301
|
Savin KW, Zawadzki J, Auldist MJ, Wang J, Ram D, Rochfort S, Cocks BG. Faecalibacterium diversity in dairy cow milk. PLoS One 2019; 14:e0221055. [PMID: 31419254 PMCID: PMC6697359 DOI: 10.1371/journal.pone.0221055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022] Open
Abstract
The bacterial species, Faecalibacterium prausnitzii, beneficial to humans and animals and found in mammalian and avian gut, is also occasionally found in dairy cow milk. It is one of the butyrate-producing bacteria of the colon, has anti-inflammatory properties and its abundance in the gut is negatively correlated with obesity in humans. Several strains differing in their functional capability, have been identified. It is important therefore, milk being a potential source of F. prausnitzii as a novel probiotic, to investigate the diversity of this species in bovine milk. Using 16s rRNA gene amplicons we find 292 different dereplicated Faecalibacterium-related amplicons in a herd of 21 dairy cows. The distribution of the 20 most abundant amplicons with >97% identity to a Greengenes OTU varies from cow to cow. Clustering of the 292 pooled sequences from all cows at 99.6% identity finds 4 likely Faecalibacterium phylotypes with >98.5% identity to an F. prausnitzii reference sequence. Sequence alignment and phylogenetic analysis shows these phylotypes are distinct from 34 other species from the Ruminococcaceae family and displaying the sequence clusters as a network illustrates how each cluster is composed of sequences from multiple cows. We conclude there are several phylotypes of Faecalibacterium prausnitzii (the only species so far defined for the genus) in this dairy herd with cows being inoculated with a mixture of several strains from a common source. We conclude that not only can Faecalibacterium be detected in dairy cow milk (as noted by others) but that there exist multiple different strains in the milk of a dairy herd. Therefore milk, as an alternative to faeces, offers the opportunity of discovering new strains with potential probiotic application.
Collapse
Affiliation(s)
- Keith W. Savin
- AgriBio Centre, Agriculture Victoria Research, Bundoora, Victoria, Australia
- * E-mail:
| | - Jody Zawadzki
- AgriBio Centre, Agriculture Victoria Research, Bundoora, Victoria, Australia
| | | | - Jianghui Wang
- AgriBio Centre, Agriculture Victoria Research, Bundoora, Victoria, Australia
| | - Doris Ram
- AgriBio Centre, Agriculture Victoria Research, Bundoora, Victoria, Australia
| | - Simone Rochfort
- AgriBio Centre, Agriculture Victoria Research, Bundoora, Victoria, Australia
| | - Benjamin G. Cocks
- AgriBio Centre, Agriculture Victoria Research, Bundoora, Victoria, Australia
| |
Collapse
|
302
|
Sun L, Dicksved J, Priyashantha H, Lundh Å, Johansson M. Distribution of bacteria between different milk fractions, investigated using culture‐dependent methods and molecular‐based and fluorescent microscopy approaches. J Appl Microbiol 2019; 127:1028-1037. [DOI: 10.1111/jam.14377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Affiliation(s)
- L. Sun
- Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden
| | - J. Dicksved
- Department of Animal Nutrition and Management Swedish University of Agricultural Sciences Uppsala Sweden
| | - H. Priyashantha
- Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden
| | - Å. Lundh
- Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden
| | - M. Johansson
- Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
303
|
Yuan L, Sadiq FA, Burmølle M, Wang NI, He G. Insights into Psychrotrophic Bacteria in Raw Milk: A Review. J Food Prot 2019; 82:1148-1159. [PMID: 31225978 DOI: 10.4315/0362-028x.jfp-19-032] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIGHLIGHTS Levels of psychrotrophic bacteria in raw milk are affected by to habitats and farm hygiene. Biofilms formed by psychrotrophic bacteria are persistent sources of contamination. Heat-stable enzymes produced by psychrotrophic bacteria compromise product quality. Various strategies are available for controlling dairy spoilage caused by psychrotrophic bacteria.
Collapse
Affiliation(s)
- Lei Yuan
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Faizan A Sadiq
- 3 School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Mette Burmølle
- 2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - N I Wang
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Guoqing He
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
304
|
Kumar S, Devi S, Sood S, Kapila S, Narayan K, Shandilya S. Antibiotic resistance and virulence genes in nisin‐resistantEnterococcus faecalisisolated from raw buffalo milk modulate the innate functions of rat macrophages. J Appl Microbiol 2019; 127:897-910. [DOI: 10.1111/jam.14343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/02/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
Affiliation(s)
- S. Kumar
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - S. Devi
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - S.K. Sood
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - S. Kapila
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - K.S. Narayan
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - S. Shandilya
- Department of Medicine III University Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| |
Collapse
|
305
|
Joishy TK, Dehingia M, Khan MR. Bacterial diversity and metabolite profiles of curd prepared by natural fermentation of raw milk and back sloping of boiled milk. World J Microbiol Biotechnol 2019; 35:102. [PMID: 31236715 DOI: 10.1007/s11274-019-2677-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/15/2019] [Indexed: 12/19/2022]
Abstract
Preparation of curd vary worldwide due to which its taste, texture and impact on human health also differ. In Assam, curd prepared from raw milk (RMC) is preferred over curd prepared from boiled milk (BMC), a tradition believed to have originated from the Mongoloid customs. Microbial diversity of raw milk (RM), boiled milk (BM), RMC and BMC collected from three farms were investigated by culture dependent and independent techniques. Additionally, metabolite profiles of RMC and BMC were studied by gas chromatography and mass spectroscopy. A total of 59 bacterial isolates were identified from the four different dairy products. In RM, lactic acid bacteria such as Lactococcus, Enterococcus, Lactobacillus and Leuconostoc were obtained along with the environmental bacteria like Bacillus, Staphylococcus, Acetobacter, Chryseobacterium, Streptococcus, Acinetobacter, Kocuria, Klebsiella and Macrococcus. Additionally, Prevotella, Oscillospira, Phascolarctobacterium and Akkermansia were also detected in BM by culture independent technique. In RMC and BMC, Lactococcus, Leuconostoc and Lactobacillus were prevalent. RM and RMC shared Enterococcus, Lactococcus, Streptococcus and Acinetobacter as common bacterial genera. However, no bacterial genus was common in BM and BMC. The correlation analysis revealed that Lactobacillus was negatively correlated to other bacterial genera. Oligotyping analysis revealed that Lactobacillus brevis and L.fermentum were abundant in RMC and BMC, respectively. In metabolomic study, ascorbic acid, dodecanoic acid and hexadecanoic acid were found to be significantly higher in RMC. Presence of different types of probiotics in these curds samples opens a new avenue to understand their effects on human health.
Collapse
Affiliation(s)
- Tulsi K Joishy
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.,Department of Molecular Biology and Biotechnology, Life Sciences Division, Cotton University, Guwahati, Assam, India
| | - Madhusmita Dehingia
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.
| |
Collapse
|
306
|
Berhe T, Ipsen R, Seifu E, Kurtu MY, Fugl A, Hansen EB. Metagenomic analysis of bacterial community composition in Dhanaan: Ethiopian traditional fermented camel milk. FEMS Microbiol Lett 2019; 366:5513444. [DOI: 10.1093/femsle/fnz128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tesfemariam Berhe
- School of Animal and Range Sciences, Haramaya University, P.O. Box: 138, Dire Dawa, Ethiopia
| | - Richard Ipsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Eyassu Seifu
- Department of Food Science and Technology, Botswana University of Agriculture and Natural Resources, Private Bag: 0027, Botswana
| | - Mohamed Y Kurtu
- School of Animal and Range Sciences, Haramaya University, P.O. Box: 138, Dire Dawa, Ethiopia
| | - Angelina Fugl
- Division for Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Egon Bech Hansen
- Division for Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
307
|
Maury MM, Bracq-Dieye H, Huang L, Vales G, Lavina M, Thouvenot P, Disson O, Leclercq A, Brisse S, Lecuit M. Hypervirulent Listeria monocytogenes clones' adaption to mammalian gut accounts for their association with dairy products. Nat Commun 2019; 10:2488. [PMID: 31171794 PMCID: PMC6554400 DOI: 10.1038/s41467-019-10380-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/09/2019] [Indexed: 11/09/2022] Open
Abstract
Listeria monocytogenes (Lm) is a major human and animal foodborne pathogen. Here we show that hypervirulent Lm clones, particularly CC1, are strongly associated with dairy products, whereas hypovirulent clones, CC9 and CC121, are associated with meat products. Clone adaptation to distinct ecological niches and/or different food products contamination routes may account for this uneven distribution. Indeed, hypervirulent clones colonize better the intestinal lumen and invade more intestinal tissues than hypovirulent ones, reflecting their adaption to host environment. Conversely, hypovirulent clones are adapted to food processing environments, with a higher prevalence of stress resistance and benzalkonium chloride tolerance genes and a higher survival and biofilm formation capacity in presence of sub-lethal benzalkonium chloride concentrations. Lm virulence heterogeneity therefore reflects the diversity of the ecological niches in which it evolves. These results also have important public health implications and may help in reducing food contamination and improving food consumption recommendations to at-risk populations.
Collapse
Affiliation(s)
- Mylène M Maury
- Biology of Infection Unit, Inserm U1117, Institut Pasteur, 75015, Paris, France.,National Reference Centre and WHO Collaborating Centre for Listeria, Institut Pasteur, 75015, Paris, France.,Microbial Evolutionary Genomics Unit, CNRS UMR 3525, Institut Pasteur, 75015, Paris, France
| | - Hélène Bracq-Dieye
- Biology of Infection Unit, Inserm U1117, Institut Pasteur, 75015, Paris, France.,National Reference Centre and WHO Collaborating Centre for Listeria, Institut Pasteur, 75015, Paris, France
| | - Lei Huang
- Biology of Infection Unit, Inserm U1117, Institut Pasteur, 75015, Paris, France.,Université Paris Diderot, Université de Paris, 75013, Paris, France
| | - Guillaume Vales
- Biology of Infection Unit, Inserm U1117, Institut Pasteur, 75015, Paris, France.,National Reference Centre and WHO Collaborating Centre for Listeria, Institut Pasteur, 75015, Paris, France
| | - Morgane Lavina
- Biology of Infection Unit, Inserm U1117, Institut Pasteur, 75015, Paris, France
| | - Pierre Thouvenot
- Biology of Infection Unit, Inserm U1117, Institut Pasteur, 75015, Paris, France.,National Reference Centre and WHO Collaborating Centre for Listeria, Institut Pasteur, 75015, Paris, France
| | - Olivier Disson
- Biology of Infection Unit, Inserm U1117, Institut Pasteur, 75015, Paris, France
| | - Alexandre Leclercq
- Biology of Infection Unit, Inserm U1117, Institut Pasteur, 75015, Paris, France.,National Reference Centre and WHO Collaborating Centre for Listeria, Institut Pasteur, 75015, Paris, France
| | - Sylvain Brisse
- Microbial Evolutionary Genomics Unit, CNRS UMR 3525, Institut Pasteur, 75015, Paris, France.,Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, 75015, Paris, France
| | - Marc Lecuit
- Biology of Infection Unit, Inserm U1117, Institut Pasteur, 75015, Paris, France. .,National Reference Centre and WHO Collaborating Centre for Listeria, Institut Pasteur, 75015, Paris, France. .,Paris Descartes University, Institut Imagine, Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, 75006, Paris, France.
| |
Collapse
|
308
|
Microbiological quality of milk from farms to milk powder manufacture: an industrial case study. J DAIRY RES 2019; 86:242-247. [PMID: 31156075 DOI: 10.1017/s0022029919000347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The experiments reported in this research paper aimed to track the microbiological load of milk throughout a low-heat skim milk powder (SMP) manufacturing process, from farm bulk tanks to final powder, during mid- and late-lactation (spring and winter, respectively). In the milk powder processing plant studied, low-heat SMP was produced using only the milk supplied by the farms involved in this study. Samples of milk were collected from farm bulk tanks (mid-lactation: 67 farms; late-lactation: 150 farms), collection tankers (CTs), whole milk silo (WMS), skim milk silo (SMS), cream silo (CS) and final SMP. During mid-lactation, the raw milk produced on-farm and transported by the CTs had better microbiological quality than the late-lactation raw milk (e.g., total bacterial count (TBC): 3.60 ± 0.55 and 4.37 ± 0.62 log 10 cfu/ml, respectively). After pasteurisation, reductions in TBC, psychrotrophic (PBC) and proteolytic (PROT) bacterial counts were of lower magnitude in late-lactation than in mid-lactation milk, while thermoduric (LPC-laboratory pasteurisation count) and thermophilic (THERM) bacterial counts were not reduced in both periods. The microbiological quality of the SMP produced was better when using mid-lactation than late-lactation milk (e.g., TBC: 2.36 ± 0.09 and 3.55 ± 0.13 cfu/g, respectively), as mid-lactation raw milk had better quality than late-lactation milk. The bacterial counts of some CTs and of the WMS samples were higher than the upper confidence limit predicted using the bacterial counts measured in the farm milk samples, indicating that the transport conditions or cleaning protocols could have influenced the microbiological load. Therefore, during the different production seasons, appropriate cow management and hygiene practices (on-farm and within the factory) are necessary to control the numbers of different bacterial groups in milk, as those can influence the effectiveness of thermal treatments and consequently affect final product quality.
Collapse
|
309
|
Hahne J, Isele D, Berning J, Lipski A. The contribution of fast growing, psychrotrophic microorganisms on biodiversity of refrigerated raw cow's milk with high bacterial counts and their food spoilage potential. Food Microbiol 2019; 79:11-19. [DOI: 10.1016/j.fm.2018.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023]
|
310
|
Influence of feed temperature to biofouling of ultrafiltration membrane during skim milk processing. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
311
|
Metagenomic profiles of different types of Italian high-moisture Mozzarella cheese. Food Microbiol 2019; 79:123-131. [DOI: 10.1016/j.fm.2018.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/23/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
|
312
|
Nair D, Vazhakkattu Thomas J, Dewi G, Noll S, Brannon J, Kollanoor Johny A. Reduction of Multidrug-Resistant Salmonella enterica Serovar Heidelberg Using a Dairy-Originated Probiotic Bacterium, Propionibacterium freudenreichii freudenreichii B3523, in Growing Turkeys. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
313
|
|
314
|
Gut microbiome of pre-adolescent children of two ethnicities residing in three distant cities. Sci Rep 2019; 9:7831. [PMID: 31127186 PMCID: PMC6534553 DOI: 10.1038/s41598-019-44369-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/16/2019] [Indexed: 02/08/2023] Open
Abstract
Recent studies have realized the link between gut microbiota and human health and diseases. The question of diet, environment or gene is the determining factor for dominant microbiota and microbiota profile has not been fully resolved, for these comparative studies have been performed on populations of different ethnicities and in short-term intervention studies. Here, the Southern Chinese populations are compared, specifically the children of Guangzhou City (China), Penang City (west coast Malaysia) and Kelantan City (east coast Malaysia). These Chinese people have similar ancestry thus it would allow us to delineate the effect of diet and ethnicity on gut microbiota composition. For comparison, the Penang and Kelantan Malay children were also included. The results revealed that differences in microbiota genera within an ethnicity in different cities was due to differences in food type. Sharing the similar diet but different ethnicity in a city or different cities and living environment showed similar gut microbiota. The major gut microbiota (more than 1% total Operational Taxonomy Units, OTUs) of the children population are largely determined by diet but not ethnicity, environment, and lifestyle. Elucidating the link between diet and microbiota would facilitate the development of strategies to improve human health at a younger age.
Collapse
|
315
|
Perdijk O, Marsland BJ. The microbiome: toward preventing allergies and asthma by nutritional intervention. Curr Opin Immunol 2019; 60:10-18. [PMID: 31078013 DOI: 10.1016/j.coi.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 01/05/2023]
Abstract
Allergies and asthma have increased in prevalence over recent decades while the development of therapies to treat or prevent them has stagnated. Genetic predisposition and lifestyle changes influence the constituents of the microbiome and these host-environment-microbe interactions represent a key underlying pressure influencing disease susceptibility. Consequently, there has been a surge of interest in shaping the microbiome to a health-promoting state particularly through nutritional intervention strategies. However, mechanistic insights into the nutrition-microbe-host interplay are still needed in order for such approaches to succeed. In addition, little is known about how trans-kingdom interactions might influence disease susceptibility and progression. Future steps toward revealing the underlying mechanisms of host-microbe interactions will be pivotal for the development of effective dietary intervention strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
316
|
Fitzpatrick SR, Garvey M, Jordan K, Flynn J, O'Brien B, Gleeson D. Screening commercial teat disinfectants against bacteria isolated from bovine milk using disk diffusion. Vet World 2019; 12:629-637. [PMID: 31327897 PMCID: PMC6584860 DOI: 10.14202/vetworld.2019.629-637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background and Aim: Teat disinfection is an important tool in reducing the incidence of bovine mastitis. Identifying the potential mastitis-causing bacterial species in milk can be the first step in choosing the correct teat disinfectant product. The objective of this study was to screen commercial teat disinfectants for inhibition against mastitis-associated bacteria isolated from various types of milk samples. Materials and Methods: Twelve commercially available teat disinfectant products were tested, against 12 mastitis-associated bacteria strains isolated from bulk tank milk samples and bacterial strains isolated from clinical (n=2) and subclinical (n=3) quarter foremilk samples using the disk diffusion method. Results: There was a significant variation (7-30 mm) in bacterial inhibition between teat disinfection products, with products containing a lactic acid combination (with chlorhexidine or salicylic acid) resulting in the greatest levels of bacterial inhibition against all tested bacteria (p<0.05). Conclusion: In this study, combined ingredients in teat disinfection products had greater levels of bacterial inhibition than when the ingredients were used individually. The disk diffusion assay is a suitable screening method to effectively differentiate the bacterial inhibition of different teat disinfectant products.
Collapse
Affiliation(s)
- Sarah Rose Fitzpatrick
- Department of Livestock Systems, Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland.,Cellular Health and Toxicology Research Group, Institute of Technology Sligo, County Sligo, Ireland
| | - Mary Garvey
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, County Sligo, Ireland
| | - Kieran Jordan
- Department of Food Safety, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Jim Flynn
- Department of Livestock Systems, Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Bernadette O'Brien
- Department of Livestock Systems, Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| | - David Gleeson
- Department of Livestock Systems, Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
317
|
Rahmeh R, Akbar A, Kishk M, Al-Onaizi T, Al-Azmi A, Al-Shatti A, Shajan A, Al-Mutairi S, Akbar B. Distribution and antimicrobial activity of lactic acid bacteria from raw camel milk. New Microbes New Infect 2019; 30:100560. [PMID: 31193267 PMCID: PMC6522851 DOI: 10.1016/j.nmni.2019.100560] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Consumer demand for natural pathogen-control agents for substitution of synthetic food preservatives and traditional antibiotics is increasing. This study aimed to reveal the distribution of lactic acid bacteria (LAB) in raw camel milk and to characterize their antimicrobial traits. The genetic identification by 16S rRNA sequencing of 58 LAB isolates showed the predominance of Enterococcus (24.2%), Lactococcus (22.4%) and Pediococcus (20.7%) genera in raw camel milk. These genera exhibited inhibitory activity against a broad spectrum of Gram-positive and Gram-negative bacteria including multidrug-resistant Salmonella. Among these LAB, two isolates-identified as Pediococcus pentosaceus CM16 and Lactobacillus brevis CM22-were selected for their strong bacteriocinogenic anti-listerial activity estimated at 1600 and 800 AU/mL, respectively. The bacteriocins produced were partially purified by ammonium sulphate precipitation and gel filtration and then biochemically characterized. The proteinaceous nature of bacteriocins was confirmed by the susceptibility to enzymes. These bacteriocins showed significant technological characteristics such as heat-resistance, and stability over a wide range of pH (2.0-10.0). In conclusion, these results indicated that Pediococcus pentosaceus CM16 and Lactobacillus brevis CM22 could be useful as potential probiotics. Moreover, their partially purified bacteriocins may play an important role as food preservatives and feed additives. To our knowledge, this is the first report describing the distribution of LAB population in raw camel milk and the characterization of their bacteriocins from the Arabian Peninsula of western Asia.
Collapse
Affiliation(s)
- R Rahmeh
- Biotechnology Programme, Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - A Akbar
- Biotechnology Programme, Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - M Kishk
- Biotechnology Programme, Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - T Al-Onaizi
- Biotechnology Programme, Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - A Al-Azmi
- Biotechnology Programme, Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - A Al-Shatti
- Biotechnology Programme, Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - A Shajan
- Biotechnology Programme, Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - S Al-Mutairi
- Biotechnology Programme, Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - B Akbar
- Biotechnology Programme, Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait
| |
Collapse
|
318
|
Anast JM, Dzieciol M, Schultz DL, Wagner M, Mann E, Schmitz-Esser S. Brevibacterium from Austrian hard cheese harbor a putative histamine catabolism pathway and a plasmid for adaptation to the cheese environment. Sci Rep 2019; 9:6164. [PMID: 30992535 PMCID: PMC6467879 DOI: 10.1038/s41598-019-42525-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/02/2019] [Indexed: 02/01/2023] Open
Abstract
The genus Brevibacterium harbors many members important for cheese ripening. We performed real-time quantitative PCR (qPCR) to determine the abundance of Brevibacterium on rinds of Vorarlberger Bergkäse, an Austrian artisanal washed-rind hard cheese, over 160 days of ripening. Our results show that Brevibacterium are abundant on Vorarlberger Bergkäse rinds throughout the ripening time. To elucidate the impact of Brevibacterium on cheese production, we analysed the genomes of three cheese rind isolates, L261, S111, and S22. L261 belongs to Brevibacterium aurantiacum, whereas S111 and S22 represent novel species within the genus Brevibacterium based on 16S rRNA gene similarity and average nucleotide identity. Our comparative genomic analysis showed that important cheese ripening enzymes are conserved among the genus Brevibacterium. Strain S22 harbors a 22 kb circular plasmid which encodes putative iron and hydroxymethylpyrimidine/thiamine transporters. Histamine formation in fermented foods can cause histamine intoxication. We revealed the presence of a putative metabolic pathway for histamine degradation. Growth experiments showed that the three Brevibacterium strains can utilize histamine as the sole carbon source. The capability to utilize histamine, possibly encoded by the putative histamine degradation pathway, highlights the importance of Brevibacterium as key cheese ripening cultures beyond their contribution to cheese flavor production.
Collapse
Affiliation(s)
- Justin M Anast
- Interdepartmental Microbiology Graduate Program Iowa State University, Ames, IA, USA.,Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Monika Dzieciol
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dylan L Schultz
- Interdepartmetal Microbiology Undergraduate Program, Iowa State University, Ames, IA, USA
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria.,Austrian Competence Center for Feed and Food Quality, Safety and Innovation (FFoQSI), Technopark C, 3430, Tulln, Austria
| | - Evelyne Mann
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stephan Schmitz-Esser
- Interdepartmental Microbiology Graduate Program Iowa State University, Ames, IA, USA. .,Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
319
|
Unveiling hákarl: A study of the microbiota of the traditional Icelandic fermented fish. Food Microbiol 2019; 82:560-572. [PMID: 31027819 DOI: 10.1016/j.fm.2019.03.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/10/2023]
Abstract
Hákarl is produced by curing of the Greenland shark (Somniosus microcephalus) flesh, which before fermentation is toxic due to the high content of trimethylamine (TMA) or trimethylamine N-oxide (TMAO). Despite its long history of consumption, little knowledge is available on the microbial consortia involved in the fermentation of this fish. In the present study, a polyphasic approach based on both culturing and DNA-based techniques was adopted to gain insight into the microbial species present in ready-to-eat hákarl. To this aim, samples of ready-to-eat hákarl were subjected to viable counting on different selective growth media. The DNA directly extracted from the samples was further subjected to Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) and 16S amplicon-based sequencing. Moreover, the presence of Shiga toxin-producing Escherichia coli (STEC) and Pseudomonas aeruginosa was assessed via qualitative real-time PCR assays. pH values measured in the analyzed samples ranged from between 8.07 ± 0.06 and 8.76 ± 0.00. Viable counts revealed the presence of total mesophilic aerobes, lactic acid bacteria and Pseudomonadaceae. Regarding bacteria, PCR-DGGE analysis highlighted the dominance of close relatives of Tissierella creatinophila. For amplicon sequencing, the main operational taxonomic units (OTUs) shared among the data set were Tissierella, Pseudomonas, Oceanobacillus, Abyssivirga and Lactococcus. The presence of Pseudomonas in the analyzed samples supports the hypothesis of a possible role of this microorganism on the detoxification of shark meat from TMAO or TMA during fermentation. Several minor OTUs (<1%) were also detected, including Alkalibacterium, Staphylococcus, Proteiniclasticum, Acinetobacter, Erysipelothrix, Anaerobacillus, Ochrobactrum, Listeria and Photobacterium. Analysis of the yeast and filamentous fungi community composition by PCR-DGGE revealed the presence of close relatives of Candida tropicalis, Candida glabrata, Candida parapsilosis, Candida zeylanoides, Saccharomyces cerevisiae, Debaryomyces, Torulaspora, Yamadazyma, Sporobolomyces, Alternaria, Cladosporium tenuissimum, Moristroma quercinum and Phoma/Epicoccum, and some of these species probably play key roles in the development of the sensory qualities of the end product. Finally, qualitative real-time PCR assays revealed the absence of STEC and Pseudomonas aeruginosa in all of the analyzed samples.
Collapse
|
320
|
Washabaugh JR, Olaniyan OF, Secka A, Jeng M, Bernstein RM. Milk hygiene and consumption practices in the Gambia. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
321
|
Longitudinal Study of Shiga Toxin-Producing Escherichia coli and Campylobacter jejuni on Finnish Dairy Farms and in Raw Milk. Appl Environ Microbiol 2019; 85:AEM.02910-18. [PMID: 30709824 PMCID: PMC6585499 DOI: 10.1128/aem.02910-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/28/2019] [Indexed: 01/12/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) and Campylobacter jejuni are notable health hazards associated with the consumption of raw milk. These bacteria may colonize the intestines of asymptomatic cattle and enter bulk tank milk via fecal contamination during milking. We studied the frequency of STEC O157:H7 and C. jejuni contamination in tank milk (n = 785) and the in-line milk filters of milking machines (n = 631) versus the frequency of isolation from cattle feces (n = 257) on three Finnish dairy farms for 1 year. Despite simultaneous isolation of STEC O157:H7 (17%) or C. jejuni (53%) from cattle, these bacteria were rarely isolated from milk filters (2% or <1%, respectively) and milk (0%). As revealed by phylogenomics, one STEC O157:H7 strain at a time was detected on each farm and persisted for ≤12 months despite rigorous hygienic measures. C. jejuni strains of a generalist sequence type (ST-883 and ST-1080) persisted in the herds for ≥11 months, and several other C. jejuni types were detected sporadically. The stx gene carried by STEC was detected more frequently from milk filters (37%) than from milk (7%), suggesting that milk filters are more suitable sampling targets for monitoring than milk. A questionnaire of on-farm practices suggested lower stx contamination of milk when major cleansing in the barn, culling, or pasturing of dairy cows was applied, while a higher average outdoor temperature was associated with higher stx contamination. Because pathogen contamination occurred despite good hygiene and because pathogen detection from milk and milk filters proved challenging, we recommend heat treatment for raw milk before consumption.IMPORTANCE The increased popularity of raw milk consumption has created demand for relaxing legislation, despite the risk of contamination by pathogenic bacteria, notably STEC and C. jejuni However, the epidemiology of these milk-borne pathogens on the herd level is still poorly understood, and data are lacking on the frequency of milk contamination on farms with cattle shedding these bacteria in their feces. This study suggests (i) that STEC contamination in milk can be reduced, but not prevented, by on-farm hygienic measures while fecal shedding is observable, (ii) that milk filters are more suitable sampling targets for monitoring than milk although pathogen detection from both sample matrices may be challenging, and (iii) that STEC and C. jejuni genotypes may persist in cattle herds for several months. The results can be utilized in developing and targeting pathogen monitoring and risk management on the farm level and contributed to the revision of Finnish legislation in 2017.
Collapse
|
322
|
Milani C, Duranti S, Napoli S, Alessandri G, Mancabelli L, Anzalone R, Longhi G, Viappiani A, Mangifesta M, Lugli GA, Bernasconi S, Ossiprandi MC, van Sinderen D, Ventura M, Turroni F. Colonization of the human gut by bovine bacteria present in Parmesan cheese. Nat Commun 2019; 10:1286. [PMID: 30894548 PMCID: PMC6426854 DOI: 10.1038/s41467-019-09303-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
The abilities of certain microorganisms to be transferred across the food production chain, persist in the final product and, potentially, colonize the human gut are poorly understood. Here, we provide strain-level evidence supporting that dairy cattle-associated bacteria can be transferred to the human gut via consumption of Parmesan cheese. We characterize the microbial communities in samples taken from five different locations across the Parmesan cheese production chain, confirming that the final product contains microorganisms derived from cattle gut, milk, and the nearby environment. In addition, we carry out a human pilot study showing that Bifidobacterium mongoliense strains from cheese can transiently colonize the human gut, a process that can be enhanced by cow milk consumption. Some microorganisms may be transferred across the food production chain and, potentially, colonize the human gut. Here, Milani et al. provide strain-level evidence supporting that dairy cattle-associated bacteria can be transferred to the human gut via consumption of Parmesan cheese.
Collapse
Affiliation(s)
- Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | | | - Giulia Alessandri
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy
| | | | | | | | | | - Marta Mangifesta
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,GenProbio srl, Parma, 43124, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | | | | | - Douwe van Sinderen
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy. .,Microbiome Research Hub, University of Parma, Parma, 43124, Italy.
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy. .,Microbiome Research Hub, University of Parma, Parma, 43124, Italy.
| |
Collapse
|
323
|
Skeie SB, Håland M, Thorsen IM, Narvhus J, Porcellato D. Bulk tank raw milk microbiota differs within and between farms: A moving goalpost challenging quality control. J Dairy Sci 2019; 102:1959-1971. [DOI: 10.3168/jds.2017-14083] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 10/07/2018] [Indexed: 01/19/2023]
|
324
|
Carafa I, Stocco G, Nardin T, Larcher R, Bittante G, Tuohy K, Franciosi E. Production of Naturally γ-Aminobutyric Acid-Enriched Cheese Using the Dairy Strains Streptococcus thermophilus 84C and Lactobacillus brevis DSM 32386. Front Microbiol 2019; 10:93. [PMID: 30814980 PMCID: PMC6381070 DOI: 10.3389/fmicb.2019.00093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/16/2019] [Indexed: 02/03/2023] Open
Abstract
The cheese-derived strains Streptococcus thermophilus 84C isolated from Nostrano cheese, and Lactobacillus brevis DSM 32386 isolated from Traditional Mountain Malga cheese have been previously reported as γ-aminobutyric acid (GABA)-producers in vitro. In the present study, the ability of these strains to produce GABA was studied in experimental raw milk cheeses, with the aim to investigate the effect of the culture and the ripening time on the GABA concentration. The cultures used consisted on S. thermophilus 84C alone (84C) or in combination with L. brevis DSM 32386 (84C-DSM). The control culture was a commercial S. thermophilus strain, which was tested alone (CTRL) or in combination with the L. brevis DSM 32386 (CTRL-DSM). The pH evolution, microbiological counts, MiSeq Illumina and UHPLC-HQOMS analysis on milk and cheese samples were performed after 2, 9, and 20 days ripening. During the whole ripening, the pH was always under 5.5 in all batches. The concentration of GABA increased during ripening, with the highest content in 84C after 9 days ripening (84 ± 37 mg/kg), in 84C-DSM and CTRL-DSM after 20 days ripening (91 ± 28 and 88 ± 24 mg/kg, respectively). The data obtained support the hypothesis that S. thermophilus 84C and L. brevis DSM 32386 could be exploited as functional cultures, improving the in situ bio-synthesis of GABA during cheese ripening.
Collapse
Affiliation(s)
- Ilaria Carafa
- Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Giorgia Stocco
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Tiziana Nardin
- Technology Transfer Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Roberto Larcher
- Technology Transfer Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Kieran Tuohy
- Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Elena Franciosi
- Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| |
Collapse
|
325
|
Volk V, Glück C, Leptihn S, Ewert J, Stressler T, Fischer L. Two Heat Resistant Endopeptidases from Pseudomonas Species with Destabilizing Potential during Milk Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:905-915. [PMID: 30585481 DOI: 10.1021/acs.jafc.8b04802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the current study, the extracellular endopeptidases from Pseudomonas lundensis and Pseudomonas proteolytica were investigated. The amino acid sequence identity between both endopeptidases is 68%. Both endopeptidases were purified to homogeneity and partially characterized. They were classified as metallopeptidases with a maximum activity at pH 10.0 ( P. lundensis) or 8.5 ( P. proteolytica) at 35 °C. Both remained active in skim milk with 39.7 ± 2.4% and 24.5 ± 3.3%, respectively, of the initial enzyme activity after UHT processing (138 °C for 20 s), indicating the relevance for milk destabilization. The transition points in buffer were determined at 50 °C ( P. lundensis) and 43 °C ( P. proteolytica) using circular dichroism spectroscopy. The loss of the secondary structure at different temperatures was correlated with residual peptidase activities after heat treatment. The ability to destabilize UHT milk was proven by supplementation of skim milk with endopeptidase and storage for 4 weeks.
Collapse
Affiliation(s)
| | | | - Sebastian Leptihn
- Institute of Microbiology, Department of Microbiology , University of Hohenheim , Garbenstrasse 30 , 70599 Stuttgart , Germany
| | | | | | | |
Collapse
|
326
|
Agyei D, Owusu-Kwarteng J, Akabanda F, Akomea-Frempong S. Indigenous African fermented dairy products: Processing technology, microbiology and health benefits. Crit Rev Food Sci Nutr 2019; 60:991-1006. [DOI: 10.1080/10408398.2018.1555133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - James Owusu-Kwarteng
- Department of Food Science and Technology, University of Energy and Natural Resources, Sunyani, Ghana
| | - Fortune Akabanda
- Department of Applied Biology, University for Development Studies, Navrongo, Ghana
| | - Samuel Akomea-Frempong
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
327
|
Wu H, Nguyen QD, Tran TTM, Tang MT, Tsuruta T, Nishino N. Rumen fluid, feces, milk, water, feed, airborne dust, and bedding microbiota in dairy farms managed by automatic milking systems. Anim Sci J 2019; 90:445-452. [DOI: 10.1111/asj.13175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Haoming Wu
- Graduate School of Life and Environmental Science; Okayama University; Okayama Japan
| | - Qui D. Nguyen
- Graduate School of Life and Environmental Science; Okayama University; Okayama Japan
| | - Tu T. M. Tran
- Graduate School of Life and Environmental Science; Okayama University; Okayama Japan
- Faculty of Agriculture, Engineering and Food Technology; Tien Giang University; My Tho Vietnam
| | - Minh T. Tang
- Graduate School of Life and Environmental Science; Okayama University; Okayama Japan
| | - Takeshi Tsuruta
- Graduate School of Life and Environmental Science; Okayama University; Okayama Japan
| | - Naoki Nishino
- Graduate School of Life and Environmental Science; Okayama University; Okayama Japan
| |
Collapse
|
328
|
Patil A, Disouza J, Pawar S. Shelf life stability of encapsulated lactic acid bacteria isolated from sheep milk thrived in different milk as natural media. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2018.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
329
|
Alegbeleye OO, Guimarães JT, Cruz AG, Sant’Ana AS. Hazards of a ‘healthy’ trend? An appraisal of the risks of raw milk consumption and the potential of novel treatment technologies to serve as alternatives to pasteurization. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
330
|
Bottari B, Levante A, Neviani E, Gatti M. How the Fewest Become the Greatest. L. casei's Impact on Long Ripened Cheeses. Front Microbiol 2018; 9:2866. [PMID: 30524419 PMCID: PMC6262004 DOI: 10.3389/fmicb.2018.02866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/07/2018] [Indexed: 12/23/2022] Open
Abstract
Members of the Lactobacillus casei group, including species classified currently as L. casei, L. paracasei, and L. rhamnosus, are among the most frequently found species in raw milk, hard cooked, long-ripened cheeses. Starting from very low numbers in raw milk, they become dominant in the cheese during ripening, selected by physical and chemical changes produced by cheese making and ripening. Their presence at different stages of cheese making and ripening is crucial in defining product features. For these reasons, the scientific community has been more and more interested in studying these “tiny but mighty microbes” and their implications during cheese making and ripening. The present paper reviews the current literature on the effect of L. casei in cheeses, with particular reference to the case of Parmigiano Reggiano and Grana Padano, two of the most famous PDO (Protected Designation of Origin) Italian cheeses. Recent advances regarding the selection of new wild strains able to persist until the end of ripening and carrying out slow but crucial activities resulting in specific aromatic features, are also presented.
Collapse
Affiliation(s)
| | - Alessia Levante
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Erasmo Neviani
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Monica Gatti
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
331
|
Salazar JK, Carstens CK, Ramachandran P, Shazer AG, Narula SS, Reed E, Ottesen A, Schill KM. Metagenomics of pasteurized and unpasteurized gouda cheese using targeted 16S rDNA sequencing. BMC Microbiol 2018; 18:189. [PMID: 30453904 PMCID: PMC6245907 DOI: 10.1186/s12866-018-1323-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 10/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The microbiome of cheese is diverse, even within a variety. The metagenomics of cheese is dependent on a vast array of biotic and abiotic factors. Biotic factors include the population of microbiota and their resulting cellular metabolism. Abiotic factors, including the pH, water activity, fat, salt, and moisture content of the cheese matrix, as well as environmental conditions (temperature, humidity, and location of aging), influence the biotic factors. This study assessed the metagenomics of commercial Gouda cheese prepared using pasteurized or unpasteurized cow milk or pasteurized goat milk via 16S rDNA sequencing. RESULTS Results were analyzed and compared based on milk pasteurization and source, spatial variability (core, outer, and under the rind), and length of aging (2-4 up to 12-18 months). The dominant organisms in the Gouda cheeses, based on percentage of sequence reads identified at the family or genus levels, were Bacillaceae, Lactococcus, Lactobacillus, Streptococcus, and Staphylococcus. More genus- or family-level (e.g. Bacillaceae) identifications were observed in the Gouda cheeses prepared with unpasteurized cow milk (120) compared with those prepared with pasteurized cow milk (92). When assessing influence of spatial variability on the metagenomics of the cheese, more pronounced differences in bacterial genera were observed in the samples taken under the rind; Brachybacterium, Pseudoalteromonas, Yersinia, Klebsiella, and Weissella were only detected in these samples. Lastly, the aging length of the cheese greatly influenced the number of organisms observed. Twenty-seven additional genus-level identifications were observed in Gouda cheese aged for 12-18 months compared with cheese only aged 2-4 months. CONCLUSIONS Collectively, the results of this study are important in determining the typical microbiota associated with Gouda cheese and how the microbiome plays a role in safety and quality.
Collapse
Affiliation(s)
- Joelle K Salazar
- Division of Food Processing Science and Technology, Office of Food Safety, U. S. Food and Drug Administration, Bedford Park, IL, USA
| | - Christina K Carstens
- Division of Food Processing Science and Technology, Office of Food Safety, U. S. Food and Drug Administration, Bedford Park, IL, USA
| | - Padmini Ramachandran
- Division of Microbiology, Office of Regulatory Science, U. S. Food and Drug Administration, College Park, MD, USA
| | - Arlette G Shazer
- Division of Food Processing Science and Technology, Office of Food Safety, U. S. Food and Drug Administration, Bedford Park, IL, USA
| | - Sartaj S Narula
- Illinois Institute of Technology, Institute for Food Safety and Health, Bedford Park, IL, USA
| | - Elizabeth Reed
- Division of Microbiology, Office of Regulatory Science, U. S. Food and Drug Administration, College Park, MD, USA
| | - Andrea Ottesen
- Division of Microbiology, Office of Regulatory Science, U. S. Food and Drug Administration, College Park, MD, USA
| | - Kristin M Schill
- Division of Food Processing Science and Technology, Office of Food Safety, U. S. Food and Drug Administration, Bedford Park, IL, USA.
| |
Collapse
|
332
|
Ritschard JS, Amato L, Kumar Y, Müller B, Meile L, Schuppler M. The role of the surface smear microbiome in the development of defective smear on surface-ripened red-smear cheese. AIMS Microbiol 2018; 4:622-641. [PMID: 31294238 PMCID: PMC6613336 DOI: 10.3934/microbiol.2018.4.622] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023] Open
Abstract
The complex smear microbiota colonizing the surface of red-smear cheese fundamentally impacts the ripening process, appearance and shelf life of cheese. To decipher the prokaryotic composition of the cheese smear microbiome, the surface of a semi-hard surface ripened cheese was studied post-ripening by culture-based and culture-independent molecular approaches. The aim was to detect potential bacterial alterations in the composition of the cheese smear microbiota resulting from cheese storage in vacuum film-prepackaging, which is often accompanied by the development of a surface smear defect. Next-generation sequencing of amplified 16S rRNA gene fragments revealed an unexpected high diversity of a total of 132 different genera from the domains Bacteria and Archaea on the cheese surface. Beside typical smear organisms, our study revealed the presence of several microorganisms so far not associated with cheese, but related to milk, farm and cheese dairy environments. A 16S ribosomal RNA based analysis from total RNA identified the major metabolically active populations in the cheese surface smear as Actinobacteria of the genera Corynebacterium, Brevibacterium, Brachybacterium and Agrococcus. Comparison of data on a higher phylogenetic level revealed distinct differences in the composition of the cheese smear microbiome from the different samples. While the proportions of Proteobacteria and Bacteroidetes were increased in the smear of prepacked samples and in particular in defective smear, staphylococci showed an opposite trend and turned out to be strongly decreased in defective smear. In conclusion, next-generation sequencing of amplified 16S rRNA genes and 16S rRNA from total RNA extracts provided a much deeper insight into the bacterial composition of the cheese smear microbiota. The observed shifts in the microbial composition of samples from defect surface smear suggest that certain members of the Proteobacteria contribute to the observed negative organoleptic properties of the surface smear of cheese after prepacking in plastic foil.
Collapse
Affiliation(s)
- Jasmine S Ritschard
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Lea Amato
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Yadhu Kumar
- Eurofins GATC Biotech AG, Jakob-Stadler-Platz 7, 78467 Konstanz, Germany
| | - Britta Müller
- Eurofins GATC Biotech AG, Jakob-Stadler-Platz 7, 78467 Konstanz, Germany
| | - Leo Meile
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Markus Schuppler
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| |
Collapse
|
333
|
Cremonesi P, Ceccarani C, Curone G, Severgnini M, Pollera C, Bronzo V, Riva F, Addis MF, Filipe J, Amadori M, Trevisi E, Vigo D, Moroni P, Castiglioni B. Milk microbiome diversity and bacterial group prevalence in a comparison between healthy Holstein Friesian and Rendena cows. PLoS One 2018; 13:e0205054. [PMID: 30356246 PMCID: PMC6200206 DOI: 10.1371/journal.pone.0205054] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Dry and early lactation periods represent the most critical phases for udder health in cattle, especially in highly productive breeds, such as the Holstein Friesian (HF). On the other hand, some autochthonous cattle breeds, such as the Rendena (REN), have a lower prevalence of mastitis and other transition-related diseases. In this study, milk microbiota of 6 HF and 3 REN cows, all raised on the same farm under the same conditions, was compared. A special focus was placed on the transition period to define bacterial groups’ prevalence with a plausible effect on mammary gland health. Four time points (dry-off, 1 d, 7–10 d and 30 d after calving) were considered. Through 16S rRNA sequencing, we characterized the microbiota composition for 117 out of the 144 milk samples initially collected, keeping only the healthy quarters, in order to focus on physiological microbiome changes and avoid shifts due to suspected diseases. Microbial populations were very different in the two breeds along all the time points, with REN milk showing a significantly lower microbial biodiversity. The taxonomic profiles of both cosmopolitan and local breeds were dominated by Firmicutes, mostly represented by the Streptococcus genus, although in very different proportions (HF 27.5%, REN 68.6%). Large differences in HF and REN cows were, also, evident from the metabolic predictive analysis from microbiome data. Finally, only HF milk displayed significant changes in the microbial composition along the transition period, while REN maintained a more stable microbiota. In conclusion, in addition to the influence on the final characteristics of dairy products obtained from milk of the two breeds, differences in the milk microbiome might, also, have an impact on their mammary gland health.
Collapse
Affiliation(s)
- Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Lodi, Italy
- * E-mail:
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, (CNR), Segrate, Milan, Italy
- Dipartimento di Scienze della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, Milan, Italy
| | - Giulio Curone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, (CNR), Segrate, Milan, Italy
| | - Claudia Pollera
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Valerio Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Federica Riva
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Joel Filipe
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Massimo Amadori
- Laboratory of Cellular Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Daniele Vigo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, United States of America
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Lodi, Italy
| |
Collapse
|
334
|
Pang M, Xie X, Bao H, Sun L, He T, Zhao H, Zhou Y, Zhang L, Zhang H, Wei R, Xie K, Wang R. Insights Into the Bovine Milk Microbiota in Dairy Farms With Different Incidence Rates of Subclinical Mastitis. Front Microbiol 2018; 9:2379. [PMID: 30459717 PMCID: PMC6232673 DOI: 10.3389/fmicb.2018.02379] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Bovine mastitis continues to be a complex disease associated with significant economic loss in dairy industries worldwide. The incidence rate of subclinical mastitis (IRSCM) can show substantial variation among different farms; however, the milk microbiota, which have a direct influence on bovine mammary gland health, have never been associated with the IRSCM. Here, we aimed to use high-throughput DNA sequencing to describe the milk microbiota from two dairy farms with different IRSCMs and to identify the predominant mastitis pathogens along with commensal or potential beneficial bacteria. Our study showed that Klebsiella, Escherichia-Shigella, and Streptococcus were the mastitis-causing pathogens in farm A (with a lower IRSCM), while Streptococcus and Corynebacterium were the mastitis-causing pathogens in farm B (with a higher IRSCM). The relative abundance of all pathogens in farm B (22.12%) was higher than that in farm A (9.82%). However, the genus Bacillus was more prevalent in farm A. These results may be helpful for explaining the lower IRSCM in farm A. Additionally, the gut-associated genera Prevotella, Ruminococcus, Bacteroides, Rikenella, and Alistipes were prevalent in all milk samples, suggesting gut bacteria can be one of the predominant microbial contamination in milk. Moreover, Listeria monocytogenes (a foodborne pathogen) was found to be prevalent in farm A, even though it had a lower IRSCM. Overall, our study showed complex diversity between the milk microbiota in dairy farms with different IRSCMs. This suggests that variation in IRSCMs may not only be determined by the heterogeneity and prevalence of mastitis-causing pathogens but also be associated with potential beneficial bacteria. In the future, milk microbiota should be considered in bovine mammary gland health management. This would be helpful for both the establishment of a targeted mastitis control system and the control of the safety and quality of dairy products.
Collapse
Affiliation(s)
- Maoda Pang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Xie
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongduo Bao
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lichang Sun
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tao He
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hang Zhao
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Zhou
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lili Zhang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hui Zhang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ruicheng Wei
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kaizhou Xie
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ran Wang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
335
|
Derakhshani H, Fehr KB, Sepehri S, Francoz D, De Buck J, Barkema HW, Plaizier JC, Khafipour E. Invited review: Microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. J Dairy Sci 2018; 101:10605-10625. [PMID: 30292553 DOI: 10.3168/jds.2018-14860] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/05/2018] [Indexed: 12/13/2022]
Abstract
Various body sites of vertebrates provide stable and nutrient-rich ecosystems for a diverse range of commensal, opportunistic, and pathogenic microorganisms to thrive. The collective genomes of these microbial symbionts (the microbiome) provide host animals with several advantages, including metabolism of indigestible carbohydrates, biosynthesis of vitamins, and modulation of innate and adaptive immune systems. In the context of the bovine udder, however, the relationship between cow and microbes has been traditionally viewed strictly from the perspective of host-pathogen interactions, with intramammary infections by mastitis pathogens triggering inflammatory responses (i.e., mastitis) that are often detrimental to mammary tissues and cow physiology. This traditional view has been challenged by recent metagenomic studies indicating that mammary secretions of clinically healthy quarters can harbor genomic markers of diverse bacterial groups, the vast majority of which have not been associated with mastitis. These observations have given rise to the concept of "commensal mammary microbiota," the ecological properties of which can have important implications for understanding the pathogenesis of mastitis and offer opportunities for development of novel prophylactic or therapeutic products (or both) as alternatives to antimicrobials. Studies conducted to date have suggested that an optimum diversity of mammary microbiota is associated with immune homeostasis, whereas the microbiota of mastitic quarters, or those with a history of mastitis, are considerably less diverse. Whether disruption of the diversity of udder microbiota (dysbiosis) has a role in determining mastitis susceptibility remains unknown. Moreover, little is known about contributions of various biotic and abiotic factors in shaping overall diversity of udder microbiota. This review summarizes current understanding of the microbiota within various niches of the udder and highlights the need to view the microbiota of the teat apex, teat canal, and mammary secretions as interconnected niches of a highly dynamic microbial ecosystem. In addition, host-associated factors, including physiological and anatomical parameters, as well as genetic traits that may affect the udder microbiota are briefly discussed. Finally, current understanding of the effect of antimicrobials on the composition of intramammary microbiota is discussed, highlighting the resilience of udder microbiota to exogenous perturbants.
Collapse
Affiliation(s)
- Hooman Derakhshani
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - Kelsey B Fehr
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - Shadi Sepehri
- Children Hospital Research Institute of Manitoba, Winnipeg, MB, R3E 3P4 Canada
| | - David Francoz
- Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Montréal, QC, J2S 2M2 Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1 Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1 Canada
| | - Jan C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9 Canada.
| |
Collapse
|
336
|
Ghasemi-Varnamkhasti M, Apetrei C, Lozano J, Anyogu A. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
337
|
Microbiota of milk powders and the heat resistance and spoilage potential of aerobic spore-forming bacteria. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
338
|
Use of exogenous volatile organic compounds to detect Salmonella in milk. Anal Chim Acta 2018; 1028:121-130. [DOI: 10.1016/j.aca.2018.03.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 01/10/2023]
|
339
|
Sánchez-Gamboa C, Hicks-Pérez L, Gutiérrez-Méndez N, Heredia N, García S, Nevárez-Moorillón GV. Microbiological Changes during Ripening of Chihuahua Cheese Manufactured with Raw Milk and Its Seasonal Variations. Foods 2018; 7:foods7090153. [PMID: 30227599 PMCID: PMC6163408 DOI: 10.3390/foods7090153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/03/2018] [Accepted: 09/14/2018] [Indexed: 11/28/2022] Open
Abstract
Chihuahua cheese is a traditional cheese produced in Northwest Mexico that is consumed shortly after production. Cheeses prepared during autumn, winter and summer were collected from five dairies, and analyzed to determine seasonal influence on proximate analysis, texture profile and the microbiological dynamic during a ripening period of 270 days. Coliforms, coagulase-positive staphylococci, molds, yeast, as well as presumptive mesophilic lactobacilli, thermophilic lactobacilli, lactococci, thermophilic cocci and enterococci, were enumerated by plate count on selective agar. Manufacturing dairy had an effect on Chihuahua cheese composition and texture profile. Seasonality influence on the microbial dynamic was observed, since the highest initial counts of coliforms (5.14 log CFU/g), coagulase-positive staphylococci (4.13 log CFU/g) and mesophilic lactobacilli (7.86 log CFU/g) were detected on summer samples. Also, ripening time affected the survival of coliforms and presumptive lactococci after 270 days (1.24 and 5.89 log CFU/g respectively) while from day 90th, coagulase-positive staphylococci were absent. Microbial changes and seasonal influence provide information on the microbiota that can influence the sensorial characteristics of Chihuahua cheese.
Collapse
Affiliation(s)
- Cristina Sánchez-Gamboa
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba s/n cruce con Ave. Manuel L. Barragán, 66450 San Nicolás de los Garza, Nuevo León, México.
| | - Liliana Hicks-Pérez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus Universitario II, 31125 Chihuahua, Chihuahua, México.
| | - Néstor Gutiérrez-Méndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus Universitario II, 31125 Chihuahua, Chihuahua, México.
| | - Norma Heredia
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba s/n cruce con Ave. Manuel L. Barragán, 66450 San Nicolás de los Garza, Nuevo León, México.
| | - Santos García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba s/n cruce con Ave. Manuel L. Barragán, 66450 San Nicolás de los Garza, Nuevo León, México.
| | - Guadalupe Virginia Nevárez-Moorillón
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus Universitario II, 31125 Chihuahua, Chihuahua, México.
| |
Collapse
|
340
|
Tanaka C, Yamada K, Takeuchi H, Inokuchi Y, Kashiwagi A, Toba T. A Lytic Bacteriophage for Controlling Pseudomonas lactis in Raw Cow's Milk. Appl Environ Microbiol 2018; 84:e00111-18. [PMID: 29980554 PMCID: PMC6122002 DOI: 10.1128/aem.00111-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
The control of bacterial growth during milk processing is crucial for the quality maintenance of commercial milk and milk products. During a period of cold storage prior to heat treatments, some psychrotrophic bacteria grow and produce extracellular heat-resistant lipases and proteases that cause product defects. The use of lytic bacteriophages (phages) that infect and kill bacteria could be a useful tool for suppressing bacterial growth during this cold storage phase. In this study, we isolated a Pseudomonas lactis strain and a phage from raw cow's milk. Quantitative characterization of the phage was used to elucidate whether this phage was active under low temperatures and neutral pH and whether it was inactivated during pasteurization. Phage titer determination was possible under conditions ranging from pH 4 to 9 and from 3°C to 25°C; the phage was inactivated under pasteurization conditions at 63°C for 30 min. Furthermore, we showed that this phage reduced viable bacterial cell counts in both skim and whole milk. The results of this study represent the potential uses of phages for controlling psychrotrophic bacterial growth in raw cow's milk during cold storage.IMPORTANCE Suppression of bacterial growth in raw milk under cold storage is crucial for the quality control of commercially supplied milk. The use of lytic phages as low-cost microbicides is an attractive prospect. Due to strict host specificities, phages must be isolated from the raw milk where the host bacteria are growing. We first isolated the P. lactis bacterial strain and then the phage infecting that strain. Partial phage genomic analysis showed that this is a newly isolated phage, different from any previously reported. This study reports a lytic phage for P. lactis, and we have presented evidence here that this phage reduced viable bacterial cell counts not only in rich medium but also in skim and whole milk. As a result, we have concluded that the phage reported in this study would be useful in milk processing.
Collapse
Affiliation(s)
- Chikage Tanaka
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Kohsuke Yamada
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Honami Takeuchi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Yoshio Inokuchi
- Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Akiko Kashiwagi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Takahiro Toba
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| |
Collapse
|
341
|
Bacterial and fungal microbiota in traditional Bangladeshi fermented milk products analysed by culture-dependent and culture-independent methods. Food Res Int 2018; 111:431-437. [DOI: 10.1016/j.foodres.2018.05.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/10/2018] [Accepted: 05/19/2018] [Indexed: 01/22/2023]
|
342
|
Kamelamela N, Zalesne M, Morimoto J, Robbat A, Wolfe BE. Indigo- and indirubin-producing strains of Proteus and Psychrobacter are associated with purple rind defect in a surface-ripened cheese. Food Microbiol 2018; 76:543-552. [PMID: 30166186 DOI: 10.1016/j.fm.2018.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/17/2018] [Accepted: 07/19/2018] [Indexed: 01/28/2023]
Abstract
The rinds of surface-ripened cheeses have expected aesthetic properties, including distinct colors, that contribute to overall quality and consumer acceptance. Atypical rind pigments are frequently reported in small-scale cheese production, but the causes of these color defects are largely unknown. We provide a potential microbial explanation for a striking purple rind defect in a surface-ripened cheese. A cheese producer in the United States reported to us several batches of a raw-milk washed-rind cheese with a distinctly purple rind. We isolated a Proteus species from samples with purple rind defect, but not from samples with typical rind pigments, suggesting that this strain of Proteus could be causing the defect. When provided tryptophan, a precursor in the indigo and indirubin biosynthesis pathway, the isolated strain of Proteus secreted purple-red pigments. A Psychrobacter species isolated from both purple and normal rinds also secreted purple-red pigments. Using thin-layer chromatography and liquid chromatography-mass spectrometry, we confirmed that these bacteria produced indigo and indirubin from tryptophan just as closely related bacteria make these compounds in purple urine bag syndrome in medical settings. Experimental cheese communities with or without Proteus and Psychrobacter confirmed that these Proteobacteria cause purple pigmentation of cheese rinds. Reports of purple rinds in two other cheeses from Europe and the observation of pigment production by Proteus and Psychrobacter strains isolated from other cheese rinds suggest that purple rind defect has the potential to be widespread in surface-ripened cheeses.
Collapse
Affiliation(s)
- Noelani Kamelamela
- Department of Biology, Tufts University, 200 Boston Ave., Medford, MA, 02155, USA
| | - Michael Zalesne
- Department of Biology, Tufts University, 200 Boston Ave., Medford, MA, 02155, USA
| | - Joshua Morimoto
- Tufts University Sensory and Science Center, Tufts University, 200 Boston Ave., Medford, MA 02155, USA; Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Albert Robbat
- Tufts University Sensory and Science Center, Tufts University, 200 Boston Ave., Medford, MA 02155, USA; Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Benjamin E Wolfe
- Department of Biology, Tufts University, 200 Boston Ave., Medford, MA, 02155, USA; Tufts University Sensory and Science Center, Tufts University, 200 Boston Ave., Medford, MA 02155, USA.
| |
Collapse
|
343
|
Nair DVT, Kollanoor Johny A. Characterizing the Antimicrobial Function of a Dairy-Originated Probiotic, Propionibacterium freudenreichii, Against Multidrug-Resistant Salmonella enterica Serovar Heidelberg in Turkey Poults. Front Microbiol 2018; 9:1475. [PMID: 30050507 PMCID: PMC6052351 DOI: 10.3389/fmicb.2018.01475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/13/2018] [Indexed: 01/29/2023] Open
Abstract
Antimicrobial potential of a dairy-origin probiotic bacteria, Propionibacterium freudenreichii, against multidrug-resistant Salmonella Heidelberg (SH) in turkey poults was determined in the current study. Employing in vitro experiments, two strains (subsp.) of P. freudenreichii: P. freudenreichii freudenreichii B3523 (PF) and P. freudenreichii shermanii B4327 (PS) were tested for their ability to resist low pH (2.5) and bile salts (0.3%). In addition, the ability of the strains to adhere to and invade avian epithelial cells was determined after exposure to Propionibacterium strains followed by SH challenge. Moreover, the antibacterial activity of the strains' cell-free culture supernatants (CFCSs) were tested against three major foodborne pathogens, including SH. Furthermore, the susceptibility of the strains to common antibiotics used for human therapy was determined. The hemolytic properties of the strains were determined in comparison to Streptococcus pyogenes, a known hemolysis-causing pathogen. Appropriate controls were kept in all studies. Using two in vivo experiments, PF was tested against SH colonization of poult ceca and dissemination to liver and spleen. The four treatment groups were: negative control, PF control (PFC), SH control (SC), and a test group (PFS; PF + SH). The poults in the PFC and PFS groups were inoculated with 1010 CFU ml-1 PF on day 1 through crop gavage and subsequently supplemented through drinking water. On day 7, SC and PFS groups were challenged with SH at 106 CFU ml-1, and after 7 days, cecum, liver, and spleen were collected for determining surviving SH populations. Results indicated that both PF and PS resisted pH = 2.5 and 0.3% bile salts with surviving populations comparable to the control and adhered well onto the avian epithelial cell lines. The strains were susceptible to antibiotics and did not invade the epithelial cells or exhibit hemolytic properties. The CFCSs were highly bactericidal against all tested pathogens. In turkey poults, PF significantly reduced cecal colonization of SH and the dissemination of the pathogen to the liver, compared to the SH challenge controls (P < 0.05). Results revealed that PF, a non-host gastrointestinal tract-derived probiotic, could be an antibiotic alternative to prevent the early colonization of SH in poults, improving the preharvest safety of turkeys.
Collapse
Affiliation(s)
| | - Anup Kollanoor Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
344
|
Occurence of antibiotic resistant bacteria in raw cow milk from vending machines. ACTA CHIMICA SLOVACA 2018. [DOI: 10.2478/acs-2018-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The prevalence of antibiotic resistant coliform bacteria and enterococci in fresh raw cow milk obtained from four vending machines in Slovakia was assessed. Also, differences in the number of antibiotic-resistant bacteria in milk according to season (winter and summer) were compared. Number of total coliform bacteria ranged from 2.45 to 4.18 log CFU/mL. Majority of them were resistant to ampicillin. This was expected due to their intrinsic resistance apart from Escherichia coli which is sensitive to ampicillin. In addition, we observed also tetracycline and gentamicin resistance. Each of our samples contained E.coli. Number of total enterococci ranged from 1.95 to 3.78 log CFU/mL. We have observed predominantly vancomycin resistance in all tested samples. In samples taken during winter we have found higher number of total and resistant coliforms as well as total enterococci compared to those taken during summer.
Collapse
|
345
|
Das B, Ghosh TS, Kedia S, Rampal R, Saxena S, Bag S, Mitra R, Dayal M, Mehta O, Surendranath A, Travis SPL, Tripathi P, Nair GB, Ahuja V. Analysis of the Gut Microbiome of Rural and Urban Healthy Indians Living in Sea Level and High Altitude Areas. Sci Rep 2018; 8:10104. [PMID: 29973712 PMCID: PMC6031670 DOI: 10.1038/s41598-018-28550-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/26/2018] [Indexed: 12/18/2022] Open
Abstract
The diversity and basic functional attributes of the gut microbiome of healthy Indians is not well understood. This study investigated the gut microbiome of three Indian communities: individuals residing in rural and urban (n = 49) sea level Ballabhgarh areas and in rural high altitude areas of Leh, Ladakh in North India (n = 35). Our study revealed that the gut microbiome of Indian communities is dominated by Firmicutes followed by Bacteroidetes, Actinobateria and Proteobacteria. Although, 54 core bacterial genera were detected across the three distinct communities, the gut bacterial composition displayed specific signatures and was observed to be influenced by the topographical location and dietary intake of the individuals. The gut microbiome of individuals living in Leh was observed to be significantly similar with a high representation of Bacteroidetes and low abundance of Proteobacteria. In contrast, the gut microbiome of individuals living in Ballabhgarh areas harbored higher number of Firmicutes and Proteobacteria and is enriched with microbial xenobiotic degradation pathways. The rural community residing in sea level Ballabhgarh areas has unique microbiome characterized not only by a higher diversity, but also a higher degree of interindividual homogeneity.
Collapse
Affiliation(s)
- Bhabatosh Das
- Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India.
| | - Tarini Shankar Ghosh
- Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Ritika Rampal
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Shruti Saxena
- Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Satyabrata Bag
- Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Ridhima Mitra
- Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Mayanka Dayal
- Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Ojasvi Mehta
- Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - A Surendranath
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Simon P L Travis
- Translational Gastroenterology Unit, Oxford University Hospitals, Oxford, UK
| | - Prabhanshu Tripathi
- Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - G Balakrish Nair
- Molecular Genetics Laboratory, Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India.,Research Policy and Cooperation Unit, Communicable Diseases Department, World Health Organization (WHO), Mahatma Gandhi Marg, Indraprastha Estate, New Delhi, 110 002, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
346
|
Kopčáková A, Dubíková K, Šuľák M, Javorský P, Kmeť V, Lauková A, Pristaš P. Restriction-modification systems and phage resistance of enterococci from ewe milk. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
347
|
Enterococci and pseudomonads as quality indicators in industrial production and storage of mozzarella cheese from raw cow milk. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
348
|
Ouertani A, Chaabouni I, Mosbah A, Long J, Barakat M, Mansuelle P, Mghirbi O, Najjari A, Ouzari HI, Masmoudi AS, Maresca M, Ortet P, Gigmes D, Mabrouk K, Cherif A. Two New Secreted Proteases Generate a Casein-Derived Antimicrobial Peptide in Bacillus cereus Food Born Isolate Leading to Bacterial Competition in Milk. Front Microbiol 2018; 9:1148. [PMID: 29915567 PMCID: PMC5994558 DOI: 10.3389/fmicb.2018.01148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/14/2018] [Indexed: 02/05/2023] Open
Abstract
Milk and dairy products harbor a wide variety of bacterial species that compete for both limited resources and space. Under these competitive conditions, bacteria develop specialized mechanisms to protect themselves during niche colonization and nutrient acquisition processes. The bacterial antagonism mechanisms include the production of antimicrobial agents or molecules that facilitate competitor dispersal. In the present work, a bacterial strain designated RC6 was isolated from Ricotta and identified as Bacillus cereus. It generates antimicrobial peptide (AMP) when grown in the presence of casein. The AMP was active against several species of Bacillus and Listeria monocytogenes. MALDI-TOF analysis of the RP-HPLC purified fractions and amino acid sequencing revealed a molecular mass of 751 Da comprised of a 6-residue sequence, YPVEPF. BLAST analysis showed that the AMP corresponds to the fractions 114-119 of bovine β-casein and represents the product of a specific proteolysis. Analysis of the purified proteolytic fractions from the B. cereus RC6 culture supernatant indicated that the presence of at least two different endoproteases is crucial for the generation of the AMP. Indeed, we were able to identify two new candidate endoproteases by means of genome sequencing and functional assignment using a 3D structural model and molecular docking of misannotated hypothetical proteins. In this light, the capacity of B. cereus RC6 to generate antimicrobial peptides from casein, through the production of extracellular enzymes, presents a new model of antagonistic competition leading to niche colonization. Hence, as a dairy product contaminant, this strategy may enable proteolytic B. cereus RC6 niche specialization in milk matrices.
Collapse
Affiliation(s)
- Awatef Ouertani
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
- Aix Marseille University, Centre National de la Recherche Scientifique, ICR UMR 7273, Marseille, France
| | - Ines Chaabouni
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Amor Mosbah
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Justine Long
- Aix-Marseille University, CEA, Centre National de la Recherche Scientifique, LEMiRE, UMR 7265, BIAM, Saint-Paul-lez-Durance, France
| | - Mohamed Barakat
- Aix-Marseille University, CEA, Centre National de la Recherche Scientifique, LEMiRE, UMR 7265, BIAM, Saint-Paul-lez-Durance, France
| | - Pascal Mansuelle
- Aix Marseille Univ, Centre National de la Recherche Scientifique, IMM, Plate-Forme Protéomique, MaP IBiSA Labelled, Marseille, France
| | - Olfa Mghirbi
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
- Aix Marseille University, Centre National de la Recherche Scientifique, ICR UMR 7273, Marseille, France
| | - Afef Najjari
- Université Tunis El Manar, FST, LMBA (LR03ES03), Campus Universitaire, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Université Tunis El Manar, FST, LMBA (LR03ES03), Campus Universitaire, Tunis, Tunisia
| | - Ahmed S. Masmoudi
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Marc Maresca
- Aix-Marseille University, Centre National de la Recherche Scientifique, Centrale Marseille, iSm2, Marseille, France
| | - Philippe Ortet
- Aix-Marseille University, CEA, Centre National de la Recherche Scientifique, LEMiRE, UMR 7265, BIAM, Saint-Paul-lez-Durance, France
| | - Didier Gigmes
- Aix Marseille University, Centre National de la Recherche Scientifique, ICR UMR 7273, Marseille, France
| | - Kamel Mabrouk
- Aix Marseille University, Centre National de la Recherche Scientifique, ICR UMR 7273, Marseille, France
| | - Ameur Cherif
- Université de la Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
349
|
Behera SS, Ray RC, Zdolec N. Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9361614. [PMID: 29998137 PMCID: PMC5994577 DOI: 10.1155/2018/9361614] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
Abstract
Lactobacillus plantarum (widespread member of the genus Lactobacillus) is one of the most studied species extensively used in food industry as probiotic microorganism and/or microbial starter. The exploitation of Lb. plantarum strains with their long history in food fermentation forms an emerging field and design of added-value foods. Lb. plantarum strains were also used to produce new functional (traditional/novel) foods and beverages with improved nutritional and technological features. Lb. plantarum strains were identified from many traditional foods and characterized for their systematics and molecular taxonomy, enzyme systems (α-amylase, esterase, lipase, α-glucosidase, β-glucosidase, enolase, phosphoketolase, lactase dehydrogenase, etc.), and bioactive compounds (bacteriocin, dipeptides, and other preservative compounds). This review emphasizes that the Lb. plantarum strains with their probiotic properties can have great effects against harmful microflora (foodborne pathogens) to increase safety and shelf-life of fermented foods.
Collapse
Affiliation(s)
- Sudhanshu S. Behera
- Department of Fisheries and Animal Resources Development, Government of Odisha, Bhubaneswar, India
- Centre for Food Biology Studies, 1071/17 Jagamohan Nagar, Khandagiri PO, Bhubaneswar 751 030, Odisha, India
| | - Ramesh C. Ray
- Centre for Food Biology Studies, 1071/17 Jagamohan Nagar, Khandagiri PO, Bhubaneswar 751 030, Odisha, India
| | - Nevijo Zdolec
- Department of Hygiene, Technology and Food Safety, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
350
|
Schlusselhuber M, Godard J, Sebban M, Bernay B, Garon D, Seguin V, Oulyadi H, Desmasures N. Characterization of Milkisin, a Novel Lipopeptide With Antimicrobial Properties Produced By Pseudomonas sp. UCMA 17988 Isolated From Bovine Raw Milk. Front Microbiol 2018; 9:1030. [PMID: 29892273 PMCID: PMC5985324 DOI: 10.3389/fmicb.2018.01030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Biosurfactants such as lipopeptides are amphiphilic compounds produced by microorganisms such as bacteria of the genera of Pseudomonas and Bacillus. Some of these molecules proved to have interesting antimicrobial, antiviral, insecticide, and/or tensioactive properties that are potentially useful for the agricultural, chemical, food, and pharmaceutical industries. Raw milk provides a physicochemical environment that is favorable to the multiplication of a broad spectrum of microorganisms. Among them, psychrotrophic bacterial species, especially members of the genus Pseudomonas, are predominant and colonize milk during cold storage and/or processing. We isolated the strain Pseudomonas sp. UCMA 17988 from raw cow milk, with antagonistic activity against Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica Newport. Antimicrobial molecules involved in the antagonistic activity of this strain were characterized. A mass spectrometry analysis highlighted the presence of four lipopeptides isoforms. The major isoform (1409 m/z), composed of 10 carbons in the lipidic chain, was named milkisin C. The three other isoforms detected at 1381, 1395, and 1423 m/z, that are concomitantly produced, were named milkisin A, B, and D, respectively. The structure of milkisin, as confirmed by nuclear magnetic resonance analyses, is closely related to amphisin family. Indeed, the peptidic chain was composed of 11 amino acids, 6 of which are conserved among the family. In conclusion, Pseudomonas sp. UCMA 17988 produces new members of the amphisin family which are responsible for the antagonistic activity of this strain.
Collapse
Affiliation(s)
| | - Justine Godard
- UNICAEN, UNIROUEN, ABTE, Normandie Université, Caen, France
| | - Muriel Sebban
- UNIROUEN, INSA Rouen, CNRS, COBRA, Normandie Université, Rouen, France
| | - Benoit Bernay
- UNICAEN, SF ICORE 4206, Normandie Université, Caen, France
| | - David Garon
- UNICAEN, UNIROUEN, ABTE, Normandie Université, Caen, France
| | | | - Hassan Oulyadi
- UNIROUEN, INSA Rouen, CNRS, COBRA, Normandie Université, Rouen, France
| | | |
Collapse
|