301
|
Bittner AN, Foltz A, Oke V. Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. J Bacteriol 2006; 189:1884-9. [PMID: 17158666 PMCID: PMC1855696 DOI: 10.1128/jb.01542-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacterial species contain multiple copies of the genes that encode the chaperone GroEL and its cochaperone, GroES, including all of the fully sequenced root-nodulating bacteria that interact symbiotically with legumes to generate fixed nitrogen. In particular, in Sinorhizobium meliloti there are four groESL operons and one groEL gene. To uncover functional redundancies of these genes during growth and symbiosis, we attempted to construct strains containing all combinations of groEL mutations. Although a double groEL1 groEL2 mutant cannot be constructed, we demonstrate that the quadruple groEL1 groESL3 groEL4 groESL5 and groEL2 groESL3 groEL4 groESL5 mutants are viable. Therefore, like E. coli and other species, S. meliloti requires only one groEL gene for viability, and either groEL1 or groEL2 will suffice. The groEL1 groESL5 double mutant is more severely affected for growth at both 30 degrees C and 40 degrees C than the single mutants, suggesting overlapping functions in stress response. During symbiosis the quadruple groEL2 groESL3 groEL4 groESL5 mutant acts like the wild type, but the quadruple groEL1 groESL3 groEL4 groESL5 mutant acts like the groEL1 single mutant, which cannot fully induce nod gene expression and forms ineffective nodules. Therefore, the only groEL gene required for symbiosis is groEL1. However, we show that the other groE genes are expressed in the nodule at lower levels, suggesting minor roles during symbiosis. Combining our data with other data, we conclude that groESL1 encodes the housekeeping GroEL/GroES chaperone and that groESL5 is specialized for stress response.
Collapse
Affiliation(s)
- Alycia N Bittner
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
302
|
Alvarez-Venegas R, Sadder M, Tikhonov A, Avramova Z. Origin of the bacterial SET domain genes: vertical or horizontal? Mol Biol Evol 2006; 24:482-97. [PMID: 17148507 DOI: 10.1093/molbev/msl184] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The presence of Supressor of variegation-Enhanser of zeste-Trithorax (SET) domain genes in bacteria is a current paradigm for lateral genetic exchange between eukaryotes and prokaryotes. Because a major function of SET domain proteins is the chemical modification of chromatin and bacteria do not have chromatin, there is no apparent functional requirement for the existence of bacterial SET domain genes. Consequently, their finding in only a small fraction of pathogenic and symbiotic bacteria was taken as evidence that bacteria have obtained the SET domain genes from their hosts. Furthermore, it was proposed that the products of the genes would, most likely, be involved in bacteria-host interactions. The broadened scope of sequenced bacterial genomes to include also free-living and environmental species provided a larger sample to analyze the bacterial SET domain genes. By phylogenetic analysis, examination of individual chromosomal regions for signs of insertion, and evaluating the chromosomal versus SET domain genes' GC contents, we provide evidence that SET domain genes have existed in the bacterial domain of life independently of eukaryotes. The bacterial genes have undergone an evolution of their own unconnected to the evolution of the eukaryotic SET domain genes. Initial finding of SET domain genes in predominantly pathogenic and symbiotic bacteria resulted, most probably, from a biased sample. However, a lateral transfer of SET domain genes may have occurred between some bacteria and a family of Archaea. A model for the evolution and distribution of SET domain genes in bacteria is proposed.
Collapse
|
303
|
Townsend GE, Forsberg LS, Keating DH. Mesorhizobium loti produces nodPQ-dependent sulfated cell surface polysaccharides. J Bacteriol 2006; 188:8560-72. [PMID: 17028279 PMCID: PMC1698228 DOI: 10.1128/jb.01035-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 09/27/2006] [Indexed: 11/20/2022] Open
Abstract
Leguminous plants and bacteria from the family Rhizobiaceae form a symbiotic relationship, which culminates in novel plant structures called root nodules. The indeterminate symbiosis that forms between Sinorhizobium meliloti and alfalfa requires biosynthesis of Nod factor, a beta-1,4-linked lipochitooligosaccharide that contains an essential 6-O-sulfate modification. S. meliloti also produces sulfated cell surface polysaccharides, such as lipopolysaccharide (LPS). The physiological function of sulfated cell surface polysaccharides is unclear, although mutants of S. meliloti with reduced LPS sulfation exhibit symbiotic abnormalities. Using a bioinformatic approach, we identified a homolog of the S. meliloti carbohydrate sulfotransferase, LpsS, in Mesorhizobium loti. M. loti participates in a determinate symbiosis with the legume Lotus japonicus. We showed that M. loti produces sulfated forms of LPS and capsular polysaccharide (KPS). To investigate the physiological function of sulfated polysaccharides in M. loti, we identified and disabled an M. loti homolog of the sulfate-activating genes, nodPQ, which resulted in undetectable amounts of sulfated cell surface polysaccharides and a cysteine auxotrophy. We concomitantly disabled an M. loti cysH homolog, which disrupted cysteine biosynthesis without reducing cell surface polysaccharide sulfation. Our experiments demonstrated that the nodPQ mutant, but not the cysH mutant, showed an altered KPS structure and a diminished ability to elicit nodules on its host legume, Lotus japonicus. Interestingly, the nodPQ mutant also exhibited a more rapid growth rate and appeared to outcompete wild-type M. loti for nodule colonization. These results suggest that sulfated cell surface polysaccharides are required for optimum nodule formation but limit growth rate and nodule colonization in M. loti.
Collapse
Affiliation(s)
- Guy E Townsend
- Department of Microbiology and Immunology, Loyola University Chicago, Building 105, 2160 S. First Ave., Maywood, IL 60153, USA
| | | | | |
Collapse
|
304
|
Yuan B, Yokochi N, Yoshikane Y, Ohnishi K, Yagi T. Molecular cloning, identification and characterization of 2-methyl-3-hydroxypyridine-5-carboxylic-acid-dioxygenase-coding gene from the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. J Biosci Bioeng 2006; 102:504-10. [PMID: 17270714 DOI: 10.1263/jbb.102.504] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 08/24/2006] [Indexed: 11/17/2022]
Abstract
The gene (mlr6788) of a nitrogen-fixing symbiotic bacterium Mesorhizobium loti MAFF303099 has been identified as a gene coding for 2-methyl-3-hydroxypyridine-5-carboxylic acid dioxygenase (MHPCO), the seventh enzyme in degradation pathway I for pyridoxine, a free form of vitamin B(6). The gene was cloned and overexpressed in Escherichia coli cells co-transformed with chaperonin genes. The homogeneous recombinant enzyme showed similar enzymatic properties to the enzyme from Pseudomonas sp. MA-1. MHPCO was essential for the assimilation of pyridoxine in M. loti, but not for its growth in a nutrient-rich medium. From the infection experiment of a symbiotic plant Lotus japonicus with an M. loti mlr6788 gene disruptant, MHPCO was demonstrated to be dispensable for at least nodule formation on roots of seedlings in symbiosis.
Collapse
Affiliation(s)
- Baiqiang Yuan
- Department of Bioresources Science, Faculty of Agriculture, Nankoku, Kochi 783-8502, Japan
| | | | | | | | | |
Collapse
|
305
|
Kapatai G, Large A, Benesch JLP, Robinson CV, Carrascosa JL, Valpuesta JM, Gowrinathan P, Lund PA. All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable. Mol Microbiol 2006; 61:1583-97. [PMID: 16968228 DOI: 10.1111/j.1365-2958.2006.05324.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Hsp60 or chaperonin class of molecular chaperones is divided into two phylogenetic groups: group I, found in bacteria, mitochondria and chloroplasts, and group II, found in eukaryotic cytosol and archaea. Group I chaperonins are generally essential in bacteria, although when multiple copies are found one or more of these are dispensable. Eukaryotes contain eight genes for group II chaperonins, all of which are essential, and it has been shown that these proteins assemble into double-ring complexes with eightfold symmetry where all proteins occupy specific positions in the ring. In archaea, there are one, two or three genes for the group II chaperonins, but whether they are essential for growth is unknown. Here we describe a detailed genetic, structural and biochemical analysis of these proteins in the halophilic archaeon, Haloferax volcanii. This organism contains three genes for group II chaperonins, and we show that all are individually dispensable but at least one must be present for growth. Two of the three possible double mutants can be constructed, but only one of the three genes is capable of fully complementing the stress-dependent phenotypes that these double mutants show. The chaperonin complexes are made up of hetero-oligomers with eightfold symmetry, and the properties of the different combinations of subunits derived from the mutants are distinct. We conclude that, although they are more homologous to eukaryotic than prokaryotic chaperonins, archaeal chaperonins have some redundancy of function.
Collapse
Affiliation(s)
- Georgia Kapatai
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Crawford RL, Jung CM, Strap JL. The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 2006; 18:525-39. [PMID: 17123025 DOI: 10.1007/s10532-006-9090-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 10/26/2006] [Indexed: 11/27/2022]
Abstract
Man-made polychlorinated phenols such as pentachlorophenol (PCP) have been used extensively since the 1920s as preservatives to prevent fungal attack on wood. During this time, they have become serious environmental contaminants. Despite the recent introduction of PCP in the environment on an evolutionary time scale, PCP-degrading bacteria are present in soils worldwide. The initial enzyme in the PCP catabolic pathway of numerous sphingomonads, PCP-4-monooxygenase (PcpB), catalyzes the para-hydroxylation of PCP to tetrachlorohydroquinone and is encoded by the pcpB gene. This review examines the literature concerning pcpB and supports the suggestion that pcpB/PcpB should be considered a model system for the study of recent evolution of catabolic pathways among bacteria that degrade xenobiotic molecules introduced into the environment during the recent past.
Collapse
Affiliation(s)
- Ronald L Crawford
- Environmental Biotechnology Institute, Food Research Center 202, University of Idaho, Moscow, ID 83844-1052, USA.
| | | | | |
Collapse
|
307
|
Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, Poole PS, Finan TM. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci U S A 2006; 103:17933-8. [PMID: 17101990 PMCID: PMC1635973 DOI: 10.1073/pnas.0606673103] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The number of solute-binding protein-dependent transporters in rhizobia is dramatically increased compared with the majority of other bacteria so far sequenced. This increase may be due to the high affinity of solute-binding proteins for solutes, permitting the acquisition of a broad range of growth-limiting nutrients from soil and the rhizosphere. The transcriptional induction of these transporters was studied by creating a suite of plasmid and integrated fusions to nearly all ATP-binding cassette (ABC) and tripartite ATP-independent periplasmic (TRAP) transporters of Sinorhizobium meliloti. In total, specific inducers were identified for 76 transport systems, amounting to approximately 47% of the ABC uptake systems and 53% of the TRAP transporters in S. meliloti. Of these transport systems, 64 are previously uncharacterized in Rhizobia and 24 were induced by solutes not known to be transported by ABC- or TRAP-uptake systems in any organism. This study provides a global expression map of one of the largest transporter families (transportome) and an invaluable tool to both understand their solute specificity and the relationships between members of large paralogous families.
Collapse
Affiliation(s)
- T. H. Mauchline
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - J. E. Fowler
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - A. K. East
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - A. L. Sartor
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - R. Zaheer
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - A. H. F. Hosie
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - P. S. Poole
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
- To whom correspondence may be addressed. E-mail:
or
| | - T. M. Finan
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
308
|
Yang J, Sangwan I, O'brian MR. The Bradyrhizobium japonicum Fur protein is an iron-responsive regulator in vivo. Mol Genet Genomics 2006; 276:555-64. [PMID: 17039378 DOI: 10.1007/s00438-006-0162-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 08/29/2006] [Indexed: 11/27/2022]
Abstract
The Fur protein is a global regulator of iron metabolism in many bacterial species. However, Fur homologs from some rhizobia appear not to mediate iron-dependent gene expression in vivo. Here, transcriptional profiling analysis showed that more than one-fourth of the genes within the iron stimulon of Bradyrhizobium japonicum were aberrantly controlled by iron in a fur mutant. However, Fur has only a modest role in regulating iron transport genes. Quantitative real time reverse transcriptase PCR measurements confirmed abnormal gene expression in iron-limited cells of the fur strain, thereby demonstrating that Fur must function under those conditions. The findings show that B. japonicum Fur is involved in iron-dependent gene expression, and support the conclusion that rhizobial Fur proteins have novel functions compared with well studied model systems.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Biochemistry, State University of New York at Buffalo, 140 Farber Hall, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
309
|
MacLean AM, MacPherson G, Aneja P, Finan TM. Characterization of the beta-ketoadipate pathway in Sinorhizobium meliloti. Appl Environ Microbiol 2006; 72:5403-13. [PMID: 16885292 PMCID: PMC1538742 DOI: 10.1128/aem.00580-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aromatic compounds represent an important source of energy for soil-dwelling organisms. The beta-ketoadipate pathway is a key metabolic pathway involved in the catabolism of the aromatic compounds protocatechuate and catechol, and here we show through enzymatic analysis and mutant analysis that genes required for growth and catabolism of protocatechuate in the soil-dwelling bacterium Sinorhizobium meliloti are organized on the pSymB megaplasmid in two transcriptional units designated pcaDCHGB and pcaIJF. The pcaD promoter was mapped by primer extension, and expression from this promoter is demonstrated to be regulated by the LysR-type protein PcaQ. Beta-ketoadipate succinyl-coenzyme A (CoA) transferase activity in S. meliloti was shown to be encoded by SMb20587 and SMb20588, and these genes have been renamed pcaI and pcaJ, respectively. These genes are organized in an operon with a putative beta-ketoadipyl-CoA thiolase gene (pcaF), and expression of the pcaIJF operon is shown to be regulated by an IclR-type transcriptional regulator, SMb20586, which we have named pcaR. We show that pcaR transcription is negatively autoregulated and that PcaR is a positive regulator of pcaIJF expression and is required for growth of S. meliloti on protocatechuate as the carbon source. The characterization of the protocatechuate catabolic pathway in S. meliloti offers an opportunity for comparison with related species, including Agrobacterium tumefaciens. Differences observed between S. meliloti and A. tumefaciens pcaIJ offer the first evidence of pca genes that may have been acquired after speciation in these closely related species.
Collapse
Affiliation(s)
- Allyson M MacLean
- Centre for Enviromental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Ontario, Canada
| | | | | | | |
Collapse
|
310
|
Król JE, Mazur A, Marczak M, Skorupska A. Syntenic arrangements of the surface polysaccharide biosynthesis genes in Rhizobium leguminosarum. Genomics 2006; 89:237-47. [PMID: 17014983 DOI: 10.1016/j.ygeno.2006.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/29/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
We applied a genomic approach in the identification of genes required for the biosynthesis of different polysaccharides in Rhizobium leguminosarum bv. trifolii TA1 (RtTA1). Pulsed-field gel electrophoresis analyses of undigested genomic DNA revealed that the RtTA1 genome is partitioned into a chromosome and four large plasmids. The combination of sequencing of RtTA1 library BAC clones and PCR amplification of polysaccharide genes from the RtTA1 genome led to the identification of five large regions and clusters, as well as many separate potential polysaccharide biosynthesis genes dispersed in the genome. We observed an apparent abundance of genes possibly linked to lipopolysaccharide biosynthesis. All RtTA1 polysaccharide biosynthesis regions showed a high degree of conserved synteny between R. leguminosarum bv. viciae and/or Rhizobium etli. A majority of the genes displaying a conserved order also showed high sequence identity levels.
Collapse
Affiliation(s)
- Jarosław E Król
- Department of General Microbiology, Institute of Microbiology and Biotechnology, University of Maria Curie Skłodowska, 19 Akademicka Street, 20-033 Lublin, Poland
| | | | | | | |
Collapse
|
311
|
Miyazaki R, Sato Y, Ito M, Ohtsubo Y, Nagata Y, Tsuda M. Complete nucleotide sequence of an exogenously isolated plasmid, pLB1, involved in gamma-hexachlorocyclohexane degradation. Appl Environ Microbiol 2006; 72:6923-33. [PMID: 16963556 PMCID: PMC1636184 DOI: 10.1128/aem.01531-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alpha-proteobacterial strain Sphingobium japonicum UT26 utilizes a highly chlorinated pesticide, gamma-hexachlorocyclohexane (gamma-HCH), as a sole source of carbon and energy, and haloalkane dehalogenase LinB catalyzes the second step of gamma-HCH degradation in UT26. Functional complementation of a linB mutant of UT26, UT26DB, was performed by the exogenous plasmid isolation technique using HCH-contaminated soil, leading to our successful identification of a plasmid, pLB1, carrying the linB gene. Complete sequencing analysis of pLB1, with a size of 65,998 bp, revealed that it carries (i) 50 totally annotated coding sequences, (ii) an IS6100 composite transposon containing two copies of linB, and (iii) potential genes for replication, maintenance, and conjugative transfer with low levels of similarity to other homologues. A minireplicon assay demonstrated that a 2-kb region containing the predicted repA gene and its upstream region of pLB1 functions as an autonomously replicating unit in UT26. Furthermore, pLB1 was conjugally transferred from UT26DB to other alpha-proteobacterial strains but not to any of the beta- or gamma-proteobacterial strains examined to date. These results suggest that this exogenously isolated novel plasmid contributes to the dissemination of at least some genes for gamma-HCH degradation in the natural environment. To the best of our knowledge, this is the first detailed report of a plasmid involved in gamma-HCH degradation.
Collapse
Affiliation(s)
- Ryo Miyazaki
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan.
| | | | | | | | | | | |
Collapse
|
312
|
Nukui N, Minamisawa K, Ayabe SI, Aoki T. Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 2006; 72:4964-9. [PMID: 16820494 PMCID: PMC1489367 DOI: 10.1128/aem.02745-05] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many soil bacteria contain 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which degrades ACC, a precursor of the phytohormone ethylene. In order to examine the regulation of the acdS gene encoding ACC deaminase in Mesorhizobium loti MAFF303099 during symbiosis with the host legume Lotus japonicus, we introduced the beta-glucuronidase (GUS) gene into acdS so that GUS was expressed under control of the acdS promoter, and we also generated disruption mutants with mutations in a nitrogen fixation regulator gene, nifA. The histochemical GUS assay showed that there was exclusive expression of acdS in mature root nodules. Two homologous nifA genes, mll5857 and mll5837, were found in the symbiosis island of M. loti and were designated nifA1 and nifA2, respectively. Quantitative reverse transcription-PCR demonstrated that nifA2 disruption resulted in considerably diminished expression of acdS, nifH, and nifA1 in bacteroid cells. In contrast, nifA1 disruption slightly enhanced expression of the acdS transcripts and suppressed nifH to some extent. These results indicate that the acdS gene and other symbiotic genes are positively regulated by the NifA2 protein, but not by the NifA1 protein, in M. loti. The mode of gene expression suggests that M. loti acdS participates in the establishment and/or maintenance of mature nodules by interfering with the production of ethylene, which induces negative regulation of nodulation.
Collapse
Affiliation(s)
- Noriyuki Nukui
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa 252-8510, Japan.
| | | | | | | |
Collapse
|
313
|
Karunakaran R, Ebert K, Harvey S, Leonard ME, Ramachandran V, Poole PS. Thiamine is synthesized by a salvage pathway in Rhizobium leguminosarum bv. viciae strain 3841. J Bacteriol 2006; 188:6661-8. [PMID: 16952958 PMCID: PMC1595474 DOI: 10.1128/jb.00641-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/10/2006] [Indexed: 12/21/2022] Open
Abstract
In the absence of added thiamine, Rhizobium leguminosarum bv. viciae strain 3841 does not grow in liquid medium and forms only "pin" colonies on agar plates, which contrasts with the good growth of Sinorhizobium meliloti 1021, Mesorhizobium loti 303099, and Rhizobium etli CFN42. These last three organisms have thiCOGE genes, which are essential for de novo thiamine synthesis. While R. leguminosarum bv. viciae 3841 lacks thiCOGE, it does have thiMED. Mutation of thiM prevented formation of pin colonies on agar plates lacking added thiamine, suggesting thiamine intermediates are normally present. The putative functions of ThiM, ThiE, and ThiD are 4-methyl-5-(beta-hydroxyethyl) thiazole (THZ) kinase, thiamine phosphate pyrophosphorylase, and 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) kinase, respectively. This suggests that a salvage pathway operates in R. leguminosarum, and addition of HMP and THZ enabled growth at the same rate as that enabled by thiamine in strain 3841 but elicited no growth in the thiM mutant (RU2459). There is a putative thi box sequence immediately upstream of the thiM, and a gfp-mut3.1 fusion to it revealed the presence of a promoter that is strongly repressed by thiamine. Using fluorescent microscopy and quantitative reverse transcription-PCR, it was shown that thiM is expressed in the rhizosphere of vetch and pea plants, indicating limitation for thiamine. Pea plants infected by RU2459 were not impaired in nodulation or nitrogen fixation. However, colonization of the pea rhizosphere by the thiM mutant was impaired relative to that of the wild type. Overall, the results show that a thiamine salvage pathway operates to enable growth of Rhizobium leguminosarum in the rhizosphere, allowing its survival when thiamine is limiting.
Collapse
Affiliation(s)
- R Karunakaran
- School of Biological Sciences, University of Reading, Whiteknights, P.O. Box 228, Reading RG6 6AJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
314
|
Ohta T, Kawabata T, Nishikawa K, Tani A, Kimbara K, Kawai F. Analysis of amino acid residues involved in catalysis of polyethylene glycol dehydrogenase from Sphingopyxis terrae, using three-dimensional molecular modeling-based kinetic characterization of mutants. Appl Environ Microbiol 2006; 72:4388-96. [PMID: 16751555 PMCID: PMC1489635 DOI: 10.1128/aem.02174-05] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyethylene glycol dehydrogenase (PEGDH) from Sphingopyxis terrae (formerly Sphingomonas terrae) is composed of 535 amino acid residues and one flavin adenine dinucleotide per monomer protein in a homodimeric structure. Its amino acid sequence shows 28.5 to 30.5% identity with glucose oxidases from Aspergillus niger and Penicillium amagasakiense. The ADP-binding site and the signature 1 and 2 consensus sequences of glucose-methanol-choline oxidoreductases are present in PEGDH. Based on three-dimensional molecular modeling and kinetic characterization of wild-type PEGDH and mutant PEGDHs constructed by site-directed mutagenesis, residues potentially involved in catalysis and substrate binding were found in the vicinity of the flavin ring. The catalytically important active sites were assigned to His-467 and Asn-511. One disulfide bridge between Cys-379 and Cys-382 existed in PEGDH and seemed to play roles in both substrate binding and electron mediation. The Cys-297 mutant showed decreased activity, suggesting the residue's importance in both substrate binding and electron mediation, as well as Cys-379 and Cys-382. PEGDH also contains a motif of a ubiquinone-binding site, and coenzyme Q10 was utilized as an electron acceptor. Thus, we propose several important amino acid residues involved in the electron transfer pathway from the substrate to ubiquinone.
Collapse
Affiliation(s)
- Takeshi Ohta
- Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | | | | | | | | | | |
Collapse
|
315
|
Yost CK, Rath AM, Noel TC, Hynes MF. Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae. MICROBIOLOGY-SGM 2006; 152:2061-2074. [PMID: 16804181 DOI: 10.1099/mic.0.28938-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A genetic locus encoding erythritol uptake and catabolism genes was identified in Rhizobium leguminosarum bv. viciae, and shown to be plasmid encoded in a wide range of R. leguminosarum strains. A Tn5-B22 mutant (19B-3) unable to grow on erythritol was isolated from a mutant library of R. leguminosarum strain VF39SM. The mutated gene eryF was cloned and partially sequenced, and determined to have a high homology to permease genes of ABC transporters. A cosmid complementing the mutation (pCos42) was identified and was shown to carry all the genes necessary to restore the ability to grow on erythritol to a VF39SM strain cured of pRleVF39f. In the genomic DNA sequence of strain 3841, the gene linked to the mutation in 19B-3 is flanked by a cluster of genes with high homology to the known erythritol catabolic genes from Brucella spp. Through mutagenesis studies, three distinct operons on pCos42 that are required for growth on erythritol were identified: an ABC-transporter operon (eryEFG), a catabolic operon (eryABCD) and an operon (deoR-tpiA2-rpiB) that encodes a gene with significant homology to triosephosphate isomerase (tpiA2). These genes all share high sequence identity to genes in the erythritol catabolism region of Brucella spp., and clustalw alignments suggest that horizontal transfer of the erythritol locus may have occurred between R. leguminosarum and Brucella. Transcription of the eryABCD operon is repressed by EryD and is induced by the presence of erythritol. Mutant 19B-3 was impaired in its ability to compete against wild-type for nodulation of pea plants but was still capable of forming nitrogen-fixing nodules.
Collapse
Affiliation(s)
- Christopher K Yost
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Amber M Rath
- Department of Biology, University of Calgary, 2500 University Drive, Calgary, AB T2N 1N4, Canada
| | - Tanya C Noel
- Department of Biology, University of Calgary, 2500 University Drive, Calgary, AB T2N 1N4, Canada
| | - Michael F Hynes
- Department of Biology, University of Calgary, 2500 University Drive, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
316
|
Fox MA, White JP, Hosie AHF, Lodwig EM, Poole PS. Osmotic upshift transiently inhibits uptake via ABC transporters in gram-negative bacteria. J Bacteriol 2006; 188:5304-7. [PMID: 16816205 PMCID: PMC1539945 DOI: 10.1128/jb.00262-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP-binding cassette transporters from several rhizobia and Salmonella enterica serovar Typhimurium, but not secondarily coupled systems, were inhibited by high concentrations (100 to 500 mM) of various osmolytes, an effect reversed by the removal of the osmolyte. ABC systems were also inactivated in isolated pea bacteroids, probably due to the obligatory use of high-osmolarity isolation media. Measurement of nutrient cycling in isolated pea bacteroids is impeded by this effect.
Collapse
Affiliation(s)
- M A Fox
- School of Biological Sciences, University of Reading, Whiteknights, P.O. Box 228, Reading RG6 6AJ, United Kingdom.
| | | | | | | | | |
Collapse
|
317
|
Meyer D, Cunnac S, Guéneron M, Declercq C, Van Gijsegem F, Lauber E, Boucher C, Arlat M. PopF1 and PopF2, two proteins secreted by the type III protein secretion system of Ralstonia solanacearum, are translocators belonging to the HrpF/NopX family. J Bacteriol 2006; 188:4903-17. [PMID: 16788199 PMCID: PMC1483002 DOI: 10.1128/jb.00180-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia solanacearum GMI1000 is a gram-negative plant pathogen which contains an hrp gene cluster which codes for a type III protein secretion system (TTSS). We identified two novel Hrp-secreted proteins, called PopF1 and PopF2, which display similarity to one another and to putative TTSS translocators, HrpF and NopX, from Xanthomonas spp. and rhizobia, respectively. They also show similarities with TTSS translocators of the YopB family from animal-pathogenic bacteria. Both popF1 and popF2 belong to the HrpB regulon and are required for the interaction with plants, but PopF1 seems to play a more important role in virulence and hypersensitive response (HR) elicitation than PopF2 under our experimental conditions. PopF1 and PopF2 are not necessary for the secretion of effector proteins, but they are required for the translocation of AvrA avirulence protein into tobacco cells. We conclude that PopF1 and PopF2 are type III translocators belonging to the HrpF/NopX family. The hrpF gene of Xanthomonas campestris pv. campestris partially restored HR-inducing ability to popF1 popF2 mutants of R. solanacearum, suggesting that translocators of R. solanacearum and Xanthomonas are functionally conserved. Finally, R. solanacearum strain UW551, which does not belong to the same phylotype as GMI1000, also possesses two putative translocator proteins. However, although one of these proteins is clearly related to PopF1 and PopF2, the other seems to be different and related to NopX proteins, thus showing that translocators might be variable in R. solanacearum.
Collapse
Affiliation(s)
- Damien Meyer
- Laboratoire des Interactions Plantes-Microorganismes, INRA-CNRS, BP52627, 31326 Castanet tolosan Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
318
|
Stiens M, Schneiker S, Keller M, Kuhn S, Pühler A, Schlüter A. Sequence analysis of the 144-kilobase accessory plasmid pSmeSM11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol 2006; 72:3662-72. [PMID: 16672515 PMCID: PMC1472397 DOI: 10.1128/aem.72.5.3662-3672.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.
Collapse
Affiliation(s)
- M Stiens
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
319
|
Bittner AN, Oke V. Multiple groESL operons are not key targets of RpoH1 and RpoH2 in Sinorhizobium meliloti. J Bacteriol 2006; 188:3507-15. [PMID: 16672605 PMCID: PMC1482865 DOI: 10.1128/jb.188.10.3507-3515.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the rhizobia that establish nitrogen-fixing nodules on the roots of host plants, many contain multiple copies of genes encoding the sigma factor RpoH and the chaperone GroEL/GroES. In Sinorhizobium meliloti there are two rpoH genes, four groESL operons, and one groEL gene. rpoH1 mutants are defective for growth at high temperature and form ineffective nodules, rpoH1 rpoH2 double mutants are unable to form nodules, and groESL1 mutants form ineffective nodules. To explore the roles of RpoH1 and RpoH2, we identified mutants that suppress both the growth and nodulation defects. These mutants do not suppress the nitrogen fixation defect. This implies that the functions of RpoH1 during growth and RpoH1/RpoH2 during the initiation of symbiosis are similar but that there is a different function of RpoH1 needed later during symbiosis. We showed that, unlike in Escherichia coli, overexpression of groESL is not sufficient to bypass any of the RpoH defects. Under free-living conditions, we determined that RpoH2 does not control expression of the groE genes, and RpoH1 only controls expression of groESL5. Finally, we completed the series of groE mutants by constructing groESL3 and groEL4 mutants and demonstrated that they do not display symbiotic defects. Therefore, the only groESL operon required by itself for symbiosis is groESL1. Taken together, these results suggest that GroEL/GroES production alone cannot explain the requirements for RpoH1 and RpoH2 in S. meliloti and that there must be other crucial targets.
Collapse
Affiliation(s)
- Alycia N Bittner
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | |
Collapse
|
320
|
Schneider I, Queenan AM, Bauernfeind A. Novel carbapenem-hydrolyzing oxacillinase OXA-62 from Pandoraea pnomenusa. Antimicrob Agents Chemother 2006; 50:1330-5. [PMID: 16569848 PMCID: PMC1426949 DOI: 10.1128/aac.50.4.1330-1335.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pandoraea spp. are gram-negative, glucose nonfermenting rods detectable in blood cultures and sputa of cystic fibrosis patients. They are resistant to various antibiotic groups, with imipenem being the only active beta-lactam. We isolated an imipenem-resistant (MIC, 64 microg/ml) Pandoraea pnomenusa strain from a cystic fibrosis patient. Cloning and sequencing identified two beta-lactamases of Bush group 2d, namely, the known OXA-33, located on an integron, and the novel carbapenem-hydrolyzing oxacillinase OXA-62. OXA-62 is only distantly related to other oxacillinases (OXA-50 being closest with 43% amino acid identity). It hydrolyzes penicillins, oxacillin, imipenem, and meropenem but not expanded-spectrum cephalosporins. The blaOXA-62 gene is chromosome located. No transposable elements were found in its genetic neighborhood. With OXA-62-specific primers, blaOXA-62 could be identified in all P. pnomenusa strains and appears to be species specific. This additional mechanism of carbapenem resistance further complicates the treatment of infections caused by P. pnomenusa.
Collapse
Affiliation(s)
- Ines Schneider
- MICOER Institute, Hesseloherstrasse 4, 80802 Munich, Germany
| | | | | |
Collapse
|
321
|
Yuan ZC, Zaheer R, Morton R, Finan TM. Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res 2006; 34:2686-97. [PMID: 16717279 PMCID: PMC1464414 DOI: 10.1093/nar/gkl365] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In proteobacteria, genes whose expression is modulated in response to the external concentration of inorganic phosphate are often regulated by the PhoB protein which binds to a conserved motif (Pho box) within their promoter regions. Using a position weight matrix algorithm derived from known Pho box sequences, we identified 96 putative Pho regulon members whose promoter regions contained one or more Pho boxs in the Sinorhizobium meliloti genome. Expression of these genes was examined through assays of reporter gene fusions and through comparison with published microarray data. Of 96 genes, 31 were induced and 3 were repressed by Pi starvation in a PhoB dependent manner. Novel Pho regulon members included several genes of unknown function. Comparative analysis across 12 proteobacterial genomes revealed highly conserved Pho regulon members including genes involved in Pi metabolism (pstS, phnC and ppdK). Genes with no obvious association with Pi metabolism were predicted to be Pho regulon members in S.meliloti and multiple organisms. These included smc01605 and smc04317 which are annotated as substrate binding proteins of iron transporters and katA encoding catalase. This data suggests that the Pho regulon overlaps and interacts with several other control circuits, such as the oxidative stress response and iron homeostasis.
Collapse
Affiliation(s)
| | | | | | - Turlough M. Finan
- To whom correspondence should be addressed. Tel: +905 525 9140, ext. 22932; Fax: +905 522 6066;
| |
Collapse
|
322
|
Trainer MA, Charles TC. The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl Microbiol Biotechnol 2006; 71:377-86. [PMID: 16703322 DOI: 10.1007/s00253-006-0354-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 01/24/2006] [Accepted: 01/26/2006] [Indexed: 11/29/2022]
Abstract
The carbon storage polymer poly-beta-hydroxybutyrate (PHB) is a potential biodegradable alternative to plastics, which plays a key role in the cellular metabolism of many bacterial species. Most species of rhizobia synthesize PHB but not all species accumulate it during symbiosis with legumes; the reason for this remains unclear, although it was recently shown that a metabolic mutant of a nonaccumulating species retains the capacity to store PHB in symbiosis. Although the precise roles of PHB metabolism in these bacteria during infection, nodulation, and nitrogen fixation are not determined, the elucidation of these roles will influence our understanding of the metabolic nature of the symbiotic relationship. This review explores the progress that was made in determining the biochemistry and genetics of PHB metabolism. This includes the elucidation of the PHB cycle, variations in PHB metabolism among rhizobial species, and the implications of these variations, while proposing a model for the role of PHB metabolism and storage in symbiosis.
Collapse
Affiliation(s)
- Maria A Trainer
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|
323
|
Süss C, Hempel J, Zehner S, Krause A, Patschkowski T, Göttfert M. Identification of genistein-inducible and type III-secreted proteins of Bradyrhizobium japonicum. J Biotechnol 2006; 126:69-77. [PMID: 16707185 DOI: 10.1016/j.jbiotec.2006.03.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 02/07/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
Flagellin is the bulk protein secreted by Bradyrhizobium japonicum. For easier identification of minor protein fractions, the flagellin genes bll6865 and bll6866 were deleted. Extracellular proteins of the corresponding mutant were purified and separated by 2D gel electrophoresis. Several of the protein spots were detectable only after addition of genistein to the growth medium-genistein is an isoflavone secreted by soybean that activates the expression of genes encoding a type III secretion system. These secreted proteins were not present in supernatants of mutants in which conserved genes of the type III secretion system or the regulatory gene ttsI, which is essential for activation of the type III secretion system, are deleted. Out of 22 genistein-inducible protein spots 8 different proteins could be identified by mass spectrometry. One of the proteins, Blr1752, has similarity to NopP of Rhizobium sp. strain NGR234 that is known to be secreted. Another protein is Blr1656 (GunA2) that was shown previously to have endoglucanase activity. Three proteins have similarity to subunits of the flagellar apparatus. Some proteins appeared in several separate spots indicating posttranslational modification. A conserved tts box motif was found in the putative promoter region of six genes encoding secreted proteins.
Collapse
Affiliation(s)
- Christin Süss
- Institut für Genetik, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
324
|
Fieseler L, Quaiser A, Schleper C, Hentschel U. Analysis of the first genome fragment from the marine sponge-associated, novel candidate phylum Poribacteria by environmental genomics. Environ Microbiol 2006; 8:612-24. [PMID: 16584473 DOI: 10.1111/j.1462-2920.2005.00937.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The novel candidate phylum Poribacteria is specifically associated with several marine demosponge genera. Because no representatives of Poribacteria have been cultivated, an environmental genomic approach was used to gain insights into genomic properties and possibly physiological/functional features of this elusive candidate division. In a large-insert library harbouring an estimated 1.1 Gb of microbial community DNA from Aplysina aerophoba, a Poribacteria-positive 16S rRNA gene locus was identified. Sequencing and sequence annotation of the 39 kb size insert revealed 27 open reading frames (ORFs) and two genes for stable RNAs. The fragment exhibited an overall G+C content of 50.5% and a coding density of 86.1%. The 16S rRNA gene was unlinked from a conventional rrn operon. Its flanking regions did not show any synteny to other 16S rRNA encoding loci from microorganisms with unlinked rrn operons. Two of the predicted hypothetical proteins were highly similar to homologues from Rhodopirellula baltica. Furthermore, a novel kind of molybdenum containing oxidoreductase was predicted as well as a series of eight ORFs encoding for unusual transporters, channel or pore forming proteins. This environmental genomics approach provides, for the first time, genomic and, by inference, functional information on the so far uncultivated, sponge-associated candidate division Poribacteria.
Collapse
Affiliation(s)
- Lars Fieseler
- Zentrum für Infektionsforschung, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | |
Collapse
|
325
|
Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson ARJ, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 2006; 7:R34. [PMID: 16640791 PMCID: PMC1557990 DOI: 10.1186/gb-2006-7-4-r34] [Citation(s) in RCA: 368] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/20/2006] [Accepted: 03/22/2006] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Rhizobium leguminosarum is an alpha-proteobacterial N2-fixing symbiont of legumes that has been the subject of more than a thousand publications. Genes for the symbiotic interaction with plants are well studied, but the adaptations that allow survival and growth in the soil environment are poorly understood. We have sequenced the genome of R. leguminosarum biovar viciae strain 3841. RESULTS The 7.75 Mb genome comprises a circular chromosome and six circular plasmids, with 61% G+C overall. All three rRNA operons and 52 tRNA genes are on the chromosome; essential protein-encoding genes are largely chromosomal, but most functional classes occur on plasmids as well. Of the 7,263 protein-encoding genes, 2,056 had orthologs in each of three related genomes (Agrobacterium tumefaciens, Sinorhizobium meliloti, and Mesorhizobium loti), and these genes were over-represented in the chromosome and had above average G+C. Most supported the rRNA-based phylogeny, confirming A. tumefaciens to be the closest among these relatives, but 347 genes were incompatible with this phylogeny; these were scattered throughout the genome but were over-represented on the plasmids. An unexpectedly large number of genes were shared by all three rhizobia but were missing from A. tumefaciens. CONCLUSION Overall, the genome can be considered to have two main components: a 'core', which is higher in G+C, is mostly chromosomal, is shared with related organisms, and has a consistent phylogeny; and an 'accessory' component, which is sporadic in distribution, lower in G+C, and located on the plasmids and chromosomal islands. The accessory genome has a different nucleotide composition from the core despite a long history of coexistence.
Collapse
Affiliation(s)
| | - Lisa C Crossman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | | | - Nicholas R Thomson
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | | | | | - Margaret Wexler
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew RJ Curson
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Philip S Poole
- School of Biological Sciences, University of Reading, Reading, UK
| | - Tim H Mauchline
- School of Biological Sciences, University of Reading, Reading, UK
| | - Alison K East
- School of Biological Sciences, University of Reading, Reading, UK
| | - Michael A Quail
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Carol Churcher
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Claire Arrowsmith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Inna Cherevach
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Tracey Chillingworth
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Kay Clarke
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ann Cronin
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Paul Davis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Audrey Fraser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Zahra Hance
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Heidi Hauser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Kay Jagels
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Sharon Moule
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Karen Mungall
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Halina Norbertczak
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ester Rabbinowitsch
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Mandy Sanders
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Mark Simmonds
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Sally Whitehead
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| |
Collapse
|
326
|
Komeda H, Hariyama N, Asano Y. l-Stereoselective amino acid amidase with broad substrate specificity from Brevundimonas diminuta: characterization of a new member of the leucine aminopeptidase family. Appl Microbiol Biotechnol 2006; 70:412-21. [PMID: 16001251 DOI: 10.1007/s00253-005-0068-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 06/17/2005] [Accepted: 06/19/2005] [Indexed: 11/30/2022]
Abstract
Brevundimonas diminuta TPU 5720 produces an amidase acting L-stereoselectively on phenylalaninamide. The enzyme (LaaA(Bd)) was purified to electrophoretic homogeneity by ammonium sulfate fractionation and four steps of column chromatography. The final preparation gave a single band on SDS-PAGE with a molecular weight of approximately 53,000. The native molecular weight of the enzyme was about 288,000 based on gel filtration chromatography, suggesting that the enzyme is active as a homohexamer. It had maximal activity at 50 degrees C and pH 7.5. LaaA(Bd) lost its activity almost completely on dialysis against potassium phosphate buffer (pH 7.0), and the amidase activity was largely restored by the addition of Co(2+) ions. The enzyme was, however, inactivated in the presence of ethylenediaminetetraacetic acid even in the presence of Co(2+), suggesting that LaaA(Bd) is a Co(2+)-dependent enzyme. LaaA(Bd) had hydrolyzing activity toward a broad range of L-amino acid amides including L-phenylalaninamide, L-glutaminamide, L-leucinamide, L-methioninamide, L-argininamide, and L-2-aminobutyric acid amide. Using information on the N-terminal amino acid sequence of the enzyme, the gene encoding LaaA(Bd) was cloned from the chromosomal DNA of the strain and sequenced. Analysis of 4,446 bp of the cloned DNA revealed the presence of seven open-reading frames (ORFs), one of which (laaA ( Bd )) encodes the amidase. LaaA(Bd) is composed of 491 amino acid residues (calculated molecular weight 51,127), and the deduced amino acid sequence exhibits significant similarity to that of ORFs encoding hypothetical cytosol aminopeptidases found in the genomes of Caulobacter crescentus, Bradyrhizobium japonicum, Rhodopseudomonas palustris, Mesorhizobium loti, and Agrobacterium tumefaciens, and leucine aminopeptidases, PepA, from Rickettsia prowazekii, Pseudomonas putida ATCC 12633, and Escherichia coli K-12. The laaA ( Bd ) gene modified in the nucleotide sequence upstream from its start codon was overexpressed in an E. coli transformant. The activity of the recombinant LaaA(Bd) in cell-free extracts of the E. coli transformant was 25.9 units mg(-1) with L-phenylalaninamide as substrate, which was 50 times higher than that of B. diminuta TPU 5720.
Collapse
Affiliation(s)
- Hidenobu Komeda
- Biotechnology Research Center, Toyama Prefectural University, Kosugi, Japan
| | | | | |
Collapse
|
327
|
Prell J, Poole P. Metabolic changes of rhizobia in legume nodules. Trends Microbiol 2006; 14:161-8. [PMID: 16520035 DOI: 10.1016/j.tim.2006.02.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/06/2006] [Accepted: 02/21/2006] [Indexed: 12/01/2022]
Abstract
Bacteria have evolved a wide variety of metabolic strategies to cope with varied environments. Some are specialists and only able to survive in restricted environments; others are generalists and able to cope with diverse environmental conditions. Rhizobia (e.g. Rhizobium, Sinorhizobium, Bradyrhizobium, Mesorhizobium and Azorhizobium species) can survive and compete for nutrients in soil and the plant rhizosphere but can also form a beneficial symbiosis with legumes in a highly specialized plant cell environment. Inside the legume-root nodule, the bacteria (bacteroids) reduce dinitrogen to ammonium, which is secreted to the plant in exchange for a carbon and energy source. A new and challenging aspect of nodule physiology is that nitrogen fixation requires the cycling of amino acids between the bacteroid and plant. This review aims to summarize the metabolic plasticity of rhizobia and the importance of amino acid cycling.
Collapse
Affiliation(s)
- Juergen Prell
- School of Biological Sciences, University of Reading, UK, RG6 6AJ
| | | |
Collapse
|
328
|
Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K. Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnol Adv 2006; 24:382-8. [PMID: 16516430 DOI: 10.1016/j.biotechadv.2006.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bradyrhizobium elkanii produces rhizobitoxine, an enol-ether amino acid, which has been regarded as a phytotoxin because it causes chlorosis in soybeans. However, recent studies have revealed that rhizobitoxine plays a positive role in establishing symbiosis between B. elkanii and host legumes: rhizobitoxine enhances the nodulation process by inhibiting ACC (1-aminocyclopropane-1-carboxylate) synthase in the ethylene biosynthesis of host roots. B. elkanii rtxA and rtxC genes are required for rhizobitoxine production. In particular, rtxC gene is involved in the desaturation of dihydrorhizobitoxine into rhizobitoxine. A legume with a mutated ethylene receptor gene produced markedly higher numbers of rhizobial infection threads and nodule primordia. Thus, endogenous ethylene in legume roots negatively regulates the formation of nodule primordia, which is overcome by rhiozbitoxine. Although a plant pathogen Burkholderia andropogonis has been known to produce rhizobitoxine, the genome sequence of Xanthomonas oryzae showed the existence of a putative rhizobitoxine transposon in the genome. The cumulative evidence suggests that rhizobitoxine-producing bacteria modulate plant-microbe interactions via ethylene in the rhizosphere and phyllosphere environments. In addition, rhizobitoxine-producing capability might be utilized as tools in agriculture and biotechnology.
Collapse
Affiliation(s)
- Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
329
|
Wang C, Meek DJ, Panchal P, Boruvka N, Archibald FS, Driscoll BT, Charles TC. Isolation of poly-3-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants. Appl Environ Microbiol 2006; 72:384-91. [PMID: 16391068 PMCID: PMC1352230 DOI: 10.1128/aem.72.1.384-391.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to initiate investigation of the genetics of bacterial poly-3-hydroxybutyrate (PHB) metabolism at the community level. We constructed metagenome libraries from activated sludge and soil microbial communities in the broad-host-range IncP cosmid pRK7813. Several unique clones were isolated from these libraries by functional heterologous complementation of a Sinorhizobium meliloti bdhA mutant, which is unable to grow on the PHB cycle intermediate D-3-hydroxybutyrate due to absence of the enzyme D-3-hydroxybutyrate dehydrogenase activity. Clones that conferred D-3-hydroxybutyrate utilization on Escherichia coli were also isolated. Although many of the S. meliloti bdhA mutant complementing clones restored D-3-hydroxybutyrate dehydrogenase activity to the mutant host, for some of the clones this activity was not detectable. This was also the case for almost all of the clones isolated in the E. coli selection. Further analysis was carried out on clones isolated in the S. meliloti complementation. Transposon mutagenesis to locate the complementing genes, followed by DNA sequence analysis of three of the genes, revealed coding sequences that were broadly divergent but lay within the diversity of known short-chain dehydrogenase/reductase encoding genes. In some cases, the amino acid sequence identity between pairs of deduced BdhA proteins was <35%, a level at which detection by nucleic acid hybridization based methods would probably not be successful.
Collapse
Affiliation(s)
- Chunxia Wang
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| | | | | | | | | | | | | |
Collapse
|
330
|
Pimkin M, Miller CG, Blakesley L, Oleykowski CA, Kodali NS, Yeung AT. Characterization of a periplasmic S1-like nuclease coded by the Mesorhizobium loti symbiosis island. Biochem Biophys Res Commun 2006; 343:77-84. [PMID: 16529713 DOI: 10.1016/j.bbrc.2006.02.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 02/17/2006] [Indexed: 11/24/2022]
Abstract
DNA sequences encoding hypothetical proteins homologous to S1 nuclease from Aspergillus oryzae are found in many organisms including fungi, plants, pathogenic bacteria, and eukaryotic parasites. One of these is the M1 nuclease of Mesorhizobium loti which we demonstrate herein to be an enzymatically active, soluble, and stable S1 homolog that lacks the extensive mannosyl-glycosylation found in eukaryotic S1 nuclease homologs. We have expressed the cloned M1 protein in M. loti and purified recombinant native M1 to near homogeneity and have also isolated a homogeneous M1 carboxy-terminal hexahistidine tag fusion protein. Mass spectrometry and N-terminal Edman degradation sequencing confirmed the protein identity. The enzymatic properties of the purified M1 nuclease are similar to those of S1. At acidic pH M1 is 25 times more active on single-stranded DNA than on double-stranded DNA and 3 times more active on single-stranded DNA than on single-stranded RNA. At neutral pH the RNase activity of M1 exceeds the DNase activity. M1 nicks supercoiled RF-I plasmid DNA and rapidly cuts the phosphodiester bond across from the nick in the resultant relaxed RF-II plasmid DNA. Therefore, M1 represents an active bacterial S1 homolog in spite of great sequence divergence. The biochemical characterization of M1 nuclease supports our sequence alignment that reveals the minimal 21 amino acid residues that are necessarily conserved for the structure and functions of this enzyme family. The ability of M1 to degrade RNA at neutral pH implies previously unappreciated roles of these nucleases in biological systems.
Collapse
Affiliation(s)
- Maxim Pimkin
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
331
|
González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G. The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 2006; 103:3834-9. [PMID: 16505379 PMCID: PMC1383491 DOI: 10.1073/pnas.0508502103] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the complete 6,530,228-bp genome sequence of the symbiotic nitrogen fixing bacterium Rhizobium etli. Six large plasmids comprise one-third of the total genome size. The chromosome encodes most functions necessary for cell growth, whereas few essential genes or complete metabolic pathways are located in plasmids. Chromosomal synteny is disrupted by genes related to insertion sequences, phages, plasmids, and cell-surface components. Plasmids do not show synteny, and their orthologs are mostly shared by accessory replicons of species with multipartite genomes. Some nodulation genes are predicted to be functionally related with chromosomal loci encoding for the external envelope of the bacterium. Several pieces of evidence suggest an exogenous origin for the symbiotic plasmid (p42d) and p42a. Additional putative horizontal gene transfer events might have contributed to expand the adaptive repertoire of R. etli, because they include genes involved in small molecule metabolism, transport, and transcriptional regulation. Twenty-three putative sigma factors, numerous isozymes, and paralogous families attest to the metabolic redundancy and the genomic plasticity necessary to sustain the lifestyle of R. etli in symbiosis and in the soil.
Collapse
Affiliation(s)
- Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
- *To whom correspondence may be addressed. E-mail:
or
| | - Rosa I. Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Ismael Hernández-González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Arturo Medrano-Soto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Gabriel Moreno-Hagelsieb
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Sarath Chandra Janga
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Miguel A. Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Verónica Jiménez-Jacinto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Guillermo Dávila
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
332
|
Dairou J, Flatters D, Chaffotte AF, Pluvinage B, Sim E, Dupret JM, Rodrigues-Lima F. Insight into the structure ofMesorhizobium lotiarylamineN-acetyltransferase 2 (MLNAT2): A biochemical and computational study. FEBS Lett 2006; 580:1780-8. [PMID: 16513121 DOI: 10.1016/j.febslet.2006.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 02/14/2006] [Accepted: 02/15/2006] [Indexed: 11/23/2022]
Abstract
The arylamine N-acetyltransferases (NAT; EC 2.3.1.5) are xenobiotic-metabolizing enzymes (XME) that catalyze the transfer of an acetyl group from acetylCoA (Ac-CoA) to arylamine, hydrazines and their N-hydroxylated metabolites. Eukaryotes may have up to three NAT isoforms, but Mesorhizobium loti is the only prokaryote with two functional NAT isoforms (MLNAT1 and MLNAT2). The three-dimensional structure of MLNAT1 has been determined (Holton, S.J., Dairou, J., Sandy, J., Rodrigues-Lima, F., Dupret, J.M., Noble, M.E.M. and Sim, E. (2005) Structure of Mesorhizobium loti arylamine N-acetyltransferase 1. Acta Cryst, F61, 14-16). No MLNAT2 crystals have yet been produced, despite the production of sufficient quantities of pure protein. Using purified recombinant MLNAT1 and MLNAT2, we showed here that MLNAT1 was intrinsically more stable than MLNAT2. To test whether different structural features could explain these differences in intrinsic stability, we constructed a high-quality homology model for MLNAT2 based on far UV-CD data. Despite low levels of sequence identity with other prokaryotic NAT enzymes ( approximately 28% identity), this model suggests that MLNAT2 adopts the characteristic three-domain NAT fold. More importantly, molecular dynamics simulations on the structures of MLNAT1 and MLNAT2 suggested that MLNAT2 was less stable than MLNAT1 due to differences in amino-acid sequence/structure features in the alpha/beta lid domain.
Collapse
Affiliation(s)
- Julien Dairou
- Laboratoire de Cytophysiologie et Toxicologie Cellulaire (EA 1553), Université Paris 7 - Denis Diderot, 2 Place Jussieu, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
333
|
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 2006; 5:7. [PMID: 16483356 PMCID: PMC1403797 DOI: 10.1186/1475-2859-5-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 02/16/2006] [Indexed: 11/10/2022] Open
Abstract
Specific complex interactions between soil bacteria belonging to Rhizobium, Sinorhizobium, Mesorhizobium, Phylorhizobium, Bradyrhizobium and Azorhizobium commonly known as rhizobia, and their host leguminous plants result in development of root nodules. Nodules are new organs that consist mainly of plant cells infected with bacteroids that provide the host plant with fixed nitrogen. Proper nodule development requires the synthesis and perception of signal molecules such as lipochitooligosaccharides, called Nod factors that are important for induction of nodule development. Bacterial surface polysaccharides are also crucial for establishment of successful symbiosis with legumes. Sugar polymers of rhizobia are composed of a number of different polysaccharides, such as lipopolysaccharides (LPS), capsular polysaccharides (CPS or K-antigens), neutral β-1, 2-glucans and acidic extracellular polysaccharides (EPS). Despite extensive research, the molecular function of the surface polysaccharides in symbiosis remains unclear. This review focuses on exopolysaccharides that are especially important for the invasion that leads to formation of indetermined (with persistent meristem) type of nodules on legumes such as clover, vetch, peas or alfalfa. The significance of EPS synthesis in symbiotic interactions of Rhizobium leguminosarum with clover is especially noticed. Accumulating data suggest that exopolysaccharides may be involved in invasion and nodule development, bacterial release from infection threads, bacteroid development, suppression of plant defense response and protection against plant antimicrobial compounds. Rhizobial exopolysaccharides are species-specific heteropolysaccharide polymers composed of common sugars that are substituted with non-carbohydrate residues. Synthesis of repeating units of exopolysaccharide, their modification, polymerization and export to the cell surface is controlled by clusters of genes, named exo/exs, exp or pss that are localized on rhizobial megaplasmids or chromosome. The function of these genes was identified by isolation and characterization of several mutants disabled in exopolysaccharide synthesis. The effect of exopolysaccharide deficiency on nodule development has been extensively studied. Production of exopolysaccharides is influenced by a complex network of environmental factors such as phosphate, nitrogen or sulphur. There is a strong suggestion that production of a variety of symbiotically active polysaccharides may allow rhizobial strains to adapt to changing environmental conditions and interact efficiently with legumes.
Collapse
Affiliation(s)
- Anna Skorupska
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Monika Janczarek
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Małgorzata Marczak
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Andrzej Mazur
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Jarosław Król
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| |
Collapse
|
334
|
Kang YB, Yang YH, Lee KW, Lee SG, Sohng JK, Lee HC, Liou K, Kim BG. Preparative synthesis of dTDP-L-rhamnose through combined enzymatic pathways. Biotechnol Bioeng 2006; 93:21-7. [PMID: 16276532 DOI: 10.1002/bit.20648] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
dTDP-L-rhamnose, an important precursor of O-antigen, was prepared on a large scale from dTMP by executing an one-pot reaction in which six enzymes are involved. Two enzymes, dTDP-4-keto-6-deoxy-D-glucose 3,5-epimerase and dTDP-4-keto-rhamnose reductase, responsible for the conversion of dTDP-4-keto-6-deoxy-D-glucose to dTDP-L-rhamnose, were isolated from their putative sequences in the genome of Mesorhizobium loti, functionally expressed in Escherichia coli, and their enzymatic activities were identified. The two enzymes were combined with an enzymatic process for dTDP-4-keto-6-deoxy-D-glucose involving TMP kinase, acetate kinase, dTDP-glucose synthase, and dTDP-glucose 4,6-dehydratase, which allowed us to achieve a preparative scale synthesis of dTDP-L-rhamnose using dTMP and glucose-1-phosphate as starting materials. About 82% yield of dTDP-L-rhamnose was obtained based on initial dTMP concentration at 20 mM dTMP, 1 mM ATP, 10 mM NADH, 60 mM acetyl phosphate, and 80 mM glucose-1-phosphate. From the reaction with 20 ml volume, approximately 180 mg of dTDP-L-rhamnose was obtained in an overall yield of 60% after two-step purification, that is, anion exchange chromatography and gel filtration for desalting. The purified product was identified by HPLC, ESI-MS, and NMR, showing about 95% purity.
Collapse
Affiliation(s)
- Young-Bok Kang
- School of Chemical and Biological Engineering, Seoul National University, Korea
| | | | | | | | | | | | | | | |
Collapse
|
335
|
Wiezer A, Merkl R. A comparative categorization of gene flux in diverse microbial species. Genomics 2006; 86:462-75. [PMID: 16026964 DOI: 10.1016/j.ygeno.2005.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 05/25/2005] [Accepted: 05/25/2005] [Indexed: 12/18/2022]
Abstract
Microbial genomes harbor genomic islands (GIs), genes presumably acquired via horizontal gene transfer (HGT). We compared GIs of hyperthermophilic, thermophilic, mesophilic, and pathogenic/nonpathogenic species and of small and large genomes. The COG database was used to characterize gene-encoded functions. Putative donors were determined to quantify gene flux between superkingdoms. In hyperthermophiles, more than 10% of the genes were on average acquired across the superkingdom border. For thermophiles and particularly mesophiles, we identified a nearly unidirectional export from bacteria to archaea. Additionally, we analyzed GI composition for Escherichia, and pairs of Listeria, Rhizobiales, Methanosarcinaceae, and Thermus thermophilus/Deinococcus radiodurans. For Escherichia and Listeria, the composition of GIs in pathogenic and nonpathogenic species did not differ significantly with respect to encoded COG classes. The analysis of related genomes showed that the composition of GIs cannot be explained with trends of gene content known to depend on genome size.
Collapse
Affiliation(s)
- Arnim Wiezer
- Göttingen Genomics Laboratory, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | |
Collapse
|
336
|
Delgado MJ, Tresierra-Ayala A, Talbi C, Bedmar EJ. Functional characterization of the Bradyrhizobium japonicum modA and modB genes involved in molybdenum transport. MICROBIOLOGY (READING, ENGLAND) 2006; 152:199-207. [PMID: 16385130 DOI: 10.1099/mic.0.28347-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A modABC gene cluster that encodes an ABC-type, high-affinity molybdate transporter from Bradyrhizobium japonicum has been isolated and characterized. B. japonicum modA and modB mutant strains were unable to grow aerobically or anaerobically with nitrate as nitrogen source or as respiratory substrate, respectively, and lacked nitrate reductase activity. The nitrogen-fixing ability of the mod mutants in symbiotic association with soybean plants grown in a Mo-deficient mineral solution was severely impaired. Addition of molybdate to the bacterial growth medium or to the plant mineral solution fully restored the wild-type phenotype. Because the amount of molybdate required for suppression of the mutant phenotype either under free-living or under symbiotic conditions was dependent on sulphate concentration, it is likely that a sulphate transporter is also involved in Mo uptake in B. japonicum. The promoter region of the modABC genes has been characterized by primer extension. Reverse transcription and expression of a transcriptional fusion, P(modA)-lacZ, was detected only in a B. japonicum modA mutant grown in a medium without molybdate supplementation. These findings indicate that transcription of the B. japonicum modABC genes is repressed by molybdate.
Collapse
Affiliation(s)
- María J Delgado
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, PO Box 419, 18080 Granada, Spain
| | - Alvaro Tresierra-Ayala
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, PO Box 419, 18080 Granada, Spain
| | - Chouhra Talbi
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, PO Box 419, 18080 Granada, Spain
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, PO Box 419, 18080 Granada, Spain
| |
Collapse
|
337
|
Casabuono AC, D'Antuono A, Sato Y, Nonami H, Ugalde R, Lepek V, Erra-Balsells R, Couto AS. A matrix-assisted laser desorption/ionization mass spectrometry approach to the lipid A from Mesorhizobium loti. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:2175-82. [PMID: 16779872 DOI: 10.1002/rcm.2575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The isolation, purification and analysis of the lipid A obtained from Mesorhizobium loti Ayac 1 BII strain is presented. Analysis of the carbohydrate moiety after acid hydrolysis by high-pH anion-exchange chromatography with pulse amperometric detection (HPAEC-PAD) showed the presence of glucosamine and galacturonic acid as the only sugar components. Gas chromatographic (GC) and GC/mass spectrometric (MS) analysis of the fatty acids revealed the presence of 3-OH-C12:0; 3-OH-C13:0; 3-OH-C20:0 and 27-OH-C28:0 among the major hydroxylated species. In addition, C16:0, C17:0, C18:0 and C 20:0 were shown as main saturated fatty acids. Different polyacylated species were evidenced by thin layer chromatography of lipid A, allowing the purification of two fractions. Ultraviolet matrix-assisted laser desorption/ionization time-of-flight (UV-MALDI-TOF) MS analysis with different matrices, in the positive- and negative-ion mode, was performed. The fast moving component revealed the presence of hexa-acylated species, varying in the fatty acid composition. Species containing three 3-OH fatty acids and a 27-OH-C28:0 fatty acid were observed. Individual ions within this family differ by +/-14 mass units. The slow moving component was enriched mainly in penta-acylated species. Among them, three subgroups were detected: the major one compatible with the sugar core bearing two 3-OH 20:0 fatty acids, a 3-OH 13:0 or a 3-OH 12:0 fatty acid, a 27-OH 28:0 fatty acid and one saturated fatty acid. Each signal differs in a C18:0 acyl unit from the corresponding hexa-acylated family. On the other hand, a subgroup bearing one 3-OH 20:0 fatty acid, one 27-OH 28:0 fatty acid and two non-polar fatty acids was shown. A minor subgroup compatible with structures containing two hydroxylated and three non-polar fatty acids was also detected. The results obtained showed that nor-harmane was an excellent matrix for charged lipid A structural studies in both, positive and negative ion modes.
Collapse
Affiliation(s)
- Adriana C Casabuono
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
338
|
Sameshima-Saito R, Chiba K, Minamisawa K. Correlation of Denitrifying Capability with the Existence of nap, nir, nor and nos Genes in Diverse Strains of Soybean Bradyrhizobia. Microbes Environ 2006. [DOI: 10.1264/jsme2.21.174] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Kaori Chiba
- Graduate School of Life Sciences, Tohoku University
| | | |
Collapse
|
339
|
Skorpil P, Broughton WJ. Molecular interactions between Rhizobium and legumes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 41:143-64. [PMID: 16623393 DOI: 10.1007/3-540-28221-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Peter Skorpil
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, Université de Genève, 1212 Genève 4, Switzerland
| | | |
Collapse
|
340
|
Skorpil P, Saad MM, Boukli NM, Kobayashi H, Ares-Orpel F, Broughton WJ, Deakin WJ. NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol Microbiol 2005; 57:1304-17. [PMID: 16102002 DOI: 10.1111/j.1365-2958.2005.04768.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rhizobium sp. NGR234 nodulates many plants, some of which react to proteins secreted via a type three secretion system (T3SS) in a positive- (Flemingia congesta, Tephrosia vogelii) or negative- (Crotalaria juncea, Pachyrhizus tuberosus) manner. T3SSs are devices that Gram-negative bacteria use to inject effector proteins into the cytoplasm of eukaryotic cells. The only two rhizobial T3SS effector proteins characterized to date are NopL and NopP of NGR234. NopL can be phosphorylated by plant kinases and we show this to be true for NopP as well. Mutation of nopP leads to a dramatic reduction in nodule numbers on F. congesta and T. vogelii. Concomitant mutation of nopL and nopP further diminishes nodulation capacity to levels that, on T. vogelii, are lower than those produced by the T3SS null mutant NGR(Omega)rhcN. We also show that the T3SS of NGR234 secretes at least one additional effector, which remains to be identified. In other words, NGR234 secretes a cocktail of effectors, some of which have positive effects on nodulation of certain plants while others are perceived negatively and block nodulation. NopL and NopP are two components of this mix that extend the ability of NGR234 to nodulate certain legumes.
Collapse
Affiliation(s)
- Peter Skorpil
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, Université de Genève, 30 quai Ernest-Ansermet, 1211, Genève 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
341
|
Tittabutr P, Payakapong W, Teaumroong N, Boonkerd N, Singleton PW, Borthakur D. A histidine kinase sensor protein gene is necessary for induction of low pH tolerance in Sinorhizobium sp. strain BL3. Antonie van Leeuwenhoek 2005; 89:125-34. [PMID: 16341462 DOI: 10.1007/s10482-005-9015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
The aim of this investigation was to identify and isolate genes involved in acid tolerance from Sinorhizobium sp. strain BL3. It was hypothesized that acid tolerance of strain BL3 could be enhanced by high level expression of certain genes involved in acid tolerance, following insertion of these genes in a multiple copy plasmid. A cosmid clone library of BL3 was introduced into BL3, and the transconjugant colonies were selected at low pH. A single cosmid containing genes for acid tolerance was isolated from 40 different colonies. By transposon-insertion mutagenesis, subcloning and DNA sequencing, a gene involved in acid tolerance, actX, was identified in a 4.4-kb fragment of this cosmid. The actX mutant of BL3 showed increased acid sensitivity and was complemented by the 4.4-kb subcloned fragment. Phaseolus lathyroides seedlings inoculated with recombinant strains containing multiple copies of actX showed increased symbiotic performance at low pH. By constructing an actX::gus fusion, it was shown that actX was induced at low pH. actX encodes a putative histidine kinase sensor protein of a two-component regulatory system. The method of gene identification used in this study for isolation of actX may be applied for the isolation of other genes involved in tolerance to adverse environmental factors.
Collapse
Affiliation(s)
- Panlada Tittabutr
- School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | | | | | | |
Collapse
|
342
|
|
343
|
Takeuchi F, Watanabe S, Baba T, Yuzawa H, Ito T, Morimoto Y, Kuroda M, Cui L, Takahashi M, Ankai A, Baba SI, Fukui S, Lee JC, Hiramatsu K. Whole-genome sequencing of staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 2005; 187:7292-308. [PMID: 16237012 PMCID: PMC1272970 DOI: 10.1128/jb.187.21.7292-7308.2005] [Citation(s) in RCA: 247] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus haemolyticus is an opportunistic bacterial pathogen that colonizes human skin and is remarkable for its highly antibiotic-resistant phenotype. We determined the complete genome sequence of S.haemolyticus to better understand its pathogenicity and evolutionary relatedness to the other staphylococcal species. A large proportion of the open reading frames in the genomes of S.haemolyticus, Staphylococcus aureus, and Staphylococcus epidermidis were conserved in their sequence and order on the chromosome. We identified a region of the bacterial chromosome just downstream of the origin of replication that showed little homology among the species but was conserved among strains within a species. This novel region, designated the "oriC environ," likely contributes to the evolution and differentiation of the staphylococcal species, since it was enriched for species-specific nonessential genes that contribute to the biological features of each staphylococcal species. A comparative analysis of the genomes of S.haemolyticus, S.aureus, and S.epidermidis elucidated differences in their biological and genetic characteristics and pathogenic potentials. We identified as many as 82 insertion sequences in the S.haemolyticus chromosome that probably mediated frequent genomic rearrangements, resulting in phenotypic diversification of the strain. Such rearrangements could have brought genomic plasticity to this species and contributed to its acquisition of antibiotic resistance.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Microbiology and Infection Control Science, Juntendo University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
344
|
Flores M, Morales L, Avila A, González V, Bustos P, García D, Mora Y, Guo X, Collado-Vides J, Piñero D, Dávila G, Mora J, Palacios R. Diversification of DNA sequences in the symbiotic genome of Rhizobium etli. J Bacteriol 2005; 187:7185-92. [PMID: 16237002 PMCID: PMC1272992 DOI: 10.1128/jb.187.21.7185-7192.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the genus Rhizobium and related genera establish nitrogen-fixing symbioses with the roots of leguminous plants. The genetic elements that participate in the symbiotic process are usually compartmentalized in the genome, either as independent replicons (symbiotic plasmids) or as symbiotic regions or islands in the chromosome. The complete nucleotide sequence of the symbiotic plasmid of Rhizobium etli model strain CFN42, symbiont of the common bean plant, has been reported. To better understand the basis of DNA sequence diversification of this symbiotic compartment, we analyzed the distribution of single-nucleotide polymorphisms in homologous regions from different Rhizobium etli strains. The distribution of polymorphisms is highly asymmetric in each of the different strains, alternating regions containing very few changes with regions harboring an elevated number of substitutions. The regions showing high polymorphism do not correspond with discrete genetic elements and are not the same in the different strains, indicating that they are not hypervariable regions of functional genes. Most interesting, some highly polymorphic regions share exactly the same nucleotide substitutions in more than one strain. Furthermore, in different regions of the symbiotic compartment, different sets of strains share the same substitutions. The data indicate that the majority of nucleotide substitutions are spread in the population by recombination and that the contribution of new mutations to polymorphism is relatively low. We propose that the horizontal transfer of homologous DNA segments among closely related organisms is a major source of genomic diversification.
Collapse
Affiliation(s)
- Margarita Flores
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, México
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
345
|
Izquierdo J, Venkova-Canova T, Ramírez-Romero MA, Téllez-Sosa J, Hernández-Lucas I, Sanjuan J, Cevallos MA. An antisense RNA plays a central role in the replication control of a repC plasmid. Plasmid 2005; 54:259-77. [PMID: 16005966 DOI: 10.1016/j.plasmid.2005.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 05/17/2005] [Accepted: 05/17/2005] [Indexed: 11/23/2022]
Abstract
The widespread replicons of repABC and repC families from alpha-proteobacteria share high similarity in their replication initiator proteins (RepC). Here we describe the minimal region required for stable replication of a member of the repC family, the low copy-number plasmid pRmeGR4a from Sinorizobium meliloti GR4. This region contains only two genes: one encoding the initiator protein RepC (46.8 kDa) and other, an antisense RNA (67 nt). Mapping of transcriptional start sites and promoter regions of both genes showed that the antisense RNA is nested within the repC mRNA leader. The constitutively expressed countertranscribed RNA (ctRNA) forms a single stem-loop structure that acts as an intrinsic rho-independent terminator. The ctRNA is a strong trans-incompatibility factor and negative regulator of repC expression. Based on structural and functional similarities between members of the repC and repABC families we propose a model of their evolutionary relationship.
Collapse
MESH Headings
- Amino Acid Sequence
- Conjugation, Genetic
- DNA Replication
- DNA, Bacterial
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Glucuronidase/analysis
- Glucuronidase/metabolism
- Molecular Sequence Data
- Molecular Weight
- Mutagenesis, Site-Directed
- Phylogeny
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA, Antisense/genetics
- RNA, Antisense/physiology
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Messenger/genetics
- Replicon
- Rhizobium etli/genetics
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Javier Izquierdo
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | |
Collapse
|
346
|
Takeuchi F, Watanabe S, Baba T, Yuzawa H, Ito T, Morimoto Y, Kuroda M, Cui L, Takahashi M, Ankai A, Baba SI, Fukui S, Lee JC, Hiramatsu K. Whole-genome sequencing of staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 2005; 187:7292-7308. [PMID: 16237012 PMCID: PMC1272970 DOI: 10.1128/jb.187.21.7292-7308.2005%0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 08/04/2005] [Indexed: 11/19/2023] Open
Abstract
Staphylococcus haemolyticus is an opportunistic bacterial pathogen that colonizes human skin and is remarkable for its highly antibiotic-resistant phenotype. We determined the complete genome sequence of S.haemolyticus to better understand its pathogenicity and evolutionary relatedness to the other staphylococcal species. A large proportion of the open reading frames in the genomes of S.haemolyticus, Staphylococcus aureus, and Staphylococcus epidermidis were conserved in their sequence and order on the chromosome. We identified a region of the bacterial chromosome just downstream of the origin of replication that showed little homology among the species but was conserved among strains within a species. This novel region, designated the "oriC environ," likely contributes to the evolution and differentiation of the staphylococcal species, since it was enriched for species-specific nonessential genes that contribute to the biological features of each staphylococcal species. A comparative analysis of the genomes of S.haemolyticus, S.aureus, and S.epidermidis elucidated differences in their biological and genetic characteristics and pathogenic potentials. We identified as many as 82 insertion sequences in the S.haemolyticus chromosome that probably mediated frequent genomic rearrangements, resulting in phenotypic diversification of the strain. Such rearrangements could have brought genomic plasticity to this species and contributed to its acquisition of antibiotic resistance.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Microbiology and Infection Control Science, Juntendo University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Sato Y, Monincová M, Chaloupková R, Prokop Z, Ohtsubo Y, Minamisawa K, Tsuda M, Damborsky J, Nagata Y. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, encode haloalkane dehalogenases with novel structures and substrate specificities. Appl Environ Microbiol 2005; 71:4372-9. [PMID: 16085827 PMCID: PMC1183339 DOI: 10.1128/aem.71.8.4372-4379.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haloalkane dehalogenases are key enzymes for the degradation of halogenated aliphatic pollutants. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, have open reading frames (ORFs), mlr5434 and blr1087, respectively, that encode putative haloalkane dehalogenase homologues. The crude extracts of Escherichia coli strains expressing mlr5434 and blr1087 showed the ability to dehalogenate 18 halogenated compounds, indicating that these ORFs indeed encode haloalkane dehalogenases. Therefore, these ORFs were referred to as dmlA (dehalogenase from Mesorhizobium loti) and dbjA (dehalogenase from Bradyrhizobium japonicum), respectively. The principal component analysis of the substrate specificities of various haloalkane dehalogenases clearly showed that DbjA and DmlA constitute a novel substrate specificity class with extraordinarily high activity towards beta-methylated compounds. Comparison of the circular dichroism spectra of DbjA and other dehalogenases strongly suggested that DbjA contains more alpha-helices than the other dehalogenases. The dehalogenase activity of resting cells and Northern blot analyses both revealed that the dmlA and dbjA genes were expressed under normal culture conditions in MAFF303099 and USDA110 strain cells, respectively.
Collapse
Affiliation(s)
- Yukari Sato
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Itaya M, Tsuge K, Koizumi M, Fujita K. Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc Natl Acad Sci U S A 2005; 102:15971-6. [PMID: 16236728 PMCID: PMC1276048 DOI: 10.1073/pnas.0503868102] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cloning the whole 3.5-megabase (Mb) genome of the photosynthetic bacterium Synechocystis PCC6803 into the 4.2-Mb genome of the mesophilic bacterium Bacillus subtilis 168 resulted in a 7.7-Mb composite genome. We succeeded in such unprecedented large-size cloning by progressively assembling and editing contiguous DNA regions that cover the entire Synechocystis genome. The strain containing the two sets of genome grew only in the B. subtilis culture medium where all of the cloning procedures were carried out. The high structural stability of the cloned Synechocystis genome was closely associated with the symmetry of the bacterial genome structure of the DNA replication origin (oriC) and its termination (terC) and the exclusivity of Synechocystis ribosomal RNA operon genes (rrnA and rrnB). Given the significant diversity in genome structure observed upon horizontal DNA transfer in nature, our stable laboratory-generated composite genome raised fundamental questions concerning two complete genomes in one cell. Our megasize DNA cloning method, designated megacloning, may be generally applicable to other genomes or genome loci of free-living organisms.
Collapse
Affiliation(s)
- Mitsuhiro Itaya
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194-8511, Japan.
| | | | | | | |
Collapse
|
349
|
Guerrero G, Peralta H, Aguilar A, Díaz R, Villalobos MA, Medrano-Soto A, Mora J. Evolutionary, structural and functional relationships revealed by comparative analysis of syntenic genes in Rhizobiales. BMC Evol Biol 2005; 5:55. [PMID: 16229745 PMCID: PMC1276791 DOI: 10.1186/1471-2148-5-55] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/17/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative genomics has provided valuable insights into the nature of gene sequence variation and chromosomal organization of closely related bacterial species. However, questions about the biological significance of gene order conservation, or synteny, remain open. Moreover, few comprehensive studies have been reported for rhizobial genomes. RESULTS We analyzed the genomic sequences of four fast growing Rhizobiales (Sinorhizobium meliloti, Agrobacterium tumefaciens, Mesorhizobium loti and Brucella melitensis). We made a comprehensive gene classification to define chromosomal orthologs, genes with homologs in other replicons such as plasmids, and those which were species-specific. About two thousand genes were predicted to be orthologs in each chromosome and about 80% of these were syntenic. A striking gene colinearity was found in pairs of organisms and a large fraction of the microsyntenic regions and operons were similar. Syntenic products showed higher identity levels than non-syntenic ones, suggesting a resistance to sequence variation due to functional constraints; also, an unusually high fraction of syntenic products contained membranal segments. Syntenic genes encode a high proportion of essential cell functions, presented a high level of functional relationships and a very low horizontal gene transfer rate. The sequence variability of the proteins can be considered the species signature in response to specific niche adaptation. Comparatively, an analysis with genomes of Enterobacteriales showed a different gene organization but gave similar results in the synteny conservation, essential role of syntenic genes and higher functional linkage among the genes of the microsyntenic regions. CONCLUSION Syntenic bacterial genes represent a commonly evolved group. They not only reveal the core chromosomal segments present in the last common ancestor and determine the metabolic characteristics shared by these microorganisms, but also show resistance to sequence variation and rearrangement, possibly due to their essential character. In Rhizobiales and Enterobacteriales, syntenic genes encode a high proportion of essential cell functions and presented a high level of functional relationships.
Collapse
Affiliation(s)
- Gabriela Guerrero
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Humberto Peralta
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Alejandro Aguilar
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Rafael Díaz
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Miguel Angel Villalobos
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Arturo Medrano-Soto
- Program of Computational Genomics, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Jaime Mora
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| |
Collapse
|
350
|
Reva ON, Tümmler B. Differentiation of regions with atypical oligonucleotide composition in bacterial genomes. BMC Bioinformatics 2005; 6:251. [PMID: 16225667 PMCID: PMC1274298 DOI: 10.1186/1471-2105-6-251] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 10/14/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Complete sequencing of bacterial genomes has become a common technique of present day microbiology. Thereafter, data mining in the complete sequence is an essential step. New in silico methods are needed that rapidly identify the major features of genome organization and facilitate the prediction of the functional class of ORFs. We tested the usefulness of local oligonucleotide usage (OU) patterns to recognize and differentiate types of atypical oligonucleotide composition in DNA sequences of bacterial genomes. RESULTS A total of 163 bacterial genomes of eubacteria and archaea published in the NCBI database were analyzed. Local OU patterns exhibit substantial intrachromosomal variation in bacteria. Loci with alternative OU patterns were parts of horizontally acquired gene islands or ancient regions such as genes for ribosomal proteins and RNAs. OU statistical parameters, such as local pattern deviation (D), pattern skew (PS) and OU variance (OUV) enabled the detection and visualization of gene islands of different functional classes. CONCLUSION A set of approaches has been designed for the statistical analysis of nucleotide sequences of bacterial genomes. These methods are useful for the visualization and differentiation of regions with atypical oligonucleotide composition prior to or accompanying gene annotation.
Collapse
Affiliation(s)
- Oleg N Reva
- Klinische Forschergruppe, OE6711, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
- Danylo Zabolotny Institute of Microbiology and Virology of the National Academy of Science of Ukraine, Dep. of Antibiotics, 154 Zabolotnogo Str., D03680, Kyiv GSP, Ukraine
| | - Burkhard Tümmler
- Klinische Forschergruppe, OE6711, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| |
Collapse
|