301
|
Zhao H, Chen KZ, Hui BG, Zhang K, Yang F, Wang J. Role of circulating tumor DNA in the management of early-stage lung cancer. Thorac Cancer 2018. [PMID: 29528556 PMCID: PMC5928385 DOI: 10.1111/1759-7714.12622] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is one of the most common cancers and the predominant cause of cancer‐related death in the world. The low accuracy of early detection techniques and high risk of relapse greatly contribute to poor prognosis. An accurate clinical tool that can assist in diagnosis and surveillance is urgently needed. Circulating tumor DNA (ctDNA) is free DNA shed from tumor cells and isolated from peripheral blood. The genomic profiles of ctDNA have been shown to closely match those of the corresponding tumors. With the development of approaches with high sensitivity and specificity, ctDNA plays a vital role in the management of lung cancer as a result of its reproducible, non‐invasive, and easy‐to‐obtain characteristics. However, most previous studies have focused on advanced lung cancer. Few studies have investigated ctDNA in the early stages of the disease. In this review, we focus on ctDNA obtained from patients in the early stage of lung cancer, provide a summary of the related literature to date, and describe the main approaches to ctDNA and the clinical applications.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Ke-Zhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Ben-Gang Hui
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Kai Zhang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
302
|
Stewart CM, Kothari PD, Mouliere F, Mair R, Somnay S, Benayed R, Zehir A, Weigelt B, Dawson SJ, Arcila ME, Berger MF, Tsui DW. The value of cell-free DNA for molecular pathology. J Pathol 2018; 244:616-627. [PMID: 29380875 DOI: 10.1002/path.5048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Over the past decade, advances in molecular biology and genomics techniques have revolutionized the diagnosis and treatment of cancer. The technological advances in tissue profiling have also been applied to the study of cell-free nucleic acids, an area of increasing interest for molecular pathology. Cell-free nucleic acids are released from tumour cells into the surrounding body fluids and can be assayed non-invasively. The repertoire of genomic alterations in circulating tumour DNA (ctDNA) is reflective of both primary tumours and distant metastatic sites, and ctDNA can be sampled multiple times, thereby overcoming the limitations of the analysis of single biopsies. Furthermore, ctDNA can be sampled regularly to monitor response to treatment, to define the evolution of the tumour genome, and to assess the acquisition of resistance and minimal residual disease. Recently, clinical ctDNA assays have been approved for guidance of therapy, which is an exciting first step in translating cell-free nucleic acid research tests into clinical use for oncology. In this review, we discuss the advantages of cell-free nucleic acids as analytes in different body fluids, including blood plasma, urine, and cerebrospinal fluid, and their clinical applications in solid tumours and haematological malignancies. We will also discuss practical considerations for clinical deployment, such as preanalytical factors and regulatory requirements. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Caitlin M Stewart
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prachi D Kothari
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pediatric Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florent Mouliere
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.,Cancer Research UK Major Centre - Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Richard Mair
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.,Cancer Research UK Major Centre - Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Saira Somnay
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia.,Centre for Cancer Research, University of Melbourne, Victoria, Australia
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Wy Tsui
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
303
|
Zeng H, He B, Yi C, Peng J. Liquid biopsies: DNA methylation analyses in circulating cell-free DNA. J Genet Genomics 2018; 45:185-192. [PMID: 29706556 DOI: 10.1016/j.jgg.2018.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/10/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022]
Abstract
Analysis of patient's materials like cells or nucleic acids obtained in a minimally invasive or noninvasive manner through the sampling of blood or other body fluids serves as liquid biopsies, which has huge potential for numerous diagnostic applications. Circulating cell-free DNA (cfDNA) is explored as a prognostic or predictive marker of liquid biopsies with the improvements in genomic and molecular methods. DNA methylation is an important epigenetic marker known to affect gene expression. cfDNA methylation detection is a very promising approach as abnormal distribution of DNA methylation is one of the hallmarks of many cancers and methylation changes occur early during carcinogenesis. This review summarizes the various investigational applications of cfDNA methylation and its oxidized derivatives as biomarkers for cancer diagnosis, prenatal diagnosis and organ transplantation monitoring. The review also provides a brief overview of the technologies for cfDNA methylation analysis based on next generation sequencing.
Collapse
Affiliation(s)
- Hu Zeng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bo He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
304
|
Gaiser MR, von Bubnoff N, Gebhardt C, Utikal JS. Liquid biopsy to monitor melanoma patients. J Dtsch Dermatol Ges 2018. [PMID: 29512873 DOI: 10.1111/ddg.13461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the last six years, several innovative, systemic therapies for the treatment of metastatic malignant melanoma (MM) have emerged. Conventional chemotherapy has been superseded by novel first-line therapies, including systemic immunotherapies (anti-CTLA4 and anti-PD1; authorization of anti-PDL1 is anticipated) and therapies targeting specific mutations (BRAF, NRAS, and c-KIT). Thus, treating physicians are confronted with new challenges, such as stratifying patients for appropriate treatments and monitoring long-term responders for progression. Consequently, reliable methods for monitoring disease progression or treatment resistance are necessary. Localized and advanced cancers may generate circulating tumor cells and circulating tumor DNA (ctDNA) that can be detected and quantified from peripheral blood samples (liquid biopsy). For melanoma patients, liquid biopsy results may be useful as novel predictive biomarkers to guide therapeutic decisions, particularly in the context of mutation-based targeted therapies. The challenges of using liquid biopsy include strict criteria for the phenotypic nature of circulating MM cells or their fragments and the instability of ctDNA in blood. The limitations of liquid biopsy in routine diagnostic testing are discussed in this review.
Collapse
Affiliation(s)
- Maria Rita Gaiser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Nikolas von Bubnoff
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoffer Gebhardt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Sven Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
305
|
Griffin B, Edwards S, Chitty LS, Lewis C. Clinical, social and ethical issues associated with non-invasive prenatal testing for aneuploidy. J Psychosom Obstet Gynaecol 2018. [PMID: 28635528 DOI: 10.1080/0167482x.2017.1286643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Non-invasive prenatal testing (NIPT), based on analysis of cell-free foetal DNA, is rapidly becoming a preferred method to screen for chromosomal aneuploidy with the technology now available in over 90 countries. This review provides an up-to-date discussion of the key clinical, social and ethical implications associated with this revolutionary technology. Stakeholders are positive about a test that is highly accurate, safe, can be perfomed early in pregnancy, identifies affected pregnancies that might otherwise have been missed and reduces the need for invasive testing. Nevertheless, professional societies currently recommend it as an advanced screening test due to the low false positive rate (FPR). Despite the practical and psychological benefits, a number of concerns have been raised which warrant attention. These include the potential for routinisation of testing and subsequent impact on informed decision-making, an "easy" blood test inadvertently contributing to women feeling pressured to take the test, fears NIPT will lead to less tolerance and support for those living with Down syndrome and the heightened expectation of having "perfect babies". These issues can be addressed to some extent through clinician education, patient information and establishing national and international consensus in the development of comprehensive and regularly updated guidelines. As the number of conditions we are able to test for non-invasively expands it will be increasingly important to ensure pre-test counselling can be delivered effectively supported by knowledgeable healthcare professionals.
Collapse
Affiliation(s)
- Blanche Griffin
- a North East Thames Regional Genetics Service , Great Ormond Street Hospital for Children NHS Foundation Trust , London , UK
| | - Samantha Edwards
- a North East Thames Regional Genetics Service , Great Ormond Street Hospital for Children NHS Foundation Trust , London , UK
| | - Lyn S Chitty
- a North East Thames Regional Genetics Service , Great Ormond Street Hospital for Children NHS Foundation Trust , London , UK.,b Genetics and Genomic Medicine , UCL Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust , London , UK
| | - Celine Lewis
- a North East Thames Regional Genetics Service , Great Ormond Street Hospital for Children NHS Foundation Trust , London , UK.,b Genetics and Genomic Medicine , UCL Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust , London , UK
| |
Collapse
|
306
|
|
307
|
Shaffer BL, Norton ME. Cell-Free DNA Screening for Aneuploidy and Microdeletion Syndromes. Obstet Gynecol Clin North Am 2018; 45:13-26. [DOI: 10.1016/j.ogc.2017.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
308
|
Kinetics of circulating cell-free DNA for biomedical applications: critical appraisal of the literature. Future Sci OA 2018; 4:FSO295. [PMID: 29682327 PMCID: PMC5905581 DOI: 10.4155/fsoa-2017-0140] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/30/2018] [Indexed: 12/15/2022] Open
Abstract
Circulating cell-free DNA is considered as one of the major breakthroughs in the field of innovative diagnosis, used as a liquid biopsy. The kinetic parameters of a biomarker are mandatory to assess its usefulness as a diagnostic tool. Obtaining precise mathematical values for the kinetic parameters (e.g., half-life) is then crucial because it could be used for therapeutic monitoring as a prognostic factor. However, little is known about the intrinsic properties of circulating cell-free DNA, more especially, its kinetic properties within the organism. We summarized the basic principles that may affect the kinetics of circulating cell-free DNA within the organism in the light of biological and clinical evidence. We also meta-analyzed the reported data in the literature and the methodologies that have been used to study the kinetic parameters of human circulating cell-free DNA in vivo. Circulating cell-free DNA as a biomarker was a major breakthrough in the field of diagnostics. Understanding the kinetic parameters of a biomarker is mandatory to assess its usefulness as a diagnostic tool, especially for therapeutic monitoring. However, at the present time little is known about its kinetic properties within the organism. This review provides an overview of the basic principles that may impact the kinetics of cell-free DNA within the organism and analyzes the reported data thus far.
Collapse
|
309
|
Eastley NC, Ottolini B, Neumann R, Luo JL, Hastings RK, Khan I, Moore DA, Esler CP, Shaw JA, Royle NJ, Ashford RU. Circulating tumour-derived DNA in metastatic soft tissue sarcoma. Oncotarget 2018; 9:10549-10560. [PMID: 29535826 PMCID: PMC5828212 DOI: 10.18632/oncotarget.24278] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/09/2018] [Indexed: 01/08/2023] Open
Abstract
Following treatment 40% of soft tissue sarcoma (STS) patients suffer disease recurrence. In certain cancers circulating cell free DNA (cfDNA) and circulating tumour-derived DNA (ctDNA) characteristics correlate closely with disease burden, making them exciting potential sources of biomarkers. Despite this, the circulating nucleic acid characteristics of only 2 STS patients have been reported to date. To address this we used an Ion AmpliSeq™ panel custom specifically designed for STS patients to conduct a genetic characterisation of plasma cfDNA, buffy coat (germline) DNA and where available Formalin-Fixed Paraffin-Embedded (FFPE) primary STS tissue DNA in a cohort of 11 metastatic STS patients. We found that total cfDNA levels were significantly elevated in the STS patients analysed, and weakly correlated with disease burden. Using our Ion AmpliSeq™ panel we also successfully detected ctDNA in 4/11 (36%) patients analysed with a wide variety of STS subtypes and disease burdens. This evidence included the presence of cancer associated TP53 / PIK3CA mutations in 2 patients' plasma and matched primary STS tumour tissue, and in the plasma alone for 2 patients. We also identified 2 potential examples of allelic loss of heterozygosity in an additional patient's STS DNA and cfDNA. This is the largest study performed characterising STS patient cfDNA/ctDNA and confirms that the field remains an attractive potential source of novel STS biomarkers. Further work is required to investigate the circulating nucleic acid characteristics of individual STS subtypes, and the potential prognostic or therapeutic roles that cfDNA/ctDNA may hold for patients with these complex tumours.
Collapse
Affiliation(s)
- Nicholas C. Eastley
- University Hospitals of Leicester NHS Trust, Trauma and Orthopaedics, Leicester, UK
- University of Leicester Department of Genetics, Leicester, UK
| | - Barbara Ottolini
- University of Leicester Department of Cancer Studies, Leicester, UK
| | - Rita Neumann
- University of Leicester Department of Genetics, Leicester, UK
| | - Jin-Li Luo
- University of Leicester Department of Cancer Studies, Leicester, UK
| | | | - Imran Khan
- University Hospitals of Leicester NHS Trust, Trauma and Orthopaedics, Leicester, UK
| | - David A. Moore
- University of Leicester Department of Cancer Studies, Leicester, UK
| | | | | | - Nicola J. Royle
- University of Leicester Department of Genetics, Leicester, UK
| | - Robert U. Ashford
- University Hospitals of Leicester NHS Trust, Trauma and Orthopaedics, Leicester, UK
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
310
|
Lim JH, Lee BY, Kim JW, Han YJ, Chung JH, Kim MH, Kwak DW, Park SY, Choi HB, Ryu HM. Evaluation of extraction methods for methylated cell-free fetal DNA from maternal plasma. J Assist Reprod Genet 2018; 35:637-641. [PMID: 29423788 DOI: 10.1007/s10815-018-1114-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Recently, fetal placenta-specific epigenetic regions (FSERs) have been identified for quantification of cell-free fetal DNA (cff-DNA) for non-invasive prenatal testing (NIPT). The aim of this study was to evaluate the efficiencies of a column-based kit and magnetic bead-based kit for quantification of methylated FSERs from maternal plasma. METHODS Maternal plasma was extracted from normal pregnant women within the gestational age of 10~13 weeks (n = 24). Total cell-free DNA (cf-DNA) was extracted using a column-based kit and magnetic bead-based kit from the plasma of the same pregnant woman, respectively. Methylated FSERs were enriched from the extracted total cf-DNA using a methyl-CpG-binding domain-based protein method. The four FSERs were simultaneously quantified by multiplex real-time polymerase chain reaction. RESULTS Methylated FSERs were detected in all samples extracted from both kits. However, the amplification of FSERs showed significant differences in the extraction efficiency of methylated FSERs between the two extraction methods. The Ct values of methylated FSERs extracted using the column-based kit were significantly lower than those obtained using the magnetic bead-based kit (P < 0.001 for all FSERs). The quantity of methylated FSERs was significantly higher for extracted DNA using the column-based kit than that extracted using the magnetic bead-based kit (P < 0.001 for all FSERs). Time and cost for the process of extraction were similar for the column kit and magnetic bead-based kit. CONCLUSIONS Our findings demonstrate that the column-based kit was more effective than the magnetic bead-based kit for isolation of methylated FSERs from maternal plasma as assessed by FSER detection.
Collapse
Affiliation(s)
- Ji Hyae Lim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea
| | - Bom Yi Lee
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea
| | - Jin Woo Kim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea
| | - You Jung Han
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, 1-19, Mookjung-dong, Chung-gu, Seoul, 100-380, South Korea
| | - Jin Hoon Chung
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, 1-19, Mookjung-dong, Chung-gu, Seoul, 100-380, South Korea
| | - Min Hyoung Kim
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, 1-19, Mookjung-dong, Chung-gu, Seoul, 100-380, South Korea
| | - Dong Wook Kwak
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, 1-19, Mookjung-dong, Chung-gu, Seoul, 100-380, South Korea
| | - So Yeon Park
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea
| | - Hee Back Choi
- Genes Laboratory, Molecular Diagnostic Institute, Gyeonggi-do, South Korea
| | - Hyun Mee Ryu
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea. .,Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, 1-19, Mookjung-dong, Chung-gu, Seoul, 100-380, South Korea.
| |
Collapse
|
311
|
Chen K, Zhao H, Yang F, Hui B, Wang T, Wang LT, Shi Y, Wang J. Dynamic changes of circulating tumour DNA in surgical lung cancer patients: protocol for a prospective observational study. BMJ Open 2018; 8:e019012. [PMID: 29437753 PMCID: PMC5829675 DOI: 10.1136/bmjopen-2017-019012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Circulating tumour DNA (ctDNA) has potential applications in cancer management. Most previous studies about ctDNA focused on advanced stage cancer patients. We have completed a clinical prospective study (NCT02645318) and showed the feasibility and clinical application of ctDNA detection in early stage non-small cell lung cancer (NSCLC) patients. The aim of this study is to investigate the elimination rate of ctDNA level after surgery. This is the first prospective study to evaluate the perioperative dynamic changes of ctDNA in surgical lung cancer patients. METHODS AND ANALYSIS This is a prospective observational study to determine the elimination rate of circulating tumour DNA after surgery. Consecutive patients with suspected lung cancer who undergo curative-intent lung resection will be enrolled. 10 mL blood samples are taken by intravenous puncture. Plasma samples are obtained before surgery (time A) and at a series of scheduled time-points (2 min to 72 hours, time B to F) after tumour resection. DNA is prepared from 4 mL of purified plasma. A multiplex assay based on circulating single-molecule amplification and resequencing technology (cSMART) is used to simultaneously detect and quantitate hot spot EGFR, KRAS, BRAF, ERBB2, PIK3CA, TP53, ALK, RET and MET plasma DNA variants. Positive plasma mutations are validated in tumour tissue and normal lung tissue by targeted sequencing. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Peking University People's Hospital Medical Ethics Committee (2016PHB156-01). Results will be disseminated through presentations at scientific meetings and publications in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT02965391; Pre-results.
Collapse
Affiliation(s)
- Kezhong Chen
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | - Heng Zhao
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | - Bengang Hui
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | | | | | | | - Jun Wang
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
312
|
Affiliation(s)
- Joshua Donaldson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Ben Ho Park
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
313
|
Nakano Y, Kitago M, Matsuda S, Nakamura Y, Fujita Y, Imai S, Shinoda M, Yagi H, Abe Y, Hibi T, Fujii-Nishimura Y, Takeuchi A, Endo Y, Itano O, Kitagawa Y. KRAS mutations in cell-free DNA from preoperative and postoperative sera as a pancreatic cancer marker: a retrospective study. Br J Cancer 2018; 118:662-669. [PMID: 29360815 PMCID: PMC5846073 DOI: 10.1038/bjc.2017.479] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has very poor prognosis despite existing multimodal therapies. This study aimed to investigate whether KRAS mutations at codons 12/13 in cell-free DNA (cfDNA) from preoperative and postoperative sera from patients with PDAC can serve as a predictive biomarker for treatment response and outcomes after surgery. METHODS Preoperative and postoperative serum samples obtained from 45 patients with PDAC whom underwent curative pancreatectomy at our institution between January 2013 and July 2016 were retrospectively analysed. Peptide nucleic acid-directed PCR clamping was used to identify KRAS mutations in cfDNA. RESULTS Among the 45 patients enrolled, 11 (24.4%) and 20 (44.4%) had KRAS mutations in cfDNA from preoperative and postoperative sera, respectively. Multivariate analysis revealed that KRAS mutations in postoperative serum (hazard ratio (HR)=2.919; 95% confidence interval (CI)=1.109-5.621; P=0.027) are an independent prognostic factor for disease-free survival. Furthermore, the shift from wild-type KRAS in preoperative to mutant KRAS in postoperative cfDNA (HR=9.419; 95% Cl=2.015-44.036; P=0.004) was an independent prognostic factor for overall survival. CONCLUSIONS Changes in KRAS mutation status between preoperative and postoperative cfDNA may be a useful predictive biomarker for survival and treatment response.
Collapse
Affiliation(s)
- Yutaka Nakano
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sachiko Matsuda
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuki Nakamura
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yusuke Fujita
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shunichi Imai
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masahiro Shinoda
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taizo Hibi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoko Fujii-Nishimura
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayano Takeuchi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yutaka Endo
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Osamu Itano
- Hepato-Biliary-Pancreatic and Gastrointestinal Surgery, International University of Health and Welfare School of Medicine, 14-1-6 Kokufudai Ichikawa-shi, Chiba 272-0827, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
314
|
Cell-free DNA: the role in pathophysiology and as a biomarker in kidney diseases. Expert Rev Mol Med 2018; 20:e1. [PMID: 29343314 DOI: 10.1017/erm.2017.12] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free DNA (cfDNA) is present in various body fluids and originates mostly from blood cells. In specific conditions, circulating cfDNA might be derived from tumours, donor organs after transplantation or from the foetus during pregnancy. The analysis of cfDNA is mainly used for genetic analyses of the source tissue -tumour, foetus or for the early detection of graft rejection. It might serve also as a nonspecific biomarker of tissue damage in critical care medicine. In kidney diseases, cfDNA increases during haemodialysis and indicates cell damage. In patients with renal cell carcinoma, cfDNA in plasma and its integrity is studied for monitoring of tumour growth, the effects of chemotherapy and for prognosis. Urinary cfDNA is highly fragmented, but the technical hurdles can now be overcome and urinary cfDNA is being evaluated as a potential biomarker of renal injury and urinary tract tumours. Beyond its diagnostic application, cfDNA might also be involved in the pathogenesis of diseases affecting the kidneys as shown for systemic lupus, sepsis and some pregnancy-related pathologies. Recent data suggest that increased cfDNA is associated with acute kidney injury. In this review, we discuss the biological characteristics, sources of cfDNA, its potential use as a biomarker as well as its role in the pathogenesis of renal and urinary diseases.
Collapse
|
315
|
Lim SY, Lee JH, Diefenbach RJ, Kefford RF, Rizos H. Liquid biomarkers in melanoma: detection and discovery. Mol Cancer 2018; 17:8. [PMID: 29343260 PMCID: PMC5772714 DOI: 10.1186/s12943-018-0757-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022] Open
Abstract
A vast array of tumor-derived genetic, proteomic and cellular components are constantly released into the circulation of cancer patients. These molecules including circulating tumor DNA and RNA, proteins, tumor and immune cells are emerging as convenient and accurate liquid biomarkers of cancer. Circulating cancer biomarkers provide invaluable information on cancer detection and diagnosis, prognosticate patient outcomes, and predict treatment response. In this era of effective molecular targeted treatments and immunotherapies, there is now an urgent need to implement use of these circulating biomarkers in the clinic to facilitate personalized therapy. In this review, we present recent findings in circulating melanoma biomarkers, examine the challenges and promise of evolving technologies used for liquid biomarker discovery, and discuss future directions and perspectives in melanoma biomarker research.
Collapse
Affiliation(s)
- Su Yin Lim
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, Sydney, NSW, Australia
| | - Jenny H Lee
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, Sydney, NSW, Australia
| | - Russell J Diefenbach
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, Sydney, NSW, Australia
| | - Richard F Kefford
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, Sydney, NSW, Australia.,Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW, Australia
| | - Helen Rizos
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia. .,Melanoma Institute Australia, Sydney, NSW, Australia. .,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Sydney, NSW, 2109, Australia.
| |
Collapse
|
316
|
Rao C, Nie L, Miao X, Xu Y, Li B, Zhang T. The clinical characteristics and prognostic analysis of Chinese advanced NSCLC patients based on circulating tumor DNA sequencing. Onco Targets Ther 2018; 11:337-344. [PMID: 29391810 PMCID: PMC5769570 DOI: 10.2147/ott.s154589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose Circulating tumor DNA (ctDNA) is a noninvasive and real-time marker for tumor diagnosis, prognosis, and prediction. However, further investigations about ctDNA prognostic and predictive value are still needed, and conclusions from several studies were inconsistent. Experimental design We performed capture-based targeted ultradeep sequencing on liquid biopsies from a cohort of 34 advanced Chinese non-small-cell lung cancer (NSCLC) patients and analyzed the clinical use of ctDNA in this study. Results On the basis of clinical characteristics of the 34 NSCLC patients, we found that brain metastasis correlated with shorter progression-free survival (PFS) and is more prone to happen in younger patients. After ctDNA sequencing, we analyzed the prognostic value of baseline ctDNA. In osimertinib-treated group, high max allelic fraction (maxAF) correlated with shorter PFS. But for the cohort of 34 patients, no correlation can be observed between maxAF and PFS. We also presented two cases to demonstrate the value of disease progression prediction by ctDNA, which can be detected earlier than clinical response. Conclusion In this study, we demonstrated that ctDNA is a prognostic marker for evaluating treatment response and predicting recurrence in advanced NSCLC. Further investigations with larger cohort and uniformed patient background are still needed to validate our findings.
Collapse
Affiliation(s)
- Chuangzhou Rao
- Radiotherapy & Chemotherapy Dept 2, Ningbo No. 2 Hospital, Zhejiang
| | - Liangqin Nie
- Radiotherapy & Chemotherapy Dept 2, Ningbo No. 2 Hospital, Zhejiang
| | - Xiaobo Miao
- Radiotherapy & Chemotherapy Dept 2, Ningbo No. 2 Hospital, Zhejiang
| | - Yunbao Xu
- Radiotherapy & Chemotherapy Dept 2, Ningbo No. 2 Hospital, Zhejiang
| | - Bing Li
- Burning Rock Biotech, Guangzhou, People's Republic of China
| | - Tengfei Zhang
- Burning Rock Biotech, Guangzhou, People's Republic of China
| |
Collapse
|
317
|
Bábíčková J, Čonka J, Janovičová L, Boriš M, Konečná B, Gardlík R. Extracellular DNA as a Prognostic and Therapeutic Target in Mouse Colitis under DNase I Treatment. Folia Biol (Praha) 2018; 64:10-15. [PMID: 29871733 DOI: 10.14712/fb2018064010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The aim of this study was to investigate the potential of extracellular DNA as a prognostic and/or therapeutic target in inflammatory bowel disease. Fifty male C57BL/6J mice were used in the experiment. Acute colitis was induced by intake of 2% dextran sulphate sodium (DSS) for seven days followed by three days of water intake. DNase I was injected intravenously on days 3 and 7. Plasmatic levels of extracellular DNA (ecDNA) were measured on days 6 and 10. Weight loss, stool consistency and liquid intake were monitored throughout the experiment. Colon length and weight, myeloperoxidase activity and tumour necrosis factor α (TNF-α) levels were measured at sacrifice. DSS-treated mice displayed severe colitis, as shown by disease activity parameters. Both groups with colitis (DNase treated and untreated) had significantly poorer weight loss, colon length and stool consistency compared with control groups on water. No differences between the DNasetreated and untreated DSS groups were recorded. Myeloperoxidase activity and levels of TNF-α in colonic tissue were notably greater in both groups with colitis compared to controls. In addition, both biochemical markers were improved in the DNasetreated group with colitis compared to the untreated group. Although the disease activity was proved by several independent parameters in both groups with colitis, levels of ecDNA did not show any difference between the groups throughout or at the end of experiment. The role of ecDNA in experimental colitis has not been confirmed. However, DNase I injection resulted in some improvement, and thus should be studied in more detail.
Collapse
Affiliation(s)
- J Bábíčková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava Slovakia
| | - J Čonka
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava Slovakia
| | - L Janovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava Slovakia
| | - M Boriš
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia
| | - B Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava Slovakia
| | - R Gardlík
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava Slovakia
| |
Collapse
|
318
|
Prenatal Genetic Testing and Screening. CHIMERISM 2018. [DOI: 10.1007/978-3-319-89866-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
319
|
van Boeckel SR, Davidson DJ, Norman JE, Stock SJ. Cell-free fetal DNA and spontaneous preterm birth. Reproduction 2017; 155:R137-R145. [PMID: 29269517 PMCID: PMC5812054 DOI: 10.1530/rep-17-0619] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
Inflammation is known to play a key role in preterm and term parturition. Cell-free fetal DNA (cff-DNA) is present in the maternal circulation and increases with gestational age and some pregnancy complications (e.g. preterm birth, preeclampsia). Microbial DNA and adult cell-free DNA can be pro-inflammatory through DNA-sensing mechanisms such as Toll-like receptor 9 and the Stimulator of Interferon Genes (STING) pathway. However, the pro-inflammatory properties of cff-DNA, and the possible effects of this on pregnancy and parturition are unknown. Clinical studies have quantified cff-DNA levels in the maternal circulation in women who deliver preterm and women who deliver at term and show an association between preterm labor and higher cff-DNA levels in the 2nd, 3rd trimester and at onset of preterm birth symptoms. Together with potential pro-inflammatory properties of cff-DNA, this rise suggests a potential mechanistic role in the pathogenesis of spontaneous preterm birth. In this review, we discuss the evidence linking cff-DNA to adverse pregnancy outcomes, including preterm birth, obtained from preclinical and clinical studies.
Collapse
Affiliation(s)
- Sara R van Boeckel
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive HealthUniversity of Edinburgh, QMRI, Edinburgh, UK
| | - Donald J Davidson
- MRC Centre for Inflammation ResearchUniversity of Edinburgh, QMRI, Edinburgh, UK
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive HealthUniversity of Edinburgh, QMRI, Edinburgh, UK
| | - Sarah J Stock
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive HealthUniversity of Edinburgh, QMRI, Edinburgh, UK
| |
Collapse
|
320
|
de Vos L, Gevensleben H, Schröck A, Franzen A, Kristiansen G, Bootz F, Dietrich D. Comparison of quantification algorithms for circulating cell-free DNA methylation biomarkers in blood plasma from cancer patients. Clin Epigenetics 2017; 9:125. [PMID: 29213339 PMCID: PMC5709918 DOI: 10.1186/s13148-017-0425-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023] Open
Abstract
Background SHOX2 and SEPT9 methylation in circulating cell-free DNA (ccfDNA) in blood are established powerful and clinically valuable biomarkers for diagnosis, staging, prognosis, and monitoring of cancer patients. The aim of the present study was to evaluate different quantification algorithms (relative quantification, absolute quantification, quasi-digital PCR) with regard to their clinical performance. Methods Methylation analyses were performed in a training cohort (141 patients with head and neck squamous cell carcinoma [HNSCC], 170 control cases) and a testing cohort (137 HNSCC cases, 102 controls). DNA was extracted from plasma samples, bisulfite-converted, and analyzed via quantitative real-time PCR. SHOX2 and SEPT9 methylations were assessed separately and as panel [meanSEPT9/SHOX2] using the ΔCT method for absolute quantification and the ΔΔCT-method for relative quantification. Quasi-digital PCR was defined as the number of amplification-positive PCR replicates. The diagnostic (sensitivity, specificity, area under the curve (AUC) of the receiver operating characteristic (ROC)) and prognostic accuracy (hazard ratio (HR) from Cox regression) were evaluated. Results Sporadic methylation in control samples necessitated the introduction of cutoffs resulting in 61–63% sensitivity/90–92% specificity (SEPT9/training), 53–57% sensitivity/87–90% specificity (SHOX2/training), and 64–65% sensitivity/90–91% specificity (meanSEPT9/SHOX2/training). Results were confirmed in a testing cohort with 54–56% sensitivity/88–90% specificity (SEPT9/testing), 43–48% sensitivity/93–95% specificity (SHOX2/testing), and 49–58% sensitivity/88–94% specificity (meanSEPT9/SHOX2/testing). All algorithms showed comparable cutoff-independent diagnostic accuracy with largely overlapping 95% confidence intervals (SEPT9: AUCtraining = 0.79–0.80; AUCtesting = 0.74–0.75; SHOX2: AUCtraining = 0.78–0.81, AUCtesting = 0.77–0.79; meanSEPT9/SHOX2: AUCtraining = 0.81–0.84, AUCtesting = 0.80). The accurate prediction of overall survival was possible with all three algorithms (training cohort: HRSEPT9 = 1.23-1.90, HRSHOX2 = 1.14-1.85, HRmeanSEPT9/SHOX2 =1.19-1.89 ; testing cohort: HRSEPT9 =1.22-1.67, HRSHOX2 = 1.15-1.71, HRmeanSEPT9/SHOX2 = 1.12-1.77). Conclusion The concordant clinical performance based on different quantification algorithms allows for the application of various diagnostic platforms for the analysis of ccfDNA methylation biomarkers. Electronic supplementary material The online version of this article (10.1186/s13148-017-0425-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luka de Vos
- Department of Otolaryngology, University Hospital Bonn, Head and Neck Surgery, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | | | - Andreas Schröck
- Department of Otolaryngology, University Hospital Bonn, Head and Neck Surgery, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Alina Franzen
- Department of Otolaryngology, University Hospital Bonn, Head and Neck Surgery, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn (UKB), Bonn, Germany
| | - Friedrich Bootz
- Department of Otolaryngology, University Hospital Bonn, Head and Neck Surgery, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Dimo Dietrich
- Department of Otolaryngology, University Hospital Bonn, Head and Neck Surgery, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
321
|
Hyland CA, Millard GM, O'Brien H, Schoeman EM, Lopez GH, McGowan EC, Tremellen A, Puddephatt R, Gaerty K, Flower RL, Hyett JA, Gardener GJ. Non-invasive fetal RHD genotyping for RhD negative women stratified into RHD gene deletion or variant groups: comparative accuracy using two blood collection tube types. Pathology 2017; 49:757-764. [PMID: 29096879 DOI: 10.1016/j.pathol.2017.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/17/2017] [Accepted: 08/27/2017] [Indexed: 12/19/2022]
Abstract
Non-invasive fetal RHD genotyping in Australia to reduce anti-D usage will need to accommodate both prolonged sample transport times and a diverse population demographic harbouring a range of RHD blood group gene variants. We compared RHD genotyping accuracy using two blood sample collection tube types for RhD negative women stratified into deleted RHD gene haplotype and RHD gene variant cohorts. Maternal blood samples were collected into EDTA and cell-free (cf)DNA stabilising (BCT) tubes from two sites, one interstate. Automated DNA extraction and polymerase chain reaction (PCR) were used to amplify RHD exons 5 and 10 and CCR5. Automated analysis flagged maternal RHD variants, which were classified by genotyping. Time between sample collection and processing ranged from 2.9 to 187.5 hours. cfDNA levels increased with time for EDTA (range 0.03-138 ng/μL) but not BCT samples (0.01-3.24 ng/μL). For the 'deleted' cohort (n=647) all fetal RHD genotyping outcomes were concordant, excepting for one unexplained false negative EDTA sample. Matched against cord RhD serology, negative predictive values using BCT and EDTA tubes were 100% and 99.6%, respectively. Positive predictive values were 99.7% for both types. Overall 37.2% of subjects carried an RhD negative baby. The 'variant' cohort (n=15) included one novel RHD and eight hybrid or African pseudogene variants. Review for fetal RHD specific signals, based on one exon, showed three EDTA samples discordant to BCT, attributed to high maternal cfDNA levels arising from prolonged transport times. For the deleted haplotype cohort, fetal RHD genotyping accuracy was comparable for samples collected in EDTA and BCT tubes despite higher cfDNA levels in the EDTA tubes. Capacity to predict fetal RHD genotype for maternal carriers of hybrid or pseudogene RHD variants requires stringent control of cfDNA levels. We conclude that fetal RHD genotyping is feasible in the Australian environment to avoid unnecessary anti-D immunoglobulin prophylaxis.
Collapse
Affiliation(s)
- Catherine A Hyland
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Brisbane, QLD, Australia.
| | - Glenda M Millard
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Brisbane, QLD, Australia
| | - Helen O'Brien
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Brisbane, QLD, Australia
| | - Elizna M Schoeman
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Brisbane, QLD, Australia
| | - Genghis H Lopez
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Brisbane, QLD, Australia
| | - Eunike C McGowan
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Brisbane, QLD, Australia
| | - Anne Tremellen
- Mater Research Institute, University of Queensland, South Brisbane, Qld, Australia
| | - Rachel Puddephatt
- High Risk Obstetrics, RPA Women and Babies, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Kirsten Gaerty
- The Mater Centre for Maternal Fetal Medicine, Mater Mothers' Hospital, South Brisbane, Qld, Australia
| | - Robert L Flower
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Brisbane, QLD, Australia
| | - Jonathan A Hyett
- High Risk Obstetrics, RPA Women and Babies, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia; Discipline of Obstetrics, Gynaecology and Neonatology, Faculty of Medicine, Central Clinical School, Royal Prince Alfred Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Glenn J Gardener
- Mater Research Institute, University of Queensland, South Brisbane, Qld, Australia; The Mater Centre for Maternal Fetal Medicine, Mater Mothers' Hospital, South Brisbane, Qld, Australia
| |
Collapse
|
322
|
Brandt S, Krauel K, Jaax M, Renné T, Helm CA, Hammerschmidt S, Delcea M, Greinacher A. Polyphosphates form antigenic complexes with platelet factor 4 (PF4) and enhance PF4-binding to bacteria. Thromb Haemost 2017. [DOI: 10.1160/th15-01-0062] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SummaryShort chain polyphosphates (polyP) are pro-coagulant and pro-inflammatory platelet released inorganic polymers. The platelet chemokine platelet factor 4 (PF4) binds to lipid A on bacteria, inducing an antibody mediated host defense mechanism, which can be misdirected against PF4/heparin complexes leading to the adverse drug reaction heparin-induced thrombocytopenia (HIT). Here, we demonstrate that PF4 complex formation with soluble short chain polyP contributes to host defense mechanisms. Circular dichroism spectroscopy and isothermal titration calorimetry revealed that PF4 changed its structure upon binding to polyP in a similar way as seen in PF4/heparin complexes. Consequently, PF4/polyP complexes exposed neoepitopes to which human anti-PF4/heparin antibodies bound. PolyP enhanced binding of PF4 to Escherichia coli, hereby facilitating bacterial opsonisation and, in the presence of human anti-PF4/polyanion antibodies, phagocytosis. Our study indicates a role of polyP in enhancing PF4-mediated defense mechanisms of innate immunity.
Collapse
|
323
|
Wang JF, Pu X, Zhang X, Chen K, Xi Y, Wang J, Mao X, Zhang J, Heymach JV, Antonoff MB, Hofstetter WL, Mehran RJ, Rice DC, Roth JA, Sepesi B, Swisher SG, Vaporciyan AA, Walsh GL, Meng QH, Shaw KR, Eterovic AK, Fang B. Variants with a low allele frequency detected in genomic DNA affect the accuracy of mutation detection in cell-free DNA by next-generation sequencing. Cancer 2017; 124:1061-1069. [PMID: 29178133 DOI: 10.1002/cncr.31152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Next-generation sequencing of cell-free DNA (cfDNA) has been shown to be a useful noninvasive test for detecting mutations in solid tumors. METHODS Targeted gene sequencing was performed with a panel of 263 cancer-related genes for cfDNA and genomic DNA of peripheral blood mononuclear cells (PBMCs) obtained from presurgical specimens of 6 lung cancer patients, and mutation calls in these samples were compared with those of primary tumors and corresponding patient-derived xenografts (PDXs). RESULTS Approximately 67% of the mutations detected in the tumor samples (primary tumors and/or PDXs) were also detected in genomic DNA from PBMCs as background mutations. These background mutations consisted of germline polymorphisms and a group of mutations with low allele frequencies, mostly <10%. These variants with a low allele frequency were repeatedly detected in all types of samples from the same patients and at similarly low allele frequency levels in PBMCs from different patients; this indicated that their detection might be derived from common causes, such as homologous sequences in the human genome. Allele frequencies of mutations detected in both primary tumors and cfDNA showed 2 patterns: 1) low allele frequencies (approximately 1%-10%) in cfDNA but high allele frequencies (usually >10% or >3-fold increase) in primary tumors and further enrichment in PDXs and 2) similar allele frequencies across samples. CONCLUSIONS Because only a small fraction of total cfDNA might be derived from tumor cells, only mutations with the first allele frequency pattern may be regarded as tumor-specific mutations in cfDNA. Effective filtering of background mutations will be required to improve the accuracy of mutation calls in cfDNA. Cancer 2018;124:1061-9. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Jacqueline F Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xingxiang Pu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xizeng Mao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David C Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Garrett L Walsh
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing H Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenna R Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Agda Karina Eterovic
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
324
|
Macías M, Alegre E, Díaz-Lagares A, Patiño A, Pérez-Gracia JL, Sanmamed M, López-López R, Varo N, González A. Liquid Biopsy: From Basic Research to Clinical Practice. Adv Clin Chem 2017; 83:73-119. [PMID: 29304904 DOI: 10.1016/bs.acc.2017.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liquid biopsy refers to the molecular analysis in biological fluids of nucleic acids, subcellular structures, especially exosomes, and, in the context of cancer, circulating tumor cells. In the last 10 years, there has been an intensive research in liquid biopsy to achieve a less invasive and more precise personalized medicine. Molecular assessment of these circulating biomarkers can complement or even surrogate tissue biopsy. Because of this research, liquid biopsy has been introduced in clinical practice, especially in oncology, prenatal screening, and transplantation. Here we review the biology, methodological approaches, and clinical applications of the main biomarkers involved in liquid biopsy.
Collapse
Affiliation(s)
| | - Estibaliz Alegre
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Angel Díaz-Lagares
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), CIBERONC, Santiago de Compostela, Spain; Roche-CHUS Joint Unit, University Clinical Hospital of Santiago (CHUS), Santiago de Compostela, Spain
| | - Ana Patiño
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Jose L Pérez-Gracia
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Miguel Sanmamed
- Yale University School of Medicine, New Haven, CT, United States
| | - Rafael López-López
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), CIBERONC, Santiago de Compostela, Spain; Roche-CHUS Joint Unit, University Clinical Hospital of Santiago (CHUS), Santiago de Compostela, Spain
| | - Nerea Varo
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Alvaro González
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain.
| |
Collapse
|
325
|
Kang Z, Stevanović S, Hinrichs CS, Cao L. Circulating Cell-free DNA for Metastatic Cervical Cancer Detection, Genotyping, and Monitoring. Clin Cancer Res 2017; 23:6856-6862. [PMID: 28899967 PMCID: PMC7885032 DOI: 10.1158/1078-0432.ccr-17-1553] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023]
Abstract
Purpose: Circulating cell-free (ccf) human papillomavirus (HPV) DNA may serve as a unique tumor marker for HPV-associated malignancies, including cervical cancer. We developed a method to genotype and quantify circulating HPV DNA in patients with HPV16- or HPV18-positive metastatic cervical cancer for potential disease monitoring and treatment-related decision making.Experimental Design: In this retrospective study, HPV ccfDNA was measured in serum samples from 19 metastatic cervical cancer patients by duplex digital droplet PCR (ddPCR). Nine patients had received tumor-infiltrating lymphocyte (TIL) immunotherapy. ccfDNA data were aligned with the tumor HPV genotype, drug treatment, and clinical outcome.Results: In blinded tests, HPV ccfDNA was detected in 19 of 19 (100%) patients with HPV-positive metastatic cervical cancer but not in any of the 45 healthy blood donors. The HPV genotype harbored in the patients' tumors was correctly identified in 87 of 87 (100%) sequential patient serum samples from 9 patients who received TIL immunotherapy. In three patients who experienced objective cancer regression after TIL treatment, a transient HPV ccfDNA peak was detected 2-3 days after TIL infusion. Furthermore, persistent clearance of HPV ccfDNA was only observed in two patients who experienced complete response (CR) after TIL immunotherapy.Conclusions: HPV ccfDNA represents a promising tumor marker for noninvasive HPV genotyping and may be used in selecting patients for HPV type-specific T-cell-based immunotherapies. It may also have value in detecting antitumor activity of therapeutic agents and in the long-term follow-up of cervical cancer patients in remission. Clin Cancer Res; 23(22); 6856-62. ©2017 AACR.
Collapse
Affiliation(s)
- Zhigang Kang
- Genetics Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Sanja Stevanović
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Christian S Hinrichs
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Liang Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland.
| |
Collapse
|
326
|
Badeau M, Lindsay C, Blais J, Nshimyumukiza L, Takwoingi Y, Langlois S, Légaré F, Giguère Y, Turgeon AF, Witteman W, Rousseau F, Cochrane Pregnancy and Childbirth Group. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women. Cochrane Database Syst Rev 2017; 11:CD011767. [PMID: 29125628 PMCID: PMC6486016 DOI: 10.1002/14651858.cd011767.pub2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Common fetal aneuploidies include Down syndrome (trisomy 21 or T21), Edward syndrome (trisomy 18 or T18), Patau syndrome (trisomy 13 or T13), Turner syndrome (45,X), Klinefelter syndrome (47,XXY), Triple X syndrome (47,XXX) and 47,XYY syndrome (47,XYY). Prenatal screening for fetal aneuploidies is standard care in many countries, but current biochemical and ultrasound tests have high false negative and false positive rates. The discovery of fetal circulating cell-free DNA (ccfDNA) in maternal blood offers the potential for genomics-based non-invasive prenatal testing (gNIPT) as a more accurate screening method. Two approaches used for gNIPT are massively parallel shotgun sequencing (MPSS) and targeted massively parallel sequencing (TMPS). OBJECTIVES To evaluate and compare the diagnostic accuracy of MPSS and TMPS for gNIPT as a first-tier test in unselected populations of pregnant women undergoing aneuploidy screening or as a second-tier test in pregnant women considered to be high risk after first-tier screening for common fetal aneuploidies. The gNIPT results were confirmed by a reference standard such as fetal karyotype or neonatal clinical examination. SEARCH METHODS We searched 13 databases (including MEDLINE, Embase and Web of Science) from 1 January 2007 to 12 July 2016 without any language, search filter or publication type restrictions. We also screened reference lists of relevant full-text articles, websites of private prenatal diagnosis companies and conference abstracts. SELECTION CRITERIA Studies could include pregnant women of any age, ethnicity and gestational age with singleton or multifetal pregnancy. The women must have had a screening test for fetal aneuploidy by MPSS or TMPS and a reference standard such as fetal karyotype or medical records from birth. DATA COLLECTION AND ANALYSIS Two review authors independently carried out study selection, data extraction and quality assessment (using the QUADAS-2 tool). Where possible, hierarchical models or simpler alternatives were used for meta-analysis. MAIN RESULTS Sixty-five studies of 86,139 pregnant women (3141 aneuploids and 82,998 euploids) were included. No study was judged to be at low risk of bias across the four domains of the QUADAS-2 tool but applicability concerns were generally low. Of the 65 studies, 42 enrolled pregnant women at high risk, five recruited an unselected population and 18 recruited cohorts with a mix of prior risk of fetal aneuploidy. Among the 65 studies, 44 evaluated MPSS and 21 evaluated TMPS; of these, five studies also compared gNIPT with a traditional screening test (biochemical, ultrasound or both). Forty-six out of 65 studies (71%) reported gNIPT assay failure rate, which ranged between 0% and 25% for MPSS, and between 0.8% and 7.5% for TMPS.In the population of unselected pregnant women, MPSS was evaluated by only one study; the study assessed T21, T18 and T13. TMPS was assessed for T21 in four studies involving unselected cohorts; three of the studies also assessed T18 and 13. In pooled analyses (88 T21 cases, 22 T18 cases, eight T13 cases and 20,649 unaffected pregnancies (non T21, T18 and T13)), the clinical sensitivity (95% confidence interval (CI)) of TMPS was 99.2% (78.2% to 100%), 90.9% (70.0% to 97.7%) and 65.1% (9.16% to 97.2%) for T21, T18 and T13, respectively. The corresponding clinical specificity was above 99.9% for T21, T18 and T13.In high-risk populations, MPSS was assessed for T21, T18, T13 and 45,X in 30, 28, 20 and 12 studies, respectively. In pooled analyses (1048 T21 cases, 332 T18 cases, 128 T13 cases and 15,797 unaffected pregnancies), the clinical sensitivity (95% confidence interval (CI)) of MPSS was 99.7% (98.0% to 100%), 97.8% (92.5% to 99.4%), 95.8% (86.1% to 98.9%) and 91.7% (78.3% to 97.1%) for T21, T18, T13 and 45,X, respectively. The corresponding clinical specificities (95% CI) were 99.9% (99.8% to 100%), 99.9% (99.8% to 100%), 99.8% (99.8% to 99.9%) and 99.6% (98.9% to 99.8%). In this risk group, TMPS was assessed for T21, T18, T13 and 45,X in six, five, two and four studies. In pooled analyses (246 T21 cases, 112 T18 cases, 20 T13 cases and 4282 unaffected pregnancies), the clinical sensitivity (95% CI) of TMPS was 99.2% (96.8% to 99.8%), 98.2% (93.1% to 99.6%), 100% (83.9% to 100%) and 92.4% (84.1% to 96.5%) for T21, T18, T13 and 45,X respectively. The clinical specificities were above 100% for T21, T18 and T13 and 99.8% (98.3% to 100%) for 45,X. Indirect comparisons of MPSS and TMPS for T21, T18 and 45,X showed no statistical difference in clinical sensitivity, clinical specificity or both. Due to limited data, comparative meta-analysis of MPSS and TMPS was not possible for T13.We were unable to perform meta-analyses of gNIPT for 47,XXX, 47,XXY and 47,XYY because there were very few or no studies in one or more risk groups. AUTHORS' CONCLUSIONS These results show that MPSS and TMPS perform similarly in terms of clinical sensitivity and specificity for the detection of fetal T31, T18, T13 and sex chromosome aneuploidy (SCA). However, no study compared the two approaches head-to-head in the same cohort of patients. The accuracy of gNIPT as a prenatal screening test has been mainly evaluated as a second-tier screening test to identify pregnancies at very low risk of fetal aneuploidies (T21, T18 and T13), thus avoiding invasive procedures. Genomics-based non-invasive prenatal testing methods appear to be sensitive and highly specific for detection of fetal trisomies 21, 18 and 13 in high-risk populations. There is paucity of data on the accuracy of gNIPT as a first-tier aneuploidy screening test in a population of unselected pregnant women. With respect to the replacement of invasive tests, the performance of gNIPT observed in this review is not sufficient to replace current invasive diagnostic tests.We conclude that given the current data on the performance of gNIPT, invasive fetal karyotyping is still the required diagnostic approach to confirm the presence of a chromosomal abnormality prior to making irreversible decisions relative to the pregnancy outcome. However, most of the gNIPT studies were prone to bias, especially in terms of the selection of participants.
Collapse
Affiliation(s)
- Mylène Badeau
- CHU de Québec ‐ Université LavalPopulation Health and Optimal Health Practices Research Axis45 Rue LeclercQuébec CityQCCanadaG1L 3L5
| | - Carmen Lindsay
- CHU de Québec ‐ Université LavalPopulation Health and Optimal Health Practices Research Axis45 Rue LeclercQuébec CityQCCanadaG1L 3L5
| | - Jonatan Blais
- CHAU‐Hôtel‐Dieu de LévisDepartment of Medical Biology143 Rue WolfeLévisQCCanadaG6V 3Z1
- Faculty of Medicine, Université LavalDepartment of Molecular Biology, Medical Biochemistry and PathologyQuebec CityQuebecCanada
| | - Leon Nshimyumukiza
- University of AlbertaSchool of Public Health8303 112 StreetEdmontonAlbertaCanadaT6G 2T4
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchEdgbastonBirminghamUKB15 2TT
| | - Sylvie Langlois
- University of British ColumbiaDepartment of Medical Genetics, Faculty of MedicineC234, 4500 Oak StreetVancouverBCCanadaV6H 3N1
| | - France Légaré
- CHU de Québec ‐ Université LavalPopulation Health and Optimal Health Practices Research Axis45 Rue LeclercQuébec CityQCCanadaG1L 3L5
| | - Yves Giguère
- CHU de Québec ‐ Université LavalReproductive, Mother and Child Health Research Axis10, rue de l'Espinay, A2‐226Québec CityQCCanadaG1L 3L5
- Faculty of Medicine, Université LavalDepartment of Molecular Biology, Medical Biochemistry and Pathology10, rue de l'EspinayQuébec CityQcCanadaG1L 3L5
| | - Alexis F Turgeon
- CHU de Québec ‐ Université Laval, Université LavalDepartment of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, and Population Health and Optimal Health Practices Research Unit, CHU de Québec ‐ Université Laval Research Center1401, 18eme rueQuebec CityQCCanadaG1J 1Z4
- CHU de Québec Research Center, Université LavalPopulation Health and Optimal Health Practices Research Axis1401, 18eme rueQuébec CityQuébecCanadaG1J 1Z4
| | - William Witteman
- CHU de Québec ‐ Université LavalPopulation Health and Optimal Health Practices Research Axis45 Rue LeclercQuébec CityQCCanadaG1L 3L5
| | - François Rousseau
- Faculty of Medicine, Université LavalDepartment of Molecular Biology, Medical Biochemistry and Pathology10, rue de l'EspinayQuébec CityQcCanadaG1L 3L5
- CHU de Québec Research Center, Université LavalPopulation Health and Optimal Health Practices Research Axis1401, 18eme rueQuébec CityQuébecCanadaG1J 1Z4
| | | |
Collapse
|
327
|
Phillippe M. The link between cell-free DNA, inflammation and the initiation of spontaneous labor at term. Am J Obstet Gynecol 2017; 217:501-502. [PMID: 29110811 DOI: 10.1016/j.ajog.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Mark Phillippe
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
328
|
Chase ML, Armand P. Minimal residual disease in non-Hodgkin lymphoma - current applications and future directions. Br J Haematol 2017; 180:177-188. [PMID: 29076131 DOI: 10.1111/bjh.14996] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/03/2023]
Abstract
Non-Hodgkin Lymphomas (NHLs) are a heterogeneous group of tumours with distinct treatment paradigms, but in all cases the goal of treatment is to maximize quality and duration of remission while minimizing therapy-related toxicity. Identification of persistent disease or relapse is most often the trigger to intensify or re-initiate anti-neoplastic therapy, respectively. In the current era of NHL treatment, this determination is mostly based on imaging and clinical evaluations, tools with imperfect sensitivity and specificity. The availability of minimal residual disease (MRD) monitoring could transform treatment paradigms by allowing intensification of treatment in at-risk patients or early intervention for impending relapse. Novel methods based on polymerase chain reaction and next-generation sequencing are now being studied in NHL with promising results. This review outlines the current status of the field in the use of MRD techniques for diffuse large B-cell lymphoma, mantle cell lymphoma and follicular lymphoma. Specifically, we address their demonstrated and potential clinical utility in risk stratification, monitoring of remission status, and guiding interim and post-treatment escalation. Future applications of these techniques could identify novel markers of MRD, improve initial treatment selection, guide treatment escalation or de-escalation, and allow for real-time monitoring of patterns of clonal evolution, which together could redefine NHL treatment paradigms.
Collapse
Affiliation(s)
- Matthew L Chase
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Philippe Armand
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
329
|
Hyun MH, Sung JS, Kang EJ, Choi YJ, Park KH, Shin SW, Lee SY, Kim YH. Quantification of circulating cell-free DNA to predict patient survival in non-small-cell lung cancer. Oncotarget 2017; 8:94417-94430. [PMID: 29212238 PMCID: PMC5706884 DOI: 10.18632/oncotarget.21769] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
We used computed tomography (CT) to explore the prognostic value of cell-free (cf) DNA quantification and its predictive efficacy over time after chemotherapy in non-small-cell lung cancer (NSCLC) patients. In total, 177 NSCLC patients were enrolled in a prospective biomarker trial. Consecutive paired blood collection was performed to determine cfDNA concentrations at baseline CT and throughout serial follow-ups. The best cfDNA cut-off value to predict progression-free and overall survival was determined using X-tile analysis. Among 112 chemo-naive patients with stage IV adenocarcinoma, 43 were available for follow-up analysis. Cox regression multivariate analysis indicated that a high cfDNA concentration was an independent negative prognostic factor for progression-free survival (hazard ratio: 2.60; 95% confidence interval: 1.65-4.10; p = 0.008) and overall survival (hazard ratio: 2.63; 95% confidence interval: 1.66-4.17; p < 0.001). However, cfDNA concentration changes during treatment did not correlate with radiological CT responses at first follow-up or best response. No pattern was noted in the percent change in the cfDNA concentration from baseline or subsequently measured level to progression. The serum cfDNA concentration is thus associated with NSCLC patient prognosis, but does not appear to be a clinically valid marker for tumor responses.
Collapse
Affiliation(s)
- Myung Han Hyun
- Division of Medical Oncology, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Korea University, Seoul, Republic of Korea
| | - Jae Sook Sung
- Cancer Research Institute, Korea University, Seoul, Republic of Korea
| | - Eun Joo Kang
- Division of Medical Oncology, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon Ji Choi
- Division of Medical Oncology, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyong Hwa Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Won Shin
- Division of Medical Oncology, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung Yong Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yeul Hong Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University Medical Center, Korea University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Korea University, Seoul, Republic of Korea
| |
Collapse
|
330
|
Highly Sensitive and Specific Detection of SRY Gene for Non–invasive Prenatal Diagnosis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
331
|
Goldfarb IT, Adeli S, Berk T, Phillippe M. Fetal and Placental DNA Stimulation of TLR9: A Mechanism Possibly Contributing to the Pro-inflammatory Events During Parturition. Reprod Sci 2017; 25:788-796. [PMID: 28884630 DOI: 10.1177/1933719117728798] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION While there is evidence for a relationship between cell-free fetal DNA (cffDNA) and parturition, questions remain regarding whether cffDNA could trigger a pro-inflammatory response on the pathway to parturition. We hypothesized that placental and/or fetal DNA stimulates toll-like receptor 9 (TLR9) leading to secretion of pro-inflammatory cytokines by macrophage cells. METHODS Four in vitro DNA stimulation studies were performed using RAW 264.7 mouse peritoneal macrophage cells incubated in media containing the following DNA particles: an oligodeoxynucleotide (ODN2395), intact genomic DNA (from mouse placentas, fetuses and adult liver), mouse DNA complexed with DOTAP (a cationic liposome forming compound), and telomere-depleted mouse DNA. Interleukin 6 (IL6) secretion was measured in the media by enzyme-linked immunosorbent assay; and the cell pellet was homogenized for protein content (picograms IL6/mg protein). RESULTS Robust IL6 secretion was observed in response to ODN2395 (a CpG-rich TLR9 agonist), mouse DNA-DOTAP complexes, and telomere-depleted mouse DNA in concentrations of 5 to 15 μg/mL. In contrast, ODN A151 (containing telomere sequence motifs), intact genomic mouse DNA, and restriction enzyme-digested DNA had no effect on IL6 secretion. The IL6 response was significantly inhibited by chloroquine (10 μg/mL), thereby confirming the important role for TLR9 in the response by macrophage cells. CONCLUSIONS DNA derived from mouse placentas and fetuses, and depleted of telomeric sequences, stimulates a robust pro-inflammatory response by macrophage cells, thereby supporting the hypothesis that cffDNA is able to stimulate an innate immune response that could trigger the onset of parturition. These findings are of clinical importance, as we search for effective treatment/prevention of preterm parturition.
Collapse
Affiliation(s)
- Ilona Telefus Goldfarb
- 1 Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Sharareh Adeli
- 1 Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Tucker Berk
- 1 Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Mark Phillippe
- 1 Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
332
|
Karami F, Noori Daloii MR, Hantooshzadeh S, Modarressi MH. Comparing the Efficiency of Three Protocols in Isolation of Cell Free Fetal DNA From Maternal Blood. J Family Reprod Health 2017; 11:146-151. [PMID: 30018651 PMCID: PMC6045694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Objective: Recent advances in non-invasive prenatal diagnosis (NIPD) through cell free fetal DNA (cffDNA) has highlighted cffDNA purification as a critical initial step. Herein, we aimed to compare the efficiency of one proposed protocol with two commercial kits for isolation of cffDNA. Materials and methods: cffDNA was isolated from whole blood of 50 normal pregnancies using one proposed manual protocol compared with QIAamp DNA Blood Mini and Bioneer Kits. Methylated DNA immunoprecipitation real time polymerase chain reaction (MeDIP-Real time PCR) was performed to quantify three fetal specific sequences. Results: Maximum cffDNA quantity was obtained by suggested protocol (248.79 ± 14.07 ng/µl) and the best quality was achieved by Bioneer Kit (OD ratio: 260/280 nm/nm: 1.69 ± 0.09, 260/230 nm/nm: 1.15 ± 0.13) (p < 0.001). Enrichment of fetal specific sequences was significantly higher when proposed protocol was used to isolate cffDNA (p = 0.01). Conclusion: Inhibitory effect of NaI on nucleases and double digestion of DNA associated proteins may be the main reasons behind the superiority of suggested protocol. Significantly higher amplification of fetal specific sequences in suggested protocol would be a strong evidence on recovery of small fetal fragments as demonstrated with its maximum total DNA quantity and amplification in different PCR reactions.
Collapse
Affiliation(s)
- Fatemeh Karami
- Departement of Medical Genetics, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Seddigheh Hantooshzadeh
- Vali-e-Asr Reproductive Health Research Center, School of Medicine, Tehran University of Medical Sciences, Iran
| | - Mohammad Hossein Modarressi
- Departement of Medical Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
333
|
Tsui DW, Chiu RW, Lo YD. Epigenetic approaches for the detection of fetal DNA in maternal plasma. CHIMERISM 2017; 1:30-5. [PMID: 21327153 DOI: 10.4161/chim.1.1.12439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/20/2010] [Indexed: 12/18/2022]
Abstract
The presence of fetal DNA in the plasma of pregnant women has opened up new possibilities for noninvasive prenatal diagnosis. Over the past decades, different types of fetal markers have been developed, initially based on discriminative genetic markers such as male-specific signals or paternally-inherited polymorphisms, and gradually evolved to the detection of fetal-specific transcripts or epigenetic signatures. This development has extended the coverage of the application of cell-free fetal DNA to essentially all pregnancies, regardless of the gender of the fetus or its polymorphic status. In this review, we present an overview of the development of noninvasive prenatal diagnosis through epigenetics. We introduce the basis of how fetal DNA could be detected from a large background of maternal DNA in maternal plasma based on fetal-specific DNA methylation patterns. We evaluate the methodologies involved and discuss the factors that affect the robustness of the detection. We review the progress in adopting fetal epigenetic markers for noninvasive prenatal assessment of fetal chromosomal aneuploidies and pregnancy-associated disorders. We conclude with comments on the future directions regarding the search for new fetal epigenetic markers and the clinical implementation of epigenetic approaches for noninvasive prenatal diagnosis.
Collapse
Affiliation(s)
- Dana Wy Tsui
- The Centre for Research into Circulating Fetal Nucleic Acids; Li Ka Shing Institute of Health Sciences; and Department of Chemical Pathology; The Chinese University of Hong Kong; Shatin, Hong Kong SAR China
| | | | | |
Collapse
|
334
|
Lam WKJ, Gai W, Sun K, Wong RSM, Chan RWY, Jiang P, Chan NPH, Hui WWI, Chan AWH, Szeto CC, Ng SC, Law MF, Chan KCA, Chiu RWK, Lo YMD. DNA of Erythroid Origin Is Present in Human Plasma and Informs the Types of Anemia. Clin Chem 2017; 63:1614-1623. [PMID: 28784691 DOI: 10.1373/clinchem.2017.272401] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/20/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND There is much interest in the tissue of origin of circulating DNA in plasma. Data generated using DNA methylation markers have suggested that hematopoietic cells of white cell lineages are important contributors to the circulating DNA pool. However, it is not known whether cells of the erythroid lineage would also release DNA into the plasma. METHODS Using high-resolution methylation profiles of erythroblasts and other tissue types, 3 genomic loci were found to be hypomethylated in erythroblasts but hypermethylated in other cell types. We developed digital PCR assays for measuring erythroid DNA using the differentially methylated region for each locus. RESULTS Based on the methylation marker in the ferrochelatase gene, erythroid DNA represented a median of 30.1% of the plasma DNA of healthy subjects. In subjects with anemia of different etiologies, quantitative analysis of circulating erythroid DNA could reflect the erythropoietic activity in the bone marrow. For patients with reduced erythropoietic activity, as exemplified by aplastic anemia, the percentage of circulating erythroid DNA was decreased. For patients with increased but ineffective erythropoiesis, as exemplified by β-thalassemia major, the percentage was increased. In addition, the plasma concentration of erythroid DNA was found to correlate with treatment response in aplastic anemia and iron deficiency anemia. Plasma DNA analysis using digital PCR assays targeting the other 2 differentially methylated regions showed similar findings. CONCLUSIONS Erythroid DNA is a hitherto unrecognized major component of the circulating DNA pool and is a noninvasive biomarker for differential diagnosis and monitoring of anemia.
Collapse
Affiliation(s)
- W K Jacky Lam
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wanxia Gai
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Kun Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Raymond S M Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Rebecca W Y Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Natalie P H Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Winnie W I Hui
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Anthony W H Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Cheuk-Chun Szeto
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Siew C Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Man-Fai Law
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; .,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
335
|
Circulating Tumor DNA Reveals Clinically Actionable Somatic Genome of Metastatic Bladder Cancer. Clin Cancer Res 2017; 23:6487-6497. [DOI: 10.1158/1078-0432.ccr-17-1140] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/12/2017] [Accepted: 07/26/2017] [Indexed: 11/16/2022]
|
336
|
Ramezanzadeh M, Khosravi S, Salehi R. Cell-free Fetal Nucleic Acid Identifier Markers in Maternal Circulation. Adv Biomed Res 2017; 6:89. [PMID: 28828340 PMCID: PMC5549546 DOI: 10.4103/2277-9175.211800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
From the discovery of cell-free fetal (cff)-DNA in 1997 so far, many studies have been performed on various aspects of cff-nucleic acid. It is undoubted that currently, invasive prenatal diagnosis progresses to the noninvasive test. However, there are many problems. One of the most challenging issues in this field is differentiation and detection of the small amount of cff-nucleic acid in maternal plasma. Many markers and methods have been used for this purpose. This review makes an attempt to review and compare the studies in the field. Six identifier markers including Y-specific sequence, polymorphisms, epigenetic difference, DNA size difference, fetal mRNA, and microRNA as well as the advantages and disadvantages of each marker are discussed. This review provides a relatively perfect set on cff-nucleic acid biomarkers in various physiological and pathological status of pregnancy, helping to review and compare the prior obtained results, and improving designation in future studies.
Collapse
Affiliation(s)
- Mahboubeh Ramezanzadeh
- Department of Genetics and Molecular Medicine, School of Medicine, Bushehr University of Medical Sciences, Bushehr 751463341, Iran
| | - Sharifeh Khosravi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81744-176, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81744-176, Iran
| |
Collapse
|
337
|
Skrzypek H, Hui L. Noninvasive prenatal testing for fetal aneuploidy and single gene disorders. Best Pract Res Clin Obstet Gynaecol 2017; 42:26-38. [DOI: 10.1016/j.bpobgyn.2017.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/21/2017] [Indexed: 01/16/2023]
|
338
|
Abstract
Although suggested that “fetal” cell-free DNA (cfDNA) is derived from trophoblast cells, the exact origin is unclear. The studies in this report sought to demonstrate that placental tissue releases cfDNA in parallel with cell death, that the size range of cfDNA is similar to that found in maternal plasma, and that the cfDNA fragments are able to stimulate a proinflammatory cytokine response. Placentas were harvested from near term pregnant CD-1 mice and cultured in DMEM/Ham’s F12/FBS media in 8% or 21% O2. After centrifugation to remove cells and cellular debris, the cfDNA was extracted from the media and quantified by DNA spectrophotometry. The cfDNA fragments were sized using a 1.5% TAE gel. Cell death was quantified by lactate dehydrogenase assay; and tissue homogenates were used to quantify caspase activity and BAX expression. Cultured RAW-264.7 macrophage cells were used to determine IL6 stimulation by cfDNA. The cfDNA levels released in 8% O2 (placental normoxia) were not significantly different from explants cultured in 21% O2 (placental hyperoxia). The cfDNA fragments ranged in size from < 100 –< 400 bp. The cfDNA release increased when cultured with LPS, whereas it decreased with trolox (vitamin E analog). Explant release of cfDNA increased in parallel with cell death. The cfDNA release and cell death of trophoblast appears to involve components of the apoptosis signaling pathway as suggested by LPS enhancement of placental caspase activity, suppression of cfDNA release by a pan-caspase inhibitor and the trend toward increased Bax protein expression. Studies with cultured macrophage cells confirmed the ability of cfDNA to stimulate an IL6 response. In summary, these studies have confirmed the ability of placental tissue to release significant amounts of cfDNA, a phenomenon that appears to be mediated, at least in part, by apoptosis; and that the cfDNA released by the placental explants is able to stimulate a significant proinflammatory response. Thus, these studies provide support for the hypothesis that cell-free fetal DNA released by placental tissue potentially plays a mechanistically important role during the events leading to the onset of parturition.
Collapse
Affiliation(s)
- Mark Phillippe
- Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, Boston, MA
- * E-mail:
| | - Sharareh Adeli
- Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
339
|
Samura O, Sekizawa A, Suzumori N, Sasaki A, Wada S, Hamanoue H, Hirahara F, Sawai H, Nakamura H, Yamada T, Miura K, Masuzaki H, Nakayama S, Okai T, Kamei Y, Namba A, Murotsuki J, Tanemoto T, Fukushima A, Haino K, Tairaku S, Matsubara K, Maeda K, Kaji T, Ogawa M, Osada H, Nishizawa H, Okamoto Y, Kanagawa T, Kakigano A, Kitagawa M, Ogawa M, Izumi S, Katagiri Y, Takeshita N, Kasai Y, Naruse K, Neki R, Masuyama H, Hyodo M, Kawano Y, Ohba T, Ichizuka K, Kido Y, Fukao T, Miharu N, Nagamatsu T, Watanabe A, Hamajima N, Hirose M, Sanui A, Shirato N, Yotsumoto J, Nishiyama M, Hirose T, Sago H. Current status of non-invasive prenatal testing in Japan. J Obstet Gynaecol Res 2017; 43:1245-1255. [PMID: 28586143 DOI: 10.1111/jog.13373] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/16/2017] [Accepted: 04/02/2017] [Indexed: 12/29/2022]
Abstract
AIM The purpose of this study was to report the 3-year experience of a nationwide demonstration project to introduce non-invasive prenatal testing (NIPT) of maternal plasma for aneuploidy, and review the current status of NIPT in Japan. METHODS Tests were conducted to detect aneuploidy in high-risk pregnant women, and adequate genetic counseling was provided. The clinical data, test results, and pregnancy outcomes were recorded. We discuss the problems of NIPT on the basis of published reports and meta-analyses. RESULTS From April 2013 to March 2016, 30 613 tests were conducted at 55 medical sites participating in a multicenter clinical study. Among the 30 613 women tested, 554 were positive (1.81%) and 30 021 were negative (98.1%) for aneuploidy. Of the 289, 128, and 44 women who tested positive for trisomies 21, 18, and 13, respectively, and underwent definitive testing, 279 (96.5%), 106 (82.8%), and 28 (63.6%) were determined to have a true-positive result. For the 13 481 women with negative result and whose progress could be traced, two had a false-negative result (0.02%). The tests were performed on the condition that a standard level of genetic counseling be provided at hospitals. CONCLUSION Here, we report on the 3-year nationwide experience with NIPT in Japan. It is important to establish a genetic counseling system to enable women to make informed decisions regarding prenatal testing. Moreover, a welfare system is warranted to support women who decide to give birth to and raise children with chromosomal diseases.
Collapse
Affiliation(s)
- Osamu Samura
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Nobuhiro Suzumori
- Division of Clinical and Molecular Genetics, Department of Obstetrics and Gynecology, Nagoya City University, Nagoya, Japan
| | - Aiko Sasaki
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Seiji Wada
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Haruka Hamanoue
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Fumiki Hirahara
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hideaki Sawai
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hiroaki Nakamura
- Department of Obstetrics, Osaka City General Hospital, Osaka City, Osaka, Japan
| | - Takahiro Yamada
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideaki Masuzaki
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Takashi Okai
- Maternal and Child Health Center, Aiiku Hospital, Tokyo, Japan
| | - Yoshimasa Kamei
- Departments of Obstetrics and Gynecology, Saitama Medical University School of Medicine, Moroyama, Iruma, Saitama, Japan
| | - Akira Namba
- Departments of Obstetrics and Gynecology, Saitama Medical University School of Medicine, Moroyama, Iruma, Saitama, Japan
| | - Jun Murotsuki
- Department of Maternal and Fetal Medicine, Tohoku University Graduate School of Medicine, Miyagi Children's Hospital, Sendai, Miyagi, Japan
| | - Tomohiro Tanemoto
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan
| | - Akimune Fukushima
- Departments of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | - Kazufumi Haino
- Department of Obstetrics and Gynecology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Shinya Tairaku
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Keiichi Matsubara
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Matsuyama, Ehime, Japan
| | - Kazuhisa Maeda
- Department of Obstetrics and Gynecology, Shikoku Medical Center for Children and Adults, Zentsuji, Kagawa, Japan
| | - Takashi Kaji
- Department of Obstetrics and Gynecology, University of Tokushima Faculty of Medicine, Tokushima, Japan
| | - Masanobu Ogawa
- Department of Obstetrics and Gynecology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Hisao Osada
- Department of Obstetrics and Gynecology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Haruki Nishizawa
- Department of Obstetrics and Gynecology, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoko Okamoto
- Department of Obstetrics, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, Japan
| | - Takeshi Kanagawa
- Department of Obstetrics, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, Japan.,Department of Obstetrics and Gynecology, Osaka University Faculty of Medicine, Suita, Osaka, Japan
| | - Aiko Kakigano
- Department of Obstetrics and Gynecology, Osaka University Faculty of Medicine, Suita, Osaka, Japan
| | | | - Masaki Ogawa
- Perinatal Medical Center, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Shunichiro Izumi
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Hiratsuka, Kanagawa, Japan
| | - Yukiko Katagiri
- Department of Obstetrics and Gynecology, Toho University Omori Medical Center, Tokyo, Japan
| | | | - Yasuyo Kasai
- Department of Obstetrics and Gynecology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Katsuhiko Naruse
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan
| | - Reiko Neki
- Department of Perinatology and Gynecology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hisashi Masuyama
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Maki Hyodo
- Department of Obstetrics and Gynecology, Hiroshima University Graduate School of Medicine, Hiroshima, Japan
| | - Yukie Kawano
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takashi Ohba
- Department of Obstetrics and Gynecology, Kumamoto University, Kumamoto, Japan
| | - Kiyotake Ichizuka
- Department of Obstetrics and Gynecology, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yasuhiro Kido
- Division of Clinical Genetics, Dokkyo Medical University Koshigaya Hospital, Mibu, Shimotsuga, Tochigi, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate school of medicine, Gifu University, Gifu, Japan
| | - Norio Miharu
- Department of Obstetrics and Gynecology, Chuden Hospital, Hiroshima, Japan
| | - Takeshi Nagamatsu
- Departments of Obstetrics and Gynecology, Tokyo University Hospital, Tokyo, Japan
| | - Atsushi Watanabe
- Division of Clinical Genetics, Nippon Medical School Hospital, Tokyo, Japan
| | - Naoki Hamajima
- Department of Clinical Genetics, Nagoya City West Medical Center, Nagoya, Japan
| | - Masaya Hirose
- Departments of Obstetrics and Gynecology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Ayako Sanui
- Departments of Obstetrics and Gynecology, Fukuoka University Hospital, Fukuoka, Japan
| | - Nahoko Shirato
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Junko Yotsumoto
- Departments of Genetic Counseling, Ochanomizu University, Tokyo, Japan
| | - Miyuki Nishiyama
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tatsuko Hirose
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Haruhiko Sago
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
340
|
Konečná B, Sysák R, Kacerovský M, Celec P, Vlková B. Deoxyribonuclease activity in plasma of pregnant women and experimental animals. J Matern Fetal Neonatal Med 2017; 31:1807-1809. [DOI: 10.1080/14767058.2017.1326899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Rastislav Sysák
- 1st Department of Gynaecology and Obstetrics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Marian Kacerovský
- Department of Obstetrics and Gynecology, Faculty of Medicine, Charles University in Prague, University Hospital, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital, Hradec Králové, Czech Republic
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Barbora Vlková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
341
|
Wang D, Hu Y, Li T, Rong HM, Tong ZH. Diagnosis of Pneumocystis jirovecii pneumonia with serum cell-free DNA in non-HIV-infected immunocompromised patients. Oncotarget 2017; 8:71946-71953. [PMID: 29069759 PMCID: PMC5641102 DOI: 10.18632/oncotarget.18037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023] Open
Abstract
Conventional respiratory tract specimens, such as bronchoalveolar lavage (BAL) fluid and induced sputum for diagnosing Pneumocystis jirovecii pneumonia (PCP) in immunocompromised patients are difficult to obtain. Besides, bronchoscopy is an invasive procedure that carries the risk of causing rapidly progressive respiratory insufficiency. By contrast, serum cell-free DNA (cfDNA) is easy to obtain and has been proven useful in diagnosing cancer, pregnancy associated complications, parasite infection and sepsis. In this study, we performed quantitative polymerase chain reaction (qPCR) to assess the diagnostic efficiency of using serum cfDNA, BAL fluid, and sputum DNA for PCP. Seventy-one patients (35 PCP patients and 36 non-PCP patients) were enrolled according to the clinical PCP diagnostic criteria. The sensitivity, specificity, positive predictive value, and negative predictive value of PCR using serum cfDNA were 68.6% (95% CI, 50.7–83.1), 97.2% (95% CI, 85.5–99.9), 96.0%, and 76.1%, respectively. PCR using BAL fluid and sputum had a high sensitivity (97.1% and 91.4%, respectively) but relatively low specificity (86.1% and 86.1%, respectively). The combination of the sputum PCR OR serum cfDNA PCR yielded a sensitivity of 97.1%.These results indicated that serum cfDNA might be a valuable method in PCP diagnosis.
Collapse
Affiliation(s)
- Dong Wang
- Department of Respiratory Medicine and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yang Hu
- Department of Respiratory Medicine and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ting Li
- Department of Respiratory Medicine and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Heng-Mo Rong
- Department of Respiratory Medicine and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhao-Hui Tong
- Department of Respiratory Medicine and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
342
|
Vermeesch JR, Voet T, Devriendt K. Prenatal and pre-implantation genetic diagnosis. Nat Rev Genet 2017; 17:643-56. [PMID: 27629932 DOI: 10.1038/nrg.2016.97] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The past decade has seen the development of technologies that have revolutionized prenatal genetic testing; that is, genetic testing from conception until birth. Genome-wide single-cell arrays and high-throughput sequencing analyses are dramatically increasing our ability to detect embryonic and fetal genetic lesions, and have substantially improved embryo selection for in vitro fertilization (IVF). Moreover, both invasive and non-invasive mutation scanning of the genome are helping to identify the genetic causes of prenatal developmental disorders. These advances are changing clinical practice and pose novel challenges for genetic counselling and prenatal care.
Collapse
Affiliation(s)
- Joris Robert Vermeesch
- Centre for Human Genetics, Department of Human Genetics, University of Leuven, 49 Herestraat, Leuven 3000, Belgium
| | - Thierry Voet
- Centre for Human Genetics, Department of Human Genetics, University of Leuven, 49 Herestraat, Leuven 3000, Belgium
| | - Koenraad Devriendt
- Centre for Human Genetics, Department of Human Genetics, University of Leuven, 49 Herestraat, Leuven 3000, Belgium
| |
Collapse
|
343
|
Liquid biopsy: unlocking the potentials of cell-free DNA. Virchows Arch 2017; 471:147-154. [DOI: 10.1007/s00428-017-2137-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 01/02/2023]
|
344
|
McGrath JA. The Molecular Revolution in Cutaneous Biology: Era of Molecular Diagnostics for Inherited Skin Diseases. J Invest Dermatol 2017; 137:e83-e86. [DOI: 10.1016/j.jid.2016.02.819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 10/19/2022]
|
345
|
Howell JA, Khan SA, Knapp S, Thursz MR, Sharma R. The clinical role of circulating free tumor DNA in gastrointestinal malignancy. Transl Res 2017; 183:137-154. [PMID: 28056336 DOI: 10.1016/j.trsl.2016.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/14/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
Abstract
Circulating cell-free DNA (cfDNA) is DNA released from necrotic or apoptotic cells into the bloodstream. While both healthy cells and cancer cells release cfDNA, tumors are associated with higher levels of tumor-derived circulating cell-free DNA (ctDNA) detectable in blood. Absolute levels of ctDNA and its genetic mutations and epigenetic changes show promise as potentially useful biomarkers of tumor biology, progression, and response to therapy. Moreover, studies have demonstrated the discriminative accuracy of ctDNA levels for diagnosis of gastrointestinal cancer compared with benign inflammatory diseases. Therefore, ctDNA detected in blood offers a minimally invasive and easily repeated "liquid biopsy" of cancer, facilitating real-time dynamic analysis of tumor behavior that could revolutionize both clinical and research practices in oncology. In this review, we provide a critical summary of the evidence for the utility of ctDNA as a diagnostic and prognostic biomarker in gastrointestinal malignancies.
Collapse
Affiliation(s)
- Jessica A Howell
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK; Centre for Population Health, MacFarlane-Burnet Institute, Melbourne, Australia; Department of Medicine, The University of Melbourne, Melbourne, Australia.
| | - Shahid A Khan
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK
| | - Susanne Knapp
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK
| | - Mark R Thursz
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK
| | - Rohini Sharma
- Department of Surgery and Cancer, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
346
|
Yang D, Liang H, Lin S, Li Q, Ma X, Gao J, Sun H, Chen Q, Wu J, Ou X. An SNP panel for the analysis of paternally inherited alleles in maternal plasma using ion Torrent PGM. Int J Legal Med 2017; 132:343-352. [DOI: 10.1007/s00414-017-1594-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022]
|
347
|
Kim D, Kim Y, Son N, Kang C, Kim A. Recent omics technologies and their emerging applications for personalised medicine. IET Syst Biol 2017; 11:87-98. [DOI: 10.1049/iet-syb.2016.0016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Dong‐Hyuk Kim
- School of Life ScienceHandong Global UniversityPohangGyungbuk37554South Korea
| | - Young‐Sook Kim
- School of Life ScienceHandong Global UniversityPohangGyungbuk37554South Korea
| | - Nam‐Il Son
- School of Life ScienceHandong Global UniversityPohangGyungbuk37554South Korea
| | - Chan‐Koo Kang
- School of Life ScienceHandong Global UniversityPohangGyungbuk37554South Korea
| | - Ah‐Ram Kim
- School of Life ScienceHandong Global UniversityPohangGyungbuk37554South Korea
| |
Collapse
|
348
|
Jia S, Zhang R, Li Z, Li J. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget 2017; 8:55632-55645. [PMID: 28903450 PMCID: PMC5589689 DOI: 10.18632/oncotarget.17184] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) has been the fourth leading cause of cancer-related mortality worldwide. Owing to clonal evolution and selection, CRC treatment needs multimodal therapeutic approaches and due monitoring of tumor progression and therapeutic efficacy. Liquid biopsy, involving the use of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes, may offer a promising noninvasive alternative for diagnosis and for real-time monitoring of tumor evolution and therapeutic response compared to traditional tissue biopsy. Monitoring of the disease processes can enable clinicians to readily adopt a strategy based on optimal therapeutic decision-making. This article provides an overview of the significant advances and the current clinical and biological significance of CTCs, ctDNA, and exosomes in CRC, as well as a comparison of the main merits and demerits of these three components. The hurdles that need to be resolved and potential directions to be followed with respect to liquid biopsies for detection and therapy of CRC are also discussed.
Collapse
Affiliation(s)
- Shiyu Jia
- Peking University Fifth School of Clinical Medicine, Beijing, People's Republic of China.,National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Ziyang Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jinming Li
- Peking University Fifth School of Clinical Medicine, Beijing, People's Republic of China.,National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| |
Collapse
|
349
|
Oellerich M, Schütz E, Beck J, Kanzow P, Plowman PN, Weiss GJ, Walson PD. Using circulating cell-free DNA to monitor personalized cancer therapy. Crit Rev Clin Lab Sci 2017; 54:205-218. [PMID: 28393575 DOI: 10.1080/10408363.2017.1299683] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Julia Beck
- Chronix Biomedical GmbH, Göttingen, Germany
| | - Philipp Kanzow
- Department of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Piers N. Plowman
- Department of Clinical Oncology, St. Bartholomew’s Hospital, West Smithfield, London, UK
| | - Glen J. Weiss
- Cancer Treatment Centers of America, Goodyear, AZ, USA
| | - Philip D. Walson
- Department of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
350
|
Shu Y, Wu X, Tong X, Wang X, Chang Z, Mao Y, Chen X, Sun J, Wang Z, Hong Z, Zhu L, Zhu C, Chen J, Liang Y, Shao H, Shao YW. Circulating Tumor DNA Mutation Profiling by Targeted Next Generation Sequencing Provides Guidance for Personalized Treatments in Multiple Cancer Types. Sci Rep 2017; 7:583. [PMID: 28373672 PMCID: PMC5428730 DOI: 10.1038/s41598-017-00520-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer is a disease of complex genetic alterations, and comprehensive genetic diagnosis is beneficial to match each patient to appropriate therapy. However, acquisition of representative tumor samples is invasive and sometimes impossible. Circulating tumor DNA (ctDNA) is a promising tool to use as a non-invasive biomarker for cancer mutation profiling. Here we implemented targeted next generation sequencing (NGS) with a customized gene panel of 382 cancer-relevant genes on 605 ctDNA samples in multiple cancer types. Overall, tumor-specific mutations were identified in 87% of ctDNA samples, with mutation spectra highly concordant with their matched tumor tissues. 71% of patients had at least one clinically-actionable mutation, 76% of which have suggested drugs approved or in clinical trials. In particular, our study reveals a unique mutation spectrum in Chinese lung cancer patients which could be used to guide treatment decisions and monitor drug-resistant mutations. Taken together, our study demonstrated the feasibility of clinically-useful targeted NGS-based ctDNA mutation profiling to guide treatment decisions in cancer.
Collapse
Affiliation(s)
- Yongqian Shu
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue Wu
- Geneseeq Technology Inc., Toronto, Ontario, Canada
| | | | - Xiaonan Wang
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Zhili Chang
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yu Mao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Xiaofeng Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Sun
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenxin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhuan Hong
- Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Liangjun Zhu
- Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Chunrong Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Chen
- Department of Chemoradiotherapy, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Ying Liang
- Department of Medical Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Huawu Shao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Yang W Shao
- Geneseeq Technology Inc., Toronto, Ontario, Canada.
| |
Collapse
|