301
|
Ota M, Duong BH, Torkamani A, Doyle CM, Gavin AL, Ota T, Nemazee D. Regulation of the B cell receptor repertoire and self-reactivity by BAFF. THE JOURNAL OF IMMUNOLOGY 2010; 185:4128-36. [PMID: 20817867 DOI: 10.4049/jimmunol.1002176] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The TNF-family cytokine BAFF (BLyS) promotes B lymphocyte survival and is overexpressed in individuals with systemic lupus erythematosus and Sjögren's Syndrome. BAFF can rescue anergic autoreactive B cells from death, but only when competition from nonautoreactive B cells is lacking. Yet, high BAFF levels promote autoantibody formation in individuals possessing diverse B cells. To better understand how excess BAFF promotes autoimmunity in a polyclonal immune system, Ig L chain usage was analyzed in 3H9 site-directed IgH chain transgenic mice, whose B cells recognize DNA and chromatin when they express certain endogenous L chains. BAFF levels were manipulated in 3H9 mice by introducing transgenes expressing either BAFF or its natural inhibitor ΔBAFF. B cells in BAFF/3H9 mice were elevated in number, used a broad L chain repertoire, including L chains generating high-affinity autoreactivity, and produced abundant autoantibodies. Comparison of spleen and lymph node B cells suggested that highly autoreactive B cells were expanded. By contrast, ΔBAFF/3H9 mice had reduced B cell numbers with a repertoire similar to that of 3H9 mice, but lacking usage of a subset of Vκ genes. The results show that limiting BAFF signaling only slightly selects against higher affinity autoreactive B cells, whereas its overexpression leads to broad tolerance escape and positive selection of autoreactive cells. The results have positive implications for the clinical use of BAFF-depleting therapy.
Collapse
Affiliation(s)
- Miyo Ota
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
302
|
Robins HS, Srivastava SK, Campregher PV, Turtle CJ, Andriesen J, Riddell SR, Carlson CS, Warren EH. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci Transl Med 2010; 2:47ra64. [PMID: 20811043 PMCID: PMC3212437 DOI: 10.1126/scitranslmed.3001442] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diversity in T lymphocyte antigen receptors is generated by somatic rearrangement of T cell receptor (TCR) genes and is concentrated within the third complementarity-determining region 3 (CDR3) of each chain of the TCR heterodimer. We sequenced the CDR3 regions from millions of rearranged TCR beta chain genes in naïve and memory CD8(+) T cells of seven adults. The CDR3 sequence repertoire realized in each individual is strongly biased toward specific V(beta)-J(beta) pair utilization, dominated by sequences containing few inserted nucleotides, and drawn from a defined subset comprising less than 0.1% of the estimated 5 x 10(11) possible sequences. Surprisingly, the overlap in the naïve CD8(+) CDR3 sequence repertoires of any two of the individuals is approximately 7000-fold larger than predicted and appears to be independent of the degree of human leukocyte antigen matching.
Collapse
Affiliation(s)
- Harlan S Robins
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
303
|
Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat Biotechnol 2010; 28:965-9. [PMID: 20802495 DOI: 10.1038/nbt.1673] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 08/02/2010] [Indexed: 12/16/2022]
Abstract
Isolation of antigen-specific monoclonal antibodies (mAbs) and antibody fragments relies on high-throughput screening of immortalized B cells or recombinant antibody libraries. We bypassed the screening step by using high-throughput DNA sequencing and bioinformatic analysis to mine antibody variable region (V)-gene repertoires from bone marrow plasma cells (BMPC) of immunized mice. BMPCs, which cannot be immortalized, produce the vast majority of circulating antibodies. We found that the V-gene repertoire of BMPCs becomes highly polarized after immunization, with the most abundant sequences represented at frequencies between approximately 1% and >10% of the total repertoire. We paired the most abundant variable heavy (V(H)) and variable light (V(L)) genes based on their relative frequencies, reconstructed them using automated gene synthesis, and expressed recombinant antibodies in bacteria or mammalian cells. Antibodies generated in this manner from six mice, each immunized with one of three antigens were overwhelmingly antigen specific (21/27 or 78%). Those generated from a mouse with high serum titers had nanomolar binding affinities.
Collapse
|
304
|
Ge X, Mazor Y, Hunicke-Smith SP, Ellington AD, Georgiou G. Rapid construction and characterization of synthetic antibody libraries without DNA amplification. Biotechnol Bioeng 2010; 106:347-57. [PMID: 20198660 DOI: 10.1002/bit.22712] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report on a simple method to rapidly generate very large libraries of genes encoding mutant proteins without the use of DNA amplification, and the application of this methodology in the construction of synthetic immunoglobulin variable heavy (V(H)) and light (V(kappa)) libraries. Four high quality, chemically synthesized polynucleotides (90-140 bases) were annealed and extended using T4 DNA polymerase. Following electroporation, >10(9) transformants could be synthesized within 1 day. Fusion to beta-lactamase and selection on ampicillin resulted in 3.7 x 10(8) V(H) and 6.9 x 10(8) V(kappa) clones highly enriched for full-length, in-frame genes. High-throughput 454 DNA sequencing of >250,000 V(H) and V(kappa) genes from the pre- and post-selection libraries revealed that, in addition to the expected reduction in reading-frame shifts and stop codons, selection for functional expression also resulted in a statistical decrease in the cysteine content. Apart from these differences, there was a good agreement between the expected and actual diversity, indicating that neither oligonucleotide synthesis nor biological constrains due to protein synthesis of V(H)/V(kappa)-beta-lactamase fusions introduce biases in the amino acid composition of the randomized regions. This methodology can be employed for the rapid construction of highly diverse libraries with the near elimination of PCR errors in invariant regions.
Collapse
Affiliation(s)
- Xin Ge
- Department of Chemical Engineering, University of Texas at Austin, 78712, USA
| | | | | | | | | |
Collapse
|
305
|
Klarenbeek PL, Tak PP, van Schaik BDC, Zwinderman AH, Jakobs ME, Zhang Z, van Kampen AHC, van Lier RAW, Baas F, de Vries N. Human T-cell memory consists mainly of unexpanded clones. Immunol Lett 2010; 133:42-8. [PMID: 20621124 DOI: 10.1016/j.imlet.2010.06.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/29/2010] [Accepted: 06/29/2010] [Indexed: 11/26/2022]
Abstract
The immune system is able to respond to millions of antigens using adaptive receptors, including the alphabeta-T-cell receptor (TCR). Upon antigen encounter a T-cell may proliferate to produce a clone of TCR-identical cells, which develop a memory phenotype. Previous studies suggested that most memory clones are clearly expanded. In accordance, the beta-chain repertoire of T-cell memory subsets was reported to be 10 times less diverse than those of naive subsets, reflecting stringent selection. However, due to technological limitations detailed information was lacking regarding the size of clonal expansions and the diversity of the TCR-repertoire in naive and memory T-cell populations. Here, using high-throughput sequencing, we show that the memory repertoire in human peripheral blood contains only few expanded clones and consists mainly of low frequency clones. Additionally, the memory repertoire is much more diverse than expected. In two healthy persons we observed that only 2-7% of the CD4 and CD8 memory clones found were clearly expanded. In line with this observation we show that the beta-chains repertoire size of the CD4 memory compartment is only two times smaller, and that of the CD8 memory compartment is only 3-10 times smaller than the naive compartments. Our results show that the T-cell memory compartment has a very different distribution of clones than anticipated. This has important implications for the current dogma of immunological memory, and changes the interpretation of repertoire aberrations in (patho-)physiological situations such as ageing and auto-immunity. It raises new questions on the factors that steer maturation of memory phenotype and determine the size of memory clones.
Collapse
Affiliation(s)
- Paul L Klarenbeek
- Department of Clinical Immunology and Rheumatology, AMC/University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
VanDuijn MM, Dekker LJM, Zeneyedpour L, Smitt PAES, Luider TM. Immune responses are characterized by specific shared immunoglobulin peptides that can be detected by proteomic techniques. J Biol Chem 2010; 285:29247-53. [PMID: 20615873 DOI: 10.1074/jbc.m110.139071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the adaptive immune response, immunoglobulins develop that bind specifically to the antigens to which the organism was exposed. Immunoglobulins may bind to known or unknown antigens in a variety of diseases and have been used in the past to identify novel antigens for use as a biomarker. We propose that the immunoglobulins themselves could also be used as biomarkers in antibody-mediated disease. In this proteomic study, rats were immunized with one of two purified antigens, and immunoglobulins from pre- and postimmune sera were analyzed with nano-LC coupled mass spectrometry. It was found that the two treatment groups could be distinguished based on cluster analysis of the immunoglobulin peptides from the immune sera. In addition, we identified 684 specific peptides that were differentially present in one of the two treated groups. We could find an amino acid sequence for 44% of the features in the mass spectra by combining database-driven and de novo sequencing techniques. The latter were essential for sequence identification, as the more common database-driven approach suffers from a poor representation of immunoglobulins in the available databases. Our data show that the development of immunoglobulins during an immune response is not a fully random process, but that instead selection pressures exist that favor the best binding amino acid sequences, and that this selection is shared between different animals. This finding implies that immunoglobulin peptides could indeed be a powerful and easily accessible class of biomarkers.
Collapse
|
307
|
Abstract
The potential for antibodies to act as "magic bullets" for treatment of human disease was recognized a century ago, but its full realization has began to occur only during the last decade. A key to their current success is the ability to make libraries of antibodies/B cells, isolate a single species, and engineer it to be safe, efficacious and of high quality. Despite this progress, major challenges to the effective prevention, diagnosis and treatment of a vast majority of diseases remain. Limited success in the development of effective vaccines against diseases such as AIDS and cancer reflects our incomplete understanding of how antibodies are generated and function. Only a miniscule number of antibodies are characterized out of the universe of antibodies generated by the immune system. Knowledge of antibodyomes-the complete sets of antibodies-could help solve these and other challenges.
Collapse
Affiliation(s)
- Dimiter S Dimitrov
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
308
|
B cell gene signature with massive intrahepatic production of antibodies to hepatitis B core antigen in hepatitis B virus-associated acute liver failure. Proc Natl Acad Sci U S A 2010; 107:8766-71. [PMID: 20421498 DOI: 10.1073/pnas.1003854107] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV)-associated acute liver failure (ALF) is a dramatic clinical syndrome due to a sudden loss of hepatic cells leading to multiorgan failure. The mechanisms whereby HBV induces ALF are unknown. Here, we show that liver tissue collected at the time of liver transplantation in two patients with HBV-associated ALF is characterized by an overwhelming B cell response apparently centered in the liver with massive accumulation of plasma cells secreting IgG and IgM, accompanied by complement deposition. We demonstrate that the molecular target of these antibodies is the hepatitis B core antigen (HBcAg); that these anti-bodies display a restricted variable heavy chain (V(H)) repertoire and lack somatic mutations; and that these two unrelated individuals with ALF use an identical predominant V(H) gene with unmutated variable domain (IGHV1-3) for both IgG and IgM anti-HBc antibodies, indicating that HBcAg is the target of a germline human V(H) gene. These data suggest that humoral immunity may exert a primary role in the pathogenesis of HBV-associated ALF.
Collapse
|
309
|
Lunshof JE, Bobe J, Aach J, Angrist M, Thakuria JV, Vorhaus DB, Hoehe MR, Church GM. Personal genomes in progress: from the human genome project to the personal genome project. DIALOGUES IN CLINICAL NEUROSCIENCE 2010. [PMID: 20373666 PMCID: PMC3181947 DOI: 10.31887/dcns.2010.12.1/jlunshof] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The cost of a diploid human genome sequence has dropped from about $70M to $2000 since 2007- even as the standards for redundancy have increased from 7x to 40x in order to improve call rates. Coupled with the low return on investment for common single-nucleotide polymorphisms, this has caused a significant rise in interest in correlating genome sequences with comprehensive environmental and trait data (GET). The cost of electronic health records, imaging, and microbial, immunological, and behavioral data are also dropping quickly. Sharing such integrated GET datasets and their interpretations with a diversity of researchers and research subjects highlights the need for informed-consent models capable of addressing novel privacy and other issues, as well as for flexible data-sharing resources that make materials and data available with minimum restrictions on use. This article examines the Personal Genome Project's effort to develop a GET database as a public genomics resource broadly accessible to both researchers and research participants, while pursuing the highest standards in research ethics.
Collapse
Affiliation(s)
- Jeantine E Lunshof
- European Centre for Public Health Genomics, FHML, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
310
|
Abstract
Recognition of pathogens relies on families of proteins showing great diversity. Here we construct maximum entropy models of the sequence repertoire, building on recent experiments that provide a nearly exhaustive sampling of the IgM sequences in zebrafish. These models are based solely on pairwise correlations between residue positions but correctly capture the higher order statistical properties of the repertoire. By exploiting the interpretation of these models as statistical physics problems, we make several predictions for the collective properties of the sequence ensemble: The distribution of sequences obeys Zipf's law, the repertoire decomposes into several clusters, and there is a massive restriction of diversity because of the correlations. These predictions are completely inconsistent with models in which amino acid substitutions are made independently at each site and are in good agreement with the data. Our results suggest that antibody diversity is not limited by the sequences encoded in the genome and may reflect rapid adaptation to antigenic challenges. This approach should be applicable to the study of the global properties of other protein families.
Collapse
|
311
|
Mir KU. Sequencing genomes: from individuals to populations. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2010; 8:367-78. [PMID: 19808932 DOI: 10.1093/bfgp/elp040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The whole genome sequences of Jim Watson and Craig Venter are early examples of personalized genomics, which promises to change how we approach healthcare in the future. Before personal sequencing can have practical medical benefits, however, and before it should be advocated for implementation at the population-scale, there needs to be a better understanding of which genetic variants influence which traits and how their effects are modified by epigenetic factors. Nonetheless, for forging links between DNA sequence and phenotype, efforts to sequence the genomes of individuals need to continue; this includes sequencing sub-populations for association studies which analyse the difference in sequence between disease affected and unaffected individuals. Such studies can only be applied on a large enough scale to be effective if the massive strides in sequencing technology that have recently occurred also continue.
Collapse
Affiliation(s)
- Kalim U Mir
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
312
|
Hiatt JB, Patwardhan RP, Turner EH, Lee C, Shendure J. Parallel, tag-directed assembly of locally derived short sequence reads. Nat Methods 2010; 7:119-22. [PMID: 20081835 DOI: 10.1038/nmeth.1416] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 12/16/2009] [Indexed: 10/19/2022]
Abstract
We demonstrate subassembly, an in vitro library construction method that extends the utility of short-read sequencing platforms to applications requiring long, accurate reads. A long DNA fragment library is converted to a population of nested sublibraries, and a tag sequence directs grouping of short reads derived from the same long fragment, enabling localized assembly of long fragment sequences. Subassembly may facilitate accurate de novo genome assembly and metagenome sequencing.
Collapse
Affiliation(s)
- Joseph B Hiatt
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
313
|
High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc Natl Acad Sci U S A 2010; 107:1518-23. [PMID: 20080641 DOI: 10.1073/pnas.0913939107] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Developing T cells face a series of cell fate choices in the thymus and in the periphery. The role of the individual T cell receptor (TCR) in determining decisions of cell fate remains unresolved. The stochastic/selection model postulates that the initial fate of the cell is independent of TCR specificity, with survival dependent on additional TCR/coreceptor "rescue" signals. The "instructive" model holds that cell fate is initiated by the interaction of the TCR with a cognate peptide-MHC complex. T cells are then segregated on the basis of TCR specificity with the aid of critical coreceptors and signal modulators [Chan S, Correia-Neves M, Benoist C, Mathis (1998) Immunol Rev 165: 195-207]. The former would predict a random representation of individual TCR across divergent T cell lineages whereas the latter would predict minimal overlap between divergent T cell subsets. To address this issue, we have used high-throughput sequencing to evaluate the TCR distribution among key T cell developmental and effector subsets from a single donor. We found numerous examples of individual subsets sharing identical TCR sequence, supporting a model of a stochastic process of cell fate determination coupled with dynamic patterns of clonal expansion of T cells bearing the same TCR sequence among both CD4(+) and CD8+ populations.
Collapse
|
314
|
Lunshof JE, Bobe J, Aach J, Angrist M, Thakuria JV, Vorhaus DB, Hoehe MR, Church GM. Personal genomes in progress: from the human genome project to the personal genome project. DIALOGUES IN CLINICAL NEUROSCIENCE 2010; 12:47-60. [PMID: 20373666 PMCID: PMC3181947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The cost of a diploid human genome sequence has dropped from about $70M to $2000 since 2007--even as the standards for redundancy have increased from 7x to 40x in order to improve call rates. Coupled with the low return on investment for common single-nucleotide polylmorphisms, this has caused a significant rise in interest in correlating genome sequences with comprehensive environmental and trait data (GET). The cost of electronic health records, imaging, and microbial, immunological, and behavioral data are also dropping quickly. Sharing such integrated GET datasets and their interpretations with a diversity of researchers and research subjects highlights the need for informed-consent models capable of addressing novel privacy and other issues, as well as for flexible data-sharing resources that make materials and data available with minimum restrictions on use. This article examines the Personal Genome Project's effort to develop a GET database as a public genomics resource broadly accessible to both researchers and research participants, while pursuing the highest standards in research ethics.
Collapse
Affiliation(s)
- Jeantine E Lunshof
- European Centre for Public Health Genomics, FHML, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
315
|
Abstract
The immune system recognizes a myriad of invading pathogens and their toxic products. It does so with a finite repertoire of antibodies and T cell receptors. We here describe theories that quantify the dynamics of the immune system. We describe how the immune system recognizes antigens by searching the large space of receptor molecules. We consider in some detail the theories that quantify the immune response to influenza and dengue fever. We review theoretical descriptions of the complementary evolution of pathogens that occurs in response to immune system pressure. Methods including bioinformatics, molecular simulation, random energy models, and quantum field theory contribute to a theoretical understanding of aspects of immunity.
Collapse
Affiliation(s)
- Michael W Deem
- Department of Bioengineering and Physics, Rice University, Houston, TX 77005, USA.
| | | |
Collapse
|
316
|
Ebert PJR, Li QJ, Huppa JB, Davis MM. Functional development of the T cell receptor for antigen. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:65-100. [PMID: 20800817 PMCID: PMC4887107 DOI: 10.1016/s1877-1173(10)92004-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For over three decades now, the T cell receptor (TCR) for antigen has not ceased to challenge the imaginations of cellular and molecular immunologists alike. T cell antigen recognition transcends every aspect of adaptive immunity: it shapes the T cell repertoire in the thymus and directs T cell-mediated effector functions in the periphery, where it is also central to the induction of peripheral tolerance. Yet, despite its central position, there remain many questions unresolved: how can one TCR be specific for one particular peptide-major histocompatibility complex (pMHC) ligand while also binding other pMHC ligands with an immunologically relevant affinity? And how can a T cell's extreme specificity (alterations of single methyl groups in their ligand can abrogate a response) and sensitivity (single agonist ligands on a cell surface are sufficient to trigger a measurable response) emerge from TCR-ligand interactions that are so low in affinity? Solving these questions is intimately tied to a fundamental understanding of molecular recognition dynamics within the many different contexts of various T cell-antigen presenting cell (APC) contacts: from the thymic APCs that shape the TCR repertoire and guide functional differentiation of developing T cells to the peripheral APCs that support homeostasis and provoke antigen responses in naïve, effector, memory, and regulatory T cells. Here, we discuss our recent findings relating to T cell antigen recognition and how this leads to the thymic development of foreign-antigen-responsive alphabetaT cells.
Collapse
Affiliation(s)
- Peter J R Ebert
- The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | |
Collapse
|
317
|
Mark D, Haeberle S, Roth G, Von Stetten F, Zengerle R. Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications. MICROFLUIDICS BASED MICROSYSTEMS 2010. [DOI: 10.1007/978-90-481-9029-4_17] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
318
|
Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 2010; 39:1153-82. [PMID: 20179830 DOI: 10.1039/b820557b] [Citation(s) in RCA: 765] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel Mark
- HSG-IMIT-Institut für Mikro- und Informationstechnik, Wilhelm-Schickard-Strasse 10, 78052 Villingen-Schwenningen, Germany
| | | | | | | | | |
Collapse
|
319
|
Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, Jones CD, Simen BB, Hanczaruk B, Nguyen KD, Nadeau KC, Egholm M, Miklos DB, Zehnder JL, Fire AZ. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 2009; 1:12ra23. [PMID: 20161664 PMCID: PMC2819115 DOI: 10.1126/scitranslmed.3000540] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The complex repertoire of immune receptors generated by B and T cells enables recognition of diverse threats to the host organism. In this work, we show that massively parallel DNA sequencing of rearranged immune receptor loci can provide direct detection and tracking of immune diversity and expanded clonal lymphocyte populations in physiological and pathological contexts. DNA was isolated from blood and tissue samples, a series of redundant primers was used to amplify diverse DNA rearrangements, and the resulting mixtures of barcoded amplicons were sequenced using long-read ultra deep sequencing. Individual DNA molecules were then characterized on the basis of DNA segments that had been joined to make a functional (or nonfunctional) immune effector. Current experimental designs can accommodate up to 150 samples in a single sequence run, with the depth of sequencing sufficient to identify stable and dynamic aspects of the immune repertoire in both normal and diseased circumstances. These data provide a high-resolution picture of immune spectra in normal individuals and in patients with hematological malignancies, illuminating, in the latter case, both the initial behavior of clonal tumor populations and the later suppression or re-emergence of such populations after treatment.
Collapse
Affiliation(s)
- Scott D. Boyd
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Jason D. Merker
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics-Medical Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jay M. Maniar
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lyndon N. Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Bita Sahaf
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Carol D. Jones
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Khoa D. Nguyen
- Department of Pediatrics-Allergy and Clinical Immunology, Stanford University, Stanford, CA 94305, USA
| | - Kari C. Nadeau
- Department of Pediatrics-Allergy and Clinical Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michael Egholm
- 454 Life Sciences, A Roche Company, Branford, CT 06405, USA
| | - David B. Miklos
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - James L. Zehnder
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Andrew Z. Fire
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
320
|
Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A 2009; 106:20216-21. [PMID: 19875695 DOI: 10.1073/pnas.0909775106] [Citation(s) in RCA: 338] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibody repertoire diversity, potentially as high as 10(11) unique molecules in a single individual, confounds characterization by conventional sequence analyses. In this study, we present a general method for assessing human antibody sequence diversity displayed on phage using massively parallel pyrosequencing, a novel application of Kabat column-labeled profile Hidden Markov Models, and translated complementarity determining region (CDR) capture-recapture analysis. Pyrosequencing of domain amplicon and RCA PCR products generated 1.5 x 10(6) reads, including more than 1.9 x 10(5) high quality, full-length sequences of antibody variable fragment (Fv) variable domains. Novel methods for germline and CDR classification and fine characterization of sequence diversity in the 6 CDRs are presented. Diverse germline contributions to the repertoire with random heavy and light chain pairing are observed. All germline families were found to be represented in 1.7 x 10(4) sequences obtained from repeated panning of the library. While the most variable CDR (CDR-H3) presents significant length and sequence variability, we find a substantial contribution to total diversity from somatically mutated germline encoded CDRs 1 and 2. Using a capture-recapture method, the total diversity of the antibody library obtained from a human donor Immunoglobulin M (IgM) pool was determined to be at least 3.5 x 10(10). The results provide insights into the role of IgM diversification, display library construction, and productive germline usages in antibody libraries and the humoral repertoire.
Collapse
|