301
|
Microbiota and reproducibility of rodent models. Lab Anim (NY) 2017; 46:114-122. [PMID: 28328896 DOI: 10.1038/laban.1222] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiota (GM) plays a critical role in human health and disease. Likewise, it is becoming increasingly evident that changes or disruptions to the GM can have significant effects on animal models and their expressed phenotypes, adding a complex and important variable into basic research and preclinical studies. In this article, we review some of the most common sources of GM variability in rodent models, and discuss measures to address this variability for improved reproducibility.
Collapse
|
302
|
Köhling HL, Plummer SF, Marchesi JR, Davidge KS, Ludgate M. The microbiota and autoimmunity: Their role in thyroid autoimmune diseases. Clin Immunol 2017; 183:63-74. [PMID: 28689782 DOI: 10.1016/j.clim.2017.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022]
Abstract
Since the 1970s, the role of infectious diseases in the pathogenesis of Graves' disease (GD) has been an object of intensive research. The last decade has witnessed many studies on Yersinia enterocolitica, Helicobacter pylori and other bacterial organisms and their potential impact on GD. Retrospective, prospective and molecular binding studies have been performed with contrary outcomes. Until now it is not clear whether bacterial infections can trigger autoimmune thyroid disease. Common risk factors for GD (gender, smoking, stress, and pregnancy) reveal profound changes in the bacterial communities of the gut compared to that of healthy controls but a pathogenetic link between GD and dysbiosis has not yet been fully elucidated. Conventional bacterial culture, in vitro models, next generation and high-throughput DNA sequencing are applicable methods to assess the impact of bacteria in disease onset and development. Further studies on the involvement of bacteria in GD are needed and may contribute to the understanding of pathogenetic processes. This review will examine available evidence on the subject.
Collapse
Affiliation(s)
- Hedda L Köhling
- University Hopital Essen, Institute of Medical Microbiology, Essen, Germany; Cultech Ltd., Baglan, Port Talbot, United Kingdom.
| | | | - Julian R Marchesi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Centre for Digestive and Gut Health, Imperial College London, London, W2 1NY, United Kingdom
| | | | - Marian Ludgate
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
303
|
Yang Y, Nirmagustina DE, Kumrungsee T, Okazaki Y, Tomotake H, Kato N. Feeding of the water extract from Ganoderma lingzhi to rats modulates secondary bile acids, intestinal microflora, mucins, and propionate important to colon cancer. Biosci Biotechnol Biochem 2017; 81:1796-1804. [PMID: 28661219 DOI: 10.1080/09168451.2017.1343117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Consumption of reishi mushroom has been reported to prevent colon carcinogenesis in rodents, although the underlying mechanisms remain unclear. To investigate this effect, rats were fed a high-fat diet supplemented with 5% water extract from either the reishi mushroom (Ganoderma lingzhi) (WGL) or the auto-digested reishi G. lingzhi (AWGL) for three weeks. Both extracts markedly reduced fecal secondary bile acids, such as lithocholic acid and deoxycholic acid (colon carcinogens). These extracts reduced the numbers of Clostridium coccoides and Clostridium leptum (secondary bile acids-producing bacteria) in a per g of cecal digesta. Fecal mucins and cecal propionate were significantly elevated by both extracts, and fecal IgA was significantly elevated by WGL, but not by AWGL. These results suggest that the reishi extracts have an impact on colon luminal health by modulating secondary bile acids, microflora, mucins, and propionate that related to colon cancer.
Collapse
Affiliation(s)
- Yongshou Yang
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Dwi Eva Nirmagustina
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | | | - Yukako Okazaki
- b Faculty of Human Life Sciences , Fuji Women's University , Ishikari , Japan
| | - Hiroyuki Tomotake
- c Department of Domestic Science , Iida Women's Junior College , Iida , Japan
| | - Norihisa Kato
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
304
|
Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia 2017; 60:943-951. [PMID: 28434033 PMCID: PMC5423958 DOI: 10.1007/s00125-017-4278-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
Abstract
The totality of microbial genomes in the gut exceeds the size of the human genome, having around 500-fold more genes that importantly complement our coding potential. Microbial genes are essential for key metabolic processes, such as the breakdown of indigestible dietary fibres to short-chain fatty acids, biosynthesis of amino acids and vitamins, and production of neurotransmitters and hormones. During the last decade, evidence has accumulated to support a role for gut microbiota (analysed from faecal samples) in glycaemic control and type 2 diabetes. Mechanistic studies in mice support a causal role for gut microbiota in metabolic diseases, although human data favouring causality is insufficient. As it may be challenging to sort the human evidence from the large number of animal studies in the field, there is a need to provide a review of human studies. Thus, the aim of this review is to cover the current and future possibilities and challenges of using the gut microbiota, with its capacity to be modified, in the development of preventive and treatment strategies for hyperglycaemia and type 2 diabetes in humans. We discuss what is known about the composition and functionality of human gut microbiota in type 2 diabetes and summarise recent evidence of current treatment strategies that involve, or are based on, modification of gut microbiota (diet, probiotics, metformin and bariatric surgery). We go on to review some potential future gut-based glucose-lowering approaches involving microbiota, including the development of personalised nutrition and probiotic approaches, identification of therapeutic components of probiotics, targeted delivery of propionate in the proximal colon, targeted delivery of metformin in the lower gut, faecal microbiota transplantation, and the incorporation of genetically modified bacteria that express therapeutic factors into microbiota. Finally, future avenues and challenges for understanding the interplay between human nutrition, genetics and microbial genetics, and the need for integration of human multi-omic data (such as genetics, transcriptomics, epigenetics, proteomics and metabolomics) with microbiome data (such as strain-level variation, transcriptomics, proteomics and metabolomics) to make personalised treatments a successful future reality are discussed.
Collapse
Affiliation(s)
- Louise Brunkwall
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Jan Waldenströms gata 35, 205 02, Malmö, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Jan Waldenströms gata 35, 205 02, Malmö, Sweden.
| |
Collapse
|
305
|
Hibberd MC, Wu M, Rodionov DA, Li X, Cheng J, Griffin NW, Barratt MJ, Giannone RJ, Hettich RL, Osterman AL, Gordon JI. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci Transl Med 2017; 9:eaal4069. [PMID: 28515336 PMCID: PMC5524138 DOI: 10.1126/scitranslmed.aal4069] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Vitamin and mineral (micronutrient) deficiencies afflict 2 billion people. Although the impact of these imbalances on host biology has been studied extensively, much less is known about their effects on the gut microbiota of developing or adult humans. Therefore, we established a community of cultured, sequenced human gut-derived bacterial species in gnotobiotic mice and fed the animals a defined micronutrient-sufficient diet, followed by a derivative diet devoid of vitamin A, folate, iron, or zinc, followed by return to the sufficient diet. Acute vitamin A deficiency had the largest effect on bacterial community structure and metatranscriptome, with Bacteroides vulgatus, a prominent responder, increasing its abundance in the absence of vitamin A. Applying retinol selection to a library of 30,300 B. vulgatus transposon mutants revealed that disruption of acrR abrogated retinol sensitivity. Genetic complementation studies, microbial RNA sequencing, and transcription factor-binding assays disclosed that AcrR is a repressor of an adjacent AcrAB-TolC efflux system. Retinol efflux measurements in wild-type and acrR-mutant strains plus treatment with a pharmacologic inhibitor of the efflux system revealed that AcrAB-TolC is a determinant of retinol and bile acid sensitivity in B. vulgatus Acute vitamin A deficiency was associated with altered bile acid metabolism in vivo, raising the possibility that retinol, bile acid metabolites, and AcrAB-TolC interact to influence the fitness of B. vulgatus and perhaps other microbiota members. This type of preclinical model can help to develop mechanistic insights about the effects of, and more effective treatment strategies for micronutrient deficiencies.
Collapse
Affiliation(s)
- Matthew C Hibberd
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Meng Wu
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dmitry A Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xiaoqing Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jiye Cheng
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas W Griffin
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Barratt
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
306
|
An insider's perspective: Bacteroides as a window into the microbiome. Nat Microbiol 2017; 2:17026. [PMID: 28440278 DOI: 10.1038/nmicrobiol.2017.26] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
Over the last decade, our appreciation for the contribution of resident gut microorganisms-the gut microbiota-to human health has surged. However, progress is limited by the sheer diversity and complexity of these microbial communities. Compounding the challenge, the majority of our commensal microorganisms are not close relatives of Escherichia coli or other model organisms and have eluded culturing and manipulation in the laboratory. In this Review, we discuss how over a century of study of the readily cultured, genetically tractable human gut Bacteroides has revealed important insights into the biochemistry, genomics and ecology that make a gut bacterium a gut bacterium. While genome and metagenome sequences are being produced at breakneck speed, the Bacteroides provide a significant 'jump-start' on uncovering the guiding principles that govern microbiota-host and inter-bacterial associations in the gut that will probably extend to many other members of this ecosystem.
Collapse
|
307
|
Lim B, Zimmermann M, Barry NA, Goodman AL. Engineered Regulatory Systems Modulate Gene Expression of Human Commensals in the Gut. Cell 2017; 169:547-558.e15. [PMID: 28431252 PMCID: PMC5532740 DOI: 10.1016/j.cell.2017.03.045] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022]
Abstract
The gut microbiota is implicated in numerous aspects of health and disease, but dissecting these connections is challenging because genetic tools for gut anaerobes are limited. Inducible promoters are particularly valuable tools because these platforms allow real-time analysis of the contribution of microbiome gene products to community assembly, host physiology, and disease. We developed a panel of tunable expression platforms for the prominent genus Bacteroides in which gene expression is controlled by a synthetic inducer. In the absence of inducer, promoter activity is fully repressed; addition of inducer rapidly increases gene expression by four to five orders of magnitude. Because the inducer is absent in mice and their diets, Bacteroides gene expression inside the gut can be modulated by providing the inducer in drinking water. We use this system to measure the dynamic relationship between commensal sialidase activity and liberation of mucosal sialic acid, a receptor and nutrient for pathogens. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Bentley Lim
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536-0812, USA
| | - Michael Zimmermann
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536-0812, USA
| | - Natasha A Barry
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536-0812, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536-0812, USA.
| |
Collapse
|
308
|
von Klitzing E, Ekmekciu I, Kühl AA, Bereswill S, Heimesaat MM. Intestinal, extra-intestinal and systemic sequelae of Toxoplasma gondii induced acute ileitis in mice harboring a human gut microbiota. PLoS One 2017; 12:e0176144. [PMID: 28414794 PMCID: PMC5393883 DOI: 10.1371/journal.pone.0176144] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/05/2017] [Indexed: 01/27/2023] Open
Abstract
Background Within seven days following peroral high dose infection with Toxoplasma gondii susceptible conventionally colonized mice develop acute ileitis due to an underlying T helper cell (Th) -1 type immunopathology. We here addressed whether mice harboring a human intestinal microbiota developed intestinal, extra-intestinal and systemic sequelae upon ileitis induction. Methodology/Principal findings Secondary abiotic mice were generated by broad-spectrum antibiotic treatment and associated with a complex human intestinal microbiota following peroral fecal microbiota transplantation. Within three weeks the human microbiota had stably established in the murine intestinal tract as assessed by quantitative cultural and culture-independent (i.e. molecular 16S rRNA based) methods. At day 7 post infection (p.i.) with 50 cysts of T. gondii strain ME49 by gavage human microbiota associated (hma) mice displayed severe clinical, macroscopic and microscopic sequelae indicating acute ileitis. In diseased hma mice increased numbers of innate and adaptive immune cells within the ileal mucosa and lamina propria and elevated intestinal secretion of pro-inflammatory mediators including IFN-γ, IL-12 and nitric oxide could be observed at day 7 p.i. Ileitis development was accompanied by substantial shifts in intestinal microbiota composition of hma mice characterized by elevated total bacterial loads and increased numbers of intestinal Gram-negative commensals such as enterobacteria and Bacteroides / Prevotella species overgrowing the small and large intestinal lumen. Furthermore, viable bacteria translocated from the inflamed ileum to extra-intestinal including systemic compartments. Notably, pro-inflammatory immune responses were not restricted to the intestinal tract as indicated by increased pro-inflammatory cytokine secretion in extra-intestinal (i.e. liver and kidney) and systemic compartments including spleen and serum. Conclusion/Significance With respect to the intestinal microbiota composition “humanized” mice display acute ileitis following peroral high dose T. gondii infection. Thus, hma mice constitute a suitable model to further dissect the interactions between pathogens, human microbiota and vertebrate host immunity during acute intestinal inflammation.
Collapse
Affiliation(s)
- Eliane von Klitzing
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ira Ekmekciu
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Anja A. Kühl
- Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology / Research Center ImmunoSciences (RCIS), Charité – University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
309
|
Abdallah RA, Beye M, Diop A, Bakour S, Raoult D, Fournier PE. The impact of culturomics on taxonomy in clinical microbiology. Antonie van Leeuwenhoek 2017; 110:1327-1337. [PMID: 28389704 DOI: 10.1007/s10482-017-0871-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
Over the past decade, new culture methods coupled to genome and metagenome sequencing have enabled the number of isolated bacterial species with standing in nomenclature to rise to more than 15,000 whereas it was only 1791 in 1980. 'Culturomics', a new approach based on the diversification of culture conditions, has enabled the isolation of more than 1000 distinct human-associated bacterial species since 2012, including 247 new species. This strategy was demonstrated to be complementary to metagenome sequencing for the exhaustive study of the human microbiota and its roles in health and diseases. However, by identifying a large number of new bacterial species in a short time, culturomics has highlighted a need for taxonomic approaches adapted to clinical microbiology that would include the use of modern and reproducible tools, including high throughput genomic and proteomic analyses. Herein, we review the development of culturomics and genomics in the clinical microbiology field and their impact on bacterial taxonomy.
Collapse
Affiliation(s)
- Rita Abou Abdallah
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Mamadou Beye
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Awa Diop
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Sofiane Bakour
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Didier Raoult
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Pierre-Edouard Fournier
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France.
| |
Collapse
|
310
|
Vega NM, Gore J. Stochastic assembly produces heterogeneous communities in the Caenorhabditis elegans intestine. PLoS Biol 2017; 15:e2000633. [PMID: 28257456 PMCID: PMC5336226 DOI: 10.1371/journal.pbio.2000633] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/04/2017] [Indexed: 12/27/2022] Open
Abstract
Host-associated bacterial communities vary extensively between individuals, but it can be very difficult to determine the sources of this heterogeneity. Here, we demonstrate that stochastic bacterial community assembly in the Caenorhabditis elegans intestine is sufficient to produce strong interworm heterogeneity in community composition. When worms are fed with two neutrally competing, fluorescently labeled bacterial strains, we observe stochastically driven bimodality in community composition, in which approximately half of the worms are dominated by each bacterial strain. A simple model incorporating stochastic colonization suggests that heterogeneity between worms is driven by the low rate at which bacteria successfully establish new intestinal colonies. We can increase this rate experimentally by feeding worms at high bacterial density; in these conditions, the bimodality disappears. These results demonstrate that demographic noise is a potentially important driver of diversity in bacterial community formation and suggest a role for C. elegans as a model system for ecology of host-associated communities.
Collapse
Affiliation(s)
- Nicole M. Vega
- Physics of Livings Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jeff Gore
- Physics of Livings Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
311
|
Centanni M, Hutchison JC, Carnachan SM, Daines AM, Kelly WJ, Tannock GW, Sims IM. Differential growth of bowel commensal Bacteroides species on plant xylans of differing structural complexity. Carbohydr Polym 2017; 157:1374-1382. [DOI: 10.1016/j.carbpol.2016.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/25/2016] [Accepted: 11/04/2016] [Indexed: 01/30/2023]
|
312
|
Garg N, Luzzatto-Knaan T, Melnik AV, Caraballo-Rodríguez AM, Floros DJ, Petras D, Gregor R, Dorrestein PC, Phelan VV. Natural products as mediators of disease. Nat Prod Rep 2017; 34:194-219. [PMID: 27874907 PMCID: PMC5299058 DOI: 10.1039/c6np00063k] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2016Humans are walking microbial ecosystems, each harboring a complex microbiome with the genetic potential to produce a vast array of natural products. Recent sequencing data suggest that our microbial inhabitants are critical for maintaining overall health. Shifts in microbial communities have been correlated to a number of diseases including infections, inflammation, cancer, and neurological disorders. Some of these clinically and diagnostically relevant phenotypes are a result of the presence of small molecules, yet we know remarkably little about their contributions to the health of individuals. Here, we review microbe-derived natural products as mediators of human disease.
Collapse
Affiliation(s)
- Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | | | - Dimitrios J. Floros
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Rachel Gregor
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Vanessa V. Phelan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
313
|
Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, Trinchieri G. Microbes and Cancer. Annu Rev Immunol 2017; 35:199-228. [PMID: 28142322 DOI: 10.1146/annurev-immunol-051116-052133] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.
Collapse
Affiliation(s)
- Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Ernesto Perez-Chanona
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Soumen Roy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
314
|
The Shift of an Intestinal "Microbiome" to a "Pathobiome" Governs the Course and Outcome of Sepsis Following Surgical Injury. Shock 2017; 45:475-82. [PMID: 26863118 DOI: 10.1097/shk.0000000000000534] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis following surgical injury remains a growing and worrisome problem following both emergent and elective surgery. Although early resuscitation efforts and prompt antibiotic therapy have improved outcomes in the first 24 to 48 h, late onset sepsis is now the most common cause of death in modern intensive care units. This time shift may be, in part, a result of prolonged exposure of the host to the stressors of critical illness which, over time, erode the health promoting intestinal microbiota and allow for virulent pathogens to predominate. Colonizing pathogens can then subvert the immune system and contribute to the deterioration of the host response. Here, we posit that novel approaches integrating the molecular, ecological, and evolutionary dynamics of the evolving gut microbiome/pathobiome during critical illness are needed to understand and prevent the late onset sepsis that develops following prolonged critical illness.
Collapse
|
315
|
Yasmeen R, Fukagawa NK, Wang TT. Establishing health benefits of bioactive food components: a basic research scientist's perspective. Curr Opin Biotechnol 2017; 44:109-114. [PMID: 28056363 DOI: 10.1016/j.copbio.2016.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/14/2016] [Indexed: 12/23/2022]
Abstract
Bioactive food components or functional foods have recently received significant attention because of their widely touted positive effects on health beyond basic nutrition. However, a question continues to lurk: are these claims for 'super foods' backed by sound science or simply an exaggerated portrayal of very small 'benefits'? Efforts to establish health benefits by scientific means pose a real challenge in regards to defining what those benefits are, as well as how effective the foods are in justifying any health claim. This review discusses the pitfalls associated with the execution, interpretation, extrapolation of the results to humans and the challenges encountered in the dietary research arena from a basic scientist's perspective.
Collapse
Affiliation(s)
- Rumana Yasmeen
- Diet, Genomics and Immunology Lab, Beltsville Human Nutrition Research Center, ARS, USDA, Beltsville, MD 20705, USA
| | - Naomi K Fukagawa
- Diet, Genomics and Immunology Lab, Beltsville Human Nutrition Research Center, ARS, USDA, Beltsville, MD 20705, USA
| | - Thomas Ty Wang
- Diet, Genomics and Immunology Lab, Beltsville Human Nutrition Research Center, ARS, USDA, Beltsville, MD 20705, USA.
| |
Collapse
|
316
|
Armanhi JSL, de Souza RSC, Damasceno NDB, de Araújo LM, Imperial J, Arruda P. A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome. FRONTIERS IN PLANT SCIENCE 2017; 8:2191. [PMID: 29354144 PMCID: PMC5759035 DOI: 10.3389/fpls.2017.02191] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/12/2017] [Indexed: 05/08/2023]
Abstract
The soil-plant ecosystem harbors an immense microbial diversity that challenges investigative approaches to study traits underlying plant-microbe association. Studies solely based on culture-dependent techniques have overlooked most microbial diversity. Here we describe the concomitant use of culture-dependent and -independent techniques to target plant-beneficial microbial groups from the sugarcane microbiome. The community-based culture collection (CBC) approach was used to access microbes from roots and stalks. The CBC recovered 399 unique bacteria representing 15.9% of the rhizosphere core microbiome and 61.6-65.3% of the endophytic core microbiomes of stalks. By cross-referencing the CBC (culture-dependent) with the sugarcane microbiome profile (culture-independent), we designed a synthetic community comprised of naturally occurring highly abundant bacterial groups from roots and stalks, most of which has been poorly explored so far. We then used maize as a model to probe the abundance-based synthetic inoculant. We show that when inoculated in maize plants, members of the synthetic community efficiently colonize plant organs, displace the natural microbiota and dominate at 53.9% of the rhizosphere microbial abundance. As a result, inoculated plants increased biomass by 3.4-fold as compared to uninoculated plants. The results demonstrate that abundance-based synthetic inoculants can be successfully applied to recover beneficial plant microbes from plant microbiota.
Collapse
Affiliation(s)
- Jaderson Silveira Leite Armanhi
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Natália de Brito Damasceno
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Laura M. de Araújo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- *Correspondence: Paulo Arruda
| |
Collapse
|
317
|
Xu M, Zhong F, Zhu J. Evaluating metabolic response to light exposure in Lactobacillus species via targeted metabolic profiling. J Microbiol Methods 2016; 133:14-19. [PMID: 27974228 DOI: 10.1016/j.mimet.2016.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 01/27/2023]
Abstract
This study reported metabolic profiles of three representative strains from Lactobacillus species, and explored their metabolic response to visible light exposure. We utilized strains from three Lactobacillus species, Lactobacillus acidophilus, Lactobacillus fermentum and Lactobacillus delbrueckii as our model bacteria and applied mass spectrometry base targeted metabolomics to specifically investigate 221 metabolites within multiple metabolic pathways. Similar and diverse metabolome from three tested strains were discovered. Furthermore, all three Lactobacillus strains demonstrated different metabolic profiles in comparison between light expose verse control. In all three strains, 12 metabolites were detected to have significant differences (p-value<0.01) in light exposure culture compared to the control samples (culture grown without light exposure). Principal components analysis using these significantly changed metabolites clearly separated the exposure and control groups in all three studied Lactobacillus strains. Additionally, metabolic pathway impact analysis indicated that several commonly impacted pathways can be observed.
Collapse
Affiliation(s)
- Mengyang Xu
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | - Fanyi Zhong
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | - Jiangjiang Zhu
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA.
| |
Collapse
|
318
|
Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:2767-2787. [PMID: 27824648 DOI: 10.1097/mib.0000000000000970] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. METHODS The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. RESULTS Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. CONCLUSIONS Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.
Collapse
|
319
|
Topical Decolonization Does Not Eradicate the Skin Microbiota of Community-Dwelling or Hospitalized Adults. Antimicrob Agents Chemother 2016; 60:7303-7312. [PMID: 27671074 DOI: 10.1128/aac.01289-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Topical antimicrobials are often employed for decolonization and infection prevention and may alter the endogenous microbiota of the skin. The objective of this study was to compare the microbial communities and levels of richness and diversity in community-dwelling subjects and intensive care unit (ICU) patients before and after the use of topical decolonization protocols. We enrolled 15 adults at risk for Staphylococcus aureus infection. Community subjects (n = 8) underwent a 5-day decolonization protocol (twice daily intranasal mupirocin and daily dilute bleach-water baths), and ICU patients (n = 7) received daily chlorhexidine baths. Swab samples were collected from 5 anatomic sites immediately before and again after decolonization. A variety of culture media and incubation environments were used to recover bacteria and fungi; isolates were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Overall, 174 unique organisms were recovered. Unique communities of organisms were recovered from the community-dwelling and hospitalized cohorts. In the community-dwelling cohort, microbial richness and diversity did not differ significantly between collections across time points, although the number of body sites colonized with S. aureus decreased significantly over time (P = 0.004). Within the hospitalized cohort, richness and diversity decreased over time compared to those for the enrollment sampling (from enrollment to final sampling, P = 0.01 for both richness and diversity). Topical antimicrobials reduced the burden of S. aureus while preserving other components of the skin and nasal microbiota.
Collapse
|
320
|
Zhang L, Bahl MI, Roager HM, Fonvig CE, Hellgren LI, Frandsen HL, Pedersen O, Holm JC, Hansen T, Licht TR. Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans. ISME JOURNAL 2016; 11:676-690. [PMID: 27858930 DOI: 10.1038/ismej.2016.151] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022]
Abstract
Microbiota transplantation to germ-free animals is a powerful method to study involvement of gut microbes in the aetiology of metabolic syndrome. Owing to large interpersonal variability in gut microbiota, studies with broad coverage of donors are needed to elucidate the establishment of human-derived microbiotas in mice, factors affecting this process and resulting impact on metabolic health. We thus transplanted faecal microbiotas from humans (16 obese and 16 controls) separately into 64 germ-free Swiss Webster mice caged in pairs within four isolators, with two isolators assigned to each phenotype, thereby allowing us to explore the extent of microbial spread between cages in a well-controlled environment. Despite high group-wise similarity between obese and control human microbiotas, transplanted mice in the four isolators developed distinct gut bacterial composition and activity, body mass gain, and insulin resistance. Spread of microbes between cages within isolators interacted with establishment of the transplanted microbiotas in mice, and contributed to the transmission of metabolic phenotypes. Our findings highlight the impact of donor variability and reveal that inter-individual spread of microbes contributes to the development of metabolic traits. This is of major importance for design of animal studies, and indicates that environmental transfer of microbes between individuals may affect host metabolic traits.
Collapse
Affiliation(s)
- Li Zhang
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | | | - Cilius Esmann Fonvig
- The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars I Hellgren
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Christian Holm
- The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| |
Collapse
|
321
|
Li D, Wang P, Wang P, Hu X, Chen F. The gut microbiota: A treasure for human health. Biotechnol Adv 2016; 34:1210-1224. [DOI: 10.1016/j.biotechadv.2016.08.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/17/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022]
|
322
|
|
323
|
Zantow J, Just S, Lagkouvardos I, Kisling S, Dübel S, Lepage P, Clavel T, Hust M. Mining gut microbiome oligopeptides by functional metaproteome display. Sci Rep 2016; 6:34337. [PMID: 27703179 PMCID: PMC5050496 DOI: 10.1038/srep34337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022] Open
Abstract
Pathogen infections, autoimmune diseases, and chronic inflammatory disorders are associated with systemic antibody responses from the host immune system. Disease-specific antibodies can be important serum biomarkers, but the identification of antigens associated with specific immune reactions is challenging, in particular if complex communities of microorganisms are involved in the disease progression. Despite promising new diagnostic opportunities, the discovery of these serological markers becomes more difficult with increasing complexity of microbial communities. In the present work, we used a metagenomic M13 phage display approach to select immunogenic oligopeptides from the gut microbiome of transgenic mice suffering from chronic ileitis. We constructed three individual metaproteome phage display libraries with a library size of approximately 107 clones each. Using serum antibodies, we selected and validated three oligopeptides that induced specific antibody responses in the mouse model. This proof-of-concept study provides the first successful application of functional metaproteome display for the study of protein-protein interactions and the discovery of potential disease biomarkers.
Collapse
Affiliation(s)
- Jonas Zantow
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics - Department for Biotechnology, Germany
| | - Sarah Just
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Ilias Lagkouvardos
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Sigrid Kisling
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics - Department for Biotechnology, Germany
| | - Patricia Lepage
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Thomas Clavel
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics - Department for Biotechnology, Germany
| |
Collapse
|
324
|
Pradeu T. Mutualistic viruses and the heteronomy of life. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:80-8. [PMID: 26972872 PMCID: PMC7108282 DOI: 10.1016/j.shpsc.2016.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 05/04/2023]
Abstract
Though viruses have generally been characterized by their pathogenic and more generally harmful effects, many examples of mutualistic viruses exist. Here I explain how the idea of mutualistic viruses has been defended in recent virology, and I explore four important conceptual and practical consequences of this idea. I ask to what extent this research modifies the way scientists might search for new viruses, our notion of how the host immune system interacts with microbes, the development of new therapeutic approaches, and, finally, the role played by the criterion of autonomy in our understanding of living things. Overall, I suggest that the recognition of mutualistic viruses plays a major role in a wider ongoing revision of our conception of viruses.
Collapse
Affiliation(s)
- Thomas Pradeu
- ImmunoConcept, UMR5164, CNRS, University of Bordeaux, France.
| |
Collapse
|
325
|
Petzoldt D, Breves G, Rautenschlein S, Taras D. Harryflintia acetispora gen. nov., sp. nov., isolated from chicken caecum. Int J Syst Evol Microbiol 2016; 66:4099-4104. [DOI: 10.1099/ijsem.0.001317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Diana Petzoldt
- Lohmann Animal Health GmbH, Heinz-Lohmann-Straße 4, D-27472 Cuxhaven, Germany
- Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Gerhard Breves
- Institute for Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - David Taras
- Lohmann Animal Health GmbH, Heinz-Lohmann-Straße 4, D-27472 Cuxhaven, Germany
| |
Collapse
|
326
|
Younan S, Sakita GZ, Albuquerque TR, Keller R, Bremer-Neto H. Chromium(VI) bioremediation by probiotics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3977-3982. [PMID: 26997541 DOI: 10.1002/jsfa.7725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/04/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Chromium is a common mineral in the earth's crust and can be released into the environment from anthropogenic sources. Intake of hexavalent chromium (Cr(VI)) through drinking water and food causes toxic effects, leading to serious diseases, and is a commonly reported environmental problem. Microorganisms can mitigate or prevent the toxic effects caused by heavy metals in addition to having effective resistance mechanisms to prevent cell damage and bind to these metals, sequestering them from the cell surface and removing them from the body. Species of Lactobacillus, Streptococcus, Bacillus and Bifidobacterium present in the human mouth and gut and in fermented foods have the ability to bind and detoxify some of these substances. This review address the primary topics related to Cr(VI) poisoning in animals and humans and the use of probiotics as a way to mitigate or prevent the toxic effects caused by Cr(VI). Further advances in the genetic knowledge of such microorganisms may lead to discoveries which will clarify the most active microorganisms that act as bioprotectants in bodies exposed to Cr(VI) and are an affordable option for people and animals intoxicated by the oral route. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Soraia Younan
- Department of Functional Sciences, Laboratory of Biophysics, University of Western São Paulo - UNOESTE, CEP 19050-920, Presidente Prudente, São Paulo, Brazil
| | - Gabriel Z Sakita
- Department of Functional Sciences, Laboratory of Biophysics, University of Western São Paulo - UNOESTE, CEP 19050-920, Presidente Prudente, São Paulo, Brazil
| | - Talita R Albuquerque
- Department of Functional Sciences, Laboratory of Biophysics, University of Western São Paulo - UNOESTE, CEP 19050-920, Presidente Prudente, São Paulo, Brazil
| | - Rogéria Keller
- Department of Functional Sciences, Laboratory of Biophysics, University of Western São Paulo - UNOESTE, CEP 19050-920, Presidente Prudente, São Paulo, Brazil
| | - Hermann Bremer-Neto
- Department of Functional Sciences, Laboratory of Biophysics, University of Western São Paulo - UNOESTE, CEP 19050-920, Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
327
|
Abstract
There are a range of methodologies available to study the human microbiota, ranging from traditional approaches such as culturing through to state-of-the-art developments in next generation DNA sequencing technologies. The advent of molecular techniques in particular has opened up tremendous new avenues for research, and has galvanised interest in the study of our microbial inhabitants. Given the dazzling array of available options, however, it is important to understand the inherent advantages and limitations of each technique so that the best approach can be employed to address the particular research objective. In this chapter we cover some of the most widely used current techniques in human microbiota research and highlight the particular strengths and caveats associated with each approach.
Collapse
Affiliation(s)
- Alan W Walker
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
328
|
The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 2016; 1:16131. [PMID: 27670113 DOI: 10.1038/nmicrobiol.2016.131] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/05/2016] [Indexed: 01/14/2023]
Abstract
Intestinal bacteria influence mammalian physiology, but many types of bacteria are still uncharacterized. Moreover, reference strains of mouse gut bacteria are not easily available, although mouse models are extensively used in medical research. These are major limitations for the investigation of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (miBC), a public repository of bacterial strains and associated genomes from the mouse gut, and studied host-specificity of colonization and sequence-based relevance of the resource. The collection includes several strains representing novel species, genera and even one family. Genomic analyses showed that certain species are specific to the mouse intestine and that a minimal consortium of 18 strains covered 50-75% of the known functional potential of metagenomes. The present work will sustain future research on microbiota-host interactions in health and disease, as it will facilitate targeted colonization and molecular studies. The resource is available at www.dsmz.de/miBC.
Collapse
|
329
|
The mouse gut microbiome revisited: From complex diversity to model ecosystems. Int J Med Microbiol 2016; 306:316-327. [DOI: 10.1016/j.ijmm.2016.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
|
330
|
Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry. Nat Protoc 2016; 11:1531-53. [PMID: 27466712 DOI: 10.1038/nprot.2016.091] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibacterial antibody responses that target surfaces of live bacteria or secreted toxins are likely to be relevant in controlling bacterial pathogenesis. The ability to specifically quantify bacterial-surface-binding antibodies is therefore highly attractive as a quantitative correlate of immune protection. Here, binding of antibodies from various body fluids to pure-cultured live bacteria is made visible with fluorophore-conjugated secondary antibodies and measured by flow cytometry. We indicate the necessary controls for excluding nonspecific binding and also demonstrate a cross-adsorption technique for determining the extent of cross-reactivity. This technique has numerous advantages over standard ELISA and western blotting techniques because of its independence from scaffold binding, exclusion of cross-reactive elements from lysed bacteria and ability to visualize bacterial subpopulations. In addition, less than 10(5) bacteria and less than 10 μg of antibody are required per sample. The technique requires 3-4 h of hands-on experimentation and analysis. Moreover, it can be combined with automation and mutliplexing for high-throughput applications.
Collapse
|
331
|
Zeng L, Zeng B, Wang H, Li B, Huo R, Zheng P, Zhang X, Du X, Liu M, Fang Z, Xu X, Zhou C, Chen J, Li W, Guo J, Wei H, Xie P. Microbiota Modulates Behavior and Protein Kinase C mediated cAMP response element-binding protein Signaling. Sci Rep 2016; 6:29998. [PMID: 27444685 PMCID: PMC4956747 DOI: 10.1038/srep29998] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022] Open
Abstract
Evolutionary pressure drives gut microbiota–host coevolution and results in complex interactions between gut microbiota and neural development; however, the molecular mechanisms by which the microbiota governs host behavior remain obscure. Here, we report that colonization early in life is crucial for the microbiota to modulate brain development and behavior; later colonization or deletion of microbiota cannot completely reverse the behaviors. Microarray analysis revealed an association between absence of gut microbiota and expression in cAMP responding element-binding protein (CREB) regulated genes in the hippocampus. The absence of gut microbiota from birth was shown to be associated with decreased CREB expression, followed by decreases of protein kinase C beta (PRKCB) and AMPA receptors expression, and an increase of phosphorylation CREB (pCREB) expression. Microbiota colonization in adolescence restored CREB and pCREB expression, but did not alter PRKCB and AMPARs expression. The removal of the gut microbiota from SPF mice using antibiotics only reduced pCREB expression. These findings suggest that (i) colonization of the gut microbiota early in life might facilitate neurodevelopment via PKC–CREB signaling and (ii) although GF mice and ABX mice display reduced anxiety-related behaviors, the molecular mechanisms behind this might differ.
Collapse
Affiliation(s)
- Li Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Haiyang Wang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Bo Li
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ran Huo
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Xiaotong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Xiangyu Du
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Meiling Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Zheng Fang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Xuejiao Xu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Chanjuan Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Jianjun Chen
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Wenxia Li
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Jing Guo
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Chongqing Cancer Hospital &Institute &Cancer Center, Chongqing, China
| | - Hong Wei
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China.,South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| |
Collapse
|
332
|
Emerging Technologies for Gut Microbiome Research. Trends Microbiol 2016; 24:887-901. [PMID: 27426971 DOI: 10.1016/j.tim.2016.06.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/06/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023]
Abstract
Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies, including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches, will improve the efficiency and quality of microbiome research. Here, we discuss emerging technologies and their potential impact on gut microbiome studies.
Collapse
|
333
|
Abreu NA, Taga ME. Decoding molecular interactions in microbial communities. FEMS Microbiol Rev 2016; 40:648-63. [PMID: 27417261 DOI: 10.1093/femsre/fuw019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2016] [Indexed: 12/21/2022] Open
Abstract
Microbial communities govern numerous fundamental processes on earth. Discovering and tracking molecular interactions among microbes is critical for understanding how single species and complex communities impact their associated host or natural environment. While recent technological developments in DNA sequencing and functional imaging have led to new and deeper levels of understanding, we are limited now by our inability to predict and interpret the intricate relationships and interspecies dependencies within these communities. In this review, we highlight the multifaceted approaches investigators have taken within their areas of research to decode interspecies molecular interactions that occur between microbes. Understanding these principles can give us greater insight into ecological interactions in natural environments and within synthetic consortia.
Collapse
Affiliation(s)
- Nicole A Abreu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Michiko E Taga
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| |
Collapse
|
334
|
Armanhi JSL, de Souza RSC, de Araújo LM, Okura VK, Mieczkowski P, Imperial J, Arruda P. Multiplex amplicon sequencing for microbe identification in community-based culture collections. Sci Rep 2016; 6:29543. [PMID: 27404280 PMCID: PMC4941570 DOI: 10.1038/srep29543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/20/2016] [Indexed: 01/06/2023] Open
Abstract
Microbiome analysis using metagenomic sequencing has revealed a vast microbial diversity associated with plants. Identifying the molecular functions associated with microbiome-plant interaction is a significant challenge concerning the development of microbiome-derived technologies applied to agriculture. An alternative to accelerate the discovery of the microbiome benefits to plants is to construct microbial culture collections concomitant with accessing microbial community structure and abundance. However, traditional methods of isolation, cultivation, and identification of microbes are time-consuming and expensive. Here we describe a method for identification of microbes in culture collections constructed by picking colonies from primary platings that may contain single or multiple microorganisms, which we named community-based culture collections (CBC). A multiplexing 16S rRNA gene amplicon sequencing based on two-step PCR amplifications with tagged primers for plates, rows, and columns allowed the identification of the microbial composition regardless if the well contains single or multiple microorganisms. The multiplexing system enables pooling amplicons into a single tube. The sequencing performed on the PacBio platform led to recovery near-full-length 16S rRNA gene sequences allowing accurate identification of microorganism composition in each plate well. Cross-referencing with plant microbiome structure and abundance allowed the estimation of diversity and abundance representation of microorganism in the CBC.
Collapse
Affiliation(s)
- Jaderson Silveira Leite Armanhi
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
| | - Rafael Soares Correa de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
| | - Laura Migliorini de Araújo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
| | - Vagner Katsumi Okura
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
| | - Piotr Mieczkowski
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, (Madrid), Spain
- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
335
|
Endesfelder D, Engel M, Zu Castell W. Gut Immunity and Type 1 Diabetes: a Mélange of Microbes, Diet, and Host Interactions? Curr Diab Rep 2016; 16:60. [PMID: 27155610 DOI: 10.1007/s11892-016-0753-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disease, and first stages of the disease typically develop early in life. Genetic as well as environmental factors are thought to contribute to the risk of developing autoimmunity against pancreatic beta cells. Several environmental factors, such as breastfeeding or early introduction of solid food, have been associated with increased risk for developing T1D. During the first years of life, the gut microbial community is shaped by the environment, in particular by dietary factors. Moreover, the gut microbiome has been described for its role in shaping the immune system early in life and early data suggest associations between T1D risk and alterations in gut microbial communities. In this article, we discuss environmental factors influencing the colonization process of the gut microbial community. Furthermore, we review possible interactions between the microbiome and the host that might contribute to the risk of developing T1D.
Collapse
Affiliation(s)
- David Endesfelder
- Scientific Computing Research Unit, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
| | - Marion Engel
- Scientific Computing Research Unit, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Wolfgang Zu Castell
- Department of Mathematics, Technische Universität München, Boltzmannstrasse 3, 85747, Garching, Germany
| |
Collapse
|
336
|
Lau JT, Whelan FJ, Herath I, Lee CH, Collins SM, Bercik P, Surette MG. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med 2016; 8:72. [PMID: 27363992 PMCID: PMC4929786 DOI: 10.1186/s13073-016-0327-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022] Open
Abstract
Background The human gut microbiota has been implicated in most aspects of health and disease; however, most of the bacteria in this community are considered unculturable, so studies have relied on molecular-based methods. These methods generally do not permit the isolation of organisms, which is required to fully explore the functional roles of bacteria for definitive association with host phenotypes. Using a combination of culture and 16S rRNA gene sequencing, referred to as culture-enriched molecular profiling, we show that the majority of the bacteria identified by 16S sequencing of the human gut microbiota can be cultured. Methods Five fresh, anaerobic fecal samples were cultured using 33 media and incubation of plates anaerobically and aerobically resulted in 66 culture conditions for culture-enriched molecular profiling. The cultivable portion of the fecal microbiota was determined by comparing the operational taxonomic units (OTUs) recovered by 16S sequencing of the culture plates to OTUs from culture-independent sequencing of the fecal sample. Targeted isolation of Lachnospiraceae strains using conditions defined by culture-enriched molecular profiling was carried out on two fresh stool samples. Results We show that culture-enriched molecular profiling, utilizing 66 culture conditions combined with 16S rRNA gene sequencing, allowed for the culturing of an average of 95 % of the OTUs present at greater than 0.1 % abundance in fecal samples. Uncultured OTUs were low abundance in stool. Importantly, comparing culture-enrichment to culture-independent sequencing revealed that the majority of OTUs were detected only by culture, highlighting the advantage of culture for studying the diversity of the gut microbiota. Applying culture-enriched molecular profiling to target Lachnospiraceae strains resulted in the recovery of 79 isolates, 12 of which are on the Human Microbiome Project’s “Most Wanted” list. Conclusions We show that, through culture-enriched molecular profiling, the majority of the bacteria in the human gut microbiota can be cultured and this method revealed greater bacterial diversity compared to culture-independent sequencing. Additionally, this method could be applied for the targeted recovery of a specific bacterial group. This approach allows for the isolation of bacteria of interest from the gut microbiota, providing new opportunities to explore mechanisms of microbiota–host interactions and the diversity of the human microbiota. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0327-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer T Lau
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Fiona J Whelan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Isiri Herath
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Christine H Lee
- Department of Medicine, Division of Infectious Diseases, McMaster University, Hamilton, ON, L8S 4K1, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, ON, L8N 4A6, Canada
| | - Stephen M Collins
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, 1280 Main St W, HSC 3N-9, Hamilton, ON, L8S 4K1, Canada
| | - Premysl Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, 1280 Main St W, HSC 3N-9, Hamilton, ON, L8S 4K1, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada. .,Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, 1280 Main St W, HSC 3N-9, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
337
|
Hansen AK, Krych Ł, Nielsen DS, Hansen CHF. A Review of Applied Aspects of Dealing with Gut Microbiota Impact on Rodent Models. ILAR J 2016; 56:250-64. [PMID: 26323634 DOI: 10.1093/ilar/ilv010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The gut microbiota (GM) affects numerous human diseases, as well as rodent models for these. We will review this impact and summarize ways to handle this challenge in animal research. The GM is complex, with the largest fractions being the gram-positive phylum Firmicutes and the gram-negative phylum Bacteroidetes. Other important phyla are the gram-negative phyla Proteobacteria and Verrucomicrobia, and the gram-positive phylum Actinobacteria. GM members influence models for diseases, such as inflammatory bowel diseases, allergies, autoimmunity, cancer, and neuropsychiatric diseases. GM characterization of all individual animals and incorporation of their GM composition in data evaluation may therefore be considered in future protocols. Germfree isolator-housed rodents or rodents made virtually germ free by antibiotic cocktails can be used to study diverse microbial influences on disease expression. Through subsequent inoculation with selected strains or cocktails of microbes, new "defined flora" models can yield valuable knowledge on the impact of the GM, and of specific GM members and their interactions, on important disease phenotypes and mechanisms. Rodent husbandry and microbial quality assurance practices will be important to ensure and confirm appropriate and research relevant GM.
Collapse
Affiliation(s)
- Axel Kornerup Hansen
- Axel Kornerup Hansen, DVM, DVsc, DipECLAM, Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark. Łukasz Krych, MSc, PhD, Postdoc, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Dennis Sandris Nielsen, MSc, PhD, Associate Professor, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Camilla Hartmann Friis Hansen, DVM, PhD, Assistant Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark
| | - Łukasz Krych
- Axel Kornerup Hansen, DVM, DVsc, DipECLAM, Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark. Łukasz Krych, MSc, PhD, Postdoc, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Dennis Sandris Nielsen, MSc, PhD, Associate Professor, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Camilla Hartmann Friis Hansen, DVM, PhD, Assistant Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark
| | - Dennis Sandris Nielsen
- Axel Kornerup Hansen, DVM, DVsc, DipECLAM, Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark. Łukasz Krych, MSc, PhD, Postdoc, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Dennis Sandris Nielsen, MSc, PhD, Associate Professor, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Camilla Hartmann Friis Hansen, DVM, PhD, Assistant Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark
| | - Camilla Hartmann Friis Hansen
- Axel Kornerup Hansen, DVM, DVsc, DipECLAM, Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark. Łukasz Krych, MSc, PhD, Postdoc, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Dennis Sandris Nielsen, MSc, PhD, Associate Professor, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Camilla Hartmann Friis Hansen, DVM, PhD, Assistant Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark
| |
Collapse
|
338
|
Gut microbiota and hematopoietic stem cell transplantation: where do we stand? Bone Marrow Transplant 2016; 52:7-14. [PMID: 27348539 DOI: 10.1038/bmt.2016.173] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/26/2022]
Abstract
Advances in biological techniques have potentiated great progresses in understanding the interaction between human beings and the ∼10 to 100 trillion microbes living in their gastrointestinal tract: gut microbiota (GM). In this review, we describe recent emerging data on the role of GM in hematopoietic stem cell transplantation, with a focus on immunomodulatory properties in the immune system recovery and the impact in the development of the main complications, as GvHD and infections.
Collapse
|
339
|
Accounting for reciprocal host–microbiome interactions in experimental science. Nature 2016; 534:191-9. [DOI: 10.1038/nature18285] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/26/2016] [Indexed: 12/13/2022]
|
340
|
Xavier JB. Sociomicrobiology and Pathogenic Bacteria. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0019-2015. [PMID: 27337482 PMCID: PMC4920084 DOI: 10.1128/microbiolspec.vmbf-0019-2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 12/16/2022] Open
Abstract
The study of microbial pathogenesis has been primarily a reductionist science since Koch's principles. Reductionist approaches are essential to identify the causal agents of infectious disease, their molecular mechanisms of action, and potential drug targets, and much of medicine's success in the treatment of infectious disease stems from that approach. But many bacteria-caused diseases cannot be explained by a single bacterium. Several aspects of bacterial pathogenesis will benefit from a more holistic approach that takes into account social interaction among bacteria of the same species and between species in consortia such as the human microbiome. The emerging discipline of sociomicrobiology provides a framework to dissect microbial interactions in single and multi-species communities without compromising mechanistic detail. The study of bacterial pathogenesis can benefit greatly from incorporating concepts from other disciplines such as social evolution theory and microbial ecology, where communities, their interactions with hosts, and with the environment play key roles.
Collapse
Affiliation(s)
- Joao B. Xavier
- Program for Computational Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 460, New York, NY 10065,
| |
Collapse
|
341
|
Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection. mSphere 2016; 1:mSphere00101-16. [PMID: 27303742 PMCID: PMC4888886 DOI: 10.1128/msphere.00101-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
C. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin A (SIgA) separated from the whole bacterial community by FACS elucidated how the gut dysbiosis promotes C. difficile infection (CDI). Bacterial groups with inhibitory effects on C. difficile growth, such as Lactobacillales, were mostly inactive in the CDI patients. C. difficile was typical for the bacterial fraction opsonized by SIgA in patients with CDI, while Fusobacterium was characteristic for the SIgA-opsonized fraction of the controls. The study demonstrates that sequencing of specific bacterial fractions provides additional information about dysbiotic processes in the gut. The detected patterns have been confirmed with the whole patient cohort independently of the taxonomic differences detected in the nonfractionated microbiomes. The onset of Clostridium difficile infection (CDI) has been associated with treatment with wide-spectrum antibiotics. Antibiotic treatment alters the activity of gut commensals and may result in modified patterns of immune responses to pathogens. To study these mechanisms during CDI, we separated bacteria with high cellular RNA content (the active bacteria) and their inactive counterparts by fluorescence-activated cell sorting (FACS) of the fecal bacterial suspension. The gut dysbiosis due to the antibiotic treatment may result in modification of immune recognition of intestinal bacteria. The immune recognition patterns were assessed by FACS of bacterial fractions either coated or not with intestinal secretory immunoglobulin A (SIgA). We described the taxonomic distributions of these four bacterial fractions (active versus inactive and SIgA coated versus non-SIgA coated) by massive 16S rRNA gene amplicon sequencing and quantified the proportion of C. difficile toxin genes in the samples. The overall gut microbiome composition was more robustly influenced by antibiotics than by the C. difficile toxins. Bayesian networks revealed that the C. difficile cluster was preferentially SIgA coated during CDI. In contrast, in the CDI-negative group Fusobacterium was the characteristic genus of the SIgA-opsonized fraction. Lactobacillales and Clostridium cluster IV were mostly inactive in CDI-positive patients. In conclusion, although the proportion of C. difficile in the gut is very low, it is able to initiate infection during the gut dysbiosis caused by environmental stress (antibiotic treatment) as a consequence of decreased activity of the protective bacteria. IMPORTANCEC. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin A (SIgA) separated from the whole bacterial community by FACS elucidated how the gut dysbiosis promotes C. difficile infection (CDI). Bacterial groups with inhibitory effects on C. difficile growth, such as Lactobacillales, were mostly inactive in the CDI patients. C. difficile was typical for the bacterial fraction opsonized by SIgA in patients with CDI, while Fusobacterium was characteristic for the SIgA-opsonized fraction of the controls. The study demonstrates that sequencing of specific bacterial fractions provides additional information about dysbiotic processes in the gut. The detected patterns have been confirmed with the whole patient cohort independently of the taxonomic differences detected in the nonfractionated microbiomes.
Collapse
|
342
|
Clavel T, Lagkouvardos I, Hiergeist A. Microbiome sequencing: challenges and opportunities for molecular medicine. Expert Rev Mol Diagn 2016; 16:795-805. [DOI: 10.1080/14737159.2016.1184574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Thomas Clavel
- ZIEL Institute for Food and Health, Technical University of Munich, Munich, Germany
| | - Ilias Lagkouvardos
- ZIEL Institute for Food and Health, Technical University of Munich, Munich, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
343
|
Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533:543-546. [PMID: 27144353 PMCID: PMC4890681 DOI: 10.1038/nature17645] [Citation(s) in RCA: 761] [Impact Index Per Article: 95.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/08/2016] [Indexed: 12/16/2022]
Abstract
Our intestinal microbiota harbours a diverse bacterial community required for our health, sustenance and wellbeing. Intestinal colonization begins at birth and climaxes with the acquisition of two dominant groups of strict anaerobic bacteria belonging to the Firmicutes and Bacteroidetes phyla. Culture-independent, genomic approaches have transformed our understanding of the role of the human microbiome in health and many diseases. However, owing to the prevailing perception that our indigenous bacteria are largely recalcitrant to culture, many of their functions and phenotypes remain unknown. Here we describe a novel workflow based on targeted phenotypic culturing linked to large-scale whole-genome sequencing, phylogenetic analysis and computational modelling that demonstrates that a substantial proportion of the intestinal bacteria are culturable. Applying this approach to healthy individuals, we isolated 137 bacterial species from characterized and candidate novel families, genera and species that were archived as pure cultures. Whole-genome and metagenomic sequencing, combined with computational and phenotypic analysis, suggests that at least 50-60% of the bacterial genera from the intestinal microbiota of a healthy individual produce resilient spores, specialized for host-to-host transmission. Our approach unlocks the human intestinal microbiota for phenotypic analysis and reveals how a marked proportion of oxygen-sensitive intestinal bacteria can be transmitted between individuals, affecting microbiota heritability.
Collapse
|
344
|
Martín R, Bermúdez-Humarán LG, Langella P. Gnotobiotic Rodents: An In Vivo Model for the Study of Microbe-Microbe Interactions. Front Microbiol 2016; 7:409. [PMID: 27065973 PMCID: PMC4814450 DOI: 10.3389/fmicb.2016.00409] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/14/2016] [Indexed: 02/01/2023] Open
Abstract
Germ-free rodents have no microorganisms living in or on them, allowing researchers to specifically control an animal's microbiota through the direct inoculation of bacteria of interest. This strategy has been widely used to decipher host-microbe interactions as well as the role of microorganisms in both (i) the development and function of the gut barrier (mainly the intestinal epithelium) and (ii) homeostasis and its effects on human health and disease. However, this in vivo model also offers a more realistic environment than an assay tube in which to study microbe-microbe interactions, without most of the confounding interactions present in the intestinal microbiota of conventionally raised mice. This review highlights the usefulness of controlled-microbiota mice in studying microbe-microbe interactions. To this end, we summarize current knowledge on germ-free animals as an experimental model for the study of the ecology and metabolism of intestinal bacteria as well as of microbe-microbe interactions.
Collapse
Affiliation(s)
- Rebeca Martín
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | | | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| |
Collapse
|
345
|
Grazul H, Kanda LL, Gondek D. Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes 2016; 7:101-14. [PMID: 26963277 PMCID: PMC4856465 DOI: 10.1080/19490976.2016.1138197] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Shifts in microbial populations of the intestinal tract have been associated with a multitude of nutritional, autoimmune, and infectious diseases. The limited diversity following antibiotic treatments creates a window for opportunistic pathogens, diarrhea, and inflammation as the microbiome repopulates. Depending on the antibiotics used, microbial diversity can take weeks to months to recover. To alleviate this loss of diversity in the intestinal microbiota, supplementation with probiotics has become increasingly popular. However, our understanding of the purported health benefits of these probiotic bacteria and their ability to shape the microbiome is significantly lacking. This study examined the impact of probiotics concurrent with antibiotic treatment or during the recovery phase following antibiotic treatment of mice. We found that probiotics did not appear to colonize the intestine themselves or shift the overall diversity of the intestinal microbiota. However, the probiotic supplementation did significantly change the types of bacteria which were present. In particular, during the recovery phase the probiotic caused a suppression of Enterobacteriaceae outgrowth (Shigella and Escherichia) while promoting a blooming of Firmicutes, particularly from the Anaerotruncus genus. These results indicate that probiotics have a significant capacity to remodel the microbiome of an individual recovering from antibiotic therapy.
Collapse
Affiliation(s)
- Hannah Grazul
- Biology Department, Center for Natural Science, Ithaca College, Ithaca NY
| | - L. Leann Kanda
- Biology Department, Center for Natural Science, Ithaca College, Ithaca NY
| | - David Gondek
- Biology Department, Center for Natural Science, Ithaca College, Ithaca NY
| |
Collapse
|
346
|
Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development. Proc Natl Acad Sci U S A 2016; 112:14105-12. [PMID: 26578751 DOI: 10.1073/pnas.1511465112] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human gut contains a microbial community composed of tens of trillions of organisms that normally assemble during the first 2-3 y of postnatal life. We propose that brain development needs to be viewed in the context of the developmental biology of this "microbial organ" and its capacity to metabolize the various diets we consume. We hypothesize that the persistent cognitive abnormalities seen in children with undernutrition are related in part to their persistent gut microbiota immaturity and that specific regions of the brain that normally exhibit persistent juvenile (neotenous) patterns of gene expression, including those critically involved in various higher cognitive functions such as the brain's default mode network, may be particularly vulnerable to the effects of microbiota immaturity in undernourished children. Furthermore, we postulate that understanding the interrelationships between microbiota and brain metabolism in childhood undernutrition could provide insights about responses to injury seen in adults. We discuss approaches that can be used to test these hypotheses, their ramifications for optimizing nutritional recommendations that promote healthy brain development and function, and the potential societal implications of this area of investigation.
Collapse
|
347
|
Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, Fan YM, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Maleta KM, Newgard CB, Ashorn P, Dewey KG, Gordon JI. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 2016; 351:351/6275/aad3311. [PMID: 26912898 DOI: 10.1126/science.aad3311] [Citation(s) in RCA: 512] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Undernourished children exhibit impaired development of their gut microbiota. Transplanting microbiota from 6- and 18-month-old healthy or undernourished Malawian donors into young germ-free mice that were fed a Malawian diet revealed that immature microbiota from undernourished infants and children transmit impaired growth phenotypes. The representation of several age-discriminatory taxa in recipient animals correlated with lean body mass gain; liver, muscle, and brain metabolism; and bone morphology. Mice were cohoused shortly after receiving microbiota from healthy or severely stunted and underweight infants; age- and growth-discriminatory taxa from the microbiota of the former were able to invade that of the latter, which prevented growth impairments in recipient animals. Adding two invasive species, Ruminococcus gnavus and Clostridium symbiosum, to the microbiota from undernourished donors also ameliorated growth and metabolic abnormalities in recipient animals. These results provide evidence that microbiota immaturity is causally related to undernutrition and reveal potential therapeutic targets and agents.
Collapse
Affiliation(s)
- Laura V Blanton
- Center for Genome Sciences and Systems Biology and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Mark R Charbonneau
- Center for Genome Sciences and Systems Biology and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Tarek Salih
- Center for Genome Sciences and Systems Biology and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Michael J Barratt
- Center for Genome Sciences and Systems Biology and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Siddarth Venkatesh
- Center for Genome Sciences and Systems Biology and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Olga Ilkaveya
- Sarah W. Stedman Nutrition and Metabolism Centerand Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Sathish Subramanian
- Center for Genome Sciences and Systems Biology and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Mark J Manary
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA. School of Public Health and Family Medicine, College of Medicine, University of Malawi, Chichiri, Blantyre 3, Malawi
| | - Indi Trehan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Paediatrics and Child Health, College of Medicine, University of Malawi, Chichiri, Blantyre 3, Malawi
| | - Josh M Jorgensen
- Department of Nutrition and Program in International and Community Nutrition, University of California-Davis, Davis, CA 95616, USA
| | - Yue-Mei Fan
- Department for International Health, University of Tampere School of Medicine, Tampere 33014, Finland
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique and Aix-Marseille Université, 13288 Marseille Cedex 9, France. Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Semen A Leyn
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
| | - Dmitry A Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia. Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kenneth M Maleta
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Chichiri, Blantyre 3, Malawi
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Centerand Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA. Department of Pharmacology and Cancer Biology and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Per Ashorn
- Department for International Health, University of Tampere School of Medicine, Tampere 33014, Finland. Department of Pediatrics, Tampere University Hospital, Tampere 33521, Finland
| | - Kathryn G Dewey
- Department of Nutrition and Program in International and Community Nutrition, University of California-Davis, Davis, CA 95616, USA
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108, USA
| |
Collapse
|
348
|
Mulcahy-O'Grady H, Workentine ML. The Challenge and Potential of Metagenomics in the Clinic. Front Immunol 2016; 7:29. [PMID: 26870044 PMCID: PMC4737888 DOI: 10.3389/fimmu.2016.00029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/19/2016] [Indexed: 12/27/2022] Open
Abstract
The bacteria, fungi, and viruses that live on and in us have a tremendous impact on our day-to-day health and are often linked to many diseases, including autoimmune disorders and infections. Diagnosing and treating these disorders relies on accurate identification and characterization of the microbial community. Current sequencing technologies allow the sequencing of the entire nucleic acid complement of a sample providing an accurate snapshot of the community members present in addition to the full genetic potential of that microbial community. There are a number of clinical applications that stand to benefit from these data sets, such as the rapid identification of pathogens present in a sample. Other applications include the identification of antibiotic-resistance genes, diagnosis and treatment of gastrointestinal disorders, and many other diseases associated with bacterial, viral, and fungal microbiomes. Metagenomics also allows the physician to probe more complex phenotypes such as microbial dysbiosis with intestinal disorders and disruptions of the skin microbiome that may be associated with skin disorders. Many of these disorders are not associated with a single pathogen but emerge as a result of complex ecological interactions within microbiota. Currently, we understand very little about these complex phenotypes, yet clearly they are important and in some cases, as with fecal microbiota transplants in Clostridium difficile infections, treating the microbiome of the patient is effective. Here, we give an overview of metagenomics and discuss a number of areas where metagenomics is applicable in the clinic, and progress being made in these areas. This includes (1) the identification of unknown pathogens, and those pathogens particularly hard to culture, (2) utilizing functional information and gene content to understand complex infections such as Clostridium difficile, and (3) predicting antimicrobial resistance of the community using genetic determinants of resistance identified from the sequencing data. All of these applications rely on sophisticated computational tools, and we also discuss the importance of skilled bioinformatic support for the implementation and use of metagenomics in the clinic.
Collapse
Affiliation(s)
- Heidi Mulcahy-O'Grady
- Infection Prevention and Control, Alberta Health Services, and Faculty of Medicine , Calgary, AB , Canada
| | | |
Collapse
|
349
|
Angelakis E, Lagier JC. Samples and techniques highlighting the links between obesity and microbiota. Microb Pathog 2016; 106:119-126. [PMID: 26828871 DOI: 10.1016/j.micpath.2016.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/23/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022]
Abstract
The composition of gut microbiota and its relationship to human health, particularly its links with obesity remain an ongoing challenge for scientists. The current gold standard for exploring human gut microbiota consists of using stool samples and only applying next generations sequencing techniques, which sometimes generate contradictory results. Here, we comprehensively describe nutrient absorption, fat digestion, carbohydrate and protein absorption, demonstrating that absorption of these diverse nutrients occurs mainly in the stomach and small intestine. Indeed, bariatric surgery, including Roux-en-Y, removes part of the upper intestine, resulting in weight loss, while colonic surgery is associated with a stable weight. However, most studies only use stool samples rather than small intestine samples because of the easy with which this can be accessed. Metagenomics studies are associated with several biases such as extraction and primer biases and depth bias, including the more modern platforms. High-throughput culture-dependent techniques, such as culturomics, which uses rapid identification methods such as MALDI-TOF, remain time-consuming, but have demonstrated their complementarity with molecular techniques. In conclusion, we believe that a comprehensive analysis of the relationships between obesity and gut microbiota requires large-scale studies coupling metagenomics and culture-dependent research, in order to analyse both small intestine and stool samples.
Collapse
Affiliation(s)
- Emmanouil Angelakis
- Aix-Marseille Université URMITE, UM63, IHU Méditerranée Infection, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Jean-Christophe Lagier
- Aix-Marseille Université URMITE, UM63, IHU Méditerranée Infection, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| |
Collapse
|
350
|
Abstract
In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota (‘the gut resistome’). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.
Collapse
Affiliation(s)
- Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|