301
|
Börner GV, Yokobori S, Mörl M, Dörner M, Pääbo S. RNA editing in metazoan mitochondria: staying fit without sex. FEBS Lett 1997; 409:320-4. [PMID: 9224682 DOI: 10.1016/s0014-5793(97)00357-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RNA editing subsumes a number of functionally different mechanisms which have in common that they change the nucleotide sequence of RNA transcripts such that they become different from what would conventionally be predicted from their gene sequences. RNA editing has now been found in the organelles of numerous organisms as well as in a few nuclear transcripts. Most recently, it was shown to affect tRNAs in the mitochondria of several animals. The occurrence and evolutionary persistence of RNA editing is perplexing since backmutations in the genes might be assumed rapidly to eliminate the need for 'correction' of the gene sequences at the post-transcriptional level. Here, we review the recent RNA editing systems discovered in animal mitochondria and propose that they have arisen as a mechanism counteracting the accumulation of mutations that occurs in asexual genetic system.
Collapse
Affiliation(s)
- G V Börner
- Institute of Zoology, University of Munich, Germany
| | | | | | | | | |
Collapse
|
302
|
Sumida M. Inheritance of Mitochondrial DNAs and Allozymes in the Female Hybrid Lineage of Two Japanese Pond Frog Species. Zoolog Sci 1997. [DOI: 10.2108/zsj.14.277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
303
|
Houshmand M, Holme E, Hanson C, Wennerholm UB, Hamberger L. Is paternal mitochondrial DNA transferred to the offspring following intracytoplasmic sperm injection? J Assist Reprod Genet 1997; 14:223-7. [PMID: 9130071 PMCID: PMC3454696 DOI: 10.1007/bf02766114] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During intracytoplasmic sperm injection (ICSI) the whole sperm, including head, midpiece and tail, is injected into the middle area of the oocyte. To find out what happens to the sperm mitochondria after ICSI, we checked the first six children born after ICSI treatment for occurrence of paternal mitochondrial DNA (mtDNA). The difference between maternal and paternal mtDNA in the investigated couples in our study was confined to single-base pair substitutions and we had to rely on restriction enzyme cleavage to differentiate between the mitochondrial genomes of the parents. With this kind of assay we were able to reach a sensitivity of about 0.2% for the paternal mtDNA. However, as uneven partition between tissues of heteroplasmic mtDNA is expected to occur, it would not be unlikely that an enrichment to 0.2% would occur in a given tissue if paternal mtDNA was transmitted by the ICSI procedure. We did not detect this level in the blood in any of the six children.
Collapse
Affiliation(s)
- M Houshmand
- Department of Clinical Chemistry, Göteborg University, Sahlgren's Hospital, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
304
|
Saavedra C, Reyero MI, Zouros E. Male-dependent doubly uniparental inheritance of mitochondrial DNA and female-dependent sex-ratio in the mussel Mytilus galloprovincialis. Genetics 1997; 145:1073-82. [PMID: 9093859 PMCID: PMC1207877 DOI: 10.1093/genetics/145.4.1073] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have investigated sex ratio and mitochondrial DNA inheritance in pair-matings involving five female and five male individuals of the Mediterranean mussel Mytilus galloprovincialis. The percentage of male progeny varied widely among families and was found to be a characteristic of the female parent and independent of the male to which it was mated. Thus sex-ratio in Mytilus appears to be independent of the nuclear genotype of the sperm. With a few exceptions, doubly uniparental inheritance (DUI) of mtDNA was observed in all families fathered by four of the five males: female and male progeny contained the mother's mtDNA (the F genome), but males contained also the father's paternal mtDNA (the M genome). Two hermaphrodite individuals found among the progeny of these crosses contained the F mitochondrial genome in the female gonad and both the F and M genomes in the male gonad. All four families fathered by the fifth male showed the standard maternal inheritance (SMI) of animal mtDNA: both female and male progeny contained only the maternal mtDNA. These observations illustrate the intimate linkage between sex and mtDNA inheritance in species with DUI and suggest different major roles for each gender. We propose a model according to which development of a male gonad requires the presence in the early germ cells of an agent associated with sperm-derived mitochondria, these mitochondria are endowed with a paternally encoded replicative advantage through which they overcome their original minority in the fertilized egg and this advantage (and, therefore, the chance of an early entrance into the germ line) is countered by a maternally encoded egg factor.
Collapse
Affiliation(s)
- C Saavedra
- Department of Biology, University of Crete, Greece.
| | | | | |
Collapse
|
305
|
Takai D, Inoue K, Goto YI, Nonaka I, Hayashi JI. The interorganellar interaction between distinct human mitochondria with deletion mutant mtDNA from a patient with mitochondrial disease and with HeLa mtDNA. J Biol Chem 1997; 272:6028-33. [PMID: 9038225 DOI: 10.1074/jbc.272.9.6028] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
For the examination of possible intermitochondrial interaction of human mitochondria from different cells, cybrids were constructed by introducing HeLa mitochondria into cells with respiration-deficient (rho-) mitochondria. Respiration deficiency was due to the predominance of mutant mtDNA with a 5,196-base pair deletion including five tRNA genes (DeltamtDNA5196). The HeLa mtDNA and DeltamtDNA5196 encoded chloramphenicol-resistant (CAPr) and chloramphenicol-sensitive (CAPs) 16 S rRNA, respectively. The first evidence for the interaction was that polypeptides exclusively encoded by DeltamtDNA5196 were translated on the introduction of HeLa mitochondria, suggesting supplementation of the missing tRNAs by rho- mitochondria from HeLa mitochondria. Second, the exchange of mitochondrial rRNAs was observed; even in the presence of CAP, CAPs DeltamtDNA5196-specific polypeptides as well as those encoded by CAPr HeLa mtDNA were translated in the cybrids. These phenomena can be explained assuming that the translation in rho- mitochondria was restored by tRNAs and CAPr 16 S rRNA supplied from HeLa mitochondria, unambiguously indicating interorganellar interaction. These observations introduce a new concept of the dynamics of the mitochondrial genetic system and help in understanding the relationship among mtDNA mutations and expression of human mitochondrial diseases and aging.
Collapse
Affiliation(s)
- D Takai
- Institute of Biological Sciences, University of Tsukuba, Ibaraki 305, Japan
| | | | | | | | | |
Collapse
|
306
|
Larsson NG, Oldfors A, Garman JD, Barsh GS, Clayton DA. Down-regulation of mitochondrial transcription factor A during spermatogenesis in humans. Hum Mol Genet 1997; 6:185-91. [PMID: 9063738 DOI: 10.1093/hmg/6.2.185] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial transcription factor A (mtTFA) is a key activator of mitochondrial transcription in mammals. It also has a role in mitochondrial DNA (mtDNA) replication, since transcription generates an RNA primer necessary for initiation of mtDNA replication. In the mouse, testis-specific mtTFA transcripts encode a protein isoform that is imported to the nucleus rather than into mitochondria of spermatocytes and elongating spermatids. We now report molecular characterization of human mtTFA (h-mtTFA) expression in somatic tissues and male germ cells. Similarly to the mouse, analysis of cDNAs and Northern blots identified abundant testis-specific transcript isoforms generated by use of alternate transcription initiation sites. However, unlike the mouse, none of the testis-specific transcripts predicts a nuclear protein isoform, and Western blot analysis identified only the mitochondrial form of h-mtTFA in human testis. Immunohistochemistry and in situ were used to compare the distribution of mtTFA protein, testis-specific mtTFA transcripts, mtDNA and mtRNA in sections of human testis. Our results show that the mtTFA protein and mtDNA exhibit parallel gradients with high levels in undifferentiated male germ cells and low levels or an absence in different male germ cells. Testis-specific transcripts exhibit the opposite pattern, suggesting that in both humans and mice, these testis-specific mtTFA transcripts down-regulate mtTFA protein levels in mammalian mitochondria. Our findings demonstrate that mtTFA does not have a critical role in the nucleus, suggest a mechanism for reducing mtDNA copy number during spermatogenesis and have implications for the understanding of maternal transmission of mtDNA.
Collapse
Affiliation(s)
- N G Larsson
- Department of Developmental Biology, Stanford University School of Medicine, CA 94305-5427, USA
| | | | | | | | | |
Collapse
|
307
|
|
308
|
|
309
|
Abstract
The use of mitochondrial DNA (mtDNA) continues to dominate studies of human genetic variation and evolution. Recent work has re-affirmed the strict maternal inheritance of mtDNA, yielded new insights into the extent and nature of intra-individual variation, supported a recent African origin of human mtDNA, and amply demonstrated the utility of mtDNA in tracing population history and in analyses of ancient remains.
Collapse
Affiliation(s)
- M Stoneking
- Pennsylvania State University, Department of Anthropology, University Park 16802, USA
| | | |
Collapse
|
310
|
Ankel-Simons F, Cummins JM. Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci U S A 1996; 93:13859-63. [PMID: 8943026 PMCID: PMC19448 DOI: 10.1073/pnas.93.24.13859] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/1996] [Accepted: 08/20/1996] [Indexed: 02/03/2023] Open
Abstract
In vertebrates, inheritance of mitochondria is thought to be predominantly maternal, and mitochondrial DNA analysis has become a standard taxonomic tool. In accordance with the prevailing view of strict maternal inheritance, many sources assert that during fertilization, the sperm tail, with its mitochondria, gets excluded from the embryo. This is incorrect. In the majority of mammals-including humans-the midpiece mitochondria can be identified in the embryo even though their ultimate fate is unknown. The "missing mitochondria" story seems to have survived--and proliferated-unchallenged in a time of contention between hypotheses of human origins, because it supports the "African Eve" model of recent radiation of Homo sapiens out of Africa. We will discuss the infiltration of this mistake into concepts of mitochondrial inheritance and human evolution.
Collapse
|
311
|
Larsson NG, Garman JD, Oldfors A, Barsh GS, Clayton DA. A single mouse gene encodes the mitochondrial transcription factor A and a testis-specific nuclear HMG-box protein. Nat Genet 1996; 13:296-302. [PMID: 8673128 DOI: 10.1038/ng0796-296] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitochondrial transcription factor A (mtTFA) is a key regulator of mammalian mitochondrial DNA transcription. We report here that a testis-specific isoform of mouse mtTFA lacks the mitochondrial targeting sequence and is present in the nucleus of spermatocytes and elongating spermatids, thus representing the first reported mammalian gene encoding protein isoforms targeted for the mitochondria or the nucleus. The presence of the mitochondrial transcriptional activator in the nucleus raises the possibility of a role for this protein in both genetic systems. Mutations in the nuclear mtTFA gene may therefore exhibit phenotypic consequences due to altered function in either or both genetic compartments.
Collapse
Affiliation(s)
- N G Larsson
- Department of Development Biology, Bechman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Calfornia 94305-5427, USA
| | | | | | | | | |
Collapse
|
312
|
Birky CW. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci U S A 1995; 92:11331-8. [PMID: 8524780 PMCID: PMC40394 DOI: 10.1073/pnas.92.25.11331] [Citation(s) in RCA: 537] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In nearly all eukaryotes, at least some individuals inherit mitochondrial and chloroplast genes from only one parent. There is no single mechanism of uniparental inheritance: organelle gene inheritance is blocked by a variety of mechanisms and at different stages of reproduction in different species. Frequent changes in the pattern of organelle gene inheritance during evolution suggest that it is subject to varying selective pressures. Organelle genes often fail to recombine even when inherited biparentally; consequently, their inheritance is asexual. Sexual reproduction is apparently less important for genes in organelles than for nuclear genes, probably because there are fewer of them. As a result organelle sex can be lost because of selection for special reproductive features such as oogamy or because uniparental inheritance reduces the spread of cytoplasmic parasites and selfish organelle DNA.
Collapse
Affiliation(s)
- C W Birky
- Department of Molecular Genetics, Ohio State University, Columbus 43210, USA
| |
Collapse
|
313
|
Armbrust EV, Ibrahim A, Goodenough UW. A mating type-linked mutation that disrupts the uniparental inheritance of chloroplast DNA also disrupts cell-size control in Chlamydomonas. Mol Biol Cell 1995; 6:1807-18. [PMID: 8590807 PMCID: PMC301334 DOI: 10.1091/mbc.6.12.1807] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An intriguing feature of early zygote development in Chlamydomonas reinhardtii is the active elimination of chloroplast DNA from the mating-type minus parent due presumably to the action of a zygote-specific nuclease. Meiotic progeny thus inherit chloroplast DNA almost exclusively from the mating-type plus parent. The plus-linked nuclear mutation mat3 prevents this selective destruction of minus chloroplast DNA and generates progeny that display a biparental inheritance pattern. Here we show that the mat3 mutation creates additional phenotypes not previously described: the cells are much smaller than wild type and they possess substantially reduced amounts of both mitochondrial and chloroplast DNA. We propose that the primary defect of the mat3 mutation is a disruption of cell-size control and that the inhibition of the uniparental transmission of chloroplast genomes is a secondary consequence of the reduced amount of chloroplast DNA in the mat3 parent.
Collapse
Affiliation(s)
- E V Armbrust
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|