301
|
Expression analysis of the Pseudomonas aeruginosa AlgZR two-component regulatory system. J Bacteriol 2014; 197:736-48. [PMID: 25488298 DOI: 10.1128/jb.02290-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa virulence components are subject to complex regulatory control primarily through two-component regulatory systems that allow for sensing and responding to environmental stimuli. In this study, the expression and regulation of the P. aeruginosa AlgZR two-component regulatory system were examined. Primer extension and S1 nuclease protection assays were used to identify two transcriptional initiation sites for algR within the algZ coding region, and two additional start sites were identified upstream of the algZ coding region. The two algR transcriptional start sites, RT1 and RT2, are directly regulated by AlgU, consistent with previous reports of increased algR expression in mucoid backgrounds, and RpoS additionally plays a role in algR transcription. The expression of the first algZ promoter, ZT1, is entirely dependent upon Vfr for expression, whereas Vfr, RpoS, or AlgU does not regulate the second algZ promoter, ZT2. Western blot, real-time quantitative PCR (RT-qPCR), and transcriptional fusion analyses show that algZR expression is Vfr dependent. The algZ and algR genes also are cotranscribed in both nonmucoid and mucoid backgrounds. Furthermore, algZR was found to be cotranscribed with hemCD by RT-PCR. RT-qPCR confirmed that hemC transcription in the PAO1 ΔalgZ mutant was 40% of the level of the wild-type strain. Taken together, these results indicate that algZR transcription involves multiple factors at multiple start sites that control individual gene expression as well as coexpression of this two-component system with heme biosynthetic genes.
Collapse
|
302
|
Ferrara S, Carloni S, Fulco R, Falcone M, Macchi R, Bertoni G. Post-transcriptional regulation of the virulence-associated enzyme AlgC by the σ(22) -dependent small RNA ErsA of Pseudomonas aeruginosa. Environ Microbiol 2014; 17:199-214. [PMID: 25186153 DOI: 10.1111/1462-2920.12590] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022]
Abstract
The small RNA ErsA of Pseudomonas aeruginosa, transcribed from the same genomic context of the well-known Escherichia coli Spot 42, has been characterized. We show that, different from Spot 42, ErsA is under the transcriptional control of the envelope stress response, which is known to impact the pathogenesis of P. aeruginosa through the activity of the alternative sigma factor σ(22) . The transcriptional responsiveness of ErsA RNA also spans infection-relevant cues that P. aeruginosa can experience in mammalian hosts, such as limited iron availability, temperature shifts from environmental to body temperature and reduced oxygen conditions. Another difference between Spot 42 and ErsA is that ErsA does not seem to be involved in the regulation of carbon source catabolism. Instead, our results suggest that ErsA is linked to anabolic functions for the synthesis of exoproducts from sugar precursors. We show that ErsA directly operates in the negative post-transcriptional regulation of the algC gene that encodes the virulence-associated enzyme AlgC, which provides sugar precursors for the synthesis of several P. aeruginosa polysaccharides. Like ErsA, the activation of algC expression is also dependent on σ(22) . Altogether, our results suggest that ErsA and σ(22) combine in an incoherent feed-forward loop to fine-tune AlgC enzyme expression.
Collapse
Affiliation(s)
- Silvia Ferrara
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | |
Collapse
|
303
|
Structural and functional characterization of Pseudomonas aeruginosa global regulator AmpR. J Bacteriol 2014; 196:3890-902. [PMID: 25182487 DOI: 10.1128/jb.01997-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a dreaded pathogen in many clinical settings. Its inherent and acquired antibiotic resistance thwarts therapy. In particular, derepression of the AmpC β-lactamase is a common mechanism of β-lactam resistance among clinical isolates. The inducible expression of ampC is controlled by the global LysR-type transcriptional regulator (LTTR) AmpR. In the present study, we investigated the genetic and structural elements that are important for ampC induction. Specifically, the ampC (PampC) and ampR (PampR) promoters and the AmpR protein were characterized. The transcription start sites (TSSs) of the divergent transcripts were mapped using 5' rapid amplification of cDNA ends-PCR (RACE-PCR), and strong σ(54) and σ(70) consensus sequences were identified at PampR and PampC, respectively. Sigma factor RpoN was found to negatively regulate ampR expression, possibly through promoter blocking. Deletion mapping revealed that the minimal PampC extends 98 bp upstream of the TSS. Gel shifts using membrane fractions showed that AmpR binds to PampC in vitro whereas in vivo binding was demonstrated using chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR). Additionally, site-directed mutagenesis of the AmpR helix-turn-helix (HTH) motif identified residues critical for binding and function (Ser38 and Lys42) and critical for function but not binding (His39). Amino acids Gly102 and Asp135, previously implicated in the repression state of AmpR in the enterobacteria, were also shown to play a structural role in P. aeruginosa AmpR. Alkaline phosphatase fusion and shaving experiments suggest that AmpR is likely to be membrane associated. Lastly, an in vivo cross-linking study shows that AmpR dimerizes. In conclusion, a potential membrane-associated AmpR dimer regulates ampC expression by direct binding.
Collapse
|
304
|
Cao Q, Wang Y, Chen F, Xia Y, Lou J, Zhang X, Yang N, Sun X, Zhang Q, Zhuo C, Huang X, Deng X, Yang CG, Ye Y, Zhao J, Wu M, Lan L. A novel signal transduction pathway that modulates rhl quorum sensing and bacterial virulence in Pseudomonas aeruginosa. PLoS Pathog 2014; 10:e1004340. [PMID: 25166864 PMCID: PMC4148453 DOI: 10.1371/journal.ppat.1004340] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/15/2014] [Indexed: 01/10/2023] Open
Abstract
The rhl quorum-sensing (QS) system plays critical roles in the pathogenesis of P. aeruginosa. However, the regulatory effects that occur directly upstream of the rhl QS system are poorly understood. Here, we show that deletion of gene encoding for the two-component sensor BfmS leads to the activation of its cognate response regulator BfmR, which in turn directly binds to the promoter and decreases the expression of the rhlR gene that encodes the QS regulator RhlR, causing the inhibition of the rhl QS system. In the absence of bfmS, the Acka-Pta pathway can modulate the regulatory activity of BfmR. In addition, BfmS tunes the expression of 202 genes that comprise 3.6% of the P. aeruginosa genome. We further demonstrate that deletion of bfmS causes substantially reduced virulence in lettuce leaf, reduced cytotoxicity, enhanced invasion, and reduced bacterial survival during acute mouse lung infection. Intriguingly, specific missense mutations, which occur naturally in the bfmS gene in P. aeruginosa cystic fibrosis (CF) isolates such as DK2 strains and RP73 strain, can produce BfmS variants (BfmSL181P, BfmSL181P/E376Q, and BfmSR393H) that no longer repress, but instead activate BfmR. As a result, BfmS variants, but not the wild-type BfmS, inhibit the rhl QS system. This study thus uncovers a previously unexplored signal transduction pathway, BfmS/BfmR/RhlR, for the regulation of rhl QS in P. aeruginosa. We propose that BfmRS TCS may have an important role in the regulation and evolution of P. aeruginosa virulence during chronic infection in CF lungs. The rhl quorum-sensing (QS) system allows P. aeruginosa to regulate diverse metabolic adaptations and virulence. However, how rhl QS system is regulated remains largely unknown. Here, we report that two-component sensor BfmS controls rhl QS system by repressing its cognate response regulator BfmR, which directly suppresses the expression of rhl QS regulator RhlR gene and reduces the production of QS signal molecule N-butanoyl-L-homoserine lactone (C4-HSL). We find that BfmS is critical to the ability of P. aeruginosa to modulate the expression of virulence-associated traits and adapt to the host. Intriguingly, although wild-type BfmS is a repressor of BfmR, naturally occurring missense mutation (L181P, L181P/E376Q, or R393H) can convert its function from a repressor to an activator of BfmR, leading to BfmR activation, which in turn reduces the level of rhl QS signal C4-HSL. These results, therefore, provide important and novel insight into the regulation and evolution of P. aeruginosa virulence.
Collapse
Affiliation(s)
- Qiao Cao
- Hainan University, Haikou, Hainan, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yue Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Chemistry and BioMedical Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Feifei Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongjie Xia
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingyu Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xue Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nana Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qin Zhang
- State Key Laboratory of Respiratory Diseases and the First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Chao Zhuo
- State Key Laboratory of Respiratory Diseases and the First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Xi Huang
- Hainan University, Haikou, Hainan, China
| | - Xin Deng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, United States of America
| | - Cai-Guang Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Ye
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Jing Zhao
- Institute of Chemistry and BioMedical Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: (JZ); (MW); (LL)
| | - Min Wu
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
- * E-mail: (JZ); (MW); (LL)
| | - Lefu Lan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JZ); (MW); (LL)
| |
Collapse
|
305
|
Kamaeva AA, Vasilchenko AS, Deryabin DG. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone. PLoS One 2014; 9:e103741. [PMID: 25111599 PMCID: PMC4128650 DOI: 10.1371/journal.pone.0103741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
Abstract
Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.
Collapse
Affiliation(s)
- Anara A. Kamaeva
- Department of Microbiology, Orenburg State University, Orenburg, Russia
- RSE «Republican Collection of Microorganisms», Astana, Republic of Kazakhstan
| | - Alexey S. Vasilchenko
- Department of Microbiology, Orenburg State University, Orenburg, Russia
- Laboratory of Disbiosis, Institute of Cellular and Intracellular Symbiosis, RAS, Orenburg, Russia
| | | |
Collapse
|
306
|
Qin H, Cao H, Zhao Y, Zhu C, Cheng T, Wang Q, Peng X, Cheng M, Wang J, Jin G, Jiang Y, Zhang X, Liu X, Chu PK. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials 2014; 35:9114-25. [PMID: 25112937 DOI: 10.1016/j.biomaterials.2014.07.040] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/23/2014] [Indexed: 01/09/2023]
Abstract
Prevention of periprosthetic infection (PPI) by inhibiting biofilm formation on prostheses is crucial to orthopedic surgery. In this work, silver nanoparticles (Ag NPs) are fabricated in situ and immobilized on titanium by silver plasma immersion ion implantation (PIII). The anti-biofilm activity rendered by the immobilized Ag NPs is assessed using Staphylococcus epidermidis, a biofilm producing strain, in vitro and in vivo. The immobilized Ag NPs show no apparent cytotoxicity but reduce biofilm formation in vitro by inhibiting bacteria adhesion and icaAD transcription. The immobilized Ag NPs offer a good defense against multiple cycles of bacteria attack in vitro, and the mechanism is independent of silver release. Radiographic assessment, microbiological cultures, and histopathological results demonstrate the ability of the functionalized surface against bacterial infection to reduce the risk of implant-associated PPI.
Collapse
Affiliation(s)
- Hui Qin
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Huiliang Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yaochao Zhao
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Cheng Zhu
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Tao Cheng
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Qiaojie Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Xiaochun Peng
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Mengqi Cheng
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jiaxin Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Guodong Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yao Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Paul K Chu
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
307
|
Ouidir T, Jarnier F, Cosette P, Jouenne T, Hardouin J. Potential of liquid-isoelectric-focusing protein fractionation to improve phosphoprotein characterization of Pseudomonas aeruginosa PA14. Anal Bioanal Chem 2014; 406:6297-309. [DOI: 10.1007/s00216-014-8045-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/09/2014] [Accepted: 07/16/2014] [Indexed: 11/29/2022]
|
308
|
Silva LV, Galdino ACM, Nunes APF, dos Santos KRN, Moreira BM, Cacci LC, Sodré CL, Ziccardi M, Branquinha MH, Santos ALS. Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa. Int J Med Microbiol 2014; 304:990-1000. [PMID: 25127423 DOI: 10.1016/j.ijmm.2014.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/17/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen responsible for causing a huge variety of acute and chronic infections with significant levels of morbidity and mortality. Its success as a pathogen comes from its genetic/metabolic plasticity, intrinsic/acquired antimicrobial resistance, capacity to form biofilm and expression of numerous virulence factors. Herein, we have analyzed the genetic variability, antimicrobial susceptibility as well as the production of metallo-β-lactamases (MBLs) and virulence attributes (elastase, pyocyanin and biofilm) in 96 strains of P. aeruginosa isolated from different anatomical sites of patients attended at Brazilian hospitals. Our results revealed a great genetic variability, in which 86 distinct RAPD types (89.6% of polymorphisms) were detected. Regarding the susceptibility profile, 48 strains (50%) were resistant to the antimicrobials, as follows: 22.92% to the three tested antibiotics, 12.5% to both imipenem and meropenem, 11.46% to ceftazidime only, 2.08% to imipenem only and 1.04% to both ceftazidime and meropenem. Out of the 34 clinical strains of P. aeruginosa resistant to both imipenem and meropenem, 25 (73.53%) were MBL producers by phenotypic method while 12 (35.29%) were PCR positive for the MBL gene SPM-1. All P. aeruginosa strains produced pyocyanin, elastase and biofilm, although in different levels. Some associations were demonstrated among the susceptibility and/or production of these virulence traits with the anatomical site of strain isolation. For instance, almost all strains isolated from urine (85.71%) were resistant to the three antibiotics, while the vast majority of strains isolated from rectum (95%) and mouth (66.67%) were susceptible to all tested antibiotics. Urine isolates produced the highest pyocyanin concentration (20.15±5.65 μg/ml), while strains isolated from pleural secretion and mouth produced elevated elastase activity (1441.43±303.08 FAU) and biofilm formation (OD590 0.676±0.32), respectively. Also, MBL-positive strains produced robust biofilm compared to MBL-negative strains. Collectively, the production of site-dependent virulence factors can be highlighted as potential therapeutic targets for the treatment of infections caused by heterogeneous and resistant strains of P. aeruginosa.
Collapse
Affiliation(s)
- Lívia V Silva
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Clara M Galdino
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula F Nunes
- Departamento de Patologia e Programa de Pós-Graduação em Doenças Infecciosas, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Kátia R N dos Santos
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz M Moreira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana C Cacci
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cátia L Sodré
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Mariangela Ziccardi
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
309
|
Dougherty K, Smith BA, Moore AF, Maitland S, Fanger C, Murillo R, Baltrus DA. Multiple phenotypic changes associated with large-scale horizontal gene transfer. PLoS One 2014; 9:e102170. [PMID: 25048697 PMCID: PMC4105467 DOI: 10.1371/journal.pone.0102170] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022] Open
Abstract
Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates) have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid) within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts.
Collapse
Affiliation(s)
- Kevin Dougherty
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Brian A. Smith
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Autumn F. Moore
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Shannon Maitland
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Chris Fanger
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Rachel Murillo
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
310
|
Kwiatek M, Mizak L, Parasion S, Gryko R, Olender A, Niemcewicz M. Characterization of five newly isolated bacteriophages active against Pseudomonas aeruginosa clinical strains. Folia Microbiol (Praha) 2014; 60:7-14. [PMID: 24993480 DOI: 10.1007/s12223-014-0333-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections, especially in patients with immunodeficiency. It exhibits multiple mechanisms of resistance, including efflux pumps, antibiotic modifying enzymes and limited membrane permeability. The primary reason for the development of novel therapeutics for P. aeruginosa infections is the declining efficacy of conventional antibiotic therapy. These clinical problems caused a revitalization of interest in bacteriophages, which are highly specific and have very effective antibacterial activity as well as several other advantages over traditional antimicrobial agents. Above all, so far, no serious or irreversible side effects of phage therapy have been described. Five newly purified P. aeruginosa phages named vB_PaeM_WP1, vB_PaeM_WP2, vB_PaeM_WP3, vB_PaeM_WP4 and vB_PaeP_WP5 have been characterized as potential candidates for use in phage therapy. They are representatives of the Myoviridae and Podoviridae families. Their host range, genome size, structural proteins and stability in various physical and chemical conditions were tested. The results of these preliminary investigations indicate that the newly isolated bacteriophages may be considered for use in phagotherapy.
Collapse
Affiliation(s)
- Magdalena Kwiatek
- Biological Threat Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Lubelska 2, 24-100, Puławy, Poland,
| | | | | | | | | | | |
Collapse
|
311
|
Sarkisova SA, Lotlikar SR, Guragain M, Kubat R, Cloud J, Franklin MJ, Patrauchan MA. A Pseudomonas aeruginosa EF-hand protein, EfhP (PA4107), modulates stress responses and virulence at high calcium concentration. PLoS One 2014; 9:e98985. [PMID: 24918783 PMCID: PMC4053335 DOI: 10.1371/journal.pone.0098985] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/09/2014] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a facultative human pathogen, and a major cause of nosocomial infections and severe chronic infections in endocarditis and in cystic fibrosis (CF) patients. Calcium (Ca2+) accumulates in pulmonary fluids of CF patients, and plays a role in the hyperinflammatory response to bacterial infection. Earlier we showed that P. aeruginosa responds to increased Ca2+ levels, primarily through the increased production of secreted virulence factors. Here we describe the role of putative Ca2+-binding protein, with an EF-hand domain, PA4107 (EfhP), in this response. Deletion mutations of efhP were generated in P. aeruginosa strain PAO1 and CF pulmonary isolate, strain FRD1. The lack of EfhP abolished the ability of P. aeruginosa PAO1 to maintain intracellular Ca2+ homeostasis. Quantitative high-resolution 2D-PAGE showed that the efhP deletion also affected the proteomes of both strains during growth with added Ca2+. The greatest proteome effects occurred when the pulmonary isolate was cultured in biofilms. Among the proteins that were significantly less abundant or absent in the mutant strains were proteins involved in iron acquisition, biosynthesis of pyocyanin, proteases, and stress response proteins. In support, the phenotypic responses of FRD1 ΔefhP showed that the mutant strain lost its ability to produce pyocyanin, developed less biofilm, and had decreased resistance to oxidative stress (H2O2) when cultured at high [Ca2+]. Furthermore, the mutant strain was unable to produce alginate when grown at high [Ca2+] and no iron. The effect of the ΔefhP mutations on virulence was determined in a lettuce model of infection. Growth of wild-type P. aeruginosa strains at high [Ca2+] causes an increased area of disease. In contrast, the lack of efhP prevented this Ca2+-induced increase in the diseased zone. The results indicate that EfhP is important for Ca2+ homeostasis and virulence of P. aeruginosa when it encounters host environments with high [Ca2+].
Collapse
Affiliation(s)
- Svetlana A. Sarkisova
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Shalaka R. Lotlikar
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Manita Guragain
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Ryan Kubat
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - John Cloud
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Michael J. Franklin
- Department of Microbiology, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
312
|
Wozniak DJ, Parsek MR. Surface-associated microbes continue to surprise us in their sophisticated strategies for assembling biofilm communities. F1000PRIME REPORTS 2014; 6:26. [PMID: 24860649 PMCID: PMC4018179 DOI: 10.12703/p6-26] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microorganisms are rarely found in isolation. Frequently, they live as complex consortia or communities known as biofilms. The microbes within these complex structures are typically enmeshed in a matrix of macromolecules collectively known as the extracellular polymeric substances (EPS). The last decade has seen enormous growth in the breadth and depth of biofilm-related research. An important area of focus has been the study of pure culture biofilms of different model species. This work has informed us about the different genetic determinants involved in biofilm formation and the environmental conditions that influence the process. These studies have also highlighted both species-specific aspects of biofilm development and common trends observed across many different organisms. This report highlights some exciting findings in recent biofilm-related research.
Collapse
Affiliation(s)
- Daniel J. Wozniak
- Department of Microbial Infection and Immunity, Department of Microbiology, Center for Microbial Interface Biology, The Ohio State University460 W 12th Avenue, Columbus, OH 43210USA
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington1705 NE Pacific Street, Seattle, WA 98195USA
| |
Collapse
|
313
|
Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis. PLoS Pathog 2014; 10:e1004088. [PMID: 24788524 PMCID: PMC4006921 DOI: 10.1371/journal.ppat.1004088] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR) protein from the major human pathogen group A Streptococcus (GAS) influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53) in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65) as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk). Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A) or had functional constitutive phosphorylation at T65 (CovR-T65E) had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A) was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data establish that CovR is phosphorylated in vivo and elucidate how the complex interplay between CovR D53 activating phosphorylation, T65 inhibiting phosphorylation, and auto-regulation impacts streptococcal host-pathogen interaction. Group A Streptococcus (GAS) causes a variety of human diseases ranging from mild throat infections to deadly invasive infections. The capacity of GAS to cause infections at such diverse locations is dependent on its ability to precisely control the production of a broad variety of virulence factors. The control of virulence regulator (CovR) is a master regulator of GAS genes encoding virulence factors. It is known that CovR can be phosphorylated on aspartate-53 in vitro and that such phosphorylation increases its regulatory activity, but what additional factors influence CovR-mediated gene expression have not been established. Herein we show for the first time that CovR is phosphorylated in vivo and that phosphorylation of CovR on threonine-65 by the threonine/serine kinase Stk prevents aspartate-53 phosphorylation, thereby decreasing CovR regulatory activity. Further, while CovR-mediated gene repression is highly dependent on aspartate-53 phosphorylation, CovR-mediated gene activation proceeds via a phosphorylation-independent mechanism. Modifications in CovR phosphorylation sites significantly affected the expression of GAS virulence factors during infection and markedly altered the ability of GAS to cause disease in mice. These data establish that multiple inter-related pathways converge to influence CovR phosphorylation, thereby providing new insight into the complex regulatory network used by GAS during infection.
Collapse
|
314
|
Schmidberger A, Henkel M, Hausmann R, Schwartz T. Influence of ferric iron on gene expression and rhamnolipid synthesis during batch cultivation of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 2014; 98:6725-37. [PMID: 24752844 DOI: 10.1007/s00253-014-5747-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
Bioprocesses based on sustainable resources and rhamnolipids in particular have become increasingly attractive in recent years. These surface-active glycolipids with various chemical and biological properties have diverse biotechnological applications and are naturally produced by Pseudomonas aeruginosa. Their production, however, is tightly governed by a complex growth-dependent regulatory network, one of the major obstacles in the way to upscale production. P. aeruginosa PAO1 was grown in shake flask cultures using varying concentrations of ferric iron. Gene expression was assessed using quantitative PCR. A strong increase in relative expression of the genes for rhamnolipid synthesis, rhlA and rhlC, as well as the genes of the pqs quorum sensing regulon was observed under iron-limiting conditions. Iron repletion on the other hand caused a down-regulation of those genes. Furthermore, gene expression of different iron regulation-related factors, i.e. pvdS, fur and bqsS, was increased in response to iron limitation. Ensuing from these results, a batch cultivation using production medium without any addition of iron was conducted. Both biomass formation and specific growth rates were not impaired compared to normal cultivation conditions. Expression of rhlA, rhlC and pvdS, as well as the gene for the 3-oxo-C12-HSL synthetase, lasI, increased until late stationary growth phase. After this time point, their expression steadily decreased. Expression of the C4-HSL synthetase gene, rhlI, on the other hand, was found to be highly increased during the entire process.
Collapse
Affiliation(s)
- Anke Schmidberger
- Institute of Functional Interfaces, Department of Interface Microbiology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany,
| | | | | | | |
Collapse
|
315
|
|
316
|
Coffey BM, Akhand SS, Anderson GG. MgtE is a dual-function protein in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2014; 160:1200-1213. [PMID: 24722909 DOI: 10.1099/mic.0.075275-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections, including chronic biofilm infections in the lungs of individuals with cystic fibrosis. We previously found that the inner-membrane protein MgtE can function both as a magnesium transporter and a virulence modulator, although the exact mechanism governing these activities is unclear. To address this issue, we carried out an experimental characterization of P. aeruginosa MgtE and generated a computer-rendered model. Our in silico analysis demonstrated the structural similarity of P. aeruginosa MgtE to that of the crystal structure of MgtE in Thermus thermophilus. Experimentally, we verified that MgtE is not essential for growth and found that it may not be involved directly in biofilm formation, even under low-magnesium conditions. We demonstrated both magnesium transport and cytotoxicity-regulating functions, and showed that magnesium-binding sites in the connecting helix region of MgtE are vital in coupling these two functions. Furthermore, limiting magnesium environments stimulated mgtE transcriptional responses. Our results suggested that MgtE might play an important role in linking magnesium availability to P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Barbara M Coffey
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Saeed S Akhand
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Gregory G Anderson
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
317
|
Berger A, Dohnt K, Tielen P, Jahn D, Becker J, Wittmann C. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. PLoS One 2014; 9:e88368. [PMID: 24709961 PMCID: PMC3977821 DOI: 10.1371/journal.pone.0088368] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/06/2014] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is a human pathogen that frequently causes urinary tract and catheter-associated urinary tract infections. Here, using 13C-metabolic flux analysis, we conducted quantitative analysis of metabolic fluxes in the model strain P. aeruginosa PAO1 and 17 clinical isolates. All P. aeruginosa strains catabolized glucose through the Entner-Doudoroff pathway with fully respiratory metabolism and no overflow. Together with other NADPH supplying reactions, this high-flux pathway provided by far more NADPH than needed for anabolism: a benefit for the pathogen to counteract oxidative stress imposed by the host. P. aeruginosa recruited the pentose phosphate pathway exclusively for biosynthesis. In contrast to glycolytic metabolism, which was conserved among all isolates, the flux through pyruvate metabolism, the tricarboxylic acid cycle, and the glyoxylate shunt was highly variable, likely caused by adaptive processes in individual strains during infection. This aspect of metabolism was niche-specific with respect to the corresponding flux because strains isolated from the urinary tract clustered separately from those originating from catheter-associated infections. Interestingly, most glucose-grown strains exhibited significant flux through the glyoxylate shunt. Projection into the theoretical flux space, which was computed using elementary flux-mode analysis, indicated that P. aeruginosa metabolism is optimized for efficient growth and exhibits significant potential for increasing NADPH supply to drive oxidative stress response.
Collapse
Affiliation(s)
- Antje Berger
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Katrin Dohnt
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Petra Tielen
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Judith Becker
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
318
|
Zhang XX, Ritchie SR, Rainey PB. Urocanate as a potential signaling molecule for bacterial recognition of eukaryotic hosts. Cell Mol Life Sci 2014; 71:541-7. [PMID: 24305948 PMCID: PMC11113655 DOI: 10.1007/s00018-013-1527-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/29/2013] [Accepted: 11/18/2013] [Indexed: 12/24/2022]
Abstract
Host recognition is the crucial first step in infectious disease pathogenesis. Recognition allows pathogenic bacteria to identify suitable niches and deploy appropriate phenotypes for successful colonization and immune evasion. However, the mechanisms underlying host recognition remain largely unknown. Mounting evidence suggests that urocanate-an intermediate of the histidine degradation pathway-accumulates in tissues, such as skin, and acts as a molecule that promotes bacterial infection via molecular interaction with the bacterial regulatory protein HutC. In Gram-negative bacteria, HutC has long been known as a transcriptional repressor of hut genes for the utilization of histidine (and urocanate) as sources of carbon and nitrogen. Recent work on the opportunistic human pathogen Pseudomonas aeruginosa and zoonotic pathogen Brucella abortus shows that urocanate, in conjunction with HutC, plays a significant role in the global control of cellular metabolism, cell motility, and expression of virulence factors. We suggest that in addition to being a valuable source of carbon and nitrogen, urocanate may be central to the elicitation of bacterial pathogenesis.
Collapse
Affiliation(s)
- Xue-Xian Zhang
- Institute of Natural and Mathematical Sciences, Massey University at Albany, Auckland, 0745, New Zealand,
| | | | | |
Collapse
|
319
|
Moore JD, Gerdt JP, Eibergen NR, Blackwell HE. Active efflux influences the potency of quorum sensing inhibitors in Pseudomonas aeruginosa. Chembiochem 2014; 15:435-42. [PMID: 24478193 DOI: 10.1002/cbic.201300701] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Indexed: 12/15/2022]
Abstract
Many bacteria regulate gene expression through a cell-cell signaling process called quorum sensing (QS). In proteobacteria, QS is largely mediated by signaling molecules known as N-acylated L-homoserine lactones (AHLs) and their associated intracellular LuxR-type receptors. The design of non-native small molecules capable of inhibiting LuxR-type receptors (and thereby QS) in proteobacteria is an active area of research, and numerous lead compounds are AHL derivatives that mimic native AHL molecules. Much of this previous work has focused on the pathogen Pseudomonas aeruginosa, which controls an arsenal of virulence factors and biofilm formation through QS. The MexAB-OprM efflux pump has been shown to play a role in the secretion of the major AHL signal in P. aeruginosa, N-(3-oxododecanoyl) L-homoserine lactone. In the current study, we show that a variety of non-native AHLs and related derivatives capable of inhibiting LuxR-type receptors in P. aeruginosa display significantly higher potency in a P. aeruginosa Δ(mexAB-oprM) mutant, suggesting that MexAB-OprM also recognizes these compounds as substrates. We also demonstrate that the potency of 5,6-dimethyl-2-aminobenzimidazole, recently shown to be a QS and biofilm inhibitor in P. aeruginosa, is not affected by the presence/absence of the MexAB-OprM pump. These results have implications for the use of non-native AHLs and related derivatives as QS modulators in P. aeruginosa and other bacteria, and provide a potential design strategy for the development of new QS modulators that are resistant to active efflux.
Collapse
Affiliation(s)
- Joseph D Moore
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706 (USA)
| | | | | | | |
Collapse
|
320
|
Kumari H, Balasubramanian D, Zincke D, Mathee K. Role of Pseudomonas aeruginosa AmpR on β-lactam and non-β-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics. J Med Microbiol 2014; 63:544-555. [PMID: 24464693 DOI: 10.1099/jmm.0.070185-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most dreaded opportunistic pathogens accounting for 10 % of hospital-acquired infections, with a 50 % mortality rate in chronically ill patients. The increased prevalence of drug-resistant isolates is a major cause of concern. Resistance in P. aeruginosa is mediated by various mechanisms, some of which are shared among different classes of antibiotics and which raise the possibility of cross-resistance. The goal of this study was to explore the effect of subinhibitory concentrations (SICs) of clinically relevant antibiotics and the role of a global antibiotic resistance and virulence regulator, AmpR, in developing cross-resistance. We investigated the induction of transient cross-resistance in P. aeruginosa PAO1 upon exposure to SICs of antibiotics. Pre-exposure to carbapenems, specifically imipenem, even at 3 ng ml(-1), adversely affected the efficacy of clinically used penicillins and cephalosporins. The high β-lactam resistance was due to elevated expression of both ampC and ampR, encoding a chromosomal β-lactamase and its regulator, respectively. Differences in the susceptibility of ampR and ampC mutants suggested non-AmpC-mediated regulation of β-lactam resistance by AmpR. The increased susceptibility of P. aeruginosa in the absence of ampR to various antibiotics upon SIC exposure suggests that AmpR plays a major role in the cross-resistance. AmpR was shown previously to be involved in resistance to quinolones by regulating MexEF-OprN efflux pump. The data here further indicate the role of AmpR in cross-resistance between quinolones and aminoglycosides. This was confirmed using quantitative PCR, where expression of the mexEF efflux pump was further induced by ciprofloxacin and tobramycin, its substrate and a non-substrate, respectively, in the absence of ampR. The data presented here highlight the intricate cross-regulation of antibiotic resistance pathways at SICs of antibiotics and the need for careful assessment of the order of antibiotic regimens as this may have dire consequences. Targeting a global regulator such as AmpR that connects diverse pathways is a feasible therapeutic approach to combat P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Hansi Kumari
- Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, FL, USA.,Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Diansy Zincke
- Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, FL, USA.,Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Kalai Mathee
- Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
321
|
2,3-dihydroxybenzoic acid-containing nanofiber wound dressings inhibit biofilm formation by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58:2098-104. [PMID: 24449781 DOI: 10.1128/aac.02397-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pseudomonas aeruginosa forms biofilms in wounds, which often leads to chronic infections that are difficult to treat with antibiotics. Free iron enhances biofilm formation, delays wound healing, and may even be responsible for persistent inflammation, increased connective tissue destruction, and lipid peroxidation. Exposure of P. aeruginosa Xen 5 to the iron chelator 2,3-dihydroxybenzoic acid (DHBA), electrospun into a nanofiber blend of poly(d,l-lactide) (PDLLA) and poly(ethylene oxide) (PEO), referred to as DF, for 8 h decreased biofilm formation by approximately 75%. This was shown by a drastic decline in cell numbers, from 7.1 log10 CFU/ml to 4.8 log10 CFU/ml when biofilms were exposed to DF in the presence of 2.0 mM FeCl3 6H2O. A similar decline in cell numbers was recorded in the presence of 3.0 mM FeCl3 6H2O and DF. The cells were more mobile in the presence of DHBA, supporting the observation of less biofilm formation at lower iron concentrations. DHBA at MIC levels (1.5 mg/ml) inhibited the growth of strain Xen 5 for at least 24 h. Our findings indicate that DHBA electrospun into nanofibers inhibits cell growth for at least 4 h, which is equivalent to the time required for all DHBA to diffuse from DF. This is the first indication that DF can be developed into a wound dressing to treat topical infections caused by P. aeruginosa.
Collapse
|
322
|
Tsang J, Hoover TR. Themes and Variations: Regulation of RpoN-Dependent Flagellar Genes across Diverse Bacterial Species. SCIENTIFICA 2014; 2014:681754. [PMID: 24672734 PMCID: PMC3930126 DOI: 10.1155/2014/681754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ (54) (also known as RpoN) to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni), Gammaproteobacteria (e.g., Vibrio and Pseudomonas species), and Alphaproteobacteria (e.g., Caulobacter crescentus). This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization.
Collapse
Affiliation(s)
- Jennifer Tsang
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
323
|
Andrejko M, Zdybicka-Barabas A, Cytryńska M. Diverse effects of Galleria mellonella infection with entomopathogenic and clinical strains of Pseudomonas aeruginosa. J Invertebr Pathol 2014; 115:14-25. [DOI: 10.1016/j.jip.2013.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/25/2013] [Accepted: 10/13/2013] [Indexed: 02/06/2023]
|
324
|
Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R. Pseudomonas aeruginosa biofilm: Potential therapeutic targets. Biologicals 2014; 42:1-7. [DOI: 10.1016/j.biologicals.2013.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022] Open
|
325
|
Kumari H, Murugapiran SK, Balasubramanian D, Schneper L, Merighi M, Sarracino D, Lory S, Mathee K. LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. J Proteomics 2013; 96:328-342. [PMID: 24291602 DOI: 10.1016/j.jprot.2013.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 12/23/2022]
Abstract
UNLABELLED Pseudomonas aeruginosa is well known for its antibiotic resistance and intricate regulatory network, contributing to its success as an opportunistic pathogen. This study is an extension of our transcriptomic analyses (microarray and RNA-Seq) to understand the global changes in PAO1 upon deleting a gene encoding a transcriptional regulator AmpR, in the presence and absence of β-lactam antibiotic. This study was performed under identical conditions to explore the proteome profile of the ampR deletion mutant (PAOΔampR) using LTQ-XL mass spectrometry. The proteomic data identified ~53% of total PAO1 proteins and expanded the master regulatory role of AmpR in determining antibiotic resistance and multiple virulence phenotypes in P. aeruginosa. AmpR proteome analysis identified 853 AmpR-dependent proteins, which include 102 transcriptional regulators and 21 two-component system proteins. AmpR also regulates cyclic di-GMP phosphodiesterases (PA4367, PA4969, PA4781) possibly affecting major virulence systems. Phosphoproteome analysis also suggests a significant role for AmpR in Ser, Thr and Tyr phosphorylation. These novel mechanisms of gene regulation were previously not associated with AmpR. The proteome analysis also identified many unannotated and misannotated ORFs in the P. aeruginosa genome. Thus, our data sheds light on important virulence regulatory pathways that can potentially be exploited to deal with P. aeruginosa infections. BIOLOGICAL SIGNIFICANCE The AmpR proteome data not only confirmed the role of AmpR in virulence and resistance to multiple antibiotics, but also expanded the perimeter of AmpR regulon. The data presented here points to the role of AmpR in regulating cyclic di-GMP levels and phosphorylation of Ser, Thr and Tyr, adding another dimension to the regulatory functions of AmpR. We also identify some previously unannotated/misannotated ORFs in the P. aeruginosa genome, indicating the limitations of existing ORF analyses software. This study will contribute towards understanding complex genetic organization of P. aeruginosa. Whole genome proteomic picture of regulators at higher nodal positions in the regulatory network will not only help us link various virulence phenotypes but also design novel therapeutic strategies.
Collapse
Affiliation(s)
- Hansi Kumari
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Senthil K Murugapiran
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, FL United States
| | - Lisa Schneper
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Massimo Merighi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA
| | - David Sarracino
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA
| | - Stephen Lory
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA
| | - Kalai Mathee
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| |
Collapse
|
326
|
Lemercier C, Elsen S. Pseudomonas aeruginosaprise en flagrant délit de casse ! Med Sci (Paris) 2013; 29:949-50. [DOI: 10.1051/medsci/20132911006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
327
|
Kant R, de Vos WM, Palva A, Satokari R. Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease. J Med Microbiol 2013; 63:293-308. [PMID: 24255136 DOI: 10.1099/jmm.0.064220-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptor (TLR) signalling plays an important role in epithelial and immune cells of the intestine. TLR9 recognizes unmethylated CpG motifs in bacterial DNA, and TLR9 signalling maintains the gut epithelial homeostasis. Here, we carried out a bioinformatic analysis of the frequency of CpG motifs in the genomes of gut commensal bacteria across major bacterial phyla. The frequency of potentially immunostimulatory CpG motifs (all CpG hexamers) or purine-purine-CG-pyrimidine-pyrimidine hexamers was linearly dependent on the genomic G+C content. We found that species belonging to Proteobacteria, Bacteroidetes and Actinobacteria (including bifidobacteria) carried high counts of GTCGTT, the optimal motif stimulating human TLR9. We also found that Enterococcus faecalis, Lactobacillus casei, Lactobacillus plantarum and Lactobacillus rhamnosus, whose strains have been marketed as probiotics, had high counts of GTCGTT motifs. As gut bacterial species differ significantly in their genomic content of CpG motifs, the overall load of CpG motifs in the intestine depends on the species assembly of microbiota and their cell numbers. The optimal CpG motif content of microbiota may depend on the host's physiological status and, consequently, on an adequate level of TLR9 signalling. We speculate that microbiota with increased numbers of microbes with CpG motif-rich DNA could better support mucosal functions in healthy individuals and improve the T-helper 1 (Th1)/Th2 imbalance in allergic diseases. In autoimmune disorders, CpG motif-rich DNA could, however, further increase the Th1-type immune responsiveness. Estimation of the load of microbe-associated molecular patterns, including CpG motifs, in gut microbiota could shed new light on host-microbe interactions across a range of diseases.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Veterinary Biosciences, University of Helsinki, PO Box 66, FI-00014, Helsinki, Finland
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.,Haartman Institute, University of Helsinki, PO Box 21, FI-00014, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, PO Box 66, FI-00014, Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, PO Box 66, FI-00014, Helsinki, Finland
| | - Reetta Satokari
- Department of Veterinary Biosciences, University of Helsinki, PO Box 66, FI-00014, Helsinki, Finland
| |
Collapse
|
328
|
Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 2013; 3:75. [PMID: 24294593 PMCID: PMC3827675 DOI: 10.3389/fcimb.2013.00075] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review.
Collapse
Affiliation(s)
- Pierre Cornelis
- Research Group Microbiology, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrussels, Belgium
- Department Structural Biology, VIB, Vrije Universiteit BrusselBrussels, Belgium
| | - Jozef Dingemans
- Research Group Microbiology, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrussels, Belgium
- Department Structural Biology, VIB, Vrije Universiteit BrusselBrussels, Belgium
| |
Collapse
|
329
|
Dulcey CE, Dekimpe V, Fauvelle DA, Milot S, Groleau MC, Doucet N, Rahme LG, Lépine F, Déziel E. The end of an old hypothesis: the pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. ACTA ACUST UNITED AC 2013; 20:1481-91. [PMID: 24239007 DOI: 10.1016/j.chembiol.2013.09.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/23/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Abstract
Groups of pathogenic bacteria use diffusible signals to regulate their virulence in a concerted manner. Pseudomonas aeruginosa uses 4-hydroxy-2-alkylquinolines (HAQs), including 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS), as unique signals. We demonstrate that octanoic acid is directly incorporated into HHQ. This finding rules out the long-standing hypothesis that 3-ketofatty acids are the precursors of HAQs. We found that HAQ biosynthesis, which requires the PqsABCD enzymes, proceeds by a two-step pathway: (1) PqsD mediates the synthesis of 2-aminobenzoylacetate (2-ABA) from anthraniloyl-coenzyme A (CoA) and malonyl-CoA, then (2) the decarboxylating coupling of 2-ABA to an octanoate group linked to PqsC produces HHQ, the direct precursor of PQS. PqsB is tightly associated with PqsC and required for the second step. This finding uncovers promising targets for the development of specific antivirulence drugs to combat this opportunistic pathogen.
Collapse
Affiliation(s)
- Carlos Eduardo Dulcey
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Valérie Dekimpe
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - David-Alexandre Fauvelle
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Sylvain Milot
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Marie-Christine Groleau
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Laurence G Rahme
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA
| | - François Lépine
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
330
|
Anti-quorum sensing activity of the traditional Chinese herb, Phyllanthus amarus. SENSORS 2013; 13:14558-69. [PMID: 24169540 PMCID: PMC3871092 DOI: 10.3390/s131114558] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/02/2022]
Abstract
The discovery of quorum sensing in Proteobacteria and its function in regulating virulence determinants makes it an attractive alternative towards attenuation of bacterial pathogens. In this study, crude extracts of Phyllanthus amarus Schumach. & Thonn, a traditional Chinese herb, were screened for their anti-quorum sensing properties through a series of bioassays. Only the methanolic extract of P. amarus exhibited anti-quorum sensing activity, whereby it interrupted the ability of Chromobacterium violaceum CVO26 to response towards exogenously supplied N-hexanoylhomoserine lactone and the extract reduced bioluminescence in E. coli [pSB401] and E. coli [pSB1075]. In addition to this, methanolic extract of P. amarus significantly inhibited selected quorum sensing-regulated virulence determinants of Pseudomonas aeruginosa PA01. Increasing concentrations of the methanolic extracts of P. amarus reduced swarming motility, pyocyanin production and P. aeruginosa PA01 lecA∷lux expression. Our data suggest that P. amarus could be useful for attenuating pathogens and hence, more local traditional herbs should be screened for its anti-quorum sensing properties as their active compounds may serve as promising anti-pathogenic drugs.
Collapse
|
331
|
Balasubramanian D, Kumari H, Jaric M, Fernandez M, Turner KH, Dove SL, Narasimhan G, Lory S, Mathee K. Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response. Nucleic Acids Res 2013; 42:979-98. [PMID: 24157832 PMCID: PMC3902932 DOI: 10.1093/nar/gkt942] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pathogenicity of Pseudomonas aeruginosa, a major cause of many acute and chronic human infections, is determined by tightly regulated expression of multiple virulence factors. Quorum sensing (QS) controls expression of many of these pathogenic determinants. Previous microarray studies have shown that the AmpC β-lactamase regulator AmpR, a member of the LysR family of transcription factors, also controls non-β-lactam resistance and multiple virulence mechanisms. Using RNA-Seq and complementary assays, this study further expands the AmpR regulon to include diverse processes such as oxidative stress, heat shock and iron uptake. Importantly, AmpR affects many of these phenotypes, in part, by regulating expression of non-coding RNAs such as rgP32, asRgsA, asPrrF1 and rgRsmZ. AmpR positively regulates expression of the major QS regulators LasR, RhlR and MvfR, and genes of the Pseudomonas quinolone system. Chromatin immunoprecipitation (ChIP)-Seq and ChIP–quantitative real-time polymerase chain reaction studies show that AmpR binds to the ampC promoter both in the absence and presence of β-lactams. In addition, AmpR directly binds the lasR promoter, encoding the QS master regulator. Comparison of the AmpR-binding sequences from the transcriptome and ChIP-Seq analyses identified an AT-rich consensus-binding motif. This study further attests to the role of AmpR in regulating virulence and physiological processes in P. aeruginosa.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA, Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA, BioRG, School of Computing and Information Science, College of Engineering and Computing, Florida International University, Miami, FL 33199, USA, Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Castelhano Santos N, Pereira MO, Lourenço A. Pathogenicity phenomena in three model systems: from network mining to emerging system-level properties. Brief Bioinform 2013; 16:169-82. [PMID: 24106130 DOI: 10.1093/bib/bbt071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Understanding the interconnections of microbial pathogenicity phenomena, such as biofilm formation, quorum sensing and antimicrobial resistance, is a tremendous open challenge for biomedical research. Progress made by wet-lab researchers and bioinformaticians in understanding the underlying regulatory phenomena has been significant, with converging evidence from multiple high-throughput technologies. Notably, network reconstructions are already of considerable size and quality, tackling both intracellular regulation and signal mediation in microbial infection. Therefore, it stands to reason that in silico investigations would play a more active part in this research. Drug target identification and drug repurposing could take much advantage of the ability to simulate pathogen regulatory systems, host-pathogen interactions and pathogen cross-talking. Here, we review the bioinformatics resources and tools available for the study of the gram-negative bacterium Pseudomonas aeruginosa, the gram-positive bacterium Staphylococcus aureus and the fungal species Candida albicans. The choice of these three microorganisms fits the rationale of the review converging into pathogens of great clinical importance, which thrive in biofilm consortia and manifest growing antimicrobial resistance.
Collapse
|
333
|
Wang D, Seeve C, Pierson LS, Pierson EA. Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa. BMC Genomics 2013; 14:618. [PMID: 24034668 PMCID: PMC3848899 DOI: 10.1186/1471-2164-14-618] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/11/2013] [Indexed: 12/26/2022] Open
Abstract
Background The ParS/ParR two component regulatory system plays critical roles for multidrug resistance in Pseudomonas aeruginosa. It was demonstrated that in the presence of antimicrobials, ParR enhances bacterial survival by distinct mechanisms including activation of the mexXY efflux genes, enhancement of lipopolysaccharide modification through the arn operon, and reduction of the expression of oprD porin. Results In this study, we report on transcriptomic analyses of P. aeruginosa PAO1 wild type and parS and parR mutants growing in a defined minimal medium. Our transcriptomic analysis provides the first estimates of transcript abundance for the 5570 coding genes in P. aeruginosa PAO1. Comparative transcriptomics of P. aeruginosa PAO1 and par mutants identified a total of 464 genes regulated by ParS and ParR. Results also showed that mutations in the parS/parR system abolished expression of the mexEF-oprN operon by down-regulating the regulatory gene mexS. In addition to the known effects on drug resistance genes, transcript abundances of the quorum sensing genes (rhlIR and pqsABCDE-phnAB) were higher in both parS and parR mutants. In accordance with these results, a significant portion of the ParS/ParR regulated genes belonged to the MexEF-OprN and quorum sensing regulons. Deletion of the par genes also led to increased phenazine production and swarming motility, consistent with the up-regulation of the phenazine and rhamnolipid biosynthetic genes, respectively. Conclusion Our results link the ParS/ParR two component signal transduction system to MexEF-OprN and quorum sensing systems in P. aeruginosa. These results expand our understanding of the roles of the ParS/ParR system in the regulation of gene expression in P. aeruginosa, especially in the absence of antimicrobials.
Collapse
Affiliation(s)
- Dongping Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA.
| | | | | | | |
Collapse
|
334
|
Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agents Chemother 2013; 57:5527-35. [PMID: 23979744 DOI: 10.1128/aac.01481-13] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A limited number of Pseudomonas aeruginosa genotypes (mainly ST-111, ST-175, and ST-235), known as high-risk clones, are responsible for epidemics of nosocomial infections by multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains worldwide. We explored the potential biological parameters that may explain the success of these clones. A total of 20 isolates from each of 4 resistance groups (XDR, MDR, ModR [resistant to 1 or 2 classes], and MultiS [susceptible to all antipseudomonals]), recovered from a multicenter study of P. aeruginosa bloodstream infections performed in 10 Spanish hospitals, were analyzed. A further set of 20 XDR isolates belonging to epidemic high-risk clones (ST-175 [n = 6], ST-111 [n = 7], and ST-235 [n = 7]) recovered from different geographical locations was also studied. When unknown, genotypes were documented through multilocus sequence typing. The biological parameters evaluated included twitching, swimming, and swarming motility, biofilm formation, production of pyoverdine and pyocyanin, spontaneous mutant frequencies, and the in vitro competition index (CI) obtained with a flow cytometry assay. All 20 (100%) XDR, 8 (40%) MDR, and 1 (5%) ModR bloodstream isolate from the multicenter study belonged to high-risk clones. No significant differences were observed between clonally diverse ModR and MultiS isolates for any of the parameters. In contrast, MDR/XDR high-risk clones showed significantly increased biofilm formation and mutant frequencies but significantly reduced motility (twitching, swimming, and swarming), production of pyoverdine and pyocyanin, and fitness. The defined biological markers of high-risk clones, which resemble those resulting from adaptation to chronic infections, could be useful for the design of specific treatment and infection control strategies.
Collapse
|