301
|
Santiago MJ, Alejandre-Durán E, Ruiz-Rubio M. Alternative splicing of two translesion synthesis DNA polymerases from Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2009; 176:591-6. [PMID: 26493150 DOI: 10.1016/j.plantsci.2009.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 01/06/2009] [Accepted: 01/26/2009] [Indexed: 05/23/2023]
Abstract
DNA damages can be removed by different repair processes, but lesions sometimes remain and block DNA replication. Specialized polymerases are needed to overcome this difficulty. In Arabidopsis, AtPOLH and AtREV1 genes code for two polymerases that are involved in replication of damaged DNA. Alternative splicing was detected in both genes. Complementation analysis of the alternative splicing forms in Saccharomycescerevisiae showed that the C-terminal extreme of AtPOLH protein is essential for recovering wild type UV viability in Rad30 deficient strain. None of the alternative AtREV1 forms recovered the yeast wild type phenotype of Rev1 deficient yeast strains after UV light irradiation or methyl methane sulphonate exposition, suggesting that AtREV1 may not be able to interact with other yeast specific proteins needed for DNA translesion synthesis.
Collapse
Affiliation(s)
- María Jesús Santiago
- Departamento de Genética, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Córdoba, Spain
| | - Encarna Alejandre-Durán
- Departamento de Genética, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Córdoba, Spain
| | - Manuel Ruiz-Rubio
- Departamento de Genética, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Córdoba, Spain.
| |
Collapse
|
302
|
Power KA, McRedmond JP, de Stefani A, Gallagher WM, Ó Gaora P. High-throughput proteomics detection of novel splice isoforms in human platelets. PLoS One 2009; 4:e5001. [PMID: 19308253 PMCID: PMC2654914 DOI: 10.1371/journal.pone.0005001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/20/2009] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing (AS) is an intrinsic regulatory mechanism of all metazoans. Recent findings suggest that 100% of multiexonic human genes give rise to splice isoforms. AS can be specific to tissue type, environment or developmentally regulated. Splice variants have also been implicated in various diseases including cancer. Detection of these variants will enhance our understanding of the complexity of the human genome and provide disease-specific and prognostic biomarkers. We adopted a proteomics approach to identify exon skip events - the most common form of AS. We constructed a database harboring the peptide sequences derived from all hypothetical exon skip junctions in the human genome. Searching tandem mass spectrometry (MS/MS) data against the database allows the detection of exon skip events, directly at the protein level. Here we describe the application of this approach to human platelets, including the mRNA-based verification of novel splice isoforms of ITGA2, NPEPPS and FH. This methodology is applicable to all new or existing MS/MS datasets.
Collapse
Affiliation(s)
- Karen A. Power
- UCD Conway Institute and UCD School of Biomolecular & Biomedical Sciences, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - James P. McRedmond
- UCD Conway Institute and UCD School of Biomolecular & Biomedical Sciences, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | - William M. Gallagher
- UCD Conway Institute and UCD School of Biomolecular & Biomedical Sciences, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Peadar Ó Gaora
- UCD Conway Institute and UCD School of Medicine & Medical Sciences, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
- * E-mail:
| |
Collapse
|
303
|
Passetti F, Ferreira CG, Costa FF. The impact of microRNAs and alternative splicing in pharmacogenomics. THE PHARMACOGENOMICS JOURNAL 2009; 9:1-13. [PMID: 19156160 DOI: 10.1038/tpj.2008.14] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- F Passetti
- Laboratory of Bioinformatics and Computational Biology, Division of Clinical and Translational Research, Research Coordination (CPQ), Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
304
|
Haerty W, Golding B. Similar selective factors affect both between-gene and between-exon divergence in Drosophila. Mol Biol Evol 2009; 26:859-66. [PMID: 19150804 DOI: 10.1093/molbev/msp006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As a consequence of alternative splicing, a gene's exons will have different frequencies of inclusion into mature mRNA and different patterns of expression. These differences affect their patterns of evolutionary divergence. Using the recently reannotated genome of Drosophila melanogaster and the genome sequences of four closely related species of the melanogaster subgroup, we investigated the effect of alternative splicing, inclusion level (defined as the number of transcripts an exon is found in), and expression pattern on exon evolution across divergence times ranging from 1 to 12.5 Ma. Genes undergoing alternative splicing have a broader pattern of expression associated with a lower divergence rate in comparison with genes with a single annotated protein isoform. Within genes undergoing alternative splicing, we report a significant effect of inclusion level on exon evolution, as alternatively spliced exons are less conserved than constitutively spliced exons. More generally, there are significant negative correlations between inclusion level and exon evolutionary rates that can be associated with relaxation of selection. A significant effect of expression pattern on evolution rates is also observed. Overall, we found that similar selective factors such as the expression level and the pattern of expression are affecting both gene and exon evolution.
Collapse
|
305
|
Rhyne J, Mantaring MM, Gardner DF, Miller M. Multiple splice defects in ABCA1 cause low HDL-C in a family with hypoalphalipoproteinemia and premature coronary disease. BMC MEDICAL GENETICS 2009; 10:1. [PMID: 19133158 PMCID: PMC2642808 DOI: 10.1186/1471-2350-10-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 01/08/2009] [Indexed: 12/19/2022]
Abstract
Background Mutations at splice junctions causing exon skipping are uncommon compared to exonic mutations, and two intronic mutations causing an aberrant phenotype have rarely been reported. Despite the high number of functional ABCA1 mutations reported to date, splice variants have been reported infrequently. We screened DNA from a 41 year-old male with low HDL-C (12 mg/dL [0.31 mmol/L]) and a family history of premature coronary heart disease (CHD) using polymerase chain reaction single-strand conformation polymorphism (SSCP) analysis. Methods Family members with low levels of HDL-C (n = 6) were screened by SSCP for mutations in ABCA1. Samples with altered SSCP patterns were sequenced directly using either an ABI 3700 or ABI3730Xl DNA Analyzer. To screen for splicing defects, cDNA was isolated from the proband's RNA and was sequenced as above. A series of minigenes were constructed to determine the contribution of normal and defective alleles. Results Two novel splice variants in ABCA1 were identified. The first mutation was a single base pair change (T->C) in IVS 7, 6 bps downstream from the exon7/intron7 junction. Amplification of cDNA and allelic subcloning identified skipping of Exon 7 that results in the elimination of 59 amino acids from the first extracellular loop of the ABCA1 protein. The second mutation was a single base pair change (G->C) at IVS 31 -1, at the intron/exon junction of exon 32. This mutation causes skipping of exon 32, resulting in 8 novel amino acids followed by a stop codon and a predicted protein size of 1496 AA, compared to normal (2261 AA). Bioinformatic studies predicted an impact on splicing as confirmed by in vitro assays of constitutive splicing. Conclusion In addition to carnitine-acylcarnitine translocase (CACT) deficiency and Hermansky-Pudlak syndrome type 3, this represents only the third reported case in which 2 different splice mutations has resulted in an aberrant clinical phenotype.
Collapse
Affiliation(s)
- Jeffrey Rhyne
- Department of Medicine, Cardiology Division, University Maryland Medical Center and Baltimore Veterans Affairs Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
306
|
Irimia M, Rukov JL, Roy SW, Vinther J, Garcia-Fernandez J. Quantitative regulation of alternative splicing in evolution and development. Bioessays 2009; 31:40-50. [DOI: 10.1002/bies.080092] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
307
|
Ivashchenko AT, Khailenko VA, Atambaeva SA. Variations of the length of exons and introns in human genome genes. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
308
|
Sex-specific splicing in Drosophila: widespread occurrence, tissue specificity and evolutionary conservation. Genetics 2008; 181:421-34. [PMID: 19015538 DOI: 10.1534/genetics.108.096743] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Many genes in eukaryotic genomes produce multiple transcripts through a variety of molecular mechanisms including alternative splicing. Alternatively spliced transcripts often encode functionally distinct proteins, indicating that gene regulation at this level makes an important contribution to organismal complexity. The multilevel splicing cascade that regulates sex determination and sex-specific development in Drosophila is a classical example of the role of alternative splicing in cell differentiation. Recent evidence suggests that a large proportion of genes in the Drosophila genome may be spliced in a sex-biased fashion, raising the possibility that alternative splicing may play a more general role in sexually dimorphic development and physiology. However, the prevalence of sex-specific splicing and the extent to which it is shared among genotypes are not fully understood. Genetic variation in the splicing of key components of the sex determination pathway is known to influence the expression of downstream target genes, suggesting that alternative splicing at other loci may also vary in functionally important ways. In this study, we used exon-specific microarrays to examine 417 multitranscript genes for evidence of sex-specific and genotype-specific splicing in 80 different genotypes of Drosophila melanogaster. Most of these loci showed sex-biased splicing, whereas genotype-specific splicing was rare. One hundred thirty-five genes showed different alternative transcript use in males vs. females. Real-time PCR analysis of 6 genes chosen to represent a broad range of biological functions showed that most sex-biased splicing occurs in the gonads. However, somatic tissues, particularly adult heads, also show evidence of sex-specific splicing. Comparison of splicing patterns at orthologous loci in seven Drosophila species shows that sexual biases in alternative exon representation are highly conserved, indicating that sex-specific splicing is an ancient feature of Drosophila biology. To investigate potential mechanisms of sex-biased splicing, we used real-time PCR to examine the expression of six known regulators of alternative splicing in males vs. females. We found that all six loci are themselves spliced sex specifically in gonads and heads, suggesting that regulatory hierarchies based on alternative splicing may be an important feature of sexual differentiation.
Collapse
|
309
|
Wang J, Wu G, Zhou H, Wang F. Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids 2008; 37:177-86. [DOI: 10.1007/s00726-008-0193-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 10/05/2008] [Indexed: 12/30/2022]
|
310
|
Roy M, Kim N, Xing Y, Lee C. The effect of intron length on exon creation ratios during the evolution of mammalian genomes. RNA (NEW YORK, N.Y.) 2008; 14:2261-73. [PMID: 18796579 PMCID: PMC2578852 DOI: 10.1261/rna.1024908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent studies report that alternatively spliced exons tend to occur in longer introns, which is attributed to the length constraints for splice site pairing for the two major splicing mechanisms, intron definition versus exon definition. Using genome-wide studies of EST and microarray data from human and mouse, we have analyzed the distribution of various subsets of alternatively spliced exons, based on their inclusion level and evolutionary history, versus increasing intron length. Alternative exons may be included in either a major or minor fraction of all transcripts (known as major-form and minor-form exons, respectively). We find that major-form exons are seven- to eightfold more likely to be contained in short introns (<400 nt) than minor-form exons, which occur preferentially in longer introns. Since minor-form exons are more likely to be novel (approximately 75%), this implied that novel exons arise more frequently in longer introns. To test this hypothesis, we used whole genome alignments to classify exons according to their phylogenetic age. We find that older exons, i.e., exons that are conserved in all mammals, predominate at shorter intron lengths, for both major- and minor-form exons. In contrast, exons that arose recently during primate evolution are more prevalent at longer intron lengths (>1000 nt). This suggests that the observed correlation of longer intron lengths with alternatively spliced exons may be at least partly due to biases in the probability of exon creation, which is higher in long introns.
Collapse
Affiliation(s)
- Meenakshi Roy
- Molecular Biology Institute, University of California, Los Angeles, California 90024, USA
| | | | | | | |
Collapse
|
311
|
Width of gene expression profile drives alternative splicing. PLoS One 2008; 3:e3587. [PMID: 18974852 PMCID: PMC2575406 DOI: 10.1371/journal.pone.0003587] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 10/09/2008] [Indexed: 01/26/2023] Open
Abstract
Alternative splicing generates an enormous amount of functional and proteomic diversity in metazoan organisms. This process is probably central to the macromolecular and cellular complexity of higher eukaryotes. While most studies have focused on the molecular mechanism triggering and controlling alternative splicing, as well as on its incidence in different species, its maintenance and evolution within populations has been little investigated. Here, we propose to address these questions by comparing the structural characteristics as well as the functional and transcriptional profiles of genes with monomorphic or polymorphic splicing, referred to as MS and PS genes, respectively. We find that MS and PS genes differ particularly in the number of tissues and cell types where they are expressed.We find a striking deficit of PS genes on the sex chromosomes, particularly on the Y chromosome where it is shown not to be due to the observed lower breadth of expression of genes on that chromosome. The development of a simple model of evolution of cis-regulated alternative splicing leads to predictions in agreement with these observations. It further predicts the conditions for the emergence and the maintenance of cis-regulated alternative splicing, which are both favored by the tissue specific expression of splicing variants. We finally propose that the width of the gene expression profile is an essential factor for the acquisition of new transcript isoforms that could later be maintained by a new form of balancing selection.
Collapse
|
312
|
Lev-Maor G, Ram O, Kim E, Sela N, Goren A, Levanon EY, Ast G. Intronic Alus influence alternative splicing. PLoS Genet 2008; 4:e1000204. [PMID: 18818740 PMCID: PMC2533698 DOI: 10.1371/journal.pgen.1000204] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 08/20/2008] [Indexed: 01/25/2023] Open
Abstract
Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA) formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these intronic Alus on splicing of the flanking exons is largely unknown. Here, we show that more Alus flank alternatively spliced exons than constitutively spliced ones; this is especially notable for those exons that have changed their mode of splicing from constitutive to alternative during human evolution. This implies that Alu insertions may change the mode of splicing of the flanking exons. Indeed, we demonstrate experimentally that two Alu elements that were inserted into an intron in opposite orientation undergo base-pairing, as evident by RNA editing, and affect the splicing patterns of a downstream exon, shifting it from constitutive to alternative. Our results indicate the importance of intronic Alus in influencing the splicing of flanking exons, further emphasizing the role of Alus in shaping of the human transcriptome.
Collapse
Affiliation(s)
- Galit Lev-Maor
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Ram
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eddo Kim
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Sela
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Goren
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Y. Levanon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gil Ast
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
313
|
Barberan-Soler S, Zahler AM. Alternative splicing and the steady-state ratios of mRNA isoforms generated by it are under strong stabilizing selection in Caenorhabditis elegans. Mol Biol Evol 2008; 25:2431-7. [PMID: 18718918 DOI: 10.1093/molbev/msn181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evolutionary studies indicate that a high proportion of alternative splicing (AS) events are species-specific; just 28% of minor-form alternatively spliced exons are conserved between mice and humans. We employed a splicing-sensitive microarray to study the evolution of allele-specific AS in nematodes. We compared splicing levels among five distinct Caenorhabditis elegans lines. Our results indicate that AS is less variable between natural isolates (NIs) from England, Hawaii, and Australia than when compared with mutation accumulation lines (6% vs. 21%, respectively, vary compared with N2). This suggests that strong stabilizing selection shapes the evolution of the ratios of isoforms generated by AS in C. elegans. When we analyzed some of the splicing changes between the NIs, we found examples of changes in both cis and trans that lead to alterations in gene-specific AS. This indicates that both these mechanisms for changing AS are employed along the path toward speciation in nematodes.
Collapse
Affiliation(s)
- Sergio Barberan-Soler
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, USA
| | | |
Collapse
|
314
|
Copley RR. The animal in the genome: comparative genomics and evolution. Philos Trans R Soc Lond B Biol Sci 2008; 363:1453-61. [PMID: 18192189 PMCID: PMC2614226 DOI: 10.1098/rstb.2007.2235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Comparisons between completely sequenced metazoan genomes have generally emphasized how similar their encoded protein content is, even when the comparison is between phyla. Given the manifest differences between phyla and, in particular, intuitive notions that some animals are more complex than others, this creates something of a paradox. Simplistic explanations have included arguments such as increased numbers of genes; greater numbers of protein products produced through alternative splicing; increased numbers of regulatory non-coding RNAs and increased complexity of the cis-regulatory code. An obvious value of complete genome sequences lies in their ability to provide us with inventories of such components. I examine progress being made in linking genome content to the pattern of animal evolution, and argue that the gap between genomic and phenotypic complexity can only be understood through the totality of interacting components.
Collapse
|
315
|
A general definition and nomenclature for alternative splicing events. PLoS Comput Biol 2008; 4:e1000147. [PMID: 18688268 PMCID: PMC2467475 DOI: 10.1371/journal.pcbi.1000147] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 07/01/2008] [Indexed: 11/19/2022] Open
Abstract
Understanding the molecular mechanisms responsible for the regulation of the transcriptome present in eukaryotic cells is one of the most challenging tasks in the postgenomic era. In this regard, alternative splicing (AS) is a key phenomenon contributing to the production of different mature transcripts from the same primary RNA sequence. As a plethora of different transcript forms is available in databases, a first step to uncover the biology that drives AS is to identify the different types of reflected splicing variation. In this work, we present a general definition of the AS event along with a notation system that involves the relative positions of the splice sites. This nomenclature univocally and dynamically assigns a specific “AS code” to every possible pattern of splicing variation. On the basis of this definition and the corresponding codes, we have developed a computational tool (AStalavista) that automatically characterizes the complete landscape of AS events in a given transcript annotation of a genome, thus providing a platform to investigate the transcriptome diversity across genes, chromosomes, and species. Our analysis reveals that a substantial part—in human more than a quarter—of the observed splicing variations are ignored in common classification pipelines. We have used AStalavista to investigate and to compare the AS landscape of different reference annotation sets in human and in other metazoan species and found that proportions of AS events change substantially depending on the annotation protocol, species-specific attributes, and coding constraints acting on the transcripts. The AStalavista system therefore provides a general framework to conduct specific studies investigating the occurrence, impact, and regulation of AS. The genome sequence is said to be an organism's blueprint, a set of instructions driving the organism's biology. The unfolding of these instructions—the so-called genes—is initiated by the transcription of DNA into RNA molecules, which subsequently are processed before they can take their functional role. During this processing step, initially identical RNA molecules may result in different products through a process known as alternative splicing (AS). AS therefore allows for widening the diversity from the limited repertoire of genes, and it is often postulated as an explanation for the apparent paradox that complex and simple organisms resemble in their number of genes; it characterizes species, individuals, and developmental and cellular conditions. Comparing the differences of AS products between cells may help to reveal the broad molecular basis underlying phenotypic differences—for instance, between a cancer and a normal cell. An obstacle for such comparisons has been that, so far, no paradigm existed to delineate each single quantum of AS, so-called AS events. Here, we describe a possibility of exhaustively decomposing AS complements into qualitatively different groups of events and a nomenclature to unequivocally denote them. This typological catalogue of AS events along with their observed frequencies represent the AS landscape, and we propose a procedure to automatically identify such landscapes. We use it to describe the human AS landscape and to investigate how it has changed throughout evolution.
Collapse
|
316
|
Barbazuk WB, Fu Y, McGinnis KM. Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 2008; 18:1381-92. [PMID: 18669480 DOI: 10.1101/gr.053678.106] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alternative splicing (AS) creates multiple mRNA transcripts from a single gene. While AS is known to contribute to gene regulation and proteome diversity in animals, the study of its importance in plants is in its early stages. However, recently available plant genome and transcript sequence data sets are enabling a global analysis of AS in many plant species. Results of genome analysis have revealed differences between animals and plants in the frequency of alternative splicing. The proportion of plant genes that have one or more alternative transcript isoforms is approximately 20%, indicating that AS in plants is not rare, although this rate is approximately one-third of that observed in human. The majority of plant AS events have not been functionally characterized, but evidence suggests that AS participates in important plant functions, including stress response, and may impact domestication and trait selection. The increasing availability of plant genome sequence data will enable larger comparative analyses that will identify functionally important plant AS events based on their evolutionary conservation, determine the influence of genome duplication on the evolution of AS, and discover plant-specific cis-elements that regulate AS. This review summarizes recent analyses of AS in plants, discusses the importance of further analysis, and suggests directions for future efforts.
Collapse
Affiliation(s)
- W Brad Barbazuk
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA.
| | | | | |
Collapse
|
317
|
Atambayeva SA, Khailenko VA, Ivashchenko AT. Intron and exon length variation in Arabidopsis, rice, nematode, and human. Mol Biol 2008. [DOI: 10.1134/s0026893308020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
318
|
Lev-Maor G, Goren A, Sela N, Kim E, Keren H, Doron-Faigenboim A, Leibman-Barak S, Pupko T, Ast G. The "alternative" choice of constitutive exons throughout evolution. PLoS Genet 2008; 3:e203. [PMID: 18020709 PMCID: PMC2077895 DOI: 10.1371/journal.pgen.0030203] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/01/2007] [Indexed: 12/23/2022] Open
Abstract
Alternative cassette exons are known to originate from two processes—exonization of intronic sequences and exon shuffling. Herein, we suggest an additional mechanism by which constitutively spliced exons become alternative cassette exons during evolution. We compiled a dataset of orthologous exons from human and mouse that are constitutively spliced in one species but alternatively spliced in the other. Examination of these exons suggests that the common ancestors were constitutively spliced. We show that relaxation of the 5′ splice site during evolution is one of the molecular mechanisms by which exons shift from constitutive to alternative splicing. This shift is associated with the fixation of exonic splicing regulatory sequences (ESRs) that are essential for exon definition and control the inclusion level only after the transition to alternative splicing. The effect of each ESR on splicing and the combinatorial effects between two ESRs are conserved from fish to human. Our results uncover an evolutionary pathway that increases transcriptome diversity by shifting exons from constitutive to alternative splicing. Alternative splicing is believed to play a major role in the creation of transcriptomic diversification leading to higher order of organismal complexity, especially in mammals. As much as 80% of human genes generate more than one type of mRNA by alternative splicing. Thus, alternative splicing can bridge the low number of protein coding genes (∼24,500) and the total number of proteins generated in the human proteome (∼90,000). The correlation between the higher order of phenotypic diversity and alternative splicing was recently demonstrated and thus the origin of alternative splicing is of great interest. There are currently two models regarding the origin of alternatively spliced exons—exonization of intronic sequences and exon shuffling. According to these two mechanisms, a protein-coding gene was first established and only then a new alternative exon appeared within it or was added to the gene. Our current study provides evidences for a new mechanism indicating that during evolution constitutively spliced exons became alternatively spliced. Large-scale bioinformatic analyses reveal the magnitude of this process and experimental validation systems provide insights into its mechanisms.
Collapse
Affiliation(s)
- Galit Lev-Maor
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Amir Goren
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Noa Sela
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Eddo Kim
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Keren
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Adi Doron-Faigenboim
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | | | - Tal Pupko
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
319
|
The Evolution of Alternative Splicing in the Pax Family: The View from the Basal Chordate Amphioxus. J Mol Evol 2008; 66:605-20. [DOI: 10.1007/s00239-008-9113-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/16/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
|
320
|
Peng T, Xue C, Bi J, Li T, Wang X, Zhang X, Li Y. Functional importance of different patterns of correlation between adjacent cassette exons in human and mouse. BMC Genomics 2008; 9:191. [PMID: 18439302 PMCID: PMC2432081 DOI: 10.1186/1471-2164-9-191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 04/26/2008] [Indexed: 12/19/2022] Open
Abstract
Background Alternative splicing expands transcriptome diversity and plays an important role in regulation of gene expression. Previous studies focus on the regulation of a single cassette exon, but recent experiments indicate that multiple cassette exons within a gene may interact with each other. This interaction can increase the potential to generate various transcripts and adds an extra layer of complexity to gene regulation. Several cases of exon interaction have been discovered. However, the extent to which the cassette exons coordinate with each other remains unknown. Results Based on EST data, we employed a metric of correlation coefficients to describe the interaction between two adjacent cassette exons and then categorized these exon pairs into three different groups by their interaction (correlation) patterns. Sequence analysis demonstrates that strongly-correlated groups are more conserved and contain a higher proportion of pairs with reading frame preservation in a combinatorial manner. Multiple genome comparison further indicates that different groups of correlated pairs have different evolutionary courses: (1) The vast majority of positively-correlated pairs are old, (2) most of the weakly-correlated pairs are relatively young, and (3) negatively-correlated pairs are a mixture of old and young events. Conclusion We performed a large-scale analysis of interactions between adjacent cassette exons. Compared with weakly-correlated pairs, the strongly-correlated pairs, including both the positively and negatively correlated ones, show more evidence that they are under delicate splicing control and tend to be functionally important. Additionally, the positively-correlated pairs bear strong resemblance to constitutive exons, which suggests that they may evolve from ancient constitutive exons, while negatively and weakly correlated pairs are more likely to contain newly emerging exons.
Collapse
Affiliation(s)
- Tao Peng
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, PRoC.
| | | | | | | | | | | | | |
Collapse
|
321
|
Alternative splicing at NAGNAG acceptors in Arabidopsis thaliana SR and SR-related protein-coding genes. BMC Genomics 2008; 9:159. [PMID: 18402682 PMCID: PMC2375911 DOI: 10.1186/1471-2164-9-159] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 04/10/2008] [Indexed: 11/10/2022] Open
Abstract
Background Several recent studies indicate that alternative splicing in Arabidopsis and other plants is a common mechanism for post-transcriptional modulation of gene expression. However, few analyses have been done so far to elucidate the functional relevance of alternative splicing in higher plants. Representing a frequent and universal subtle alternative splicing event among eukaryotes, alternative splicing at NAGNAG acceptors contributes to transcriptome diversity and therefore, proteome plasticity. Alternatively spliced NAGNAG acceptors are overrepresented in genes coding for proteins with RNA-recognition motifs (RRMs). As SR proteins, a family of RRM-containing important splicing factors, are known to be extensively alternatively spliced in Arabidopsis, we analyzed alternative splicing at NAGNAG acceptors in SR and SR-related genes. Results In a comprehensive analysis of the Arabidopsis thaliana genome, we identified 6,772 introns that exhibit a NAGNAG acceptor motif. Alternative splicing at these acceptors was assessed using available EST data, complemented by a sequence-based prediction method. Of the 36 identified introns within 30 SR and SR-related protein-coding genes that have a NAGNAG acceptor, we selected 15 candidates for an experimental analysis of alternative splicing under several conditions. We provide experimental evidence for 8 of these candidates being alternatively spliced. Quantifying the ratio of NAGNAG-derived splice variants under several conditions, we found organ-specific splicing ratios in adult plants and changes in seedlings of different ages. Splicing ratio changes were observed in response to heat shock and most strikingly, cold shock. Interestingly, the patterns of differential splicing ratios are similar for all analyzed genes. Conclusion NAGNAG acceptors frequently occur in the Arabidopsis genome and are particularly prevalent in SR and SR-related protein-coding genes. A lack of extensive EST coverage can be compensated by using the proposed sequence-based method to predict alternative splicing at these acceptors. Our findings indicate that the differential effects on NAGNAG alternative splicing in SR and SR-related genes are organ- and condition-specific rather than gene-specific.
Collapse
|
322
|
Hiller M, Platzer M. Widespread and subtle: alternative splicing at short-distance tandem sites. Trends Genet 2008; 24:246-55. [PMID: 18394746 DOI: 10.1016/j.tig.2008.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 12/11/2022]
Abstract
Alternative splicing at donor or acceptor sites located just a few nucleotides apart is widespread in many species. It results in subtle changes in the transcripts and often in the encoded proteins. Several of these tandem splice events contribute to the repertoire of functionally different proteins, whereas many are neutral or deleterious. Remarkably, some of the functional events are differentially spliced in tissues or developmental stages, whereas others exhibit constant splicing ratios, indicating that function is not always associated with differential splicing. Stochastic splice site selection seems to play a major role in these processes. Here, we review recent progress in understanding functional and evolutionary aspects as well as the mechanism of splicing at short-distance tandem sites.
Collapse
Affiliation(s)
- Michael Hiller
- Bioinformatics Group, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany.
| | | |
Collapse
|
323
|
Alternative splicing produces a constitutively active form of human SREBP-1. Biochem Biophys Res Commun 2008; 368:820-6. [DOI: 10.1016/j.bbrc.2008.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/02/2008] [Indexed: 11/22/2022]
|
324
|
Abstract
Alternative splicing is a well-characterized mechanism by which multiple transcripts are generated from a single mRNA precursor. By allowing production of several protein isoforms from one pre-mRNA, alternative splicing contributes to proteomic diversity. But what do we know about the origin of this mechanism? Do the same evolutionary forces apply to alternatively and constitutively splice exons? Do similar forces act on all types of alternative splicing? Are the products generated by alternative splicing functional? Why is "improper" recognition of exons and introns allowed by the splicing machinery? In this review, we summarize the current knowledge regarding these issues from an evolutionary perspective.
Collapse
Affiliation(s)
- Eddo Kim
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
325
|
Multifactorial interplay controls the splicing profile of Alu-derived exons. Mol Cell Biol 2008; 28:3513-25. [PMID: 18332115 DOI: 10.1128/mcb.02279-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exonization of Alu elements creates primate-specific genomic diversity. Here we combine bioinformatic and experimental methodologies to reconstruct the molecular changes leading to exon selection. Our analyses revealed an intricate network involved in Alu exonization. A typical Alu element contains multiple sites with the potential to serve as 5' splice sites (5'ss). First, we demonstrated the role of 5'ss strength in controlling exonization events. Second, we found that a cryptic 5'ss enhances the selection of a more upstream site and demonstrate that this is mediated by binding of U1 snRNA to the cryptic splice site, challenging the traditional role attributed to U1 snRNA of binding the 5'ss only. Third, we used a simple algorithm to identify specific sequences that determine splice site selection within specific Alu exons. Finally, by inserting identical exons within different sequences, we demonstrated the importance of flanking genomic sequences in determining whether an Alu exon will undergo exonization. Overall, our results demonstrate the complex interplay between at least four interacting layers that affect Alu exonization. These results shed light on the mechanism through which Alu elements enrich the primate transcriptome and allow a better understanding of the exonization process in general.
Collapse
|
326
|
Barberan-Soler S, Zahler AM. Alternative splicing regulation during C. elegans development: splicing factors as regulated targets. PLoS Genet 2008; 4:e1000001. [PMID: 18454200 PMCID: PMC2265522 DOI: 10.1371/journal.pgen.1000001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 01/15/2008] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (∼18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 – now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation. Alternative splicing is a mechanism for generating more than one messenger RNA from a given gene. The alternative transcripts can encode different proteins that share some regions in common but have modified functions, thus increasing the number of proteins encoded by the genome. Alternative splicing can also lead to the production of mRNA isoforms that are then subject to degradation by the nonsense-mediated decay pathway, thus providing a mechanism to down-regulate gene expression without decreasing transcription. Examples of cell type-specific, hormone-responsive, and developmentally-regulated alternative splicing have been described. We decided to measure the extent of developmentally regulated alternative splicing in the nematode model organism Caenorhabditis elegans. We developed a DNA microarray that can measure the alternative splicing of 352 cassette exons simultaneously and used it to probe alternative splicing in RNA extracted from embryos, the four larval stages, and adults. We show that 18% of the alternatively spliced genes tested show >4-fold changes in alternative splicing during development. In addition, we show that one of the most regulated genes is itself a splicing factor, providing support for a model in which a cascade of alternative splicing regulation occurs during development.
Collapse
Affiliation(s)
- Sergio Barberan-Soler
- Department of MCD Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Alan M. Zahler
- Department of MCD Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
327
|
König H, Matter N, Bader R, Thiele W, Müller F. Splicing segregation: the minor spliceosome acts outside the nucleus and controls cell proliferation. Cell 2008; 131:718-29. [PMID: 18022366 DOI: 10.1016/j.cell.2007.09.043] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/17/2007] [Accepted: 09/27/2007] [Indexed: 11/16/2022]
Abstract
The functional relevance and the evolution of two parallel mRNA splicing systems in eukaryotes--a major and minor spliceosome that differ in abundance and splicing rate--are poorly understood. We report here that partially spliced pre-mRNAs containing minor-class introns undergo nuclear export and that minor-class snRNAs are predominantly cytoplasmic in vertebrates. Cytoplasmic interference with the minor spliceosome further indicated its functional segregation from the nucleus. In keeping with this, minor splicing was only weakly affected during mitosis. By selectively interfering with snRNA function in zebrafish development and in mammalian cells, we revealed a conserved role for minor splicing in cell-cycle progression. We argue that the segregation of the splicing systems allows for processing of partially unspliced cytoplasmic transcripts, emerging as a result of different splicing rates. The segregation offers a mechanism accounting for spliceosome evolution in a single lineage and provides a means for nucleus-independent control of gene expression.
Collapse
Affiliation(s)
- Harald König
- Forschungszentrum Karlsruhe GmbH, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
328
|
Wang BB, O'Toole M, Brendel V, Young ND. Cross-species EST alignments reveal novel and conserved alternative splicing events in legumes. BMC PLANT BIOLOGY 2008; 8:17. [PMID: 18282305 PMCID: PMC2277414 DOI: 10.1186/1471-2229-8-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/19/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Although originally thought to be less frequent in plants than in animals, alternative splicing (AS) is now known to be widespread in plants. Here we report the characteristics of AS in legumes, one of the largest and most important plant families, based on EST alignments to the genome sequences of Medicago truncatula (Mt) and Lotus japonicus (Lj). RESULTS Based on cognate EST alignments alone, the observed frequency of alternatively spliced genes is lower in Mt (approximately 10%, 1,107 genes) and Lj (approximately 3%, 92 genes) than in Arabidopsis and rice (both around 20%). However, AS frequencies are comparable in all four species if EST levels are normalized. Intron retention is the most common form of AS in all four plant species (~50%), with slightly lower frequency in legumes compared to Arabidopsis and rice. This differs notably from vertebrates, where exon skipping is most common. To uncover additional AS events, we aligned ESTs from other legume species against the Mt genome sequence. In this way, 248 additional Mt genes were predicted to be alternatively spliced. We also identified 22 AS events completely conserved in two or more plant species. CONCLUSION This study extends the range of plant taxa shown to have high levels of AS, confirms the importance of intron retention in plants, and demonstrates the utility of using ESTs from related species in order to identify novel and conserved AS events. The results also indicate that the frequency of AS in plants is comparable to that observed in mammals. Finally, our results highlight the importance of normalizing EST levels when estimating the frequency of alternative splicing.
Collapse
Affiliation(s)
- Bing-Bing Wang
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
- Pioneer Hi-Bred International, Inc., a DuPont company, 7200 N.W. 62nd Avenue, Johnston, IA 50131, USA
| | - Mike O'Toole
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| | - Volker Brendel
- Department of Genetics, Development and Cell Biology and Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
329
|
Holste D, Ohler U. Strategies for identifying RNA splicing regulatory motifs and predicting alternative splicing events. PLoS Comput Biol 2008; 4:e21. [PMID: 18225947 PMCID: PMC2217580 DOI: 10.1371/journal.pcbi.0040021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Dirk Holste
- * To whom correspondence should be addressed. E-mail: (UO), (DH)
| | - Uwe Ohler
- * To whom correspondence should be addressed. E-mail: (UO), (DH)
| |
Collapse
|
330
|
Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 2008; 17:1636-47. [PMID: 18266620 DOI: 10.1111/j.1365-294x.2008.03666.x] [Citation(s) in RCA: 501] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present a de novo assembly of a eukaryote transcriptome using 454 pyrosequencing data. The Glanville fritillary butterfly (Melitaea cinxia; Lepidoptera: Nymphalidae) is a prominent species in population biology but had no previous genomic data. Sequencing runs using two normalized complementary DNA collections from a genetically diverse pool of larvae, pupae, and adults yielded 608,053 expressed sequence tags (mean length = 110 nucleotides), which assembled into 48,354 contigs (sets of overlapping DNA segments) and 59,943 singletons. BLAST comparisons confirmed the accuracy of the sequencing and assembly, and indicated the presence of c. 9000 unique genes, along with > 6000 additional microarray-confirmed unannotated contigs. Average depth of coverage was 6.5-fold for the longest 4800 contigs (348-2849 bp in length), sufficient for detecting large numbers of single nucleotide polymorphisms. Oligonucleotide microarray probes designed from the assembled sequences showed highly repeatable hybridization intensity and revealed biological differences among individuals. We conclude that 454 sequencing, when performed to provide sufficient coverage depth, allows de novo transcriptome assembly and a fast, cost-effective, and reliable method for development of functional genomic tools for nonmodel species. This development narrows the gap between approaches based on model organisms with rich genetic resources vs. species that are most tractable for ecological and evolutionary studies.
Collapse
Affiliation(s)
- J Cristobal Vera
- Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
331
|
Kurmangaliyev YZ, Gelfand MS. Computational analysis of splicing errors and mutations in human transcripts. BMC Genomics 2008; 9:13. [PMID: 18194514 PMCID: PMC2234086 DOI: 10.1186/1471-2164-9-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 01/14/2008] [Indexed: 01/10/2023] Open
Abstract
Background Most retained introns found in human cDNAs generated by high-throughput sequencing projects seem to result from underspliced transcripts, and thus they capture intermediate steps of pre-mRNA splicing. On the other hand, mutations in splice sites cause exon skipping of the respective exon or activation of pre-existing cryptic sites. Both types of events reflect properties of the splicing mechanism. Results The retained introns were significantly shorter than constitutive ones, and skipped exons are shorter than exons with cryptic sites. Both donor and acceptor splice sites of retained introns were weaker than splice sites of constitutive introns. The authentic acceptor sites affected by mutations were significantly weaker in exons with activated cryptic sites than in skipped exons. The distance from a mutated splice site to the nearest equivalent site is significantly shorter in cases of activated cryptic sites compared to exon skipping events. The prevalence of retained introns within genes monotonically increased in the 5'-to-3' direction (more retained introns close to the 3'-end), consistent with the model of co-transcriptional splicing. The density of exonic splicing enhancers was higher, and the density of exonic splicing silencers lower in retained introns compared to constitutive ones and in exons with cryptic sites compared to skipped exons. Conclusion Thus the analysis of retained introns in human cDNA, exons skipped due to mutations in splice sites and exons with cryptic sites produced results consistent with the intron definition mechanism of splicing of short introns, co-transcriptional splicing, dependence of splicing efficiency on the splice site strength and the density of candidate exonic splicing enhancers and silencers. These results are consistent with other, recently published analyses.
Collapse
Affiliation(s)
- Yerbol Z Kurmangaliyev
- Institute for Information Transmission Problems (the Kharkevich Institute) RAS, Bolshoi Karetny pereulok 19, Moscow, 127994, Russia.
| | | |
Collapse
|
332
|
Tisserant A, König H. Signal-regulated Pre-mRNA occupancy by the general splicing factor U2AF. PLoS One 2008; 3:e1418. [PMID: 18183298 PMCID: PMC2169300 DOI: 10.1371/journal.pone.0001418] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 12/12/2007] [Indexed: 11/25/2022] Open
Abstract
Alternative splicing of transcripts in a signal-dependent manner has emerged as an important concept to ensure appropriate expression of splice variants under different conditions. Binding of the general splicing factor U2AF to splice sites preceding alternatively spliced exons has been suggested to be an important step for splice site recognition. For splicing to proceed, U2AF has to be replaced by other factors. We show here that U2AF interacts with the signal-dependent splice regulator Sam68 and that forced expression of Sam68 results in enhanced binding of the U2AF65 subunit to an alternatively spliced pre-mRNA sequence in vivo. Conversely, the rapid signal-induced and phosphorylation-dependent interference with Sam68 binding to RNA was accompanied by reduced pre-mRNA occupancy of U2AF in vivo. Our data suggest that Sam68 can affect splice site occupancy by U2AF in signal-dependent splicing. We propose that the induced release of U2AF from pre-mRNA provides a regulatory step to control alternative splicing.
Collapse
Affiliation(s)
- Anne Tisserant
- Forschungszentrum Karlsruhe GmbH, Institut für Toxikologie und Genetik, Karlsruhe, Germany
| | - Harald König
- Forschungszentrum Karlsruhe GmbH, Institut für Toxikologie und Genetik, Karlsruhe, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
333
|
Glöckner G, Golderer G, Werner-Felmayer G, Meyer S, Marwan W. A first glimpse at the transcriptome of Physarum polycephalum. BMC Genomics 2008; 9:6. [PMID: 18179708 PMCID: PMC2258281 DOI: 10.1186/1471-2164-9-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 01/07/2008] [Indexed: 01/03/2023] Open
Abstract
Background Physarum polycephalum, an acellular plasmodial species belongs to the amoebozoa, a major branch in eukaryote evolution. Its complex life cycle and rich cell biology is reflected in more than 2500 publications on various aspects of its biochemistry, developmental biology, cytoskeleton, and cell motility. It now can be genetically manipulated, opening up the possibility of targeted functional analysis in this organism. Methods Here we describe a large fraction of the transcribed genes by sequencing a cDNA library from the plasmodial stage of the developmental cycle. Results In addition to the genes for the basic metabolism we found an unexpected large number of genes involved in sophisticated signaling networks and identified potential receptors for environmental signals such as light. In accordance with the various developmental options of the plasmodial cell we found that many P. polycephalum genes are alternatively spliced. Using 30 donor and 30 acceptor sites we determined the splicing signatures of this species. Comparisons to various other organisms including Dictyostelium, the closest relative, revealed that roughly half of the transcribed genes have no detectable counterpart, thus potentially defining species specific adaptations. On the other hand, we found highly conserved proteins, which are maintained in the metazoan lineage, but absent in D. discoideum or plants. These genes arose possibly in the last common ancestor of Amoebozoa and Metazoa but were lost in D. discoideum. Conclusion This work provides an analysis of up to half of the protein coding genes of Physarum polycephalum. The definition of splice motifs together with the description of alternatively spliced genes will provide a valuable resource for the ongoing genome project.
Collapse
Affiliation(s)
- Gernot Glöckner
- Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstr, 11, D-07745 Jena, Germany.
| | | | | | | | | |
Collapse
|
334
|
Haas BJ. Analysis of alternative splicing in plants with bioinformatics tools. Curr Top Microbiol Immunol 2008; 326:17-37. [PMID: 18630745 DOI: 10.1007/978-3-540-76776-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alternative splicing is a molecular mechanism utilized by a broad range of eukaryotes to extend the repertoire of functions encoded by single genes and to posttranscriptionally regulate gene expression. Recent analyses of expressed transcript sequences aligned to the complete genomes of Arabidopsis and rice indicate that alternative splicing in plants is prevalent and exhibits several features similar to other higher eukaryotes including mouse and human. This chapter reviews the computational strategies employed to study alternative splicing with bioinformatics tools and the recent findings from analyses performed on plants by applying such methods.
Collapse
Affiliation(s)
- B J Haas
- B.J. Haas Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
335
|
Structural basis for synaptic adhesion mediated by neuroligin-neurexin interactions. Nat Struct Mol Biol 2007; 15:50-6. [PMID: 18084303 DOI: 10.1038/nsmb1350] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 11/16/2007] [Indexed: 12/31/2022]
Abstract
The heterophilic synaptic adhesion molecules neuroligins and neurexins are essential for establishing and maintaining neuronal circuits by modulating the formation and maturation of synapses. The neuroligin-neurexin adhesion is Ca2+-dependent and regulated by alternative splicing. We report a structure of the complex at a resolution of 2.4 A between the mouse neuroligin-1 (NL1) cholinesterase-like domain and the mouse neurexin-1beta (NX1beta) LNS (laminin, neurexin and sex hormone-binding globulin-like) domain. The structure revealed a delicate neuroligin-neurexin assembly mediated by a hydrophilic, Ca2+-mediated and solvent-supplemented interface, rendering it capable of being modulated by alternative splicing and other regulatory factors. Thermodynamic data supported a mechanism wherein splicing site B of NL1 acts by modulating a salt bridge at the edge of the NL1-NX1beta interface. Mapping neuroligin mutations implicated in autism indicated that most such mutations are structurally destabilizing, supporting deficient neuroligin biosynthesis and processing as a common cause for this brain disorder.
Collapse
|
336
|
Kashyap L, Sharma RK. Alternative splicing: a paradoxical qudo in eukaryotic genomes. Bioinformation 2007; 2:155-6. [PMID: 21670794 PMCID: PMC2255073 DOI: 10.6026/97320630002155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 12/08/2007] [Accepted: 12/11/2007] [Indexed: 11/23/2022] Open
Abstract
One of the most remarkable observations stemming from the sequencing of genomes of diverse species is that the number of protein-coding genes in an organism does not correlate with its overall cellular complexity. Alternative splicing, a key mechanism for generating protein complexity, has been suggested as one of the major explanation for this discrepancy between the number of genes and genome complexity. Determining the extent and importance of alternative splicing required the confluence of critical advances in data acquisition, improved understanding of biological processes and the development of fast and accurate computational analysis tools. Although many model organisms have now been completely sequenced, we are still very far from understanding the exact frequency of alternative splicing from these sequenced genomes.This paper will highlight some recent progress and future challenges for functional genomics and bioinformatics in this rapidly developing area.
Collapse
Affiliation(s)
- Luv Kashyap
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Ravi Kumar Sharma
- Botany Division, Central Drug Research Institute, M G Marg, Lucknow, India
| |
Collapse
|
337
|
Kim E, Goren A, Ast G. Insights into the connection between cancer and alternative splicing. Trends Genet 2007; 24:7-10. [PMID: 18054115 DOI: 10.1016/j.tig.2007.10.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/21/2007] [Accepted: 10/22/2007] [Indexed: 01/14/2023]
Abstract
Computational and experimental evidence has revealed that cancerous cells express transcript variants that are abnormally spliced, suggesting that mRNAs are more frequently alternatively spliced in cancerous tissues than in normal ones. We show that cancerous tissues exhibit lower levels of alternative splicing than do normal tissues. Moreover, we found that the distribution of types of alternative splicing differs between cancerous and normal tissues. We further show evidence suggesting that the lower levels of alternative splicing in cancerous tissues might be a result of disruption of splicing regulatory proteins.
Collapse
Affiliation(s)
- Eddo Kim
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
338
|
Amit M, Sela N, Keren H, Melamed Z, Muler I, Shomron N, Izraeli S, Ast G. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene. BMC Mol Biol 2007; 8:109. [PMID: 18047649 PMCID: PMC2231382 DOI: 10.1186/1471-2199-8-109] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 11/29/2007] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. RESULTS Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. CONCLUSION The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains.
Collapse
Affiliation(s)
- Maayan Amit
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Noa Sela
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Hadas Keren
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Ze'ev Melamed
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Inna Muler
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
- Chaim Sheba Cancer Research Center, Tel Hashomer, Israel
- Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Noam Shomron
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Shai Izraeli
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
- Chaim Sheba Cancer Research Center, Tel Hashomer, Israel
- Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
339
|
Irimia M, Rukov JL, Penny D, Garcia-Fernandez J, Vinther J, Roy SW. Widespread evolutionary conservation of alternatively spliced exons in Caenorhabditis. Mol Biol Evol 2007; 25:375-82. [PMID: 18048400 DOI: 10.1093/molbev/msm262] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing (AS) contributes to increased transcriptome and proteome diversity in various eukaryotic lineages. Previous studies showed low levels of conservation of alternatively spliced (cassette) exons within mammals and within dipterans. We report a strikingly different pattern in Caenorhabditis nematodes-more than 92% of cassette exons from Caenorhabditis elegans are conserved in Caenorhabditis briggsae and/or Caenorhabditis remanei. High levels of conservation extend to minor-form exons (present in a minority of transcripts) and are particularly pronounced for exons showing complex patterns of splicing. The functionality of the vast majority of cassette exons is underscored by various other features. We suggest that differences in conservation between lineages reflect differences in levels of functionality and further suggest that these differences are due to differences in intron length and the strength of consensus boundaries across lineages. Finally, we demonstrate an inverse relationship between AS and gene duplication, suggesting that the latter may be primarily responsible for the emergence of new functional transcripts in nematodes.
Collapse
Affiliation(s)
- Manuel Irimia
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
340
|
Brimacombe KR, Ladd AN. Cloning and embryonic expression patterns of the chicken CELF family. Dev Dyn 2007; 236:2216-24. [PMID: 17584860 DOI: 10.1002/dvdy.21209] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The CUG-BP and ETR-3-like factor (CELF) protein family has been implicated in the regulation of pre-mRNA alternative splicing, mRNA stability, and translation. Here we discuss the evolution and radiation of the CELF protein subfamilies, and report the cloning of the chicken CELF family members. In this study, we examined the embryonic expression patterns of the CELF family in the chick by in situ hybridization. We found that the tissue specificity reported for CELF proteins in the adult is established early during embryogenesis. Members of one subfamily, CUG-BP1 and ETR-3, are broadly expressed in the early embryo, while members of the second subfamily, CELF4-6, are restricted primarily to the nervous system. Expression patterns of individual CELF genes in several tissues, including the heart, liver, eye, and neural tube, exhibit distinct, yet overlapping, expression patterns. This suggests that different members of the CELF family play distinct functional roles during embryogenesis.
Collapse
Affiliation(s)
- Kyle R Brimacombe
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
341
|
Liu F, Xu W, Tan L, Xue Y, Sun C, Su Z. Case study for identification of potentially indel-caused alternative expression isoforms in the rice subspecies japonica and indica by integrative genome analysis. Genomics 2007; 91:186-94. [PMID: 18037265 DOI: 10.1016/j.ygeno.2007.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/27/2007] [Accepted: 10/03/2007] [Indexed: 11/30/2022]
Abstract
Alternative splicing (AS) is one of the most significant components of the functional complexity of the eukaryote genome, increasing protein diversity, creating isoforms, and affecting mRNA stability. Recently, whole genome sequences and large microarray data sets have become available, making data integration feasible and allowing the study of the possible regulatory mechanism of AS in rice (Oryza sativa) by erecting and testing hypotheses before doing bench studies. We have developed a new strategy and have identified 215 rice genes with alternative expression isoforms related to insertion and deletion (indel) between subspecies indica and subspecies japonica. We did a case study for alternative expression isoforms of the rice peroxidase gene LOC_Os06g48030 to investigate possible mechanisms by which indels caused alternative splicing between the indica and the japonica varieties by mining of array data together with validation by RT-PCR and genome sequencing analysis. Multiple poly(A) signals were detected in the specific indel region for LOC_Os06g48030. We present a new methodology to promote more discoveries of potentially indel-caused AS genes in rice, which may serve as the foundation for research into the regulatory mechanism of alternative expression isoforms between subspecies.
Collapse
Affiliation(s)
- Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | |
Collapse
|
342
|
Schwartz SH, Silva J, Burstein D, Pupko T, Eyras E, Ast G. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res 2007; 18:88-103. [PMID: 18032728 DOI: 10.1101/gr.6818908] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introns are among the hallmarks of eukaryotic genes. Splicing of introns is directed by three main splicing signals: the 5' splice site (5'ss), the branch site (BS), and the polypyrimdine tract/3'splice site (PPT-3'ss). To study the evolution of these splicing signals, we have conducted a systematic comparative analysis of these signals in over 1.2 million introns from 22 eukaryotes. Our analyses suggest that all these signals have dramatically evolved: The PPT is weak among most fungi, intermediate in plants and protozoans, and strongest in metazoans. Within metazoans it shows a gradual strengthening from Caenorhabditis elegans to human. The 5'ss and the BS were found to be degenerate among most organisms, but highly conserved among some fungi. A maximum parsimony-based algorithm for reconstructing ancestral position-specific scoring matrices suggested that the ancestral 5'ss and BS were degenerate, as in metazoans. To shed light on the evolutionary variation in splicing signals, we have analyzed the evolutionary changes in the factors that bind these signals. Our analysis reveals coevolution of splicing signals and their corresponding splicing factors: The strength of the PPT is correlated to changes in key residues in its corresponding splicing factor U2AF2; limited correlation was found between changes in the 5'ss and U1 snRNA that binds it; but not between the BS and U2 snRNA. Thus, although the basic ability of eukaryotes to splice introns has remained conserved throughout evolution, the splicing signals and their corresponding splicing factors have considerably evolved, uniquely shaping the splicing mechanisms of different organisms.
Collapse
Affiliation(s)
- Schraga H Schwartz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
343
|
Roca X, Olson AJ, Rao AR, Enerly E, Kristensen VN, Børresen-Dale AL, Andresen BS, Krainer AR, Sachidanandam R. Features of 5'-splice-site efficiency derived from disease-causing mutations and comparative genomics. Genome Res 2007; 18:77-87. [PMID: 18032726 DOI: 10.1101/gr.6859308] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many human diseases, including Fanconi anemia, hemophilia B, neurofibromatosis, and phenylketonuria, can be caused by 5'-splice-site (5'ss) mutations that are not predicted to disrupt splicing, according to position weight matrices. By using comparative genomics, we identify pairwise dependencies between 5'ss nucleotides as a conserved feature of the entire set of 5'ss. These dependencies are also conserved in human-mouse pairs of orthologous 5'ss. Many disease-associated 5'ss mutations disrupt these dependencies, as can some human SNPs that appear to alter splicing. The consistency of the evidence signifies the relevance of this approach and suggests that 5'ss SNPs play a role in complex diseases.
Collapse
Affiliation(s)
- Xavier Roca
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
344
|
Hughes AL, Friedman R. Alternative splicing, gene duplication and connectivity in the genetic interaction network of the nematode worm Caenorhabditis elegans. Genetica 2007; 134:181-6. [PMID: 18026854 DOI: 10.1007/s10709-007-9223-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 11/01/2007] [Indexed: 11/27/2022]
Abstract
We examined the relationship between gene duplication, alternative splicing, and connectedness in a predicted genetic interaction network using published data from the nematode worm Caenorhabditis elegans. Similar to previous results from mammals, genes belonging to families with only one member ("singletons") were significantly more likely to lack alternative splicing than were members of large multi-gene families. Genes belonging to multi-gene families lacking alternative splicing tended to have higher connectedness in the genetic interaction network than did genes in families that included one or more alternatively spliced members. Moreover, alternatively spliced genes were significantly more likely to interact with other alternatively spliced genes. These results support the hypothesis that certain key proteins with high degrees of network connectedness are subject to selection opposing the occurrence of alternatively spliced forms.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Bldg., 700 Sumter St., Columbia, SC 29208, USA.
| | | |
Collapse
|
345
|
Ben-Dov C, Hartmann B, Lundgren J, Valcárcel J. Genome-wide analysis of alternative pre-mRNA splicing. J Biol Chem 2007; 283:1229-33. [PMID: 18024428 DOI: 10.1074/jbc.r700033200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing of mRNA precursors allows the synthesis of multiple mRNAs from a single primary transcript, significantly expanding the information content and regulatory possibilities of higher eukaryotic genomes. High-throughput enabling technologies, particularly large-scale sequencing and splicing-sensitive microarrays, are providing unprecedented opportunities to address key questions in this field. The picture emerging from these pioneering studies is that alternative splicing affects most human genes and a significant fraction of the genes in other multicellular organisms, with the potential to greatly influence the evolution of complex genomes. A combinatorial code of regulatory signals and factors can deploy physiologically coherent programs of alternative splicing that are distinct from those regulated at other steps of gene expression. Pre-mRNA splicing and its regulation play important roles in human pathologies, and genome-wide analyses in this area are paving the way for improved diagnostic tools and for the identification of novel and more specific pharmaceutical targets.
Collapse
Affiliation(s)
- Claudia Ben-Dov
- Centre de Regulació Genòmica, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
346
|
The Fox-1 family and SUP-12 coordinately regulate tissue-specific alternative splicing in vivo. Mol Cell Biol 2007; 27:8612-21. [PMID: 17923701 DOI: 10.1128/mcb.01508-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many pre-mRNAs are alternatively spliced in a tissue-specific manner in multicellular organisms. The Fox-1 family of RNA-binding proteins regulate alternative splicing by either activating or repressing exon inclusion through specific binding to UGCAUG stretches. However, the precise cellular contexts that determine the action of the Fox-1 family in vivo remain to be elucidated. We have recently demonstrated that ASD-1 and FOX-1, members of the Fox-1 family in Caenorhabditis elegans, regulate tissue-specific alternative splicing of the fibroblast growth factor receptor gene, egl-15, which eventually determines the ligand specificity of the receptor in vivo. Here we report that another RNA-binding protein, SUP-12, coregulates the egl-15 alternative splicing. By screening for mutants defective in the muscle-specific expression of our alternative splicing reporter, we identified the muscle-specific RNA-binding protein SUP-12. We identified juxtaposed conserved stretches as the cis elements responsible for the regulation. The Fox-1 family and the SUP-12 proteins form a stable complex with egl-15 RNA, depending on the cis elements. Furthermore, the asd-1; sup-12 double mutant is defective in sex myoblast migration, phenocopying the isoform-specific egl-15(5A) mutant. These results establish an in vivo model that coordination of the two families of RNA-binding proteins regulates tissue-specific alternative splicing of a specific target gene.
Collapse
|
347
|
Irimia M, Rukov JL, Penny D, Roy SW. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing. BMC Evol Biol 2007; 7:188. [PMID: 17916237 PMCID: PMC2082043 DOI: 10.1186/1471-2148-7-188] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 10/04/2007] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing has been reported in various eukaryotic groups including plants, apicomplexans, diatoms, amoebae, animals and fungi. However, whether widespread alternative splicing has evolved independently in the different eukaryotic groups or was inherited from their last common ancestor, and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional classes, cellular locations, intron/exon structures and evolutionary origins. Results For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants) show high levels of alternative splicing. Genes with products expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general, we find several similarities in patterns of alternative splicing across these diverse eukaryotes. Conclusion Along with previous studies indicating intron-rich genes with weak intron boundary consensus and complex spliceosomes in ancestral organisms, our results suggest that at least a simple form of alternative splicing may already have been present in the unicellular ancestor of plants, fungi and animals. A role for alternative splicing in the evolution of multicellularity then would largely have arisen by co-opting the preexisting process.
Collapse
Affiliation(s)
- Manuel Irimia
- Allan Wilson Centre for Molecular Evolution and Ecology, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
348
|
Ner-Gaon H, Leviatan N, Rubin E, Fluhr R. Comparative cross-species alternative splicing in plants. PLANT PHYSIOLOGY 2007; 144:1632-41. [PMID: 17496110 PMCID: PMC1914131 DOI: 10.1104/pp.107.098640] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 04/30/2007] [Indexed: 05/15/2023]
Abstract
Alternative splicing (AS) can add significantly to genome complexity. Plants are thought to exhibit less AS than animals. An algorithm, based on expressed sequence tag (EST) pairs gapped alignment, was developed that takes advantage of the relatively small intron and exon size in plants and directly compares pairs of ESTs to search for AS. EST pairs gapped alignment was first evaluated in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum) for which annotated genome sequence is available and was shown to accurately predict splicing events. The method was then applied to 11 plant species that include 17 cultivars for which enough ESTs are available. The results show a large, 3.7-fold difference in AS rates between plant species with Arabidopsis and rice in the lower range and lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) in the upper range. Hence, compared to higher animals, plants show a much greater degree of variety in their AS rates and in some plant species the rates of animal and plant AS are comparable although the distribution of AS types may differ. In eudicots but not monocots, a correlation between genome size and AS rates was detected, implying that in eudicots the mechanisms that lead to larger genomes are a driving force for the evolution of AS.
Collapse
Affiliation(s)
- Hadas Ner-Gaon
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
349
|
Koren E, Lev-Maor G, Ast G. The emergence of alternative 3' and 5' splice site exons from constitutive exons. PLoS Comput Biol 2007; 3:e95. [PMID: 17530917 PMCID: PMC1876488 DOI: 10.1371/journal.pcbi.0030095] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 04/10/2007] [Indexed: 11/19/2022] Open
Abstract
Alternative 3' and 5' splice site (ss) events constitute a significant part of all alternative splicing events. These events were also found to be related to several aberrant splicing diseases. However, only few of the characteristics that distinguish these events from alternative cassette exons are known currently. In this study, we compared the characteristics of constitutive exons, alternative cassette exons, and alternative 3'ss and 5'ss exons. The results revealed that alternative 3'ss and 5'ss exons are an intermediate state between constitutive and alternative cassette exons, where the constitutive side resembles constitutive exons, and the alternative side resembles alternative cassette exons. The results also show that alternative 3'ss and 5'ss exons exhibit low levels of symmetry (frame-preserving), similar to constitutive exons, whereas the sequence between the two alternative splice sites shows high symmetry levels, similar to alternative cassette exons. In addition, flanking intronic conservation analysis revealed that exons whose alternative splice sites are at least nine nucleotides apart show a high conservation level, indicating intronic participation in the regulation of their splicing, whereas exons whose alternative splice sites are fewer than nine nucleotides apart show a low conservation level. Further examination of these exons, spanning seven vertebrate species, suggests an evolutionary model in which the alternative state is a derivative of an ancestral constitutive exon, where a mutation inside the exon or along the flanking intron resulted in the creation of a new splice site that competes with the original one, leading to alternative splice site selection. This model was validated experimentally on four exons, showing that they indeed originated from constitutive exons that acquired a new competing splice site during evolution.
Collapse
Affiliation(s)
- Eli Koren
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
350
|
Ferreira EN, Galante PAF, Carraro DM, de Souza SJ. Alternative splicing: a bioinformatics perspective. MOLECULAR BIOSYSTEMS 2007; 3:473-7. [PMID: 17579772 DOI: 10.1039/b702485c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The degree of diversity at the transcriptome and proteome levels generated by alternative splicing is astonishing. In this review, we discuss several issues related to alternative splicing with a special emphasis on identification strategies based on bioinformatics.
Collapse
|