301
|
Tang F, Peng Y, Nau JJ, Kauffman EJ, Weisman LS. Vac8p, an Armadillo Repeat Protein, Coordinates Vacuole Inheritance With Multiple Vacuolar Processes. Traffic 2006; 7:1368-77. [PMID: 16824055 DOI: 10.1111/j.1600-0854.2006.00458.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vac8p, an armadillo (ARM) repeat protein, is required for multiple vacuolar processes. It functions in vacuole inheritance, cytoplasm-to-vacuole protein targeting pathway, formation of the nucleus-vacuole junction and vacuole-vacuole fusion. These functions each utilize a distinct Vac8p-binding partner. Here, we report an additional Vac8p function: caffeine resistance. We show that Vac8p function in caffeine resistance is mediated via a newly identified Vac8p-binding partner, Tco89p. The interaction between Vac8p and each binding partner requires an overlapping subset of Vac8p ARM repeats. Moreover, these partners can compete with each other for access to Vac8p. Furthermore, Vac8p is enriched in three separate subdomains on the vacuole, each with a unique binding partner dedicated to a different vacuolar function. These findings suggest that a major role of Vac8p is to spatially separate multiple functions thereby enabling vacuole inheritance to occur concurrently with other vacuolar processes.
Collapse
Affiliation(s)
- Fusheng Tang
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
302
|
Kvam E, Goldfarb DS. Nucleus–vacuole junctions in yeast: anatomy of a membrane contact site. Biochem Soc Trans 2006; 34:340-2. [PMID: 16709156 DOI: 10.1042/bst0340340] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NV junctions (nucleus–vacuole junctions) in Saccharomyces cerevisiae are MCSs (membrane contact sites) formed through specific interactions between Vac8p on the vacuole membrane and Nvj1p in the outer nuclear membrane, which is continuous with the perinuclear ER (endoplasmic reticulum). NV junctions mediate a unique autophagic process that degrades portions of the yeast nucleus through a process called ‘piecemeal microautophagy of the nucleus’ (PMN). Our studies suggest that the lipid composition of NV junctions plays an important role in the biogenesis of PMN structures. NV junctions represent a unique model system for studying the biology of ER MCSs, as well as the molecular mechanism of selective microautophagy.
Collapse
Affiliation(s)
- E Kvam
- Department of Biology, University of Rochester, NY 14627, USA
| | | |
Collapse
|
303
|
Abstract
Organelle inheritance is one of several processes that occur during cell division. Recent studies on yeast vacuole inheritance have indicated rules that probably apply to most organelle-inheritance pathways. They have uncovered a molecular mechanism for membrane-cargo transport that is partially conserved from yeast to humans. They have also shown that the transport complex, which is composed of a molecular motor and its receptor, regulates the destination and timing of vacuole movement and might coordinate organelle movement with several other organelle functions.
Collapse
Affiliation(s)
- Lois S Weisman
- Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
304
|
Powers RW, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 2006; 20:174-84. [PMID: 16418483 PMCID: PMC1356109 DOI: 10.1101/gad.1381406] [Citation(s) in RCA: 712] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chronological life span (CLS) in Saccharomyces cerevisiae, defined as the time cells in a stationary phase culture remain viable, has been proposed as a model for the aging of post-mitotic tissues in mammals. We developed a high-throughput assay to determine CLS for approximately 4800 single-gene deletion strains of yeast, and identified long-lived strains carrying mutations in the conserved TOR pathway. TOR signaling regulates multiple cellular processes in response to nutrients, especially amino acids, raising the possibility that decreased TOR signaling mediates life span extension by calorie restriction. In support of this possibility, removal of either asparagine or glutamate from the media significantly increased stationary phase survival. Pharmacological inhibition of TOR signaling by methionine sulfoximine or rapamycin also increased CLS. Decreased TOR activity also promoted increased accumulation of storage carbohydrates and enhanced stress resistance and nuclear relocalization of the stress-related transcription factor Msn2. We propose that up-regulation of a highly conserved response to starvation-induced stress is important for life span extension by decreased TOR signaling in yeast and higher eukaryotes.
Collapse
Affiliation(s)
- R Wilson Powers
- Department of Genome Sciences and Medicine, The Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
305
|
Campbell JL, Lorenz A, Witkin KL, Hays T, Loidl J, Cohen-Fix O. Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion. Mol Biol Cell 2006; 17:1768-78. [PMID: 16467382 PMCID: PMC1415286 DOI: 10.1091/mbc.e05-09-0839] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Little is known about what dictates the round shape of the yeast Saccharomyces cerevisiae nucleus. In spo7Delta mutants, the nucleus is misshapen, exhibiting a single protrusion. The Spo7 protein is part of a phosphatase complex that represses phospholipid biosynthesis. Here, we report that the nuclear protrusion of spo7Delta mutants colocalizes with the nucleolus, whereas the nuclear compartment containing the bulk of the DNA is unaffected. Using strains in which the nucleolus is not intimately associated with the nuclear envelope, we show that the single nuclear protrusion of spo7Delta mutants is not a result of nucleolar expansion, but rather a property of the nuclear membrane. We found that in spo7Delta mutants the peripheral endoplasmic reticulum (ER) membrane was also expanded. Because the nuclear membrane and the ER are contiguous, this finding indicates that in spo7Delta mutants all ER membranes, with the exception of the membrane surrounding the bulk of the DNA, undergo expansion. Our results suggest that the nuclear envelope has distinct domains that differ in their ability to resist membrane expansion in response to increased phospholipid biosynthesis. We further propose that in budding yeast there is a mechanism, or structure, that restricts nuclear membrane expansion around the bulk of the DNA.
Collapse
Affiliation(s)
- Joseph L Campbell
- The Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
306
|
Samuel MA, Salt JN, Shiu SH, Goring DR. Multifunctional arm repeat domains in plants. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:1-26. [PMID: 17098053 DOI: 10.1016/s0074-7696(06)53001-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Arm repeat domains are composed of multiple 42 amino acid Arm repeats and are found in the proteomes of all eukaryotic organisms. The Arm repeat domain is a highly conserved right-handed super helix of alpha-helices involved in protein-protein interactions. The well-characterized Arm repeat proteins in animal and plants are known to function in diverse cellular processes including signal transduction, cytoskeletal regulation, nuclear import, transcriptional regulation, and ubiquitination. While Arm repeat domains are found in all eukaryotes, plants have evolved some unique domain organizations, such as the U-box and Arm repeat domain combination, with specialized functions. The plant-specific U-box/Arm repeat proteins are the largest family of Arm repeat proteins in all the genomes surveyed, and more recent data have implicated these proteins as E3 ubiquitin ligases. While functions have not been assigned for most of the plant Arm repeat proteins, recent studies have demonstrated their importance in multiple processes such as self-incompatibility, hormone signaling, and disease resistance.
Collapse
Affiliation(s)
- Marcus A Samuel
- Department of Botany, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | | | | | | |
Collapse
|
307
|
Léger-Silvestre I, Caffrey JM, Dawaliby R, Alvarez-Arias DA, Gas N, Bertolone SJ, Gleizes PE, Ellis SR. Specific Role for Yeast Homologs of the Diamond Blackfan Anemia-associated Rps19 Protein in Ribosome Synthesis. J Biol Chem 2005; 280:38177-85. [PMID: 16159874 DOI: 10.1074/jbc.m506916200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Approximately 25% of cases of Diamond Blackfan anemia, a severe hypoplastic anemia, are linked to heterozygous mutations in the gene encoding ribosomal protein S19 that result in haploinsufficiency for this protein. Here we show that deletion of either of the two genes encoding Rps19 in yeast severely affects the production of 40 S ribosomal subunits. Rps19 is an essential protein that is strictly required for maturation of the 3'-end of 18 S rRNA. Depletion of Rps19 results in the accumulation of aberrant pre-40 S particles retained in the nucleus that fail to associate with pre-ribosomal factors involved in late maturation steps, including Enp1, Tsr1, and Rio2. When introduced in yeast Rps19, amino acid substitutions found in Diamond Blackfan anemia patients induce defects in the processing of the pre-rRNA similar to those observed in cells under-expressing Rps19. These results uncover a pivotal role of Rps19 in the assembly and maturation of the pre-40 S particles and demonstrate for the first time the effect of Diamond Blackfan anemia-associated mutations on the function of Rps19, strongly connecting the pathology to ribosome biogenesis.
Collapse
Affiliation(s)
- Isabelle Léger-Silvestre
- Laboratoire de Biologie Moléculaire des Eucaryotes (UMR5099) and Institut d'Exploration Fonctionnelle des Génomes (IFR109), CNRS and Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
308
|
Bechet D, Tassa A, Taillandier D, Combaret L, Attaix D. Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol 2005; 37:2098-114. [PMID: 16125113 DOI: 10.1016/j.biocel.2005.02.029] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 02/09/2005] [Accepted: 02/22/2005] [Indexed: 01/06/2023]
Abstract
Lysosomal proteases are abundantly expressed in fetal muscles, but poorly represented in the adult skeletal muscles. The lysosomal proteolytic system is nonetheless stimulated in adult muscles in a variety of pathological conditions. Furthermore, recent investigations describe autophagosomes in muscle fibers in vitro and in vivo, and report myopathies with excessive autophagy. This review presents our current knowledge about the lysosomal proteolytic system and summarizes the evidences pertaining to the role of lysosomes and autophagosomes in muscle physiology and pathology.
Collapse
Affiliation(s)
- Daniel Bechet
- Human Nutrition Research Center of Clermont-Ferrand, Nutrition and Protein Metabolism Unit, INRA UR551, 63122 Ceyrat, France.
| | | | | | | | | |
Collapse
|
309
|
Mason DA, Shulga N, Undavai S, Ferrando-May E, Rexach MF, Goldfarb DS. Increased nuclear envelope permeability and Pep4p-dependent degradation of nucleoporins during hydrogen peroxide-induced cell death. FEMS Yeast Res 2005; 5:1237-51. [PMID: 16183335 DOI: 10.1016/j.femsyr.2005.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 07/15/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022] Open
Abstract
The death of yeast treated with hydrogen peroxide (H(2)O(2)) shares a number of morphological and biochemical features with mammalian apoptosis. In this study, we report that the permeability of yeast nuclear envelopes (NE) increased during H(2)O(2)-induced cell death. Similar phenomena have been observed during apoptosis in mammalian tissue culture cells. Increased NE permeability in yeast was temporally correlated with an increase in the production of reactive-oxygen species (ROS). Later, after ROS levels began to decline and viability was lost, specific nuclear pore complex (NPC) proteins (nucleoporins) were degraded. Although caspases are responsible for the degradation of mammalian nucleoporins during apoptosis, the deletion of the metacaspase gene YCA1 had no effect on the stability of yeast nucleoporins. Instead, Pep4p, a vacuolar cathepsin D homolog, was responsible for the proteolysis of nucleoporins. Coincident with nucleoporin degradation, a Pep4p-EGFP reporter migrated out of the vacuole in H(2)O(2)-treated cells. We conclude that increases in ROS and NPC permeability occur relatively early during H(2)O(2)-induced cell death. Later, Pep4p migrates out of vacuoles and degrades nucleoporins after the cells are effectively dead.
Collapse
Affiliation(s)
- D Adam Mason
- Department of Biology, University of Rochester, NY 14627, USA
| | | | | | | | | | | |
Collapse
|
310
|
Uttenweiler A, Schwarz H, Mayer A. Microautophagic Vacuole Invagination Requires Calmodulin in a Ca2+-independent Function. J Biol Chem 2005; 280:33289-97. [PMID: 16055436 DOI: 10.1074/jbc.m506086200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microautophagy is the uptake of cytosolic compounds by direct invagination of the vacuolar/lysosomal membrane. In Saccharomyces cerevisiae microautophagic uptake of soluble cytosolic proteins occurs via an autophagic tube, a highly specialized vacuolar membrane invagination. Autophagic tubes are topologically equivalent to the invaginations at multivesicular endosomes. At the tip of an autophagic tube, vesicles (autophagic bodies) pinch off into the vacuolar lumen for degradation. In this study we have identified calmodulin (Cmd1p) as necessary for microautophagy. Temperature-sensitive mutants for Cmd1p displayed reduced frequencies of vacuolar tube formation and/or abnormal tube morphologies. Microautophagic vacuole invagination was sensitive to Cmd1p antagonists as well as to antibodies to Cmd1p. cmd1 mutants with substitutions in the Ca2+-binding domains showed full invagination activity, and vacuolar membrane invagination was independent of the free Ca2+ concentration. Thus, rather than acting as a calcium-triggered switch, Cmd1p has a constitutive Ca2+-independent role in the formation of autophagic tubes. Kinetic analysis indicates that calmodulin is required for autophagic tube formation rather than for the final scission of vesicles from the tip of the tube.
Collapse
Affiliation(s)
- Andreas Uttenweiler
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
311
|
Kvam E, Gable K, Dunn TM, Goldfarb DS. Targeting of Tsc13p to nucleus-vacuole junctions: a role for very-long-chain fatty acids in the biogenesis of microautophagic vesicles. Mol Biol Cell 2005; 16:3987-98. [PMID: 15958487 PMCID: PMC1196313 DOI: 10.1091/mbc.e05-04-0290] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
TSC13 is required for the biosynthesis of very-long-chain fatty acids (VLCFAs) in yeast. Tsc13p is a polytopic endoplasmic reticulum (ER) membrane protein that accumulates at nucleus-vacuole (NV) junctions, which are formed through Velcro-like interactions between Nvj1p in the perinuclear ER and Vac8p on the vacuole membrane. NV junctions mediate piecemeal microautophagy of the nucleus (PMN), during which bleb-like portions of the nucleus are extruded into invaginations of the vacuole membrane and degraded in the vacuole lumen. We report that Tsc13p is sequestered into NV junctions from the peripheral ER through Vac8p-independent interactions with Nvj1p. During nutrient limitation, Tsc13p is incorporated into PMN vesicles in an Nvj1p-dependent manner. The lumenal diameters of PMN blebs and vesicles are significantly reduced in tsc13-1 and tsc13-1 elo3-Delta mutant cells. PMN structures are also smaller in cells treated with cerulenin, an inhibitor of de novo fatty acid synthesis and elongation. The targeting of Tsc13p-GFP into NV junctions is perturbed by cerulenin, suggesting that its binding to Nvj1p depends on the availability of fatty acid substrates. These results indicate that Nvj1p retains and compartmentalizes Tsc13p at NV junctions and that VLCFAs contribute to the normal biogenesis of trilaminar PMN structures in yeast.
Collapse
Affiliation(s)
- Erik Kvam
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
312
|
Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC. Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 2005; 12:1613-21. [PMID: 15947785 DOI: 10.1038/sj.cdd.4401697] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Autophagy, a highly regulated programme found in almost all eukaryotes, is mainly viewed as a catabolic process that degrades nonessential cellular components into molecular building blocks, subsequently available for biosynthesis at a lesser expense than de novo synthesis. Autophagy is largely known to be regulated by nutritional conditions. Here we show that, in yeast cells grown under nonstarving conditions, autophagy can be induced by mitochondrial dysfunction. Electron micrographs and biochemical studies show that an autophagic activity can result from impairing the mitochondrial electrochemical transmembrane potential. Furthermore, mitochondrial damage-induced autophagy results in the preferential degradation of impaired mitochondria (mitophagy), before leading to cell death. Mitophagy appears to rely on classical macroautophagy machinery while being independent of cellular ATP collapse. These results suggest that in this case, autophagy can be envisioned either as a process of mitochondrial quality control, or as an ultimate cellular response triggered when cells are overwhelmed with damaged mitochondria.
Collapse
Affiliation(s)
- M Priault
- Département de Biologie Cellulaire, Université de Genève, Suisse.
| | | | | | | | | | | |
Collapse
|
313
|
Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang CW, Klionsky DJ. Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 2005; 16:3438-53. [PMID: 15901835 DOI: 10.1091/mbc.e04-10-0894] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a catabolic process used by eukaryotic cells for the degradation and recycling of cytosolic proteins and excess or defective organelles. In yeast, autophagy is primarily a response to nutrient limitation, whereas in higher eukaryotes it also plays a role in developmental processes. Due to its essentially unlimited degradative capacity, it is critical that regulatory mechanisms are in place to modulate the timing and magnitude of the autophagic response. One set of proteins that seems to function in this regard includes a complex that contains the Atg1 kinase. Aside from Atg1, the proteins in this complex participate primarily in either nonspecific autophagy or specific types of autophagy, including the cytoplasm to vacuole targeting pathway, which operates under vegetative growth conditions, and peroxisome degradation. Accordingly, these proteins are prime candidates for factors that regulate the conversion between these pathways, including the change in size of the sequestering vesicle, the most obvious morphological difference. The atg17delta mutant forms a reduced number of small autophagosomes. As a result, it is defective in peroxisome degradation and is partially defective for autophagy. Atg17 interacts with both Atg1 and Atg13, via two coiled-coil domains, and these interactions facilitate its inclusion in the Atg1 complex.
Collapse
Affiliation(s)
- Heesun Cheong
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
314
|
Natter K, Leitner P, Faschinger A, Wolinski H, McCraith S, Fields S, Kohlwein SD. The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large scale green fluorescent protein tagging and high resolution microscopy. Mol Cell Proteomics 2005; 4:662-72. [PMID: 15716577 DOI: 10.1074/mcp.m400123-mcp200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The localization pattern of proteins involved in lipid metabolism in the yeast Saccharomyces cerevisiae was determined using C-terminal green fluorescent protein tagging and high resolution confocal laser scanning microscopy. A list of 493 candidate proteins ( approximately 9% of the yeast proteome) was assembled based on proteins of known function in lipid metabolism, their interacting proteins, proteins defined by genetic interactions, and regulatory factors acting on selected genes or proteins. Overall 400 (81%) transformants yielded a positive green fluorescent protein signal, and of these, 248 (62% of the 400) displayed a localization pattern that was not cytosolic. Observations for many proteins with known localization patterns were consistent with published data derived from cell fractionation or large scale localization approaches. However, in many cases, high resolution microscopy provided additional information that indicated that proteins distributed to multiple subcellular locations. The majority of tagged enzymes localized to the endoplasmic reticulum (91), but others localized to mitochondria (27), peroxisomes (17), lipid droplets (23), and vesicles (53). We assembled enzyme localization patterns for phospholipid, sterol, and sphingolipid biosynthetic pathways and propose a model, based on enzyme localization, for concerted regulation of sterol and sphingolipid metabolism that involves shuttling of key enzymes between endoplasmic reticulum, lipid droplets, vesicles, and Golgi.
Collapse
Affiliation(s)
- Klaus Natter
- Institute of Molecular Biosciences, Spezialforschungsbereich Biomembrane Research Center, University of Graz, Schubertstr. 1, A8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
315
|
Camougrand N, Kissová I, Velours G, Manon S. Uth1p: a yeast mitochondrial protein at the crossroads of stress, degradation and cell death. FEMS Yeast Res 2005; 5:133-40. [PMID: 15489196 DOI: 10.1016/j.femsyr.2004.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 03/30/2004] [Accepted: 05/06/2004] [Indexed: 12/31/2022] Open
Abstract
UTH1 is a yeast aging gene that has been identified on the basis of stress resistance and longer life span of mutants. It was also shown to participate in mitochondrial biogenesis. The absence of Uth1p was found to trigger resistance to autophagy induced by rapamycin. Uth1p is therefore the first mitochondrial protein proven to be required for the autophagic degradation of mitochondria. Since this protein is also involved in yeast cell death induced by heterologous expression of the pro-apoptotic protein Bax, the results are discussed in the light of evidence suggesting a co-regulation of apoptosis and autophagy in mammalian cells.
Collapse
Affiliation(s)
- Nadine Camougrand
- Institut de Biochimie et Genetique, Cellulaires du CNRS, UMR5095 CNRS/Université de Bordeaux 2, 1 rue Camille Saint Saens, 33077 Bordeaux Cedex, France.
| | | | | | | |
Collapse
|
316
|
Abstract
Chaperone-mediated autophagy is one of several lysosomal pathways of proteolysis. This pathway is activated by physiological stresses such as prolonged starvation. Cytosolic proteins with particular peptide sequence motifs are recognized by a complex of molecular chaperones and delivered to lysosomes. No vesicular traffic is required for this protein degradation pathway, so it differs from microautophagy and macroautophagy. Protein substrates bind to a receptor in the lysosomal membrane, the lysosome-associated membrane protein (lamp) type 2a. Levels of lamp2a in the lysosomal membrane are controlled by alterations in the lamp2a half-life as well as by the dynamic distribution of the protein between the lysosomal membrane and the lumen. Substrate proteins are unfolded before transport into the lysosome lumen, and the transport of substrate proteins requires a molecular chaperone within the lysosomal lumen. The exact roles of this lysosomal chaperone remain to be defined. The mechanisms of chaperone-mediated autophagy are similar to mechanisms of protein import into mitochondria, chloroplasts, and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Amy E Majeski
- Department of Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | | |
Collapse
|
317
|
Rog O, Smolikov S, Krauskopf A, Kupiec M. The yeast VPS genes affect telomere length regulation. Curr Genet 2004; 47:18-28. [PMID: 15551135 DOI: 10.1007/s00294-004-0548-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 10/14/2004] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
Eukaryotic cells invest a large proportion of their genome in maintaining telomere length homeostasis. Among the 173 non-essential yeast genes found to affect telomere length, a large proportion is involved in vacuolar traffic. When mutated, these vacuolar protein-sorting (VPS) genes lead to telomeres shorter than those observed in the wild type. Using genetic analysis, we characterized the pathway by which VPS15, VPS34, VPS22, VPS23 and VPS28 affect the telomeres. Our results indicate that these VPS genes affect telomere length through a single pathway and that this effect requires the activity of telomerase and the Ku heterodimer, but not the activity of Tel1p or Rif2p. We present models to explain the link between vacuolar traffic and telomere length homeostasis.
Collapse
Affiliation(s)
- Ofer Rog
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | | | | | | |
Collapse
|
318
|
Olkkonen VM, Levine TP. Oxysterol binding proteins: in more than one place at one time? Biochem Cell Biol 2004; 82:87-98. [PMID: 15052330 DOI: 10.1139/o03-088] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxysterols are potent signalling lipids that directly bind liver X receptors (LXRs) and a subset of oxysterol binding protein (OSBP) related proteins (ORPs). It is relatively well established that the oxysterol-regulated function of LXRs is to control the expression of genes involved in reverse cholesterol transport, catabolism of cholesterol, and lipogenesis. In contrast, the mechanisms by which oxysterols and ORPs affect cellular lipid metabolism have remained poorly understood. In this review, we summarize the information available on function of the ORPs and compare the two families of proteins binding oxysterol to demonstrate the different responses that similar lipids can elicit within cells. The other focus is on the membrane targeting determinants and the protein interaction partners of ORPs, which provide interesting clues to the mode(s) of ORP action. Specifically, we suggest a model in which a general property of ORPs is to function at membrane contact sites, specialized zones of communication between two different organelles.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland.
| | | |
Collapse
|
319
|
Abstract
The degradation of intracellular components in lysosomes (autophagy) has recaptured the attention of cell biologists in recent years. The main reason for this renewed interest is the dissection of the molecular machinery that participates in this process, because the identification of new intracellular elements involved in autophagy has provided new tools to trace, quantify and manipulate autophagy in a growing number of organisms. As a result, a better understanding of the physiological roles of autophagy, the consequences of its malfunctioning and its participation in different pathological processes has emerged. This article reviews our current knowledge of the role of autophagy in disease and the efforts to reconcile its proposed dual function as both a cell protector and a cell killer.
Collapse
Affiliation(s)
- Ana Maria Cuervo
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ullmann B. 614, Bronx, NY 10461, USA.
| |
Collapse
|
320
|
Kvam E, Goldfarb DS. Nvj1p is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Osh1p in Saccharomyces cerevisiae. J Cell Sci 2004; 117:4959-68. [PMID: 15367582 DOI: 10.1242/jcs.01372] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OSH1 belongs to a seven-member gene family in yeast that is related to mammalian oxysterol-binding protein (OSBP). Here, we investigate the targeting of Osh1p to nucleus-vacuole (NV) junctions in Saccharomyces cerevisiae. NV junctions are interorganelle interfaces mediated by Nvj1p in the nuclear envelope and Vac8p on the vacuole membrane. Together, Nvj1p and Vac8p form Velcro-like patches through which teardrop-like portions of the nucleus are pinched off into the vacuolar lumen and degraded by a process termed piecemeal microautophagy of the nucleus (PMN). Osh1p is targeted to NV junctions proportional to NVJ1 expression through a physical association with Nvj1p. NV junctions per se are not required for this targeting because Osh1p colocalizes with Nvj1p in the absence of Vac8p. NV-junction-associated Osh1p is also a substrate for PMN degradation. Although OSH1 is not required for NV-junction formation or PMN, PMN is defective in cells lacking the yeast OSBP family (Osh1p to Osh7p). By contrast, the vesicular targeting of aminopeptidase I to the vacuole by macroautophagy is not dependent on the Osh protein family. We conclude the formation of nuclear PMN vesicles requires the overlapping activities of Osh1p and other Osh family members.
Collapse
Affiliation(s)
- Erik Kvam
- Department of Biology, University of Rochester, 436 Hutchison Hall, NY 14627, USA
| | | |
Collapse
|
321
|
Kissová I, Deffieu M, Manon S, Camougrand N. Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 2004; 279:39068-74. [PMID: 15247238 DOI: 10.1074/jbc.m406960200] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The absence of the outer mitochondrial membrane protein Uth1p was found to induce resistance to rapamycin treatment and starvation, two conditions that induce the autophagic process. Biochemical studies showed the onset of a fully active autophagic activity both in wild-type and Deltauth1 strains. On the other hand, the disorganization of the mitochondrial network induced by rapamycin treatment or 15 h of nitrogen starvation was followed in cells expressing mitochondria-targeted green fluorescent protein; a rapid colocalization of green fluorescent protein fluorescence with vacuole-selective FM4-64 labeling was observed in the wild-type but not in the Deltauth1 strain. Degradation of mitochondrial proteins, followed by Western blot analysis, did not occur in mutant strains carrying null mutations of the vacuolar protease Pep4p, the autophagy-specific protein Atg5p, and Uth1p. These data show that, although the autophagic machinery was fully functional in the absence of Uth1p, this protein is involved in the autophagic degradation of mitochondria.
Collapse
Affiliation(s)
- Ingrid Kissová
- Unité Mixte de Recherche 5095 CNRS, Université de Bordeaux 2, 33077 Bordeaux, France
| | | | | | | |
Collapse
|
322
|
Abstract
The vacuole/lysosome of the budding yeast Saccharomyces cerevisiae is actively divided between mother and daughter cells. Vacuole inheritance initiates early in the cell cycle and ends in G2, just prior to nuclear migration. The process begins with a portion of the vacuole extending into the emerging bud. This tubular-vesicular entity, the segregation structure, enables continued exchange of vacuole contents between mother and daughter vacuoles. Genetic, biochemical, and cytological analyses of vacuole inheritance have provided insight into the molecular basis of membrane movement, the spatial and temporal control of organelle transport, and the molecular basis of membrane fusion and fission.
Collapse
Affiliation(s)
- Lois S Weisman
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
323
|
Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y. A Unified Nomenclature for Yeast Autophagy-Related Genes. Dev Cell 2003; 5:539-45. [PMID: 14536056 DOI: 10.1016/s1534-5807(03)00296-x] [Citation(s) in RCA: 922] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
324
|
Mukaiyama H, Baba M, Osumi M, Aoyagi S, Kato N, Ohsumi Y, Sakai Y. Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mol Biol Cell 2003; 15:58-70. [PMID: 13679515 PMCID: PMC307527 DOI: 10.1091/mbc.e03-05-0340] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microautophagy is a versatile process in which vacuolar or lysosomal membranes directly sequester cytosolic targets for degradation. Recent genetic evidence suggested that microautophagy uses molecular machineries essential for macroautophagy, but the details of this process are still unknown. In this study, a ubiquitin-like protein Paz2 essential for micropexophagy in the yeast Pichia pastoris has been shown to receive modification through the function of Paz8 and Gsa7, yielding a modified form Paz2-I, similar to the ubiquitin-like lipidation of Aut7 that is essential for macroautophagy in Saccharomyces cerevisiae. We identified a novel membrane structure formed after the onset of micropexophagy, which we suggest is necessary for the sequestration of peroxisomes by the vacuole. Assembly of this newly formed membrane structure, which is followed by localization of Paz2 to it, was found to require a properly functioning Paz2-modification system. We herein show that Paz2 and its modification system conduct micropexophagy through formation of the membrane structure, which explains the convergence between micropexophagy and macroautophagy with regard to de novo membrane formation.
Collapse
Affiliation(s)
- Hiroyuki Mukaiyama
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
325
|
Cuervo AM. Autophagy and aging--when "all you can eat" is yourself. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2003; 2003:pe25. [PMID: 12968056 DOI: 10.1126/sageke.2003.36.pe25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A recent paper provides evidence that macroautophagy is an essential downstream pathway for one of the mutations known to extend life span. Autophagy, or the degradation of intracellular components by the lysosomal system, was thought for a long time to be a catabolic process responsible for cellular cleanup. However, in recent years, we have learned that autophagy comes in different sizes and shapes, macroautophagy being one of them, and that this cellular maid plays many more roles than previously anticipated. Activation of autophagy is essential in physiological processes as diverse as morphogenesis, cellular differentiation, tissue remodeling, and cellular defense, among others. Furthermore, its participation in different pathological conditions, including cancer and neurodegeneration, is presently a subject of intense investigation. A role in aging has now been added to this growing list of autophagy functions. The activity of different forms of autophagy decreases with age, and this reduced function has been blamed for the accumulation of damaged proteins in old organisms. Research such as that covered in this Perspective shows that there is much more than trash to worry about when autophagy is not functioning properly.
Collapse
Affiliation(s)
- Ana Maria Cuervo
- Department of Anatomy, Marion Bessin Liver Research Center of the Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
326
|
Current awareness on yeast. Yeast 2003; 20:837-44. [PMID: 12886942 DOI: 10.1002/yea.946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
327
|
Sutherland S. Nucleus 'hallowed ground' no more. Drug Discov Today 2003; 8:238-9. [PMID: 12623230 DOI: 10.1016/s1359-6446(03)02636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The proces of piecemeal microautophagy of the nucleus describes the way in which autophagy occurs in the nucleus, a realm of the cell once considered to be off limits for autophagy.
Collapse
|
328
|
Abstract
The endocytic pathway receives cargo from the cell surface via endocytosis, biosynthetic cargo from the late Golgi complex, and various molecules from the cytoplasm via autophagy. This review focuses on the dynamics of the endocytic pathway in relationship to these processes and covers new information about the sorting events and molecular complexes involved. The following areas are discussed: dynamics at the plasma membrane, sorting within early endosomes and recycling to the cell surface, the role of the cytoskeleton, transport to late endosomes and sorting into multivesicular bodies, anterograde and retrograde Golgi transport, as well as the autophagic pathway.
Collapse
Affiliation(s)
- Naomi E Bishop
- School of Biological Sciences, University of Manchester, Manchester, Ml 3 9PT United Kingdom
| |
Collapse
|