samples may reflect the necessity of a wider range of enzymatic capabilities and strategies to access organic matter that has already been degraded during passage through the water column. When transformations of marine organic matter are considered, differences in community composition and their different abilities to access organic matter should be taken into account.
Collapse
|
337
|
Abstract
Biogeochemical cycles in the ocean are mediated by complex and diverse microbial communities. Over the past decade, marine ecosystem and biogeochemistry models have begun to address some of this diversity by resolving several groups of (mostly autotrophic) plankton, differentiated by biogeochemical function. Here, we review recent model approaches that are rooted in the notion that an even richer diversity is fundamental to the organization of marine microbial communities. These models begin to resolve, and address the significance of, diversity within functional groups. Seeded with diverse populations spanning prescribed regions of trait space, these simulations self-select community structure according to relative fitness in the virtual environment. Such models are suited to considering ecological questions, such as the regulation of patterns of biodiversity, and to simulating the response to changing environments. A key issue for all such models is the constraint of viable trait space and trade-offs. Size-structuring and mechanistic descriptions of energy and resource allocation at the individual level can rationalize these constraints.
Collapse
Affiliation(s)
- Michael J Follows
- Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
338
|
Cai WJ. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? ANNUAL REVIEW OF MARINE SCIENCE 2011; 3:123-45. [PMID: 21329201 DOI: 10.1146/annurev-marine-120709-142723] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Estuaries are a major boundary in the land-ocean interaction zone where organic carbon (OC) and nutrients are being processed, resulting in a high water-to-air carbon dioxide (CO2) flux (approximately 0.25 Pg C y(-1)). The continental shelves, however, take up CO2 (approximately 0.25 Pg C y(-1)) from the atmosphere, accounting for approximately 17% of open ocean CO2 uptake (1.5 Pg Cy(-1)). It is demonstrated here that CO2 release in estuaries is largely supported by microbial decomposition of highly productive intertidal marsh biomass. It appears that riverine OC, however, would bypass the estuarine zone, because of short river-transit times, and contribute to carbon cycling in the ocean margins and interiors. Low-latitude ocean margins release CO2 because they receive two-thirds of the terrestrial OC. Because of recent CO2 increase in the atmosphere, CO2 releases from low latitudes have become weaker and CO2 uptake by mid- and high-latitude shelves has become stronger, thus leading to more dissolved inorganic carbon export to the ocean.
Collapse
Affiliation(s)
- Wei-Jun Cai
- Department of Marine Sciences, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
339
|
Abstract
Extracellular enzymes initiate microbial remineralization of organic matter by hydrolyzing substrates to sizes sufficiently small to be transported across cell membranes. As much of marine primary productivity is processed by heterotrophic microbes, the substrate specificities of extracellular enzymes, the rates at which they function in seawater and sediments, and factors controlling their production, distribution, and active lifetimes, are central to carbon cycling in marine systems. In this review, these topics are considered from biochemical, microbial/molecular biological, and geochemical perspectives. Our understanding of the capabilities and limitations of heterotrophic microbial communities has been greatly advanced in recent years, in part through genetic and genomic approaches. New methods to measure enzyme activities in the field are needed to keep pace with these advances and to pursue intriguing evidence that patterns of enzyme activities in different environments are linked to differences in microbial community composition that may profoundly affect the marine carbon cycle.
Collapse
Affiliation(s)
- Carol Arnosti
- Department of Marine Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599-3300, USA.
| |
Collapse
|
340
|
Kujawinski EB. The impact of microbial metabolism on marine dissolved organic matter. ANNUAL REVIEW OF MARINE SCIENCE 2011; 3:567-99. [PMID: 21329217 DOI: 10.1146/annurev-marine-120308-081003] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microbes mediate global biogeochemical cycles through their metabolism, and all metabolic processes begin with the interaction between the microbial cell wall or membrane and the external environment. For all heterotrophs and many autotrophs, critical growth substrates and factors are present within the dilute and heterogeneous mixture of compounds that constitutes dissolved organic matter (DOM). In short, the microbe-molecule interaction is one of the fundamental reactions within the global carbon cycle. Here, I summarize recent findings from studies that examine DOM-microbe interactions from either the DOM perspective (organic geochemistry) or the microbe perspective (microbial ecology). Gaps in our knowledge are highlighted and future integrative research directions are proposed.
Collapse
Affiliation(s)
- Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.
| |
Collapse
|
341
|
Abstract
Metagenomics literally means "beyond the genome." Marine microbial metagenomic databases presently comprise approximately 400 billion base pairs of DNA, only approximately 3% of that found in 1 ml of seawater. Very soon a trillion-base-pair sequence run will be feasible, so it is time to reflect on what we have learned from metagenomics. We review the impact of metagenomics on our understanding of marine microbial communities. We consider the studies facilitated by data generated through the Global Ocean Sampling expedition, as well as the revolution wrought at the individual laboratory level through next generation sequencing technologies. We review recent studies and discoveries since 2008, provide a discussion of bioinformatic analyses, including conceptual pipelines and sequence annotation and predict the future of metagenomics, with suggestions of collaborative community studies tailored toward answering some of the fundamental questions in marine microbial ecology.
Collapse
Affiliation(s)
- Jack A Gilbert
- Plymouth Marine Laboratory, Plymouth PL1 3DH, United Kingdom.
| | | |
Collapse
|
342
|
Burgmer T, Hillebrand H. Temperature mean and variance alter phytoplankton biomass and biodiversity in a long-term microcosm experiment. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2010.19301.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
343
|
Agogué H, Lamy D, Neal PR, Sogin ML, Herndl GJ. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol Ecol 2010; 20:258-74. [PMID: 21143328 DOI: 10.1111/j.1365-294x.2010.04932.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacterial assemblages from subsurface (100 m depth), meso- (200-1000 m depth) and bathy-pelagic (below 1000 m depth) zones at 10 stations along a North Atlantic Ocean transect from 60°N to 5°S were characterized using massively parallel pyrotag sequencing of the V6 region of the 16S rRNA gene (V6 pyrotags). In a dataset of more than 830,000 pyrotags, we identified 10,780 OTUs of which 52% were singletons. The singletons accounted for less than 2% of the OTU abundance, whereas the 100 and 1000 most abundant OTUs represented 80% and 96% respectively of all recovered OTUs. Non-metric Multi-Dimensional Scaling and Canonical Correspondence Analysis of all the OTUs excluding the singletons revealed a clear clustering of the bacterial communities according to the water masses. More than 80% of the 1000 most abundant OTUs corresponded to Proteobacteria of which 55% were Alphaproteobacteria, mostly composed of the SAR11 cluster. Gammaproteobacteria increased with depth and included a relatively large number of OTUs belonging to Alteromonadales and Oceanospirillales. The bathypelagic zone showed higher taxonomic evenness than the overlying waters, albeit bacterial diversity was remarkably variable. Both abundant and low-abundance OTUs were responsible for the distinct bacterial communities characterizing the major deep-water masses. Taken together, our results reveal that deep-water masses act as bio-oceanographic islands for bacterioplankton leading to water mass-specific bacterial communities in the deep waters of the Atlantic.
Collapse
Affiliation(s)
- Hélène Agogué
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands
| | | | | | | | | |
Collapse
|
344
|
Abstract
The variation of life has predominantly been studied on land and in water, but this focus is changing. There is a resurging interest in the distribution of life in the atmosphere and the processes that underlie patterns in this distribution. Here, we review our current state of knowledge about the biodiversity and biogeography of the atmosphere, with an emphasis on micro-organisms, the numerically dominant forms of aerial life. We present evidence to suggest that the atmosphere is a habitat for micro-organisms, and not purely a conduit for terrestrial and aquatic life. Building on a rich history of research in terrestrial and aquatic systems, we explore biodiversity patterns that are likely to play an important role in the emerging field of air biogeography. We discuss the possibility of a more unified understanding of the biosphere, one that links knowledge about biodiversity and biogeography in the lithosphere, hydrosphere and atmosphere.
Collapse
Affiliation(s)
| | | | - Jessica L. Green
- Center for Ecology and Evolutionary Biology, 335 Pacific Hall, 5289 University of Oregon, Eugene, OR 97403-5289, USA
| |
Collapse
|
345
|
Thompson FL, Bruce T, Gonzalez A, Cardoso A, Clementino M, Costagliola M, Hozbor C, Otero E, Piccini C, Peressutti S, Schmieder R, Edwards R, Smith M, Takiyama LR, Vieira R, Paranhos R, Artigas LF. Coastal bacterioplankton community diversity along a latitudinal gradient in Latin America by means of V6 tag pyrosequencing. Arch Microbiol 2010; 193:105-14. [PMID: 21076816 DOI: 10.1007/s00203-010-0644-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/26/2010] [Accepted: 10/04/2010] [Indexed: 11/28/2022]
Abstract
The bacterioplankton diversity of coastal waters along a latitudinal gradient between Puerto Rico and Argentina was analyzed using a total of 134,197 high-quality sequences from the V6 hypervariable region of the small-subunit ribosomal RNA gene (16S rRNA) (mean length of 60 nt). Most of the OTUs were identified into Proteobacteria, Bacteriodetes, Cyanobacteria, and Actinobacteria, corresponding to approx. 80% of the total number of sequences. The number of OTUs corresponding to species varied between 937 and 1946 in the seven locations. Proteobacteria appeared at high frequency in the seven locations. An enrichment of Cyanobacteria was observed in Puerto Rico, whereas an enrichment of Bacteroidetes was detected in the Argentinian shelf and Uruguayan coastal lagoons. The highest number of sequences of Actinobacteria and Acidobacteria were obtained in the Amazon estuary mouth. The rarefaction curves and Good coverage estimator for species diversity suggested a significant coverage, with values ranging between 92 and 97% for Good coverage. Conserved taxa corresponded to aprox. 52% of all sequences. This study suggests that human-contaminated environments may influence bacterioplankton diversity.
Collapse
Affiliation(s)
- Fabiano L Thompson
- Departments of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Bouskill NJ, Eveillard D, O'Mullan G, Jackson GA, Ward BB. Seasonal and annual reoccurrence in betaproteobacterial ammonia-oxidizing bacterial population structure. Environ Microbiol 2010; 13:872-86. [PMID: 21054735 DOI: 10.1111/j.1462-2920.2010.02362.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microbes exhibit remarkably high genetic diversity compared with plant and animal species. Many phylogenetically diverse but apparently functionally redundant microbial taxa are detectable within a cubic centimetre of mud or a millilitre of water, and the significance of this diversity, in terms of ecosystem function, has been difficult to understand. Thus it is not known whether temporal and spatial differences in microbial community composition are linked to particular environmental factors or might modulate ecosystem response to environmental change. Fifty-three water and sediment samples from upper and lower Chesapeake Bay were analysed in triplicate arrays to determine temporal and spatial patterns and relationships between ammonia-oxidizing bacterial (AOB) communities and environmental variables. Thirty-three water samples (three depths) collected during April, August and October, 2001-2004, from the oligohaline upper region of the Bay were analysed to investigate temporal patterns in archetype distribution. Using a combination of a non-weighted discrimination analysis and principal components analysis of community composition data obtained from functional gene microarrays, it was found that co-varying AOB assemblages reoccurred seasonally in concert with specific environmental conditions, potentially revealing patterns of niche differentiation. Among the most notable patterns were correlations of AOB archetypes with temperature, DON and ammonium concentrations. Different AOB archetypes were more prevalent at certain times of the year, e.g. some were more abundant every autumn and others every spring. This data set documents the successional return to an indigenous community following massive perturbation (hurricane induced flooding) as well as the seasonal reoccurrence of specific lineages, identified by key functional genes, associated with the biogeochemically important process nitrification.
Collapse
Affiliation(s)
- Nicholas J Bouskill
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ, USA.
| | | | | | | | | |
Collapse
|
347
|
Youssef NH, Couger MB, Elshahed MS. Fine-scale bacterial beta diversity within a complex ecosystem (Zodletone Spring, OK, USA): the role of the rare biosphere. PLoS One 2010; 5:e12414. [PMID: 20865128 PMCID: PMC2932559 DOI: 10.1371/journal.pone.0012414] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/09/2010] [Indexed: 12/18/2022] Open
Abstract
Background The adaptation of pyrosequencing technologies for use in culture-independent diversity surveys allowed for deeper sampling of ecosystems of interest. One extremely well suited area of interest for pyrosequencing-based diversity surveys that has received surprisingly little attention so far, is examining fine scale (e.g. micrometer to millimeter) beta diversity in complex microbial ecosystems. Methodology/Principal Findings We examined the patterns of fine scale Beta diversity in four adjacent sediment samples (1mm apart) from the source of an anaerobic sulfide and sulfur rich spring (Zodletone spring) in southwestern Oklahoma, USA. Using pyrosequencing, a total of 292,130 16S rRNA gene sequences were obtained. The beta diversity patterns within the four datasets were examined using various qualitative and quantitative similarity indices. Low levels of Beta diversity (high similarity indices) were observed between the four samples at the phylum-level. However, at a putative species (OTU0.03) level, higher levels of beta diversity (lower similarity indices) were observed. Further examination of beta diversity patterns within dominant and rare members of the community indicated that at the putative species level, beta diversity is much higher within rare members of the community. Finally, sub-classification of rare members of Zodletone spring community based on patterns of novelty and uniqueness, and further examination of fine scale beta diversity of each of these subgroups indicated that members of the community that are unique, but non novel showed the highest beta diversity within these subgroups of the rare biosphere. Conclusions/Significance The results demonstrate the occurrence of high inter-sample diversity within seemingly identical samples from a complex habitat. We reason that such unexpected diversity should be taken into consideration when exploring gamma diversity of various ecosystems, as well as planning for sequencing-intensive metagenomic surveys of highly complex ecosystems.
Collapse
Affiliation(s)
- Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - M. B. Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
348
|
Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, Aguzzi J, Ballesteros E, Bianchi CN, Corbera J, Dailianis T, Danovaro R, Estrada M, Froglia C, Galil BS, Gasol JM, Gertwagen R, Gil J, Guilhaumon F, Kesner-Reyes K, Kitsos MS, Koukouras A, Lampadariou N, Laxamana E, López-Fé de la Cuadra CM, Lotze HK, Martin D, Mouillot D, Oro D, Raicevich S, Rius-Barile J, Saiz-Salinas JI, San Vicente C, Somot S, Templado J, Turon X, Vafidis D, Villanueva R, Voultsiadou E. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 2010; 5:e11842. [PMID: 20689844 PMCID: PMC2914016 DOI: 10.1371/journal.pone.0011842] [Citation(s) in RCA: 573] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/10/2010] [Indexed: 11/18/2022] Open
Abstract
The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet-undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well. This abstract has been translated to other languages (File S1).
Collapse
Affiliation(s)
- Marta Coll
- Institut de Ciències del Mar, Scientific Spanish Council (ICM-CSIC), Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Hewson I, Poretsky RS, Tripp HJ, Montoya JP, Zehr JP. Spatial patterns and light-driven variation of microbial population gene expression in surface waters of the oligotrophic open ocean. Environ Microbiol 2010; 12:1940-56. [PMID: 20406287 DOI: 10.1111/j.1462-2920.2010.02198.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Because bacterioplankton production rates do not vary strongly across vast expanses of the ocean, it is unclear how variability in community structure corresponds with functional variability in the open ocean. We surveyed community transcript functional profiles at eight locations in the open ocean, in both the light and in the dark, using the genomic subsystems approach, to understand variability in gene expression patterns in surface waters. Metatranscriptomes from geographically distinct areas and collected during the day and night shared a large proportion of metabolic functional similarity (74%) at the finest metabolic resolution possible. The variability between metatranscriptomes could be explained by phylogenetic differences between libraries (Mantel test, P < 0.0001). Several key gene expression pathways, including Photosystem I, Photosystem II and ammonium uptake, demonstrated the most variability both geographically and between light and dark. Libraries were dominated by transcripts of the cyanobacterium Prochlorocococcus marinus, where most geographical and diel variability between metatranscriptomes reflected between-station differences in cyanobacterial phototrophic metabolism. Our results demonstrate that active genetic machinery in surface waters of the ocean is dominated by photosynthetic microorganisms and their site-to-site variability, while variability in the remainder of assemblages is dependent on local taxonomic composition.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Wing Hall 403, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
350
|
Collins RE, Rocap G, Deming JW. Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 2010; 12:1828-41. [PMID: 20192970 PMCID: PMC2916213 DOI: 10.1111/j.1462-2920.2010.02179.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The structure of bacterial communities in first-year spring and summer sea ice differs from that in source seawaters, suggesting selection during ice formation in autumn or taxon-specific mortality in the ice during winter. We tested these hypotheses by weekly sampling (January–March 2004) of first-year winter sea ice (Franklin Bay, Western Arctic) that experienced temperatures from −9°C to −26°C, generating community fingerprints and clone libraries for Bacteria and Archaea. Despite severe conditions and significant decreases in microbial abundance, no significant changes in richness or community structure were detected in the ice. Communities of Bacteria and Archaea in the ice, as in under-ice seawater, were dominated by SAR11 clade Alphaproteobacteria and Marine Group I Crenarchaeota, neither of which is known from later season sea ice. The bacterial ice library contained clones of Gammaproteobacteria from oligotrophic seawater clades (e.g. OM60, OM182) but no clones from gammaproteobacterial genera commonly detected in later season sea ice by similar methods (e.g. Colwellia, Psychrobacter). The only common sea ice bacterial genus detected in winter ice was Polaribacter. Overall, selection during ice formation and mortality during winter appear to play minor roles in the process of microbial succession that leads to distinctive spring and summer sea ice communities.
Collapse
Affiliation(s)
- R Eric Collins
- School of Oceanography, Box 357940, 1503 NE Boat St., University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|