301
|
Nakamura T, Shirakata Y, Shinohara Y, Miron RJ, Hasegawa-Nakamura K, Fujioka-Kobayashi M, Noguchi K. Comparison of the effects of recombinant human bone morphogenetic protein-2 and -9 on bone formation in rat calvarial critical-size defects. Clin Oral Investig 2017; 21:2671-2679. [PMID: 28197731 DOI: 10.1007/s00784-017-2069-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Among bone morphogenetic protein (BMP) family members, BMP-2 and BMP-9 have demonstrated potent osteoinductive potential. However, in vivo differences in their potential for bone regeneration remain unclear. The present study aimed to compare the effects of recombinant human (rh) BMP-2 and rhBMP-9 on bone formation in rat calvarial critical-size defects (CSD). MATERIALS AND METHODS Twenty-eight Wistar rats surgically received two calvarial defects bilaterally in each parietal bone. Defects (n = 56) were allocated into four groups: absorbable collagen sponge (ACS) alone, rhBMP-2 with ACS (rhBMP-2/ACS), rhBMP-9/ACS, or sham surgery (control), on the condition that the treatments of rhBMP-2/ACS and rhBMP-9/ACS, or the same treatments were not included in the same animal. Animals were sacrificed at 2 and 8 weeks post-surgery. The calvarial defects were analyzed for bone volume (BV) by micro-computed tomography and for percentages of defect closure (DC/DL), newly formed bone area (NBA/TA), bone marrow area (BMA/NBA), adipose tissue area (ATA/NBA), central bone height (CBH), and marginal bone height (MBH) by histomorphometric analysis. RESULTS The BV in the rhBMP-2/ACS group (5.44 ± 3.65 mm3, n = 7) was greater than the other groups at 2 weeks post-surgery, and the rhBMP-2/ACS and rhBMP-9/ACS groups (18.17 ± 2.51 and 16.30 ± 2.46 mm3, n = 7, respectively) demonstrated significantly greater amounts of BV compared with the control and ACS groups (6.02 ± 2.90 and 9.30 ± 2.75 mm3, n = 7, respectively) at 8 weeks post-surgery. The rhBMP-2/ACS and rhBMP-9/ACS groups significantly induced new bone formation compared to the control and ACS groups at 8 weeks post-surgery. However, there were no statistically significant differences found between the rhBMP-2/ACS and rhBMP-9/ACS groups in any of the histomorphometric parameters. The ATA/NBA in the rhBMP-2/ACS group (9.24 ± 3.72%, n = 7) was the highest among the treatment groups at 8 weeks post-surgery. CONCLUSIONS Within the limits of this study, it can be concluded that rhBMP-2/ACS induced a slight early increase in new bone formation at 2 weeks and that rhBMP-9/ACS provided comparable new bone formation to rhBMP-2/ACS with less adipose tissues after a healing period of 8 weeks in rat CSD. CLINICAL RELEVANCE RhBMP-9/ACS treatment provided new bone formation with less adipose tissues compared with rhBMP-2/ACS.
Collapse
Affiliation(s)
- Toshiaki Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshinori Shirakata
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yukiya Shinohara
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Richard J Miron
- Department of Periodontology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Kozue Hasegawa-Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland.,Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
302
|
Sathy BN, Olvera D, Gonzalez-Fernandez T, Cunniffe GM, Pentlavalli S, Chambers P, Jeon O, Alsberg E, McCarthy HO, Dunne N, Haut Donahue TL, Kelly DJ. RALA complexed α-TCP nanoparticle delivery to mesenchymal stem cells induces bone formation in tissue engineered constructs in vitro and in vivo. J Mater Chem B 2017; 5:1753-1764. [PMID: 32263916 DOI: 10.1039/c6tb02881k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A range of bone regeneration strategies, from growth factor delivery and/or mesenchymal stem cell (MSC) transplantation to endochondral tissue engineering, have been developed in recent years. Despite their tremendous promise, the clinical translation and future use of many of these strategies is being hampered by concerns such as off target effects associated with growth factor delivery. Therefore the overall objective of this study was to investigate the influence of alpha-tricalcium phosphate (α-TCP) nanoparticle delivery into MSCs using an amphipathic cell penetrating peptide RALA, on osteogenesis in vitro and both intramembranous and endochondral bone formation in vivo. RALA complexed α-TCP nanoparticle delivery to MSCs resulted in an increased expression of bone morphogenetic protein-2 (BMP-2) and an upregulation in a number of key osteogenic genes. When α-TCP stimulated MSCs were encapsulated into alginate hydrogels, enhanced mineralization of the engineered construct was observed over a 28 day culture period. Furthermore, the in vivo bone forming potential of RALA complexed α-TCP nanoparticle delivery to MSCs was found to be comparable to growth factor delivery. Recognizing the potential and limitations associated with endochondral bone tissue engineering strategies, we then sought to explore how α-TCP nanoparticle delivery to MSCs influences early mineralization of engineered cartilage templates in vitro and their subsequent ossification in vivo. Despite accelerating mineralization of engineered cartilage templates in vitro, RALA complexed α-TCP nanoparticle delivery did not enhance endochondral bone formation in vivo. Therefore the potential of RALA complexed α-TCP nanoparticle delivery appears to be as an alternative to growth factor delivery as a single stage strategy for promoting bone generation.
Collapse
Affiliation(s)
- Binulal N Sathy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Krishnan L, Priddy LB, Esancy C, Klosterhoff BS, Stevens HY, Tran L, Guldberg RE. Delivery vehicle effects on bone regeneration and heterotopic ossification induced by high dose BMP-2. Acta Biomater 2017; 49:101-112. [PMID: 27940197 DOI: 10.1016/j.actbio.2016.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/10/2016] [Accepted: 12/06/2016] [Indexed: 11/15/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2), delivered on absorbable collagen sponge, is frequently used to treat bone defects. However, supraphysiological BMP-2 doses are common and often associated with complications such as heterotopic ossification and inflammation, causing pain and impaired mobility. This has prompted investigations into strategies to spatially control bone regeneration, for example growth factor delivery in appropriate scaffolds. Our objective was to investigate the spatiotemporal effects of high dose BMP-2 on bone regeneration as a function of the delivery vehicle. We hypothesized that an alginate delivery system would spatially restrict bone formation compared to a collagen sponge delivery system. In vitro, BMP-2 release was accelerated from collagen sponge compared to alginate constructs. In vivo, bone regeneration was evaluated over 12weeks in critically sized rat femoral segmental defects treated with 30μg rhBMP-2 in alginate hydrogel or collagen sponge, surrounded by perforated nanofiber meshes. Total bone volume, calculated from micro-CT reconstructions, was higher in the alginate group at 12weeks. Though bone volume within the central defect region was greater in the alginate group at 8 and 12weeks, heterotopic bone volume was similar between groups. Likewise, mechanical properties from ex vivo torsional testing were comparable between groups. Histology corroborated these findings and revealed heterotopic mineralization at 2weeks post-surgery in both groups. Overall, this study recapitulated the heterotopic ossification associated with high dose BMP-2 delivery, and demonstrated that the amount and spatial pattern of bone formation was dependent on the delivery matrix. STATEMENT OF SIGNIFICANCE Alginate hydrogel-based BMP-2 delivery has induced better spatiotemporal bone regeneration in animals, compared to clinically used collagen sponge, at lower BMP-2 doses. Lack of clear dose-response relationships for BMP-2 vis-à-vis bone regeneration has contributed to the use of higher doses clinically. We investigated the potential of the alginate system, with comparatively favorable BMP-2 release-kinetics, to reduce heterotopic ossification and promote bone regeneration, when used with a high BMP-2 dose. While defect mineralization improved with alginate hydrogel, the initial high-release phase and likely early tissue exposure to BMP-2 appeared sufficient to induce heterotopic ossification. The characterization presented here should provide the framework for future evaluations of strategies to optimize bone formation and minimize adverse effects of high dose BMP-2 therapy.
Collapse
Affiliation(s)
- Laxminarayanan Krishnan
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Lauren B Priddy
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Camden Esancy
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Brett S Klosterhoff
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Hazel Y Stevens
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Lisa Tran
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert E Guldberg
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA 30332, USA.
| |
Collapse
|
304
|
BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing. Sci Rep 2017; 7:41800. [PMID: 28139726 PMCID: PMC5282552 DOI: 10.1038/srep41800] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/28/2016] [Indexed: 11/08/2022] Open
Abstract
Most materials used clinically for filling critical-sized bone defects (CSBD), such as deproteinized bovine bone (DBB), lack osteoinductivity so that their therapeutic effects are far from satisfactory. The effect of bone morphogenic protein 2 (BMP2)-coprecipitated biomimetic calcium phosphate granules (BMP2-cop.BioCaP) on osteoinduction of DBB graft(s) during CSBD healing is still unknown. We investigated whether BMP2-cop.BioCaP affects the osteoinductivity of DBB, bone formation, and foreign body reaction during CSBD healing. DBB + BMP2-cop.BioCaP, DBB, DBB + BMP2, DBB + BioCaP, and autologous bone grafts were implanted in the CSBD of sheep. Bone formation, DBB/BioCaP degradability, foreign body reaction, and osteoinductivity of DBB were analyzed histologically and histomorphometrically at week 4 and 8. Combination of BMP2-cop.BioCaP and DBB healed CSBD as effectively as autologous bone grafts. About 95% of the BMP2-cop.BioCaP had been degraded and replaced by new bone at week 8 in the DBB + BMP2-cop.BioCaP-group. Foreign body reaction was reduced in the DBB + BMP2-cop.BioCaP-group compared to the other groups. The independent use of the BMP2-cop.BioCaP did not achieve a satisfactory bone repair. In conclusion, the BMP2-cop.BioCaP showed good degradability and biocompatibility, and enhanced osteoinductivity of DBB during CSBD healing in sheep, suggesting BMP2-cop.BioCaP as a potential osteoinducer to enhance the therapeutic effects of the graft materials in clinic.
Collapse
|
305
|
Sun J, Zhang Y, Li B, Gu Y, Chen L. Controlled release of BMP-2 from a collagen-mimetic peptide-modified silk fibroin–nanohydroxyapatite scaffold for bone regeneration. J Mater Chem B 2017; 5:8770-8779. [PMID: 32264271 DOI: 10.1039/c7tb02043k] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Controlled release of BMP-2 from a collagen-mimetic peptide-modified scaffold for bone regeneration.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Orthopaedic Surgery
- The First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science
- Soochow University
- Suzhou
- P. R. China
| | - Bin Li
- Department of Orthopaedic Surgery
- The First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
- Orthopedic Institute
| | - Yong Gu
- Department of Orthopaedic Surgery
- The First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
| | - Liang Chen
- Department of Orthopaedic Surgery
- The First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
306
|
Tao C, Zhang Y, Li B, Chen L. Hierarchical micro/submicrometer-scale structured scaffolds preparedviacoaxial electrospinning for bone regeneration. J Mater Chem B 2017; 5:9219-9228. [PMID: 32264605 DOI: 10.1039/c7tb02044a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A tissue engineering scaffold based on hierarchical micro/submicrometer-scale structured core–sheath fibers is preparedviacoaxial electrospinning for bone regeneration.
Collapse
Affiliation(s)
- Chen Tao
- Department of Orthopaedic Surgery
- the First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital
- Soochow University
- Suzhou
- P. R. China
| | - Bin Li
- Department of Orthopaedic Surgery
- the First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
- Orthopedic Institute
| | - Liang Chen
- Department of Orthopaedic Surgery
- the First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
307
|
Terauchi M, Inada T, Tonegawa A, Tamura A, Yamaguchi S, Harada K, Yui N. Supramolecular inclusion complexation of simvastatin with methylated β-cyclodextrins for promoting osteogenic differentiation. Int J Biol Macromol 2016; 93:1492-1498. [DOI: 10.1016/j.ijbiomac.2016.01.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
|
308
|
Fan J, Guo M, Im CS, Pi-Anfruns J, Cui ZK, Kim S, Wu BM, Aghaloo TL, Lee M. Enhanced Mandibular Bone Repair by Combined Treatment of Bone Morphogenetic Protein 2 and Small-Molecule Phenamil. Tissue Eng Part A 2016; 23:195-207. [PMID: 27771997 DOI: 10.1089/ten.tea.2016.0308] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Growth factor-based therapeutics using bone morphogenetic protein 2 (BMP-2) presents a promising strategy to reconstruct craniofacial bone defects such as mandible. However, clinical applications require supraphysiological BMP doses that often increase inappropriate adipogenesis, resulting in well-documented, cyst-like bone formation. Here we reported a novel complementary strategy to enhance osteogenesis and mandibular bone repair by using small-molecule phenamil that has been shown to be a strong activator of BMP signaling. Phenamil synergistically induced osteogenic differentiation of human bone marrow mesenchymal stem cells with BMP-2 while suppressing their adipogenic differentiation induced by BMP-2 in vitro. The observed pro-osteogenic and antiadipogenic activity of phenamil was mediated by expression of tribbles homolog 3 (Trb3) that enhanced BMP-smad signaling and inhibited expression of peroxisome proliferator-activated receptor gamma (PPARγ), a master regulator of adipogenesis. The synergistic effect of BMP-2+phenamil on bone regeneration was further confirmed in a critical-sized rat mandibular bone defect by implanting polymer scaffolds designed to slowly release the therapeutic molecules. These findings indicate a new complementary osteoinductive strategy to improve clinical efficacy and safety of current BMP-based therapeutics.
Collapse
Affiliation(s)
- Jiabing Fan
- 1 Division of Advanced Prosthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Mian Guo
- 2 Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University , Harbin, China
| | - Choong Sung Im
- 1 Division of Advanced Prosthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Joan Pi-Anfruns
- 3 Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Zhong-Kai Cui
- 1 Division of Advanced Prosthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Soyon Kim
- 4 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Benjamin M Wu
- 1 Division of Advanced Prosthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California.,4 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Tara L Aghaloo
- 3 Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Min Lee
- 1 Division of Advanced Prosthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California.,4 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| |
Collapse
|
309
|
Mahapatra C, Singh RK, Kim JJ, Patel KD, Perez RA, Jang JH, Kim HW. Osteopromoting Reservoir of Stem Cells: Bioactive Mesoporous Nanocarrier/Collagen Gel through Slow-Releasing FGF18 and the Activated BMP Signaling. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27573-27584. [PMID: 27649064 DOI: 10.1021/acsami.6b09769] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Providing an osteogenic stimulatory environment is a key strategy to construct stem cell-based bone-equivalent tissues. Here we design a stem cell delivering gel matrix made of collagen (Col) with bioactive glass nanocarriers (BGn) that incorporate osteogenic signaling molecule, fibroblast growth factor 18 (FGF18), a reservoir considered to cultivate and promote osteogenesis of mesenchymal stem cells (MSCs). The presence of BGn in the gel was shown to enhance the osteogenic differentiation of MSCs, possibly due to the therapeutic role of ions released. The mesoporous nature of BGn was effective in loading FGF18 at large quantity, and the FGF18 release from the BGn-Col gel matrix was highly sustainable with almost a zero-order kinetics, over 4 weeks as confirmed by the green fluorescence protein signal change. The released FGF18 was effective in accelerating osteogenesis (alkaline phosphatase activity and bone related gene expressions) and bone matrix formation (osteopontin, bone sialoprotein, and osteocalcin production) of MSCs. This was attributed to the bone morphogenetic protein (BMP) signaling pathway, where the FGF18 release stimulated the endogenous secretion of BMP2 and the downstream signal Smad1/5/8. Taken together, the FGF18-BGn/Col gel is considered an excellent osteopromoting depot to support and signal MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chinmaya Mahapatra
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Jung-Ju Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Kapil D Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Roman A Perez
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine , Incheon 22212, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University , Cheonan 330-714, South Korea
| |
Collapse
|
310
|
Lee S, Shen J, Pan HC, Shrestha S, Asatrian G, Nguyen A, Meyers C, Nguyen V, Lee M, Soo C, Ting K, James AW. Calvarial Defect Healing Induced by Small Molecule Smoothened Agonist. Tissue Eng Part A 2016; 22:1357-1366. [PMID: 27702396 DOI: 10.1089/ten.tea.2016.0167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hedgehog (Hh) signaling positively regulates both endochondral and intramembranous ossification. Use of small molecules for tissue engineering applications poses several advantages. In this study, we examined whether use of an acellular scaffold treated with the small molecule Smoothened agonist (SAG) could aid in critical-size mouse calvarial defect repair. First, we verified the pro-osteogenic effect of SAG in vitro, using primary neonatal mouse calvarial cells (NMCCs). Next, a 4 mm nonhealing defect was created in the mid-parietal bone of 10-week-old CD-1 mice. The scaffold consisted of a custom-fabricated poly(lactic-co-glycolic acid) disc with hydroxyapatite coating (measuring 4 mm diameter × 0.5 mm thickness). Treatment groups included dimethylsulfoxide control (n = 6), 0.5 mM SAG (n = 7) or 1.0 mM SAG (n = 7). Evaluation was performed at 4 and 8 weeks postoperative, by a combination of high-resolution microcomputed tomography, histology (H & E, Masson's Trichrome), histomorphometry, and immunohistochemistry (BSP, OCN, VEGF). In vivo results showed that SAG treatment induced a significant and dose-dependent increase in calvarial bone healing by all radiographic parameters. Histomorphometric analysis showed an increase in all parameters of bone formation with SAG treatment, but also an increase in blood vessel number and density. In summary, SAG is a pro-osteogenic, provasculogenic stimulus when applied locally in a bone defect environment.
Collapse
Affiliation(s)
- Soonchul Lee
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California.,2 Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University , Republic of Korea.,3 Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California , Los Angeles, Los Angeles, California
| | - Jia Shen
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Hsin Chuan Pan
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Swati Shrestha
- 3 Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California , Los Angeles, Los Angeles, California
| | - Greg Asatrian
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Alan Nguyen
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Carolyn Meyers
- 4 Department of Pathology, Johns Hopkins University , Baltimore, Maryland
| | - Vi Nguyen
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Min Lee
- 5 Section of Biomaterials, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Chia Soo
- 3 Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California , Los Angeles, Los Angeles, California.,6 Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Kang Ting
- 2 Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University , Republic of Korea.,3 Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California , Los Angeles, Los Angeles, California
| | - Aaron W James
- 3 Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California , Los Angeles, Los Angeles, California.,4 Department of Pathology, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
311
|
Murgia A, Veronesi E, Candini O, Caselli A, D’souza N, Rasini V, Giorgini A, Catani F, Iughetti L, Dominici M, Burns JS. Potency Biomarker Signature Genes from Multiparametric Osteogenesis Assays: Will cGMP Human Bone Marrow Mesenchymal Stromal Cells Make Bone? PLoS One 2016; 11:e0163629. [PMID: 27711115 PMCID: PMC5053614 DOI: 10.1371/journal.pone.0163629] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
In skeletal regeneration approaches using human bone marrow derived mesenchymal stromal cells (hBM-MSC), functional evaluation before implantation has traditionally used biomarkers identified using fetal bovine serum-based osteogenic induction media and time courses of at least two weeks. However, emerging pre-clinical evidence indicates donor-dependent discrepancies between these ex vivo measurements and the ability to form bone, calling for improved tests. Therefore, we adopted a multiparametric approach aiming to generate an osteogenic potency assay with improved correlation. hBM-MSC populations from six donors, each expanded under clinical-grade (cGMP) conditions, showed heterogeneity for ex vivo growth response, mineralization and bone-forming ability in a murine xenograft assay. A subset of literature-based biomarker genes was reproducibly upregulated to a significant extent across all populations as cells responded to two different osteogenic induction media. These 12 biomarkers were also measurable in a one-week assay, befitting clinical cell expansion time frames and cGMP growth conditions. They were selected for further challenge using a combinatorial approach aimed at determining ex vivo and in vivo consistency. We identified five globally relevant osteogenic signature genes, notably TGF-ß1 pathway interactors; ALPL, COL1A2, DCN, ELN and RUNX2. Used in agglomerative cluster analysis, they correctly grouped the bone-forming cell populations as distinct. Although donor #6 cells were correlation slope outliers, they contrastingly formed bone without showing ex vivo mineralization. Mathematical expression level normalization of the most discrepantly upregulated signature gene COL1A2, sufficed to cluster donor #6 with the bone-forming classification. Moreover, attenuating factors causing genuine COL1A2 gene down-regulation, restored ex vivo mineralization. This suggested that the signature gene had an osteogenically influential role; nonetheless no single biomarker was fully deterministic whereas all five signature genes together led to accurate cluster analysis. We show proof of principle for an osteogenic potency assay providing early characterization of primary cGMP-hBM-MSC cultures according to their donor-specific bone-forming potential.
Collapse
Affiliation(s)
- Alba Murgia
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Elena Veronesi
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
- TPM, Science & Technology Park for Medicine, Mirandola, Modena, Italia
| | - Olivia Candini
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Anna Caselli
- CVBF - Consorzio per le Valutazioni Biologiche e Farmacologiche, Ospedale Pediatrico Giovanni XXIII, Bari, Italia
| | - Naomi D’souza
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Valeria Rasini
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Andrea Giorgini
- Department of Orthopedic Surgery, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Fabio Catani
- Department of Orthopedic Surgery, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
- TPM, Science & Technology Park for Medicine, Mirandola, Modena, Italia
- * E-mail: (MD); (JSB)
| | - Jorge S. Burns
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
- TPM, Science & Technology Park for Medicine, Mirandola, Modena, Italia
- * E-mail: (MD); (JSB)
| |
Collapse
|
312
|
Huang CC, Narayanan R, Alapati S, Ravindran S. Exosomes as biomimetic tools for stem cell differentiation: Applications in dental pulp tissue regeneration. Biomaterials 2016; 111:103-115. [PMID: 27728810 DOI: 10.1016/j.biomaterials.2016.09.029] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 01/11/2023]
Abstract
Achieving and maintaining safe and reliable lineage specific differentiation of stem cells is important for clinical translation of tissue engineering strategies. In an effort to circumvent the multitude of problems arising from the usage of growth factors and growth factor delivery systems, we have explored the use of exosomes as biomimetic tools to induce stem cell differentiation. Working on the hypothesis that cell-type specific exosomes can trigger lineage-specific differentiation of stem cells, we have evaluated the potential of exosomes derived from dental pulp cells cultured on under growth and odontogenic differentiation conditions to induce odontogenic differentiation of naïve human dental pulp stem cells (DPSCs) and human bone marrow derived stromal cells (HMSCs) in vitro and in vivo. Results indicate that the exosomes can bind to matrix proteins such as type I collagen and fibronectin enabling them to be tethered to biomaterials. The exosomes are endocytosed by both DPSCs and HMSCs in a dose-dependent and saturable manner via the caveolar endocytic mechanism and trigger the P38 mitogen activated protein kinase (MAPK) pathway. In addition, the exosomes also trigger the increased expression of genes required for odontogenic differentiation. When tested in vivo in a tooth root slice model with DPSCs, the exosomes triggered regeneration of dental pulp-like tissue. However, our results indicate that exosomes isolated under odontogenic conditions are better inducers of stem cell differentiation and tissue regeneration. Overall, our results highlight the potential exosomes as biomimetic tools to induce lineage specific differentiation of stem cells. Our results also show the importance of considering the source and state of exosome donor cells before a choice is made for therapeutic applications.
Collapse
Affiliation(s)
- Chun-Chieh Huang
- Department of Oral Biology, University of Illinois at Chicago, USA
| | | | - Satish Alapati
- Department of Endodontics, University of Illinois at Chicago, USA
| | - Sriram Ravindran
- Department of Oral Biology, University of Illinois at Chicago, USA.
| |
Collapse
|
313
|
Tian H, Du J, Wen J, Liu Y, Montgomery SR, Scott TP, Aghdasi B, Xiong C, Suzuki A, Hayashi T, Ruangchainikom M, Phan K, Weintraub G, Raed A, Murray SS, Daubs MD, Yang X, Yuan XB, Wang JC, Lu Y. Growth-Factor Nanocapsules That Enable Tunable Controlled Release for Bone Regeneration. ACS NANO 2016; 10:7362-7369. [PMID: 27227573 DOI: 10.1021/acsnano.5b07950] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Growth factors are of great potential in regenerative medicine. However, their clinical applications are largely limited by the short in vivo half-lives and the narrow therapeutic window. Thus, a robust controlled release system remains an unmet medical need for growth-factor-based therapies. In this research, a nanoscale controlled release system (degradable protein nanocapsule) is established via in situ polymerization on growth factor. The release rate can be finely tuned by engineering the surface polymer composition. Improved therapeutic outcomes can be achieved with growth factor nanocapsules, as illustrated in spinal cord fusion mediated by bone morphogenetic protein-2 nanocapsules.
Collapse
Affiliation(s)
- Haijun Tian
- Department of Surgery, Bethune School of Medics , Shijiazhuang 050000, China
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University , Shanghai 200003, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Samuel S Murray
- Research Service, VA Greater Los Angeles Healthcare System , North Hills, California 91343, United States
| | - Michael D Daubs
- Division of Orthopaedic Surgery, Department of Surgery, University of Nevada School of Medicine , Las Vegas, Nevada 89102, United States
| | - Xianjin Yang
- Department of Material Science, Tianjin University , Tianjin 300072, China
| | - Xu-Bo Yuan
- Department of Material Science, Tianjin University , Tianjin 300072, China
| | - Jeffrey C Wang
- Department of Orthopaedic Surgery, University of Southern California , Los Angeles, California 90033, United States
| | | |
Collapse
|
314
|
Shen X, Zhang Y, Gu Y, Xu Y, Liu Y, Li B, Chen L. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials 2016; 106:205-16. [PMID: 27566869 DOI: 10.1016/j.biomaterials.2016.08.023] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 12/30/2022]
Abstract
In this study, a cell-free bone tissue engineering system based on a silk fibroin (SF)/nano-hydroxyapatite (nHAp) scaffold was developed, in which two bioactive molecules, stromal cell derived factor-1 (SDF-1) and bone morphogenetic protein-2 (BMP-2), were embedded and released in a sequential and controlled manner to facilitate cell recruitment and bone formation, respectively. BMP-2 was initially loaded into SF microspheres, and these BMP-2 containing microspheres were subsequently encapsulated into the SF/nHAp scaffolds, which were successively functionalized with SDF-1 via physical adsorption. The results indicated rapid initial release of SDF-1 during the first few days, followed by slow and sustained release of BMP-2 for as long as three weeks. The composite scaffold significantly promoted the recruitment of bone marrow mesenchymal stem cells (BMSCs) and osteogenic differentiation of them in vitro. Further, the in vivo studies using D-Luciferin-labeled BMSCs indicated that implantation of this composite scaffold markedly promoted the recruitment of BMSCs to the implanted sites. Enhanced bone regeneration was identified at 12 weeks' post-implantation. Taken together, our findings suggested that the sequential and sustained release of SDF-1 and BMP-2 from the SF/nHAp scaffolds resulted in a synergistic effect on bone regeneration. Such a composite system, therefore, shows promising potential for cell-free bone tissue engineering applications.
Collapse
Affiliation(s)
- Xiaofeng Shen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yanxia Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215007, PR China
| | - Yong Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yun Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yong Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China; Orthopedic Institute, Soochow University, Suzhou, Jiangsu, 215007, PR China
| | - Liang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
315
|
Linsley CS, Wu BM, Tawil B. Mesenchymal stem cell growth on and mechanical properties of fibrin-based biomimetic bone scaffolds. J Biomed Mater Res A 2016; 104:2945-2953. [DOI: 10.1002/jbm.a.35840] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Chase S. Linsley
- Department of Bioengineering; University of California, Los Angeles; Los Angeles California 90095
| | - Benjamin M. Wu
- Department of Bioengineering; University of California, Los Angeles; Los Angeles California 90095
- Division of Advanced Prosthodontics and the Weintraub Center for Reconstructive Biotechnology; University of California, Los Angeles; Los Angeles California 90095
| | - Bill Tawil
- Department of Bioengineering; University of California, Los Angeles; Los Angeles California 90095
| |
Collapse
|
316
|
Cui H, Zhu W, Holmes B, Zhang LG. Biologically Inspired Smart Release System Based on 3D Bioprinted Perfused Scaffold for Vascularized Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600058. [PMID: 27818910 PMCID: PMC5074245 DOI: 10.1002/advs.201600058] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/18/2016] [Indexed: 05/17/2023]
Abstract
A critical challenge to the development of large-scale artificial tissue grafts for defect reconstruction is vascularization of the tissue construct. As an emerging tissue/organ manufacturing technique, 3D bioprinting offers great precision in controlling the internal architecture of a scaffold with preferable mechanical strength and printing complicated microstructures comparable to native tissue. However, current bioprinting techniques still exhibit difficulty in achieving biomimetic nano resolution and cooperating with bioactive spatiotemporal signals. In this study, a comprehensive design of engineered vascularized bone construct is presented for the first time by integrating biomimetic 3D bioprinted fluid perfused microstructure with biologically inspired smart release nanocoating, which is regarded as an aspiring concept combining engineering, biological, and material science. In this biologically inspired design, angiogenesis and osteogenesis are successively induced through a matrix metalloprotease 2 regulative mechanism by delivering dual growth factors with sequential release in spatiotemporal coordination. Availability of this system is evaluated in dynamic culture condition, which is similar to fluid surrounding in vivo, as an alternative animal model study. Results, particularly from co-cultured dynamically samples demonstrate excellent bioactivity and vascularized bone forming potential of nanocoating modified 3D bioprinted scaffolds for human bone marrow mesenchymal stem cells and human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering Department of Medicine Department of Biomedical Engineering The George Washington University 3590 Science and Engineering Hall 800 22nd Street NW Washington DC 20052 USA
| | - Wei Zhu
- Department of Mechanical and Aerospace Engineering Department of Medicine Department of Biomedical Engineering The George Washington University 3590 Science and Engineering Hall 800 22nd Street NW Washington DC 20052 USA
| | - Benjamin Holmes
- Department of Mechanical and Aerospace Engineering Department of Medicine Department of Biomedical Engineering The George Washington University 3590 Science and Engineering Hall 800 22nd Street NW Washington DC 20052 USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering Department of Medicine Department of Biomedical Engineering The George Washington University 3590 Science and Engineering Hall 800 22nd Street NW Washington DC 20052 USA
| |
Collapse
|
317
|
Heparin-Based Polyelectrolyte Complex Enhances the Therapeutic Efficacy of Bone Morphogenetic Protein-2 for Posterolateral Fusion in a Large Animal Model. Spine (Phila Pa 1976) 2016; 41:1199-1207. [PMID: 26953670 DOI: 10.1097/brs.0000000000001543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The study was based on porcine posterolateral fusion model. OBJECTIVE The study aims to prove that polyelectrolyte complex (PEC) carrier could enhance the efficacy and safety profile of bone morphogenetic protein-2 (BMP-2). SUMMARY OF BACKGROUND DATA BMP-2 was introduced to enhance posterolateral fusion; however, extremely high doses of this molecule were often used which contributed to various complications. This was attributed to the poor modulation capacity of the traditional carrier absorbable collagen sponge (ACS). To reduce the efficacious dose of BMP-2 and its associated complications, heparin-based PEC was introduced. METHODS L3/L4 and L5/L6 two-level posterolateral spinal fusion was performed on six pigs using two doses of BMP-2 with PEC or ACS: (1) PEC with 800 μg BMP-2 (n = 2); (2) PEC with 400 μg BMP-2 (n = 2); (3) ACS with 800 μg BMP-2 (n = 1); (4) ACS with 400 μg of BMP-2 (n = 1). The construct was loaded into a rigid bioabsorbable cage for implantation. Fusion rate and quality were assessed 2 months after operation. RESULTS Manual palpation revealed successful fusion in all groups. Radiological fusion score of PEC groups was, however, higher than that of ACS groups. The newly formed bone in PEC groups appeared to be well integrated into the native bone with no overgrowth into the adjacent structure. On comparison, in ACS groups, large gaps were observed between the newly formed bone and the fusion bed with heterotopic ossification into the psoas muscle. The microarchitecture on the newly formed bone in PEC groups was superior to that in ACS groups, which was demonstrated by higher three-dimensional parameters. CONCLUSION The present study demonstrated that BMP-2 delivered by PEC induced successful posterolateral fusion in porcine model. The efficacy of BMP-2 was improved and bony overgrowth was reduced. The microarchitecture of BMP-2-induced bone tissue was also enhanced by PEC. LEVEL OF EVIDENCE N/A.
Collapse
|
318
|
Toth JM, Wang M, Lawson J, Badura JM, DuBose KB. Radiographic, biomechanical, and histological evaluation of rhBMP-2 in a 3-level intertransverse process spine fusion: an ovine study. J Neurosurg Spine 2016; 25:733-739. [PMID: 27367941 DOI: 10.3171/2016.4.spine151316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate bone grafts consisting of rhBMP-2 on an absorbable collagen sponge with a ceramic composite bulking agent, rhBMP-2, directly on a ceramic-collagen sponge carrier or iliac crest bone graft (ICBG) in combination with local bone graft to effect fusion in a multisegmental instrumented ovine lumbar intertransverse process fusion model. METHODS Thirty-six sheep had a single treatment at 3 spinal levels in both the right and left intertransverse process spaces. Group 1 sheep were treated with 7.5 cm3 of autograft consisting of ICBG plus local bone for each intertransverse process space. For Groups 2-4, 4 cm3 of local bone was placed within the intertransverse process space followed by 4.5-5 cm3 of the rhBMP-2 graft material. Group 2 animals received 1.5 mg/cm3 rhBMP-2 on an absorbable collagen sponge with a commercial bone void filler consisting of Type I lyophilized collagen with a biphasic hydroxyapatite/β-tricalcium phosphate ceramic with local bone. Group 3 animals received 0.75 mg/m cm3 of rhBMP-2 on a collagen ceramic sponge carrier with local bone. Group 4 animals received 1.35 mg/cm3 of rhBMP-2 on the same collagen ceramic sponge carrier with local bone. Sheep were euthanized 6 months postoperatively. Manual palpation, biomechanical testing, CT, radiography, and undecalcified histology were performed to assess the presence of fusion associated with the treatments. RESULTS All animals in Groups 2-4 that received grafts containing rhBMP-2 achieved radiographic and CT fusion at all 3 levels. In Group 1 (bone autograft alone), only 19% of the levels demonstrated radiographic fusion, 14% resulted in possible radiographic fusion, and 67% of the levels demonstrated radiographic nonfusion. Biomechanical testing showed that Groups 2-4 demonstrated similar stiffness of the L2-5 segment in all 6 loading directions, with each of the 3 groups having significantly greater stiffness than the autograft-only group. In Group 1, only 2 of 18 levels were rated as achieving bilateral histological fusion, with an additional 3 levels showing a unilateral fusion. The majority of the treated levels (13/18) in Group 1 were scored as histological nonfusions. There were no histological nonfusions in Groups 2 through 4. All 18 levels in Group 2 were rated as bilateral histological fusions. A majority (34/36) of the levels in Group 3 were rated as bilateral histological fusions, with 2 levels showing a unilateral fusion. A majority (35/36) of the levels in Group 4 were rated as bilateral histological fusions, with 1 level showing a unilateral fusion. CONCLUSIONS In the ovine multilevel instrumented intertransverse process fusion model, rhBMP-2 was able to consistently achieve CT, radiographic, biomechanical, and histological fusion. Compared with ICBG, the gold standard for bone grafting, rhBMP-2 was statistically superior at achieving radiographic and histological fusion.
Collapse
Affiliation(s)
- Jeffrey M Toth
- Department of Orthopaedic Surgery, The Medical College of Wisconsin Inc., Milwaukee, Wisconsin; and
| | - Mei Wang
- Department of Orthopaedic Surgery, The Medical College of Wisconsin Inc., Milwaukee, Wisconsin; and
| | - Joshua Lawson
- Department of Orthopaedic Surgery, The Medical College of Wisconsin Inc., Milwaukee, Wisconsin; and
| | | | | |
Collapse
|
319
|
Surface delivery of tunable doses of BMP-2 from an adaptable polymeric scaffold induces volumetric bone regeneration. Biomaterials 2016; 104:168-81. [PMID: 27454063 DOI: 10.1016/j.biomaterials.2016.06.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022]
Abstract
The rapid and effective bone regeneration of large non-healing defects remains challenging. Bioactive proteins, such as bone morphogenetic protein (BMP)-2, are proved their osteoinductivity, but their clinical use is currently limited to collagen as biomaterial. Being able to deliver BMP-2 from any other biomaterial would broaden its clinical use. This work presents a novel means for repairing a critical size volumetric bone femoral defect in the rat by combining a osteoinductive surface coating (2D) to a polymeric scaffold (3D hollow tube) made of commercially-available PLGA. Using a polyelectrolyte film as BMP-2 carrier, we tune the amount of BMP-2 loaded in and released from the polyelectrolyte film coating over a large extent by controlling the film crosslinking level and initial concentration of BMP-2 in solution. Using microcomputed tomography and quantitative analysis of the regenerated bone growth kinetics, we show that the amount of newly formed bone and kinetics can be modulated: an effective and fast repair was obtained in 1-2 weeks in the best conditions, including complete defect bridging, formation of vascularized and mineralized bone tissue. Histological staining and high-resolution computed tomography revealed the presence of bone regeneration inside and around the tube with spatially distinct organization for trabecular-like and cortical bones. The amount of cortical bone and its thickness increased with the BMP-2 dose. In view of the recent developments in additive manufacturing techniques, this surface-coating technology may be applied in combination with various types of polymeric or metallic scaffolds to offer new perspectives of bone regeneration in personalized medicine.
Collapse
|
320
|
Allen AB, Butts EB, Copland IB, Stevens HY, Guldberg RE. Human platelet lysate supplementation of mesenchymal stromal cell delivery: issues of xenogenicity and species variability. J Tissue Eng Regen Med 2016; 11:2876-2884. [PMID: 27339032 DOI: 10.1002/term.2191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 02/03/2016] [Accepted: 03/14/2016] [Indexed: 01/10/2023]
Abstract
Immunogenicity of fetal bovine serum (FBS) poses a problem for its use in the propagation of autologous mesenchymal stromal cells (MSCs) for cell therapy. Human platelet lysate (hPL), an enriched growth factor solution containing mitogenic and angiogenic cues, has potential utility in replacing FBS for human MSC (hMSC) delivery strategies. Despite its potentiation of hMSC number in vitro, little is known concerning its capacity to supplement implanted hMSC-seeded constructs and promote tissue regeneration in vivo. In this study, we tested the effects of incorporating hPL in cell-seeded constructs implanted subcutaneously into immunocompromised rats, investigated in vitro interactions between hPL and rat MSCs (rMSCs) and determined interspecies variability in the PL product [hPL vs rat PL (rPL)] and its effect on cultured MSCs (hPL/hMSCs vs rPL/rMSCs). The overarching aim was to determine the utility of hPL to foster MSC survival in preclinical rodent models. Exposure to hPL-supplemented media resulted in rMSC death, by a process attributable to heat-labile proteins, but not membrane attack complex formation. In the in vitro syngeneic model, the rodent product proved fundamentally distinct from the human product, with rPL having substantially lower growth factor content than hPL. Moreover, contrary to the positive effects of hPL on hMSC expansion, rPL did not reduce rMSC doubling time for the serum concentrations examined. When tested in vivo, hPL did not improve cell survival within hydrogel constructs through 2 weeks postimplantation. In summary, this study highlights the many facets of xenogenicity and interspecies variability that must be considered in the preclinical evaluation of hPL. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ashley B Allen
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emily B Butts
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ian B Copland
- Department of Haematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hazel Y Stevens
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert E Guldberg
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
321
|
Young A, Mirarchi A. Soft Tissue Swelling Associated with the Use of Recombinant Human Bone Morphogenetic Protein-2 in Long Bone Non-unions. J Orthop Case Rep 2016; 5:18-21. [PMID: 27299059 PMCID: PMC4719390 DOI: 10.13107/jocr.2250-0685.297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This report describes two cases of long bone non-union associated with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) and is the first of its kind. The first case describes a 25-year-old male who sustained a left diaphyseal femoral shaft fracture initially treated with operative fixation using an intramedullary nail, which subsequently loosened distally and was treated with exchange nailing and rhBMP-2 application. This patient developed acute local soft tissue inflammation post-operatively. The second case describes a 61-year-old female who sustained a right diaphyseal humeral shaft fracture that was initially treated with intramedullary nail fixation with subsequent distal interlock screw loosening. She underwent nail removal, and compression plating with rhBMP-2 placement, and postoperatively developed severe acute local tissue swelling centered over the rhBMP-2 sponge. Surgeons should be aware that rhBMP-2 may cause local acute tissue swelling and recombinant bone morphogenic proteins such as rhBMP-2 may have a role in the management for atrophic fracture non-unions. The authors recommend careful consideration prior to rhBMP-2 use in long bone non-unions.
Collapse
Affiliation(s)
- Andrew Young
- Department of Anesthesia & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Adam Mirarchi
- Department of Orthopedics & Rehabilitation, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
322
|
Minardi S, Taraballi F, Pandolfi L, Tasciotti E. Patterning Biomaterials for the Spatiotemporal Delivery of Bioactive Molecules. Front Bioeng Biotechnol 2016; 4:45. [PMID: 27313997 PMCID: PMC4889608 DOI: 10.3389/fbioe.2016.00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/20/2016] [Indexed: 11/13/2022] Open
Abstract
The aim of tissue engineering is to promote the repair of functional tissues. For decades, the combined use of biomaterials, growth factors (GFs), and stem cells has been the base of several regeneration strategies. Among these, biomimicry emerged as a robust strategy to efficiently address this clinical challenge. Biomimetic materials, able to recapitulate the composition and architecture of the extracellular matrix, are the materials of choice, for their biocompatibility and higher rate of efficacy. In addition, it has become increasingly clear that restoring the complex biochemical environment of the target tissue is crucial for its regeneration. Toward this aim, the combination of scaffolds and GFs is required. The advent of nanotechnology significantly impacted the field of tissue engineering by providing new ways to reproduce the complex spatial and temporal biochemical patterns of tissues. This review will present the most recent approaches to finely control the spatiotemporal release of bioactive molecules for various tissue engineering applications.
Collapse
Affiliation(s)
- Silvia Minardi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Francesca Taraballi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Laura Pandolfi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
- College of Materials Science and Engineering, University of Chinese Academy of Science, Beijing, China
| | - Ennio Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Orthopedics, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
323
|
Bain JL, Bonvallet PP, Abou-Arraj RV, Schupbach P, Reddy MS, Bellis SL. Enhancement of the Regenerative Potential of Anorganic Bovine Bone Graft Utilizing a Polyglutamate-Modified BMP2 Peptide with Improved Binding to Calcium-Containing Materials. Tissue Eng Part A 2016; 21:2426-36. [PMID: 26176902 DOI: 10.1089/ten.tea.2015.0160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Autogenous bone is the gold standard material for bone grafting in craniofacial and orthopedic regenerative medicine. However, due to complications associated with harvesting donor bone, clinicians often use commercial graft materials that may lose their osteoinductivity due to processing. This study was aimed to functionalize one of these materials, anorganic bovine bone (ABB), with osteoinductive peptides to enhance regenerative capacity. Two peptides known to induce osteoblastic differentiation of mesenchymal stem cells were evaluated: (1) DGEA, an amino acid motif within collagen I and (2) a biomimetic peptide derived from bone morphogenic protein 2 (BMP2pep). To achieve directed coupling of the peptides to the graft surface, the peptides were engineered with a heptaglutamate domain (E7), which confers specific binding to calcium moieties within bone mineral. Peptides with the E7 domain exhibited greater anchoring to ABB than unmodified peptides, and E7 peptides were retained on ABB for at least 8 weeks in vivo. To assess the osteoinductive potential of the peptide-conjugated ABB, ectopic bone formation was evaluated utilizing a rat subcutaneous pouch model. ABB conjugated with full-length recombinant BMP2 (rBMP2) was also implanted as a model for current clinical treatments utilizing rBMP2 passively adsorbed to carriers. These studies showed that E7BMP2pep/ABB samples induced more new bone formation than all other peptides, and an equivalent amount of new bone as compared with rBMP2/ABB. A mandibular defect model was also used to examine intrabony healing of peptide-conjugated ABB. Bone healing was monitored at varying time points by positron emission tomography imaging with (18)F-NaF, and it was found that the E7BMP2pep/ABB group had greater bone metabolic activity than all other groups, including rBMP2/ABB. Importantly, animals implanted with rBMP2/ABB exhibited complications, including inflammation and formation of cataract-like lesions in the eye, whereas no side effects were observed with E7BMP2pep/ABB. Furthermore, histological analysis of the tissues revealed that grafts with rBMP2, but not E7BMP2pep, induced formation of adipose tissue in the defect area. Collectively, these results suggest that E7-modified BMP2-mimetic peptides may enhance the regenerative potential of commercial graft materials without the deleterious effects or high costs associated with rBMP2 treatments.
Collapse
Affiliation(s)
- Jennifer L Bain
- 1 Department of Periodontology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Paul P Bonvallet
- 2 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ramzi V Abou-Arraj
- 1 Department of Periodontology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Peter Schupbach
- 3 Service and Research Laboratory , Schupbach Ltd., Horgen, Switzerland
| | - Michael S Reddy
- 1 Department of Periodontology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Susan L Bellis
- 2 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
324
|
James AW, Chiang M, Asatrian G, Shen J, Goyal R, Chung CG, Chang L, Shrestha S, Turner AS, Seim HB, Zhang X, Wu BM, Ting K, Soo C. Vertebral Implantation of NELL-1 Enhances Bone Formation in an Osteoporotic Sheep Model. Tissue Eng Part A 2016; 22:840-9. [PMID: 27113550 DOI: 10.1089/ten.tea.2015.0230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Vertebral compression fractures related to osteoporosis greatly afflict the aging population. One of the most commonly used therapy today is balloon kyphoplasty. However, this treatment is far from ideal and is associated with significant side effects. NELL-1, an osteoinductive factor that possesses both pro-osteogenic and anti-osteoclastic properties, is a promising candidate for an alternative to current treatment modalities. This study utilizes the pro-osteogenic properties of recombinant human NELL-1 (rhNELL-1) in lumbar spine vertebral defect model in osteoporotic sheep. METHODS Osteoporosis was induced through ovariectomy, dietary depletion of calcium and vitamin D, and steroid administration. After osteoporotic induction, lumbar vertebral body defect creation was performed. Sheep were randomly implanted with the control vehicle, comprised of hyaluronic acid (HA) with hydroxyapatite-coated β-tricalcium phosphate (β-TCP), or the treatment material of rhNELL-1 protein lyophilized onto β-TCP mixed with HA. Analysis of lumbar spine defect healing was performed by radiographic, histologic, and computer-simulated biomechanical testing. RESULTS rhNELL-1 treatment significantly increased lumbar spine bone formation, as determined by bone mineral density, % bone volume, and mean cortical width as assessed by micro-computed tomography. Histological analysis revealed a significant increase in bone area and osteoblast number and decrease in osteoclast number around the implant site. Computer-simulated biomechanical analysis of trabecular bone demonstrated that rhNELL-1-treatment resulted in a significantly more stress-resistant composition. CONCLUSION Our findings suggest rhNELL-1-based vertebral implantation successfully improved cortical and cancellous bone regeneration in the lumbar spine of osteoporotic sheep. rhNELL-1-based bone graft substitutes represent a potential new local therapy.
Collapse
Affiliation(s)
- Aaron W James
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California.,3 Department of Pathology and Laboratory Medicine, University of California , Los Angeles, Los Angeles, California
| | - Michael Chiang
- 2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Greg Asatrian
- 2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Jia Shen
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Raghav Goyal
- 2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Choon G Chung
- 2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Le Chang
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Swati Shrestha
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - A Simon Turner
- 4 Department of Veterinary Sciences, Colorado State University , Fort Collins, Colorado
| | - Howard B Seim
- 4 Department of Veterinary Sciences, Colorado State University , Fort Collins, Colorado
| | - Xinli Zhang
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Benjamin M Wu
- 5 Departments of Bioengineering and Material Sciences, University of California , Los Angeles, Los Angeles, California
| | - Kang Ting
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Chia Soo
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,6 Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| |
Collapse
|
325
|
Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle. Acta Biomater 2016; 36:310-22. [PMID: 26965394 DOI: 10.1016/j.actbio.2016.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 01/14/2023]
Abstract
UNLABELLED The aim of this study was to evaluate the osseointegration of titanium implants (Ti-6Al-4V, noted here TA6V) and poly(etheretherketone) PEEK implants induced by a BMP-2-delivering surface coating made of polyelectrolyte multilayer films. The in vitro bioactivity of the polyelectrolyte film-coated implants was assessed using the alkaline phosphatase assay. BMP-2-coated TA6V and PEEK implants with a total dose of 9.3μg of BMP-2 were inserted into the femoral condyles of New Zealand white rabbits and compared to uncoated implants. Rabbits were sacrificed 4 and 8weeks after implantation. Histomorphometric analyses on TA6V and PEEK implants and microcomputed tomography on PEEK implants revealed that the bone-to-implant contact and bone area around the implants were significantly lower for the BMP-2-coated implants than for the bare implants. This was confirmed by scanning electron microscopy imaging. This difference was more pronounced at 4weeks in comparison to the 8-week time point. However, bone growth inside the hexagonal upper hollow cavity of the screws was higher in the case of the BMP-2 coated implants. Overall, this study shows that a high dose of BMP-2 leads to localized and temporary bone impairment, and that the dose of BMP-2 delivered at the surface of an implant needs to be carefully optimized. STATEMENT OF SIGNIFICANCE The presentation of growth factors from material surfaces currently presents significant challenges in academia, clinics and industry. Applying osteoinductive factors to different types of implants, made of metals or polymers, may improve bone repair in difficult situations. Here, we show the effects of an osteoinductive coating made of polyelectrolyte multilayer films on two widely used materials, titanium TA6V alloys and PEEK implants, which were implanted in the rabbit femoral condyle. We show that a too high dose of BMP-2 delivered from the screw surface has a negative short-term effect on bone regeneration in close vicinity of the screw surface. In contrast, bone formation was increased at early times in the empty spaces around the screw. These results highlight the need for future dose-dependence studies on bone formation in response to osteoinductive coatings.
Collapse
|
326
|
Kim RY, Lee B, Park SN, Ko JH, Kim IS, Hwang SJ. Is Heparin Effective for the Controlled Delivery of High-Dose Bone Morphogenetic Protein-2? Tissue Eng Part A 2016; 22:801-17. [DOI: 10.1089/ten.tea.2015.0537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ri Youn Kim
- BK21 2nd Program for Craniomaxillofacial Life Science, Department of Maxillofacial Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Lee
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Si-Nae Park
- Regenerative Medicine Research Center, Dalim Tissen Co., Ltd., Seoul, Republic of Korea
| | - Jae-Hyung Ko
- Regenerative Medicine Research Center, Dalim Tissen Co., Ltd., Seoul, Republic of Korea
| | - In Sook Kim
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Soon Jung Hwang
- BK21 2nd Program for Craniomaxillofacial Life Science, Department of Maxillofacial Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
327
|
Min J, Choi KY, Dreaden EC, Padera RF, Braatz RD, Spector M, Hammond PT. Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair. ACS NANO 2016; 10:4441-50. [PMID: 26923427 PMCID: PMC6501197 DOI: 10.1021/acsnano.6b00087] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Infections associated with orthopedic implants cause increased morbidity and significant healthcare cost. A prolonged and expensive two-stage procedure requiring two surgical steps and a 6-8 week period of joint immobilization exists as today's gold standard for the revision arthroplasty of an infected prosthesis. Because infection is much more common in implant replacement surgeries, these issues greatly impact long-term patient care for a continually growing part of the population. Here, we demonstrate that a single-stage revision using prostheses coated with self-assembled, hydrolytically degradable multilayers that sequentially deliver the antibiotic (gentamicin) and the osteoinductive growth factor (BMP-2) in a time-staggered manner enables both eradication of established biofilms and complete and rapid bone tissue repair around the implant in rats with induced osteomyelitis. The nanolayered construct allows precise independent control of release kinetics and loading for each therapeutic agent in an infected implant environment. Antibiotics contained in top layers can be tuned to provide a rapid release at early times sufficient to eliminate infection, followed by sustained release for several weeks, and the underlying BMP-2 component enables a long-term sustained release of BMP-2, which induced more significant and mechanically competent bone formation than a short-term burst release. The successful growth factor-mediated osteointegration of the multilayered implants with the host tissue improved bone-implant interfacial strength 15-fold when compared with the uncoated one. These findings demonstrate the potential of this layered release strategy to introduce a durable next-generation implant solution, ultimately an important step forward to future large animal models toward the clinic.
Collapse
Affiliation(s)
- Jouha Min
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ki Young Choi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Erik C. Dreaden
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert F. Padera
- The Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02215, United States
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Myron Spector
- The Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Tissue Engineering Laboratories, VA Boston Healthcare System, Boston, Massachusetts 02130, United States
| | - Paula T. Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Corresponding Author:
| |
Collapse
|
328
|
James AW, LaChaud G, Shen J, Asatrian G, Nguyen V, Zhang X, Ting K, Soo C. A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:284-97. [PMID: 26857241 DOI: 10.1089/ten.teb.2015.0357] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) is currently the only Food and Drug Administration (FDA)-approved osteoinductive growth factor used as a bone graft substitute. However, with increasing clinical use of BMP-2, a growing and well-documented side effect profile has emerged. This includes postoperative inflammation and associated adverse effects, ectopic bone formation, osteoclast-mediated bone resorption, and inappropriate adipogenesis. Several large-scale studies have confirmed the relative frequency of adverse events associated with the clinical use of BMP-2, including life-threatening cervical spine swelling. In fact, the FDA has issued a warning of the potential life-threatening complications of BMP-2. This review summarizes the known adverse effects of BMP-2, including controversial areas such as tumorigenesis. Next, select animal models that replicate BMP-2's adverse clinical effects are discussed. Finally, potential molecules to mitigate the adverse effects of BMP-2 are reviewed. In summary, BMP-2 is a potent osteoinductive cytokine that has indeed revolutionized the bone graft substitute market; however, it simultaneously has accrued a worrisome side effect profile. Better understanding of these adverse effects among both translational scientists and clinicians will help determine the most appropriate and safe use of BMP-2 in the clinical setting.
Collapse
Affiliation(s)
- Aaron W James
- 1 Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California , Los Angeles, Los Angeles, California.,2 Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California , Los Angeles, Los Angeles, California.,3 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Gregory LaChaud
- 1 Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California , Los Angeles, Los Angeles, California.,2 Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California , Los Angeles, Los Angeles, California.,3 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Jia Shen
- 2 Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Greg Asatrian
- 2 Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Vi Nguyen
- 3 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Xinli Zhang
- 2 Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Kang Ting
- 2 Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Chia Soo
- 1 Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California , Los Angeles, Los Angeles, California.,4 Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| |
Collapse
|
329
|
Adhikari BR, Sato J, Morikawa T, Obara-Itoh J, Utsunomiya M, Harada F, Chujo T, Takai R, Yoshida K, Nishimura M, Shakya M, Nagayasu H, Abiko Y. Osseous choristoma of the tongue: two case reports. J Med Case Rep 2016; 10:59. [PMID: 26983573 PMCID: PMC4794853 DOI: 10.1186/s13256-016-0840-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/14/2016] [Indexed: 02/08/2023] Open
Abstract
Background Osseous choristoma is a very rare, benign lesion in the maxillofacial region. It appears as a benign mass of normally matured bony tissue covered by the normal epithelium of the tongue. It is usually seen in front of the foramen cecum of the tongue. Surgical excision is the treatment of choice with an excellent prognosis and there have been very few cases of recurrence. Case presentation Here we present two cases of osseous choristoma on the dorsum of the tongue. Case 1 was a 15-year-old Japanese girl who presented with a painless but gradually growing swelling on the dorsum of her tongue approximately 1 year before her admission. Case 2 was a 21-year-old Japanese woman with a complaint of pain in the lower left, posterior side of her mouth. Histological findings showed that both lesions were composed of well-organized, mature, compact bone beneath the oral mucosal membrane. Subsequent to simple surgical excision, no recurrence of the lesions was observed after the follow-up period. Previous literatures have proposed both malformation and trauma hypotheses as the etiopathologies of osseous choristoma. However, the histopathological findings of the two cases in the present study do not support the trauma hypothesis. Conclusions Although osseous choristoma is clinically a benign condition, the underlying histopathological processes are important. The outcome of aberrant formation of calcified tissue in the vicinity of vital structures such as nerves and blood vessels may be of clinical significance.
Collapse
Affiliation(s)
- Bhoj Raj Adhikari
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Jun Sato
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Tetsuro Morikawa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - June Obara-Itoh
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Masafumi Utsunomiya
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Fumiya Harada
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Takatoshi Chujo
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Rie Takai
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Koki Yoshida
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Michiko Nishimura
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Mamata Shakya
- Division of Oral Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Hiroki Nagayasu
- Division of Oral Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences of University of Hokkaido, 1757 Kanazawa Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
330
|
Yi T, Jun CM, Kim SJ, Yun JH. Evaluation of In Vivo Osteogenic Potential of Bone Morphogenetic Protein 2-Overexpressing Human Periodontal Ligament Stem Cells Combined with Biphasic Calcium Phosphate Block Scaffolds in a Critical-Size Bone Defect Model. Tissue Eng Part A 2016; 22:501-12. [DOI: 10.1089/ten.tea.2015.0337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- TacGhee Yi
- Translational Research Center and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Choong-Man Jun
- Division of Periodontology, Department of Dentistry, Inha University School of Medicine, Incheon, Republic of Korea
| | - Su Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jeong-Ho Yun
- Department of Periodontology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
331
|
Salim S, Ariani MD. In vitro and in vivo evaluation of carbonate apatite-collagen scaffolds with some cytokines for bone tissue engineering. J Indian Prosthodont Soc 2016; 15:349-55. [PMID: 26929539 PMCID: PMC4762346 DOI: 10.4103/0972-4052.171821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: Collagen is regarded as one of the most useful biomaterials. We tried to combine collagen and carbonate apatite (CA) with some cytokines in order to enhance bone formation ability. In this study, we found that CA-collagen sponge (CA-CS) was a possible candidate of newly graft material for bone formation. Materials and Methods: CA-CS was fabricated by the following procedure. One wt% of pig hide collagen solution (Nippon Meat Packers. Inc., Tokyo, Japan) was neutralized with 0.1 N NaOH, and then mixed immediately 243 mg apatite powder with 0.06 M carbonate contents. After centrifugation at 1500 rpm for 10 min, excess water was removed, and the mixture was packed into Teflon molds (5.0 mm × 2.0 mm). Each 10 µg of basic fibroblast growth factor (bFGF) and recombinant human bone morphogenetic protein-2 (rh-BMP2) were involved in these sponges. Then these scaffolds frozen at −80°C for 2 h and dried in a freeze dry machine for 24 h. CA-CS without cytokines were also prepared as a control. Mouse osteoblast-like cell (MC3T3-E1) proliferations in these scaffolds were investigated by 3-day in vitro cell culture using MTT assay examination. Ten New Zealand rabbits (weight: 3–3.5 kg) were used in this in vivo study. After 3 weeks of placement, the scaffolds, rabbits were sacrificed, and bone formation in the sockets was evaluated histologically and histomorphometrically. Results and Conclusion: By histological observation and measurement of bone area ratio, CA-CS with cytokines showed higher bone formation ability (bFGF/CA-CS: 50.7 ± 7.3%, rh-BMP2/CA-CS: 54.2 ± 5.0%) than other groups. From the limited results of this study, it is suggested that CA collagen scaffolds with some cytokines may become an attractive scaffold for bone regeneration.
Collapse
Affiliation(s)
- Sherman Salim
- Department of Prosthodontics, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
| | | |
Collapse
|
332
|
Sharma S, Sapkota D, Xue Y, Sun Y, Finne-Wistrand A, Bruland O, Mustafa K. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation. PLoS One 2016; 11:e0147507. [PMID: 26808122 PMCID: PMC4725849 DOI: 10.1371/journal.pone.0147507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 01/27/2023] Open
Abstract
Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Dipak Sapkota
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Yang Sun
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden
| | - Ove Bruland
- Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
333
|
Farokhi M, Mottaghitalab F, Shokrgozar MA, Ou KL, Mao C, Hosseinkhani H. Importance of dual delivery systems for bone tissue engineering. J Control Release 2016; 225:152-69. [PMID: 26805518 DOI: 10.1016/j.jconrel.2016.01.033] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keng-Liang Ou
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University - Shuang Ho Hospital, New Taipei city, Taiwan
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
| | - Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
334
|
Hijacking the Cellular Mail: Exosome Mediated Differentiation of Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:3808674. [PMID: 26880957 PMCID: PMC4736778 DOI: 10.1155/2016/3808674] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 02/06/2023] Open
Abstract
Bone transplantation is one of the most widely performed clinical procedures. Consequently, bone regeneration using mesenchymal stem cells and tissue engineering strategies is one of the most widely researched fields in regenerative medicine. Recent scientific consensus indicates that a biomimetic approach is required to achieve proper regeneration of any tissue. Exosomes are nanovesicles secreted by cells that act as messengers that influence cell fate. Although exosomal function has been studied with respect to cancer and immunology, the role of exosomes as inducers of stem cell differentiation has not been explored. We hypothesized that exosomes can be used as biomimetic tools for regenerative medicine. In this study we have explored the use of cell-generated exosomes as tools to induce lineage specific differentiation of stem cells. Our results indicate that proosteogenic exosomes isolated from cell cultures can induce lineage specific differentiation of naïve MSCs in vitro and in vivo. Additionally, exosomes can also bind to matrix proteins such as type I collagen and fibronectin enabling them to be tethered to biomaterials. Overall, the results from this study show the potential of cell derived exosomes in bone regenerative medicine and opens up new avenues for future research.
Collapse
|
335
|
Shen J, James AW, Zhang X, Pang S, Zara JN, Asatrian G, Chiang M, Lee M, Khadarian K, Nguyen A, Lee KS, Siu RK, Tetradis S, Ting K, Soo C. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:419-34. [PMID: 26772960 DOI: 10.1016/j.ajpath.2015.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/23/2015] [Accepted: 10/16/2015] [Indexed: 01/28/2023]
Abstract
The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis.
Collapse
Affiliation(s)
- Jia Shen
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Aaron W James
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Shen Pang
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Janette N Zara
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Greg Asatrian
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Michael Chiang
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Min Lee
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Kevork Khadarian
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Alan Nguyen
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Kevin S Lee
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Ronald K Siu
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Sotirios Tetradis
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, California
| | - Kang Ting
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California.
| | - Chia Soo
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California.
| |
Collapse
|
336
|
Aquino-Martínez R, Rodríguez-Carballo E, Gámez B, Artigas N, Carvalho-Lobato P, Manzanares-Céspedes MC, Rosa JL, Ventura F. Mesenchymal Stem Cells Within Gelatin/CaSO4 Scaffolds Treated Ex Vivo with Low Doses of BMP-2 and Wnt3a Increase Bone Regeneration. Tissue Eng Part A 2016; 22:41-52. [DOI: 10.1089/ten.tea.2015.0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rubén Aquino-Martínez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Natalia Artigas
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Patricia Carvalho-Lobato
- Unitat d'Anatomia i Embriologia Humana, Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Maria Cristina Manzanares-Céspedes
- Unitat d'Anatomia i Embriologia Humana, Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
337
|
Grgurevic L, Christensen GL, Schulz TJ, Vukicevic S. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine Growth Factor Rev 2015; 27:105-18. [PMID: 26762842 DOI: 10.1016/j.cytogfr.2015.12.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/10/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
Abstract
Bore morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)-β superfamily, a group of secreted proteins that regulate embryonic development. This review summarizes the effects of BMPs on physiological processes not exclusively linked to the musculoskeletal system. Specifically, we focus on the involvement of BMPs in inflammatory disorders, e.g. fibrosis, inflammatory bowel disease, anchylosing spondylitis, rheumatoid arthritis. Moreover, we discuss the role of BMPs in the context of vascular disorders, and explore the role of these signalling proteins in iron homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role in skeletal homeostasis. However, increased understanding of these pleiotropic functions also highlights the necessity of tissue-specific strategies when harnessing BMP action as a therapeutic target.
Collapse
Affiliation(s)
- Lovorka Grgurevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Zagreb, Croatia
| | | | - Tim J Schulz
- German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Slobodan Vukicevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Zagreb, Croatia.
| |
Collapse
|
338
|
Lee JH, Shin YC, Lee SM, Jin OS, Kang SH, Hong SW, Jeong CM, Huh JB, Han DW. Enhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites. Sci Rep 2015; 5:18833. [PMID: 26685901 PMCID: PMC4685392 DOI: 10.1038/srep18833] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/27/2015] [Indexed: 12/22/2022] Open
Abstract
Recently, graphene-based nanomaterials, in the form of two dimensional substrates or three dimensional foams, have attracted considerable attention as bioactive scaffolds to promote the differentiation of various stem cells towards specific lineages. On the other hand, the potential advantages of using graphene-based hybrid composites directly as factors inducing cellular differentiation as well as tissue regeneration are unclear. This study examined whether nanocomposites of reduced graphene oxide (rGO) and hydroxyapatite (HAp) (rGO/HAp NCs) could enhance the osteogenesis of MC3T3-E1 preosteoblasts and promote new bone formation. When combined with HAp, rGO synergistically promoted the spontaneous osteodifferentiation of MC3T3-E1 cells without hindering their proliferation. This enhanced osteogenesis was corroborated from determination of alkaline phosphatase activity as early stage markers of osteodifferentiation and mineralization of calcium and phosphate as late stage markers. Immunoblot analysis showed that rGO/HAp NCs increase the expression levels of osteopontin and osteocalcin significantly. Furthermore, rGO/HAp grafts were found to significantly enhance new bone formation in full-thickness calvarial defects without inflammatory responses. These results suggest that rGO/HAp NCs can be exploited to craft a range of strategies for the development of novel dental and orthopedic bone grafts to accelerate bone regeneration because these graphene-based composite materials have potentials to stimulate osteogenesis.
Collapse
Affiliation(s)
- Jong Ho Lee
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 609-735, South Korea
| | - Yong Cheol Shin
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 609-735, South Korea
| | - Sang-Min Lee
- Department of Prosthodontics, Pusan National University Dental Hospital, Dental Research Institute, School of Dentistry, Pusan National University, Yangsan 626-770, South Korea
| | - Oh Seong Jin
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 609-735, South Korea
| | - Seok Hee Kang
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 609-735, South Korea
| | - Suck Won Hong
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 609-735, South Korea
| | - Chang-Mo Jeong
- Department of Prosthodontics, Pusan National University Dental Hospital, Dental Research Institute, School of Dentistry, Pusan National University, Yangsan 626-770, South Korea
| | - Jung Bo Huh
- Department of Prosthodontics, Pusan National University Dental Hospital, Dental Research Institute, School of Dentistry, Pusan National University, Yangsan 626-770, South Korea
| | - Dong-Wook Han
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 609-735, South Korea
| |
Collapse
|
339
|
Dixit M, Raghuvanshi A, Gupta CP, Kureel J, Mansoori MN, Shukla P, John AA, Singh K, Purohit D, Awasthi P, Singh D, Goel A. Medicarpin, a Natural Pterocarpan, Heals Cortical Bone Defect by Activation of Notch and Wnt Canonical Signaling Pathways. PLoS One 2015; 10:e0144541. [PMID: 26657206 PMCID: PMC4676632 DOI: 10.1371/journal.pone.0144541] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/19/2015] [Indexed: 02/07/2023] Open
Abstract
We evaluated the bone regeneration and healing effect of Medicarpin (med) in cortical bone defect model that heals by intramembranous ossification. For the study, female Sprague–Dawley rats were ovariectomized and rendered osteopenic. A drill hole injury was generated in mid femoral bones of all the animals. Med treatment was commenced the day after and continued for 15 days. PTH was taken as a reference standard. Fifteen days post-treatment, animals were sacrificed. Bones were collected for histomorphometry studies at the injury site by micro-computed tomography (μCT) and confocal microscopy. RNA and protein was harvested from newly generated bone. For immunohistochemistry, 5μm sections of decalcified femur bone adjoining the drill hole site were cut. By μCT analysis and calcein labeling of newly generated bone it was found that med promotes bone healing and new bone formation at the injury site and was comparable to PTH in many aspects. Med treatment led to increase in the Runx-2 and osteocalcin signals indicating expansion of osteoprogenitors at the injury site as evaluated by qPCR and immunohistochemical localization. It was observed that med promoted bone regeneration by activating canonical Wnt and notch signaling pathway. This was evident by increased transcript and protein levels of Wnt and notch signaling components in the defect region. Finally, we confirmed that med treatment leads to elevated bone healing in pre-osteoblasts by co localization of beta catenin with osteoblast marker alkaline phosphatase. In conclusion, med treatment promotes new bone regeneration and healing at the injury site by activating Wnt/canonical and notch signaling pathways. This study also forms a strong case for evaluation of med in delayed union and non-union fracture cases.
Collapse
Affiliation(s)
- Manisha Dixit
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI)CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Ashutosh Raghuvanshi
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Chandra Prakash Gupta
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Jyoti Kureel
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI)CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Mohd Nizam Mansoori
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI)CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Priyanka Shukla
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI)CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Aijaz A. John
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI)CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Kavita Singh
- Sophisticated Analysis and Instrumentation Facilities, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Dipak Purohit
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Pallavi Awasthi
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - Divya Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI)CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
- * E-mail: (DS); (AG)
| | - Atul Goel
- Division of Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
- * E-mail: (DS); (AG)
| |
Collapse
|
340
|
Oryan A, Alidadi S, Moshiri A. Platelet-rich plasma for bone healing and regeneration. Expert Opin Biol Ther 2015; 16:213-32. [DOI: 10.1517/14712598.2016.1118458] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
341
|
Hu T, Abbah SA, Toh SY, Wang M, Lam RWM, Naidu M, Bhakta G, Cool SM, Bhakoo K, Li J, Goh JCH, Wong HK. Bone marrow-derived mesenchymal stem cells assembled with low-dose BMP-2 in a three-dimensional hybrid construct enhances posterolateral spinal fusion in syngeneic rats. Spine J 2015; 15:2552-63. [PMID: 26342750 DOI: 10.1016/j.spinee.2015.08.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/15/2015] [Accepted: 08/22/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The combination of potent osteoinductive growth factor, functional osteoblastic cells, and osteoconductive materials to induce bone formation is a well-established concept in bone tissue engineering. However, supraphysiological dose of growth factor, such as recombinant human bone morphogenetic protein 2 (rhBMP-2), which is necessary in contemporary clinical application, have been reported to result in severe side effects. PURPOSE We hypothesize that the synergistic osteoinductive capacity of low-dose bone morphogenetic protein 2 (BMP-2) combined with undifferentiated bone marrow-derived stromal cells (BMSCs) is comparable to that of osteogenically differentiated BMSCs when used in a rodent model of posterolateral spinal fusion. STUDY DESIGN/SETTING A prospective study using a rodent model of posterolateral spinal fusion was carried out. PATIENT SAMPLE Thirty-six syngeneic Fischer rats comprised the patient sample. METHODS Six groups of implants were evaluated as follows (n=6): (1) 10 µg BMP-2 with undifferentiated BMSCs; (2) 10 µg BMP-2 with osteogenic-differentiated BMSCs; (3) 2.5 µg BMP-2 with undifferentiated BMSCs; (4) 2.5 µg BMP-2 with osteogenic-differentiated BMSCs; (5) 0.5 µg BMP-2 with undifferentiated BMSCs; and (6) 0.5 µg BMP-2 with osteogenic-differentiated BMSCs. Optimal in vitro osteogenic differentiation of BMSCs was determined by quantitative real-time polymerase chain reaction (qRT-PCR) gene analysis whereas in vivo bone formation capacity was evaluated by manual palpation, micro-computed tomography, and histology. RESULTS Rat BMSCs cultured in fibrin matrix that was loaded into the pores of medical-grade poly epsilon caprolactone tricalcium phosphate scaffolds differentiated toward osteogenic lineage by expressing osterix, runt-related transcription factor 2, and osteocalcium mRNA when supplemented with dexamethasone, ascorbic acid, and β-glycerophosphate. Whereas qRT-PCR revealed optimal increase in osteogenic genes expression after 7 days of in vitro culture, in vivo transplantation study showed that pre-differentiation of BMSCs before transplantation failed to promote posterolateral spinal fusion when co-delivered with low-dose BMP-2 (1/6 or 17% fusion rate). In contrast, combined delivery of undifferentiated BMSCs with low-dose BMP-2 (2.5 µg) demonstrated significantly higher fusion rate (4/6 or 67%) as well as significantly increased volume of new bone formation (p<.05). CONCLUSION In summary, this study supports the combination of undifferentiated BMSCs and low-dose rhBMP-2 for bone tissue engineering construct.
Collapse
Affiliation(s)
- Tao Hu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Sunny Akogwu Abbah
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Soo Yein Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Ming Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Raymond Wing Moon Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Mathanapriya Naidu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Gajadhar Bhakta
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Simon M Cool
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore; Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Kishore Bhakoo
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore; Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, 138667, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Block EA, #03-12, 9 Engineering Drive 1, 117575, Singapore
| | - James Cho-Hong Goh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Block EA, #03-12, 9 Engineering Drive 1, 117575, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore.
| |
Collapse
|
342
|
Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2. Biointerphases 2015; 10:04A308. [DOI: 10.1116/1.4933109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
343
|
Design of extracellular protein based particles for intra and extra-cellular targeting. Colloids Surf B Biointerfaces 2015; 136:440-8. [DOI: 10.1016/j.colsurfb.2015.09.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/02/2015] [Accepted: 09/24/2015] [Indexed: 11/21/2022]
|
344
|
Reduction of Adipose Tissue Formation by the Controlled Release of BMP-2 Using a Hydroxyapatite-Coated Collagen Carrier System for Sinus-Augmentation/Extraction-Socket Grafting. MATERIALS 2015; 8:7634-7649. [PMID: 28793666 PMCID: PMC5458903 DOI: 10.3390/ma8115411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 11/28/2022]
Abstract
The effects of hydroxyapatite (HA)-coating onto collagen carriers for application of recombinant human bone morphogenetic protein 2 (rhBMP-2) on cell differentiation in vitro, and on in vivo healing patterns after sinus-augmentation and alveolar socket-grafting were evaluated. In vitro induction of osteogenic/adipogenic differentiation was compared between the culture media with rhBMP-2 solution and with the released rhBMP-2 from the control collagen and from the HA-coated collagen. Demineralized bovine bone and collagen/HA-coated collagen were grafted with/without rhBMP-2 in sinus-augmentation and tooth-extraction-socket models. Adipogenic induction by rhBMP-2 released from HA-coated collagen was significantly reduced compared to collagen. In the sinus-augmentation model, sites that received rhBMP-2 exhibited large amounts of vascular tissue formation at two weeks and increased adipose tissue formation at eight weeks; this could be significantly reduced by using HA-coated collagen as a carrier for rhBMP-2. In extraction-socket grafting, dimensional reduction of alveolar ridge was significantly decreased at sites received rhBMP-2 compared to control sites, but adipose tissue was increased within the regenerated socket area. In conclusion, HA-coated collagen carrier for Escherichia coli-derived rhBMP-2 (ErhBMP-2) may reduce in vitro induction of adipogenic differentiation and in vivo adipose bone marrow tissue formation in bone tissue engineering by ErhBMP-2.
Collapse
|
345
|
Li A, Yang L, Geng X, Peng X, Lu T, Deng Y, Dong Y. Rocaglamide-A Potentiates Osteoblast Differentiation by Inhibiting NF-κB Signaling. Mol Cells 2015; 38:941-9. [PMID: 26549505 PMCID: PMC4673408 DOI: 10.14348/molcells.2015.2353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory disease that leads to bone and cartilage erosion. The inhibition of osteoblast differentiation by the inflammatory factor TNF-α is critical for the pathogenesis of rheumatoid arthritis. To modulate TNF-α mediated inhibition of osteoblast differentiation is required to improve therapeutic efficacy of rheumatoid arthritis. Here, we explored the potential role of rocaglamide-A, a component of Aglaia plant, in osteoblast differentiation. Rocaglamide-A prevented TNF-α mediated inhibition of osteoblast differentiation, and promoted osteoblast differentiation directly, in both C2C12 and primary mesenchymal stromal cells. Mechanistically, Rocaglamide-A inhibited the phosphorylation of NF-κB component p65 protein and the accumulation of p65 in nucleus, which resulted in the diminished NF-κB responsible transcriptional activity. Oppositely, overexpression of p65 reversed rocaglamide-A's protective effects on osteoblast differentiation. Collectively, rocaglamide-A protected and stimulated osteoblast differentiation via blocking NF-κB pathway. It suggests that rocaglamide-A may be a good candidate to develop as therapeutic drug for rheumatoid arthritis associated bone loss diseases.
Collapse
Affiliation(s)
- Aiguo Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Henan,
China
| | - Libin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Henan,
China
| | - Xiaolin Geng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Henan,
China
| | - Xingmei Peng
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Henan,
China
| | - Tan Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Henan,
China
| | - Yanjun Deng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Henan,
China
| | - Yuzheng Dong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Henan,
China
| |
Collapse
|
346
|
Ravindran S, Huang CC, Gajendrareddy P, Narayanan R. Biomimetically enhanced demineralized bone matrix for bone regenerative applications. Front Physiol 2015; 6:292. [PMID: 26557093 PMCID: PMC4617051 DOI: 10.3389/fphys.2015.00292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/02/2015] [Indexed: 01/12/2023] Open
Abstract
Demineralized bone matrix (DBM) is one of the most widely used bone graft materials in dentistry. However, the ability of DBM to reliably and predictably induce bone regeneration has always been a cause for concern. The quality of DBM varies greatly depending on several donor dependent factors and also manufacturing techniques. In order to standardize the quality and to enable reliable and predictable bone regeneration, we have generated a biomimetically-enhanced version of DBM (BE-DBM) using clinical grade commercial DBM as a control. We have generated the BE-DBM by incorporating a cell-derived pro-osteogenic extracellular matrix (ECM) within clinical grade DBM. In the present study, we have characterized the BE-DBM and evaluated its ability to induce osteogenic differentiation of human marrow derived stromal cells (HMSCs) with respect to clinical grade commercial DBM. Our results indicate that the BE-DBM contains significantly more pro-osteogenic factors than DBM and enhances HMSC differentiation and mineralized matrix formation in vitro and in vivo. Based on our results, we envision that the BE-DBM has the potential to replace DBM as the bone graft material of choice.
Collapse
Affiliation(s)
- Sriram Ravindran
- Departments of Oral Biology, University of Illinois at Chicago Chicago, IL, USA
| | - Chun-Chieh Huang
- Departments of Oral Biology, University of Illinois at Chicago Chicago, IL, USA
| | | | | |
Collapse
|
347
|
Abstract
OBJECTIVES To develop and validate a translatable and reproducible rodent critical-sized defect (CSD) model and to determine the optimal dose of recombinant human bone morphogenetic protein (BMP)-7 required to consistently heal the CSD in the new model. METHODS Rats with 6-mm CSDs stabilized with a commercial radiolucent plate and screws with angular stability were randomly assigned to 4 treatment groups with varied doses of recombinant human BMP-7 (25, 50, 75, and 100 μg) on absorbable collagen sponge and a single control group (absorbable collagen sponge alone). Bone formation was evaluated by radiographs, micro-computed tomography, histology, and biomechanics. RESULTS All the rats treated with 100 μg of BMP-7 with CSDs were united by 4 weeks and all 75- and 50-μg-group rats united by 6 weeks. None of the animals in the 25-μg BMP-7 group or the control group were healed at the time of killing. Bone volume, bone mineral density, the ratio of bone volume to total volume, stiffness, and ultimate load to failure were maximal in the 50-μg group. Total callus volume progressively increased with increasing BMP dose. Histologic analysis demonstrated increased callus width with increasing BMP-7 doses above 50 μg, but the bone seemed structurally abnormal. CONCLUSIONS There was a 100% union rate in the 50-, 75-, and 100-μg BMP-7-treated groups. None of the control or 25-μg-dose rats united. The biomechanical data demonstrated that 50 μg of BMP-7 produced the highest mechanical strength in the bone regenerate. These data also suggest that administration of BMP-7 above 50 μg does not improve bone regeneration and actually seems to produce lower quality bone with diminished biomechanical properties.
Collapse
|
348
|
Krishnan L, Priddy LB, Esancy C, Li MTA, Stevens HY, Jiang X, Tran L, Rowe DW, Guldberg RE. Hydrogel-based Delivery of rhBMP-2 Improves Healing of Large Bone Defects Compared With Autograft. Clin Orthop Relat Res 2015; 473:2885-97. [PMID: 25917422 PMCID: PMC4523508 DOI: 10.1007/s11999-015-4312-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Autologous bone grafting remains the gold standard in the treatment of large bone defects but is limited by tissue availability and donor site morbidity. Recombinant human bone morphogenetic protein-2 (rhBMP-2), delivered with a collagen sponge, is clinically used to treat large bone defects and complications such as delayed healing or nonunion. For the same dose of rhBMP-2, we have shown that a hybrid nanofiber mesh-alginate (NMA-rhBMP-2) delivery system provides longer-term release and increases functional bone regeneration in critically sized rat femoral bone defects compared with a collagen sponge. However, no comparisons of healing efficiencies have been made thus far between this hybrid delivery system and the gold standard of using autograft. QUESTIONS/PURPOSES We compared the efficacy of the NMA-rhBMP-2 hybrid delivery system to morselized autograft and hypothesized that the functional regeneration of large bone defects observed with sustained BMP delivery would be at least comparable to autograft treatment as measured by total bone volume and ex vivo mechanical properties. METHODS Bilateral critically sized femoral bone defects in rats were treated with either live autograft or with the NMA-rhBMP-2 hybrid delivery system such that each animal received one treatment per leg. Healing was monitored by radiography and histology at 2, 4, 8, and 12 weeks. Defects were evaluated for bone formation by longitudinal micro-CT scans over 12 weeks (n = 14 per group). The bone volume, bone density, and the total new bone formed beyond 2 weeks within the defect were calculated from micro-CT reconstructions and values compared for the 2-, 4-, 8-, and 12-week scans within and across the two treatment groups. Two animals were used for bone labeling with subcutaneously injected dyes at 4, 8, and 12 weeks followed by histology at 12 weeks to identify incremental new bone formation. Functional recovery was measured by ex vivo biomechanical testing (n = 9 per group). Maximum torque and torsional stiffness calculated from torsion testing of the femurs at 12 weeks were compared between the two groups. RESULTS The NMA-rhBMP-2 hybrid delivery system resulted in greater bone formation and improved biomechanical properties compared with autograft at 12 weeks. Comparing new bone volume within each group, the NMA-rhBMP-2-treated group had higher volume (p < 0.001) at 12 weeks (72.59 ± 18.34 mm(3)) compared with 8 weeks (54.90 ± 16.14) and 4 weeks (14.22 ± 9.59). The new bone volume was also higher at 8 weeks compared with 4 weeks (p < 0.001). The autograft group showed higher (p <0.05) new bone volume at 8 weeks (11.19 ± 8.59 mm(3)) and 12 weeks (14.64 ± 10.36) compared with 4 weeks (5.15 ± 4.90). Between groups, the NMA-rhBMP-2-treated group had higher (p < 0.001) new bone volume than the autograft group at both 8 and 12 weeks. Local mineralized matrix density in the NMA-rhBMP-2-treated group was lower than that of the autograft group at all time points (p < 0.001). Presence of nuclei within the lacunae of the autograft and early appositional bone formation seen in representative histology sections suggested that the bone grafts remained viable and were functionally engrafted within the defect. The bone label distribution from representative sections also revealed more diffuse mineralization in the defect in the NMA-rhBMP-2-treated group, whereas more localized distribution of new mineral was seen at the edges of the graft pieces in the autograft group. The NMA-rhBMP-2-treated group also revealed higher torsional stiffness (0.042 ± 0.019 versus 0.020 ± 0.022 N-m/°; p = 0.037) and higher maximum torque (0.270 ± 0.108 versus 0.125 ± 0.137 N-m; p = 0.024) compared with autograft. CONCLUSIONS The NMA-rhBMP-2 hybrid delivery system improved bone formation and restoration of biomechanical function of rat segmental bone defects compared with autograft treatment. CLINICAL RELEVANCE Delivery systems that allow prolonged availability of BMP may provide an effective clinical alternative to autograft treatment for repair of segmental bone defects. Future studies in a large animal model comparing mixed cortical-trabecular autograft and the NMA-rhBMP-2 hybrid delivery system are the next step toward clinical translation of this approach.
Collapse
Affiliation(s)
- Laxminarayanan Krishnan
- />Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0363 USA
| | - Lauren B. Priddy
- />Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0363 USA
- />Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA USA
| | - Camden Esancy
- />Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0363 USA
| | - Mon-Tzu Alice Li
- />Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0363 USA
- />Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA USA
- />Emory University, Atlanta, GA USA
| | - Hazel Y. Stevens
- />Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0363 USA
- />George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Xi Jiang
- />University of Connecticut Health Center, Farmington, CT USA
| | | | - David W. Rowe
- />University of Connecticut Health Center, Farmington, CT USA
| | - Robert E. Guldberg
- />Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0363 USA
- />Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA USA
- />George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|
349
|
Comparative study of recombinant human bone morphogenetic protein-2 carriers in rat subcutaneous tissues: Pilot study. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
350
|
Atluri K, Seabold D, Hong L, Elangovan S, Salem AK. Nanoplex-Mediated Codelivery of Fibroblast Growth Factor and Bone Morphogenetic Protein Genes Promotes Osteogenesis in Human Adipocyte-Derived Mesenchymal Stem Cells. Mol Pharm 2015; 12:3032-42. [PMID: 26121311 PMCID: PMC4613810 DOI: 10.1021/acs.molpharmaceut.5b00297] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study highlights the importance of transfection mediated coordinated bone morphogenetic protein 2 (BMP-2) and fibroblast growth factor 2 (FGF-2) signaling in promoting osteogenesis. We employed plasmids independently encoding BMP-2 and FGF-2 complexed with polyethylenimine (PEI) to transfect human adipose derived mesenchymal stem cells (hADMSCs) in vitro. The nanoplexes were characterized for size, surface charge, in vitro cytotoxicity, and transfection ability in hADMSCs. A significant enhancement in BMP-2 protein secretion was observed on day 7 post-transfection of hADMSCs with PEI nanoplexes loaded with both pFGF-2 and pBMP-2 (PEI/(pFGF-2+pBMP-2)) versus transfection with PEI nanoplexes of either pFGF-2 alone or pBMP-2 alone. Osteogenic differentiation of transfected hADMSCs was determined by measuring osteocalcin and Runx-2 gene expression using real time polymerase chain reactions. A significant increase in the expression of Runx-2 and osteocalcin was observed on day 3 and day 7 post-transfection, respectively, by cells transfected with PEI/(pFGF-2+pBMP-2) compared to cells transfected with nanoplexes containing pFGF-2 or pBMP-2 alone. Alizarin Red staining and atomic absorption spectroscopy revealed elevated levels of calcium deposition in hADMSC cultures on day 14 and day 30 post-transfection with PEI/(pFGF-2+pBMP-2) compared to other treatments. We have shown that codelivery of pFGF-2 and pBMP-2 results in a significant enhancement in osteogenic protein synthesis, osteogenic marker expression, and subsequent mineralization. This research points to a new clinically translatable strategy for achieving efficient bone regeneration.
Collapse
Affiliation(s)
- Keerthi Atluri
- †Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Denise Seabold
- ‡Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Liu Hong
- ‡Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Satheesh Elangovan
- ‡Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Aliasger K Salem
- †Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
- ‡Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|