301
|
Sands B, Brent R. Overview of Post Cohen-Boyer Methods for Single Segment Cloning and for Multisegment DNA Assembly. ACTA ACUST UNITED AC 2016; 113:3.26.1-3.26.20. [PMID: 27152131 DOI: 10.1002/0471142727.mb0326s113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In 1973, Cohen and coworkers published a foundational paper describing the cloning of DNA fragments into plasmid vectors. In it, they used DNA segments made by digestion with restriction enzymes and joined these in vitro with DNA ligase. These methods established working recombinant DNA technology and enabled the immediate start of the biotechnology industry. Since then, "classical" recombinant DNA technology using restriction enzymes and DNA ligase has matured. At the same time, researchers have developed numerous ways to generate large, complex, multisegment DNA constructions that offer advantages over classical techniques. Here, we provide an overview of "post-Cohen-Boyer" techniques used for cloning single segments into vectors (T/A, Topo cloning, Gateway and Recombineering) and for multisegment DNA assembly (BioBricks, Golden Gate, Gibson, yeast homologous recombination in vivo, and ligase cycling reaction). We compare and contrast these methods and also discuss issues that researchers should consider before choosing a particular multisegment DNA assembly method. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Bryan Sands
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Roger Brent
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
302
|
Manzoni R, Urrios A, Velazquez-Garcia S, de Nadal E, Posas F. Synthetic biology: insights into biological computation. Integr Biol (Camb) 2016; 8:518-32. [DOI: 10.1039/c5ib00274e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology.
Collapse
Affiliation(s)
- Romilde Manzoni
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| | - Arturo Urrios
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| | - Silvia Velazquez-Garcia
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| | - Eulàlia de Nadal
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| | - Francesc Posas
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| |
Collapse
|
303
|
Merrick C, Wardrope C, Paget J, Colloms S, Rosser S. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA). Methods Enzymol 2016; 575:285-317. [DOI: 10.1016/bs.mie.2016.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
304
|
Achatz J. Evaluating biological artifacts. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-658-10988-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
305
|
Fujimoto S, Matsunaga S. Which Is a Reliable Approach in the Generation of Artificial Minichromosomes, Bottom-Up or Top-Down? CYTOLOGIA 2016. [DOI: 10.1508/cytologia.81.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Satoru Fujimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| |
Collapse
|
306
|
|
307
|
Synthetic biology’s multiple dimensions of benefits and risks: implications for governance and policies. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-658-10988-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
308
|
|
309
|
Beyond unity: Nurturing diversity in synthetic biology and its publics. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-658-10988-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
310
|
Xenobiotic Life. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
311
|
Then C. Synthetic Genome Technologies. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-658-10988-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
312
|
Fernández FJ, López-Estepa M, Querol-García J, Vega MC. Production of Protein Complexes in Non-methylotrophic and Methylotrophic Yeasts : Nonmethylotrophic and Methylotrophic Yeasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:137-53. [PMID: 27165323 DOI: 10.1007/978-3-319-27216-0_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Protein complexes can be produced in multimilligram quantities using nonmethylotrophic and methylotrophic yeasts such as Saccharomyces cerevisiae and Komagataella (Pichia) pastoris. Yeasts have distinct advantages as hosts for recombinant protein production owing to their cost efficiency, ease of cultivation and genetic manipulation, fast growth rates, capacity to introduce post-translational modifications, and high protein productivity (yield) of correctly folded protein products. Despite those advantages, yeasts have surprisingly lagged behind other eukaryotic hosts in their use for the production of multisubunit complexes. As our knowledge of the metabolic and genomic bottlenecks that yeast microorganisms face when overexpressing foreign proteins expands, new possibilities emerge for successfully engineering yeasts as superb expression hosts. In this chapter, we describe the current state of the art and discuss future possibilities for the development of yeast-based systems for the production of protein complexes.
Collapse
Affiliation(s)
- Francisco J Fernández
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Miguel López-Estepa
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Javier Querol-García
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - M Cristina Vega
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
313
|
Vicedo E, Gasik Z, Dong YA, Goldberg T, Rost B. Protein disorder reduced in Saccharomyces cerevisiae to survive heat shock. F1000Res 2015; 4:1222. [PMID: 26673203 PMCID: PMC4670006 DOI: 10.12688/f1000research.7178.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
Recent experiments established that a culture of
Saccharomyces cerevisiae (baker’s yeast) survives sudden high temperatures by specifically duplicating the entire chromosome III and two chromosomal fragments (from IV and XII). Heat shock proteins (HSPs) are not significantly over-abundant in the duplication. In contrast, we suggest a simple algorithm to “
postdict” the experimental results: Find a small enough chromosome with minimal protein disorder and duplicate this region. This algorithm largely explains all observed duplications. In particular, all regions duplicated in the experiment reduced the overall content of protein disorder. The differential analysis of the functional makeup of the duplication remained inconclusive. Gene Ontology (GO) enrichment suggested over-representation in processes related to reproduction and nutrient uptake. Analyzing the protein-protein interaction network (PPI) revealed that few network-central proteins were duplicated. The predictive hypothesis hinges upon the concept of reducing proteins with long regions of disorder in order to become less sensitive to heat shock attack.
Collapse
Affiliation(s)
- Esmeralda Vicedo
- Department of Informatics, Bioinformatics & Computational Biology, TUM, Munich, Germany ; Institute of Experimental Physics, Division of Biophysics, University of Warsaw, Warsaw, Poland
| | - Zofia Gasik
- Department of Informatics, Bioinformatics & Computational Biology, TUM, Munich, Germany ; Graduate School of Information Science in Health, TUM, Munich, Germany
| | - Yu-An Dong
- Department of Informatics, Bioinformatics & Computational Biology, TUM, Munich, Germany ; Institute of Systems Biology, Shanghai University, Shanghai, China
| | - Tatyana Goldberg
- Department of Informatics, Bioinformatics & Computational Biology, TUM, Munich, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics & Computational Biology, TUM, Munich, Germany ; Institute of Advanced Study, TUM, Munich, Germany ; Institute for Food and Plant Sciences WZW, TUM, Freising, Germany
| |
Collapse
|
314
|
Karas BJ, Suzuki Y, Weyman PD. Strategies for cloning and manipulating natural and synthetic chromosomes. Chromosome Res 2015; 23:57-68. [PMID: 25596826 DOI: 10.1007/s10577-014-9455-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Advances in synthetic biology methods to assemble and edit DNA are enabling genome engineering at a previously impracticable scale and scope. The synthesis of the Mycoplasma mycoides genome followed by its transplantation to convert a related cell into M. mycoides has transformed strain engineering. This approach exemplifies the combination of newly emerging chromosome-scale genome editing strategies that can be defined in three main steps: (1) chromosome acquisition into a microbial engineering platform, (2) alteration and improvement of the acquired chromosome, and (3) installation of the modified chromosome into the original or alternative organism. In this review, we outline recent progress in methods for acquiring chromosomes and chromosome-scale DNA molecules in the workhorse organisms Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. We present overviews of important genetic strategies and tools for each of the three organisms, point out their respective strengths and weaknesses, and highlight how the host systems can be used in combination to facilitate chromosome assembly or engineering. Finally, we highlight efforts for the installation of the cloned/altered chromosomes or fragments into the target organism and present remaining challenges in expanding this powerful experimental approach to a wider range of target organisms.
Collapse
Affiliation(s)
- Bogumil J Karas
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | | | | |
Collapse
|
315
|
Pines G, Freed EF, Winkler JD, Gill RT. Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination. ACS Synth Biol 2015; 4:1176-85. [PMID: 25856528 DOI: 10.1021/acssynbio.5b00009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ability to specifically modify bacterial genomes in a precise and efficient manner is highly desired in various fields, ranging from molecular genetics to metabolic engineering and synthetic biology. Much has changed from the initial realization that phage-derived genes may be employed for such tasks to today, where recombineering enables complex genetic edits within a genome or a population. Here, we review the major developments leading to recombineering becoming the method of choice for in situ bacterial genome editing while highlighting the various applications of recombineering in pushing the boundaries of synthetic biology. We also present the current understanding of the mechanism of recombineering. Finally, we discuss in detail issues surrounding recombineering efficiency and future directions for recombineering-based genome editing.
Collapse
Affiliation(s)
- Gur Pines
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Emily F. Freed
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - James D. Winkler
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ryan T. Gill
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
316
|
Low TY, Heck AJ. Reconciling proteomics with next generation sequencing. Curr Opin Chem Biol 2015; 30:14-20. [PMID: 26590485 DOI: 10.1016/j.cbpa.2015.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022]
Abstract
Both genomics and proteomics technologies have matured in the last decade to a level where they are able to deliver system-wide data on the qualitative and quantitative abundance of their respective molecular entities, that is DNA/RNA and proteins. A next logical step is the collective use of these technologies, ideally gathering data on matching samples. The first large scale so-called proteogenomics studies are emerging, and display the benefits each of these layers of analysis has on the other layers to together generate more meaningful insight into the connection between the phenotype/physiology and genotype of the system under study. Here we review a selected number of these studies, highlighting what they can uniquely deliver. We also discuss the future potential and remaining challenges, from a somewhat proteome biased perspective.
Collapse
Affiliation(s)
- Teck Yew Low
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
317
|
Yang K, Stracquadanio G, Luo J, Boeke JD, Bader JS. BioPartsBuilder: a synthetic biology tool for combinatorial assembly of biological parts. ACTA ACUST UNITED AC 2015; 32:937-9. [PMID: 26568632 PMCID: PMC4803390 DOI: 10.1093/bioinformatics/btv664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/09/2015] [Indexed: 11/14/2022]
Abstract
Summary: Combinatorial assembly of DNA elements is an efficient method for building large-scale synthetic pathways from standardized, reusable components. These methods are particularly useful because they enable assembly of multiple DNA fragments in one reaction, at the cost of requiring that each fragment satisfies design constraints. We developed BioPartsBuilder as a biologist-friendly web tool to design biological parts that are compatible with DNA combinatorial assembly methods, such as Golden Gate and related methods. It retrieves biological sequences, enforces compliance with assembly design standards and provides a fabrication plan for each fragment. Availability and implementation: BioPartsBuilder is accessible at http://public.biopartsbuilder.org and an Amazon Web Services image is available from the AWS Market Place (AMI ID: ami-508acf38). Source code is released under the MIT license, and available for download at https://github.com/baderzone/biopartsbuilder. Contact:joel.bader@jhu.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kun Yang
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA and
| | - Giovanni Stracquadanio
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA and
| | - Jingchuan Luo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA and
| |
Collapse
|
318
|
Shen Y, Stracquadanio G, Wang Y, Yang K, Mitchell LA, Xue Y, Cai Y, Chen T, Dymond JS, Kang K, Gong J, Zeng X, Zhang Y, Li Y, Feng Q, Xu X, Wang J, Wang J, Yang H, Boeke JD, Bader JS. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res 2015; 26:36-49. [PMID: 26566658 PMCID: PMC4691749 DOI: 10.1101/gr.193433.115] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023]
Abstract
Synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) generates combinatorial genomic diversity through rearrangements at designed recombinase sites. We applied SCRaMbLE to yeast synthetic chromosome arm synIXR (43 recombinase sites) and then used a computational pipeline to infer or unscramble the sequence of recombinations that created the observed genomes. Deep sequencing of 64 synIXR SCRaMbLE strains revealed 156 deletions, 89 inversions, 94 duplications, and 55 additional complex rearrangements; several duplications are consistent with a double rolling circle mechanism. Every SCRaMbLE strain was unique, validating the capability of SCRaMbLE to explore a diverse space of genomes. Rearrangements occurred exclusively at designed loxPsym sites, with no significant evidence for ectopic rearrangements or mutations involving synthetic regions, the 99% nonsynthetic nuclear genome, or the mitochondrial genome. Deletion frequencies identified genes required for viability or fast growth. Replacement of 3′ UTR by non-UTR sequence had surprisingly little effect on fitness. SCRaMbLE generates genome diversity in designated regions, reveals fitness constraints, and should scale to simultaneous evolution of multiple synthetic chromosomes.
Collapse
Affiliation(s)
- Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China; Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Giovanni Stracquadanio
- High-Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA; Department of Biomedical Engineering, School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Kun Yang
- High-Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Leslie A Mitchell
- High-Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA; Department of Biochemistry and Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Medical Center, New York, New York 10016, USA
| | - Yaxin Xue
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yizhi Cai
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Tai Chen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jessica S Dymond
- High-Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Kang Kang
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | | | | | | | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Science, Hangzhou 310058, China
| | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Medical Center, New York, New York 10016, USA
| | - Joel S Bader
- High-Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA; Department of Biomedical Engineering, School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
319
|
Qi H, Li BZ, Zhang WQ, Liu D, Yuan YJ. Modularization of genetic elements promotes synthetic metabolic engineering. Biotechnol Adv 2015; 33:1412-9. [DOI: 10.1016/j.biotechadv.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/12/2015] [Accepted: 04/05/2015] [Indexed: 01/24/2023]
|
320
|
Jullesson D, David F, Pfleger B, Nielsen J. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv 2015; 33:1395-402. [DOI: 10.1016/j.biotechadv.2015.02.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/29/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
|
321
|
Peters G, Coussement P, Maertens J, Lammertyn J, De Mey M. Putting RNA to work: Translating RNA fundamentals into biotechnological engineering practice. Biotechnol Adv 2015; 33:1829-44. [PMID: 26514597 DOI: 10.1016/j.biotechadv.2015.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022]
Abstract
Synthetic biology, in close concert with systems biology, is revolutionizing the field of metabolic engineering by providing novel tools and technologies to rationally, in a standardized way, reroute metabolism with a view to optimally converting renewable resources into a broad range of bio-products, bio-materials and bio-energy. Increasingly, these novel synthetic biology tools are exploiting the extensive programmable nature of RNA, vis-à-vis DNA- and protein-based devices, to rationally design standardized, composable, and orthogonal parts, which can be scaled and tuned promptly and at will. This review gives an extensive overview of the recently developed parts and tools for i) modulating gene expression ii) building genetic circuits iii) detecting molecules, iv) reporting cellular processes and v) building RNA nanostructures. These parts and tools are becoming necessary armamentarium for contemporary metabolic engineering. Furthermore, the design criteria, technological challenges, and recent metabolic engineering success stories of the use of RNA devices are highlighted. Finally, the future trends in transforming metabolism through RNA engineering are critically evaluated and summarized.
Collapse
Affiliation(s)
- Gert Peters
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Pieter Coussement
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jeroen Lammertyn
- BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Louvain, Belgium
| | - Marjan De Mey
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
322
|
Lin Q, Qi H, Wu Y, Yuan Y. Robust orthogonal recombination system for versatile genomic elements rearrangement in yeast Saccharomyces cerevisiae. Sci Rep 2015; 5:15249. [PMID: 26477943 PMCID: PMC4609996 DOI: 10.1038/srep15249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/26/2015] [Indexed: 11/25/2022] Open
Abstract
Rearrangement of genomic DNA elements in a dynamic controlled fashion is a fundamental challenge. Site-specific DNA recombinases have been tamed as a powerful tool in genome editing. Here, we reported a DNA element rearrangement on the basis of a pairwise orthogonal recombination system which is comprised of two site-specific recombinases of Vika/vox and Cre/loxp in yeast Saccharomyces Creevisiae. Taking the advantage of the robust pairwise orthogonality, we showed that multi gene elements could be organized in a programmed way, in which rationally designed pattern of loxP and vox determined the final genotype after expressing corresponding recombinases. Finally, it was demonstrated that the pairwise orthogonal recombination system could be utilized to refine synthetic chromosome rearrangement and modification by loxP-mediated evolution, SCRaMbLE, in yeast cell carrying a completely synthesized chromosome III.
Collapse
Affiliation(s)
- Qiuhui Lin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Hao Qi
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yi Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
323
|
Abstract
Despite a billion years of divergent evolution, the baker’s yeast Saccharomyces cerevisiae has long proven to be an invaluable model organism for studying human biology. Given its tractability and ease of genetic manipulation, along with extensive genetic conservation with humans, it is perhaps no surprise that researchers have been able to expand its utility by expressing human proteins in yeast, or by humanizing specific yeast amino acids, proteins or even entire pathways. These methods are increasingly being scaled in throughput, further enabling the detailed investigation of human biology and disease-specific variations of human genes in a simplified model organism.
Collapse
|
324
|
Liu R, Bassalo MC, Zeitoun RI, Gill RT. Genome scale engineering techniques for metabolic engineering. Metab Eng 2015; 32:143-154. [PMID: 26453944 DOI: 10.1016/j.ymben.2015.09.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/15/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022]
Abstract
Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications.
Collapse
Affiliation(s)
- Rongming Liu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| | - Marcelo C Bassalo
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, United States.
| | - Ramsey I Zeitoun
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| | - Ryan T Gill
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
325
|
Venken KJT, Sarrion-Perdigones A, Vandeventer PJ, Abel NS, Christiansen AE, Hoffman KL. Genome engineering: Drosophila melanogaster and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:233-67. [PMID: 26447401 DOI: 10.1002/wdev.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is exceptionally amenable to complex genetic analysis using advanced genome engineering. Thus, highly sophisticated methods developed in the fly model can be used in nearly any sequenced organism. Here, we summarize different ways to perform precise inheritable genome engineering using integrases, recombinases, and DNA nucleases in the D. melanogaster. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Koen J T Venken
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Paul J Vandeventer
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Audrey E Christiansen
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Kristi L Hoffman
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| |
Collapse
|
326
|
Zakeri B, Lu TK. DNA nanotechnology: new adventures for an old warhorse. Curr Opin Chem Biol 2015; 28:9-14. [PMID: 26056949 PMCID: PMC4818966 DOI: 10.1016/j.cbpa.2015.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 10/23/2022]
Abstract
As the blueprint of life, the natural exploits of DNA are admirable. However, DNA should not only be viewed within a biological context. It is an elegantly simple yet functionally complex chemical polymer with properties that make it an ideal platform for engineering new nanotechnologies. Rapidly advancing synthesis and sequencing technologies are enabling novel unnatural applications for DNA beyond the realm of genetics. Here we explore the chemical biology of DNA nanotechnology for emerging applications in communication and digital data storage. Early studies of DNA as an alternative to magnetic and optical storage mediums have not only been promising, but have demonstrated the potential of DNA to revolutionize the way we interact with digital data in the future.
Collapse
Affiliation(s)
- Bijan Zakeri
- Department of Electrical Engineering and Computer Science, Department of Biological Engineering, Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA.
| | - Timothy K Lu
- Department of Electrical Engineering and Computer Science, Department of Biological Engineering, Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
327
|
Affiliation(s)
- Teresa Rinaldi
- Department of Biology and Biotechnology "Charles Darwin", La Sapienza University of Rome and Reserve Major of the Italian Army
| |
Collapse
|
328
|
Ling J, O'Donoghue P, Söll D. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat Rev Microbiol 2015; 13:707-721. [PMID: 26411296 DOI: 10.1038/nrmicro3568] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.
Collapse
Affiliation(s)
- Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
329
|
Choe D, Cho S, Kim SC, Cho BK. Minimal genome: Worthwhile or worthless efforts toward being smaller? Biotechnol J 2015; 11:199-211. [DOI: 10.1002/biot.201400838] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/08/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Donghui Choe
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
- Intelligent Synthetic Biology Center; Daejeon Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
- Intelligent Synthetic Biology Center; Daejeon Republic of Korea
| |
Collapse
|
330
|
Descorps-Declère S, Saguez C, Cournac A, Marbouty M, Rolland T, Ma L, Bouchier C, Moszer I, Dujon B, Koszul R, Richard GF. Genome-wide replication landscape of Candida glabrata. BMC Biol 2015; 13:69. [PMID: 26329162 PMCID: PMC4556013 DOI: 10.1186/s12915-015-0177-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/05/2015] [Indexed: 11/25/2022] Open
Abstract
Background The opportunistic pathogen Candida glabrata is a member of the Saccharomycetaceae yeasts. Like its close relative Saccharomyces cerevisiae, it underwent a whole-genome duplication followed by an extensive loss of genes. Its genome contains a large number of very long tandem repeats, called megasatellites. In order to determine the whole replication program of the C. glabrata genome and its general chromosomal organization, we used deep-sequencing and chromosome conformation capture experiments. Results We identified 253 replication fork origins, genome wide. Centromeres, HML and HMR loci, and most histone genes are replicated early, whereas natural chromosomal breakpoints are located in late-replicating regions. In addition, 275 autonomously replicating sequences (ARS) were identified during ARS-capture experiments, and their relative fitness was determined during growth competition. Analysis of ARSs allowed us to identify a 17-bp consensus, similar to the S. cerevisiae ARS consensus sequence but slightly more constrained. Megasatellites are not in close proximity to replication origins or termini. Using chromosome conformation capture, we also show that early origins tend to cluster whereas non-subtelomeric megasatellites do not cluster in the yeast nucleus. Conclusions Despite a shorter cell cycle, the C. glabrata replication program shares unexpected striking similarities to S. cerevisiae, in spite of their large evolutionary distance and the presence of highly repetitive large tandem repeats in C. glabrata. No correlation could be found between the replication program and megasatellites, suggesting that their formation and propagation might not be directly caused by replication fork initiation or termination. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0177-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphane Descorps-Declère
- Institut Pasteur, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), F-75015, Paris, France.
| | - Cyril Saguez
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, F-75015, Paris, France. .,CNRS, UMR3525, F-75015, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
| | - Axel Cournac
- CNRS, UMR3525, F-75015, Paris, France. .,Institut Pasteur, Groupe Régulation Spatiale des Génomes, Département Génomes & Génétique, F-75015, Paris, France.
| | - Martial Marbouty
- CNRS, UMR3525, F-75015, Paris, France. .,Institut Pasteur, Groupe Régulation Spatiale des Génomes, Département Génomes & Génétique, F-75015, Paris, France.
| | - Thomas Rolland
- Present address: Institut Pasteur, Unité de Génétique Humaine et Fonctions Cognitives, Département des Neurosciences, F-75015, Paris, France.
| | - Laurence Ma
- Institut Pasteur, Plate-forme Génomique, Département Génomes & Génétique, F-75015, Paris, France.
| | - Christiane Bouchier
- Institut Pasteur, Plate-forme Génomique, Département Génomes & Génétique, F-75015, Paris, France.
| | - Ivan Moszer
- Present address: Plate-forme Bio-informatique/Biostatistique, Institut de Neurosciences Translationnelles IHU-A-ICM, Hôpital Pitié-Salpêtrière, 47-83 bd de l'Hôpital, 75561, Paris, Cedex 13, France.
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, F-75015, Paris, France. .,CNRS, UMR3525, F-75015, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
| | - Romain Koszul
- CNRS, UMR3525, F-75015, Paris, France. .,Institut Pasteur, Groupe Régulation Spatiale des Génomes, Département Génomes & Génétique, F-75015, Paris, France.
| | - Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, F-75015, Paris, France. .,CNRS, UMR3525, F-75015, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
| |
Collapse
|
331
|
de la Escosura A, Briones C, Ruiz-Mirazo K. The systems perspective at the crossroads between chemistry and biology. J Theor Biol 2015; 381:11-22. [DOI: 10.1016/j.jtbi.2015.04.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/26/2015] [Indexed: 01/21/2023]
|
332
|
Ho HL, Haynes K. Candida glabrata: new tools and technologies-expanding the toolkit. FEMS Yeast Res 2015; 15:fov066. [PMID: 26205243 PMCID: PMC4629792 DOI: 10.1093/femsyr/fov066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/29/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a noticeable rise in fungal infections related to non-albicans Candida species, including Candida glabrata which has both intrinsic resistance to and commonly acquired resistance to azole antifungals. Phylogenetically, C. glabrata is more closely related to the mostly non-pathogenic model organism Saccharomyces cerevisiae than to other Candida species. Despite C. glabrata's designation as a pathogen by Wickham in 1957, relatively little is known about its mechanism of virulence. Over the past few years, technology to analyse the molecular basis of infection has developed rapidly, and here we briefly review the major advances in tools and technologies available to explore and investigate the virulence of C. glabrata that have occurred over the past decade.
Collapse
Affiliation(s)
- Hsueh-lui Ho
- Biosciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Ken Haynes
- Biosciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK
| |
Collapse
|
333
|
Schwille P. Jump-starting life? Fundamental aspects of synthetic biology. J Cell Biol 2015; 210:687-90. [PMID: 26323686 PMCID: PMC4555829 DOI: 10.1083/jcb.201506125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/10/2015] [Indexed: 11/23/2022] Open
Abstract
What is life and how could it originate? This question lies at the core of understanding the cell as the smallest living unit. Although we are witnessing a golden era of the life sciences, we are ironically still far from giving a convincing answer to this question. In this short article, I argue why synthetic biology in conjunction with the quantitative sciences may provide us with new concepts and tools to address it.
Collapse
Affiliation(s)
- Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
334
|
Affiliation(s)
- Kristin Hagen
- EA European Academy of Technology and Innovation Assessment GmbH, Bad Neuenahr-Ahrweiler, Germany
| | - Margret Engelhard
- EA European Academy of Technology and Innovation Assessment GmbH, Bad Neuenahr-Ahrweiler, Germany
| | - Georg Toepfer
- Center for Literary and Cultural Research Berlin, Berlin, Germany
| |
Collapse
|
335
|
Artificial cell-cell communication as an emerging tool in synthetic biology applications. J Biol Eng 2015; 9:13. [PMID: 26265937 PMCID: PMC4531478 DOI: 10.1186/s13036-015-0011-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/25/2015] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is a widespread phenomenon in nature, ranging from bacterial quorum sensing and fungal pheromone communication to cellular crosstalk in multicellular eukaryotes. These communication modes offer the possibility to control the behavior of an entire community by modifying the performance of individual cells in specific ways. Synthetic biology, i.e., the implementation of artificial functions within biological systems, is a promising approach towards the engineering of sophisticated, autonomous devices based on specifically functionalized cells. With the growing complexity of the functions performed by such systems, both the risk of circuit crosstalk and the metabolic burden resulting from the expression of numerous foreign genes are increasing. Therefore, systems based on a single type of cells are no longer feasible. Synthetic biology approaches with multiple subpopulations of specifically functionalized cells, wired by artificial cell-cell communication systems, provide an attractive and powerful alternative. Here we review recent applications of synthetic cell-cell communication systems with a specific focus on recent advances with fungal hosts.
Collapse
|
336
|
Abstract
Next-generation DNA sequencing has revealed the complete genome sequences of numerous organisms, establishing a fundamental and growing understanding of genetic variation and phenotypic diversity. Engineering at the gene, network and whole-genome scale aims to introduce targeted genetic changes both to explore emergent phenotypes and to introduce new functionalities. Expansion of these approaches into massively parallel platforms establishes the ability to generate targeted genome modifications, elucidating causal links between genotype and phenotype, as well as the ability to design and reprogramme organisms. In this Review, we explore techniques and applications in genome engineering, outlining key advances and defining challenges.
Collapse
|
337
|
Luo Y, Li BZ, Liu D, Zhang L, Chen Y, Jia B, Zeng BX, Zhao H, Yuan YJ. Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev 2015; 44:5265-90. [PMID: 25960127 PMCID: PMC4510016 DOI: 10.1039/c5cs00025d] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural products produced by microorganisms and plants are a major resource of antibacterial and anticancer drugs as well as industrially useful compounds. However, the native producers often suffer from low productivity and titers. Here we summarize the recent applications of heterologous biosynthesis for the production of several important classes of natural products such as terpenoids, flavonoids, alkaloids, and polyketides. In addition, we will discuss the new tools and strategies at multi-scale levels including gene, pathway, genome and community levels for highly efficient heterologous biosynthesis of natural products.
Collapse
Affiliation(s)
- Yunzi Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Affiliation(s)
| | - Hal S. Alper
- McKetta Department of Chemical Engineering and
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712;
| |
Collapse
|
339
|
Soye BJD, Patel JR, Isaacs FJ, Jewett MC. Repurposing the translation apparatus for synthetic biology. Curr Opin Chem Biol 2015; 28:83-90. [PMID: 26186264 DOI: 10.1016/j.cbpa.2015.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
The translation system (the ribosome and associated factors) is the cell's factory for protein synthesis. The extraordinary catalytic capacity of the protein synthesis machinery has driven extensive efforts to harness it for novel functions. For example, pioneering efforts have demonstrated that it is possible to genetically encode more than the 20 natural amino acids and that this encoding can be a powerful tool to expand the chemical diversity of proteins. Here, we discuss recent advances in efforts to expand the chemistry of living systems, highlighting improvements to the molecular machinery and genomically recoded organisms, applications of cell-free systems, and extensions of these efforts to include eukaryotic systems. The transformative potential of repurposing the translation apparatus has emerged as one of the defining opportunities at the interface of chemical and synthetic biology.
Collapse
Affiliation(s)
- Benjamin J Des Soye
- Interdisciplinary Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Northwestern Institute on Complex Systems, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL 60611, USA.,Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Jaymin R Patel
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Farren J Isaacs
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Michael C Jewett
- Interdisciplinary Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Northwestern Institute on Complex Systems, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL 60611, USA.,Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
340
|
Kavšček M, Stražar M, Curk T, Natter K, Petrovič U. Yeast as a cell factory: current state and perspectives. Microb Cell Fact 2015; 14:94. [PMID: 26122609 PMCID: PMC4486425 DOI: 10.1186/s12934-015-0281-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is one of the oldest and most frequently used microorganisms in biotechnology with successful applications in the production of both bulk and fine chemicals. Yet, yeast researchers are faced with the challenge to further its transition from the old workhorse to a modern cell factory, fulfilling the requirements for next generation bioprocesses. Many of the principles and tools that are applied for this development originate from the field of synthetic biology and the engineered strains will indeed be synthetic organisms. We provide an overview of the most important aspects of this transition and highlight achievements in recent years as well as trends in which yeast currently lags behind. These aspects include: the enhancement of the substrate spectrum of yeast, with the focus on the efficient utilization of renewable feedstocks, the enhancement of the product spectrum through generation of independent circuits for the maintenance of redox balances and biosynthesis of common carbon building blocks, the requirement for accurate pathway control with improved genome editing and through orthogonal promoters, and improvement of the tolerance of yeast for specific stress conditions. The causative genetic elements for the required traits of the future yeast cell factories will be assembled into genetic modules for fast transfer between strains. These developments will benefit from progress in bio-computational methods, which allow for the integration of different kinds of data sets and algorithms, and from rapid advancement in genome editing, which will enable multiplexed targeted integration of whole heterologous pathways. The overall goal will be to provide a collection of modules and circuits that work independently and can be combined at will, depending on the individual conditions, and will result in an optimal synthetic host for a given production process.
Collapse
Affiliation(s)
- Martin Kavšček
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/II, 8010, Graz, Austria.
| | - Martin Stražar
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
| | - Tomaž Curk
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
| | - Klaus Natter
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/II, 8010, Graz, Austria.
| | - Uroš Petrovič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
341
|
Schindler D, Waldminghaus T. Synthetic chromosomes. FEMS Microbiol Rev 2015; 39:871-91. [DOI: 10.1093/femsre/fuv030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/22/2022] Open
|
342
|
Casini A, Storch M, Baldwin GS, Ellis T. Bricks and blueprints: methods and standards for DNA assembly. Nat Rev Mol Cell Biol 2015; 16:568-76. [DOI: 10.1038/nrm4014] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
343
|
Annaluru N, Ramalingam S, Chandrasegaran S. Rewriting the blueprint of life by synthetic genomics and genome engineering. Genome Biol 2015; 16:125. [PMID: 26076868 PMCID: PMC4469412 DOI: 10.1186/s13059-015-0689-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advances in DNA synthesis and assembly methods over the past decade have made it possible to construct genome-size fragments from oligonucleotides. Early work focused on synthesis of small viral genomes, followed by hierarchical synthesis of wild-type bacterial genomes and subsequently on transplantation of synthesized bacterial genomes into closely related recipient strains. More recently, a synthetic designer version of yeast Saccharomyces cerevisiae chromosome III has been generated, with numerous changes from the wild-type sequence without having an impact on cell fitness and phenotype, suggesting plasticity of the yeast genome. A project to generate the first synthetic yeast genome--the Sc2.0 Project--is currently underway.
Collapse
Affiliation(s)
- Narayana Annaluru
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Sivaprakash Ramalingam
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Srinivasan Chandrasegaran
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
344
|
Mitchell LA, Phillips NA, Lafont A, Martin JA, Cutting R, Boeke JD. qPCRTag Analysis--A High Throughput, Real Time PCR Assay for Sc2.0 Genotyping. J Vis Exp 2015:e52941. [PMID: 26067760 DOI: 10.3791/52941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Synthetic Yeast Genome Project (Sc2.0) aims to build 16 designer yeast chromosomes and combine them into a single yeast cell. To date one synthetic chromosome, synIII(1), and one synthetic chromosome arm, synIXR(2), have been constructed and their in vivo function validated in the absence of the corresponding wild type chromosomes. An important design feature of Sc2.0 chromosomes is the introduction of PCRTags, which are short, re-coded sequences within open reading frames (ORFs) that enable differentiation of synthetic chromosomes from their wild type counterparts. PCRTag primers anneal selectively to either synthetic or wild type chromosomes and the presence/absence of each type of DNA can be tested using a simple PCR assay. The standard readout of the PCRTag assay is to assess presence/absence of amplicons by agarose gel electrophoresis. However, with an average PCRTag amplicon density of one per 1.5 kb and a genome size of ~12 Mb, the completed Sc2.0 genome will encode roughly 8,000 PCRTags. To improve throughput, we have developed a real time PCR-based detection assay for PCRTag genotyping that we call qPCRTag analysis. The workflow specifies 500 nl reactions in a 1,536 multiwell plate, allowing us to test up to 768 PCRTags with both synthetic and wild type primer pairs in a single experiment.
Collapse
Affiliation(s)
- Leslie A Mitchell
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics
| | - Nick A Phillips
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics
| | | | - James A Martin
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics
| | | | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics;
| |
Collapse
|
345
|
Building biological foundries for next-generation synthetic biology. SCIENCE CHINA-LIFE SCIENCES 2015; 58:658-65. [PMID: 25985756 DOI: 10.1007/s11427-015-4866-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/21/2015] [Indexed: 12/31/2022]
Abstract
Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.
Collapse
|
346
|
Mitchell LA, Chuang J, Agmon N, Khunsriraksakul C, Phillips NA, Cai Y, Truong DM, Veerakumar A, Wang Y, Mayorga M, Blomquist P, Sadda P, Trueheart J, Boeke JD. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae. Nucleic Acids Res 2015; 43:6620-30. [PMID: 25956652 PMCID: PMC4513848 DOI: 10.1093/nar/gkv466] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/27/2015] [Indexed: 11/14/2022] Open
Abstract
We have developed a method for assembling genetic pathways for expression in Saccharomyces cerevisiae. Our pathway assembly method, called VEGAS (Versatile genetic assembly system), exploits the native capacity of S. cerevisiae to perform homologous recombination and efficiently join sequences with terminal homology. In the VEGAS workflow, terminal homology between adjacent pathway genes and the assembly vector is encoded by 'VEGAS adapter' (VA) sequences, which are orthogonal in sequence with respect to the yeast genome. Prior to pathway assembly by VEGAS in S. cerevisiae, each gene is assigned an appropriate pair of VAs and assembled using a previously described technique called yeast Golden Gate (yGG). Here we describe the application of yGG specifically to building transcription units for VEGAS assembly as well as the VEGAS methodology. We demonstrate the assembly of four-, five- and six-gene pathways by VEGAS to generate S. cerevisiae cells synthesizing β-carotene and violacein. Moreover, we demonstrate the capacity of yGG coupled to VEGAS for combinatorial assembly.
Collapse
Affiliation(s)
- Leslie A Mitchell
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York City, NY 10016, USA Institute for Systems Genetics, New York University Langone School of Medicine, New York City, NY 10016, USA High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James Chuang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Neta Agmon
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York City, NY 10016, USA Institute for Systems Genetics, New York University Langone School of Medicine, New York City, NY 10016, USA High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chachrit Khunsriraksakul
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nick A Phillips
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yizhi Cai
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David M Truong
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York City, NY 10016, USA Institute for Systems Genetics, New York University Langone School of Medicine, New York City, NY 10016, USA
| | - Ashan Veerakumar
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuxuan Wang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | - Praneeth Sadda
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York City, NY 10016, USA Institute for Systems Genetics, New York University Langone School of Medicine, New York City, NY 10016, USA High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
347
|
Jinkerson RE, Jonikas MC. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:393-412. [PMID: 25704665 DOI: 10.1111/tpj.12801] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 05/23/2023]
Abstract
The success of the green alga Chlamydomonas reinhardtii as a model organism is to a large extent due to the wide range of molecular techniques that are available for its characterization. Here, we review some of the techniques currently used to modify and interrogate the C. reinhardtii nuclear genome and explore several technologies under development. Nuclear mutants can be generated with ultraviolet (UV) light and chemical mutagens, or by insertional mutagenesis. Nuclear transformation methods include biolistic delivery, agitation with glass beads, and electroporation. Transforming DNA integrates into the genome at random sites, and multiple strategies exist for mapping insertion sites. A limited number of studies have demonstrated targeted modification of the nuclear genome by approaches such as zinc-finger nucleases and homologous recombination. RNA interference is widely used to knock down expression levels of nuclear genes. A wide assortment of transgenes has been successfully expressed in the Chlamydomonas nuclear genome, including transformation markers, fluorescent proteins, reporter genes, epitope tagged proteins, and even therapeutic proteins. Optimized expression constructs and strains help transgene expression. Emerging technologies such as the CRISPR/Cas9 system, high-throughput mutant identification, and a whole-genome knockout library are being developed for this organism. We discuss how these advances will propel future investigations.
Collapse
Affiliation(s)
- Robert E Jinkerson
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
348
|
Scaife MA, Nguyen GTDT, Rico J, Lambert D, Helliwell KE, Smith AG. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:532-546. [PMID: 25641561 PMCID: PMC4515103 DOI: 10.1111/tpj.12781] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 05/20/2023]
Abstract
Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach.
Collapse
Affiliation(s)
- Mark A Scaife
- Department of Plant Science, University of CambridgeDowning Street, Cambridge, CB2 3EA, UK
- *For correspondence (e-mails or )
| | - Ginnie TDT Nguyen
- Department of Plant Science, University of CambridgeDowning Street, Cambridge, CB2 3EA, UK
| | - Juan Rico
- Department of Plant Science, University of CambridgeDowning Street, Cambridge, CB2 3EA, UK
| | - Devinn Lambert
- Department of Plant Science, University of CambridgeDowning Street, Cambridge, CB2 3EA, UK
| | - Katherine E Helliwell
- Department of Plant Science, University of CambridgeDowning Street, Cambridge, CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Science, University of CambridgeDowning Street, Cambridge, CB2 3EA, UK
- *For correspondence (e-mails or )
| |
Collapse
|
349
|
Risca VI, Greenleaf WJ. Unraveling the 3D genome: genomics tools for multiscale exploration. Trends Genet 2015; 31:357-72. [PMID: 25887733 DOI: 10.1016/j.tig.2015.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022]
Abstract
A decade of rapid method development has begun to yield exciting insights into the 3D architecture of the metazoan genome and the roles it may play in regulating transcription. Here we review core methods and new tools in the modern genomicist's toolbox at three length scales, ranging from single base pairs to megabase-scale chromosomal domains, and discuss the emerging picture of the 3D genome that these tools have revealed. Blind spots remain, especially at intermediate length scales spanning a few nucleosomes, but thanks in part to new technologies that permit targeted alteration of chromatin states and time-resolved studies, the next decade holds great promise for hypothesis-driven research into the mechanisms that drive genome architecture and transcriptional regulation.
Collapse
Affiliation(s)
- Viviana I Risca
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
350
|
Urban M, King R, Hassani-Pak K, Hammond-Kosack KE. Whole-genome analysis of Fusarium graminearum insertional mutants identifies virulence associated genes and unmasks untagged chromosomal deletions. BMC Genomics 2015; 16:261. [PMID: 25881124 PMCID: PMC4404607 DOI: 10.1186/s12864-015-1412-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/27/2015] [Indexed: 12/24/2022] Open
Abstract
Background Identifying pathogen virulence genes required to cause disease is crucial to understand the mechanisms underlying the pathogenic process. Plasmid insertion mutagenesis of fungal protoplasts is frequently used for this purpose in filamentous ascomycetes. Post transformation, the mutant population is screened for loss of virulence to a specific plant or animal host. Identifying the insertion event has previously met with varying degrees of success, from a cleanly disrupted gene with minimal deletion of nucleotides at the insertion point to multiple-copy insertion events and large deletions of chromosomal regions. Currently, extensive mutant collections exist in laboratories globally where it was hitherto impossible to identify all the affected genes. Results We used a whole-genome sequencing (WGS) approach using Illumina HiSeq 2000 technology to investigate DNA tag insertion points and chromosomal deletion events in mutagenised, reduced virulence F. graminearum isolates identified in disease tests on wheat (Triticum aestivum). We developed the FindInsertSeq workflow to localise the DNA tag insertions to the nucleotide level. The workflow was tested using four mutants showing evidence of single and multi-copy insertions in DNA blot analysis. FindInsertSeq was able to identify both single and multi-copy concatenation insertion sites. By comparing sequencing coverage, unexpected molecular recombination events such as large tagged and untagged chromosomal deletions, and DNA amplification were observed in three of the analysed mutants. A random data sampling approach revealed the minimum genome coverage required to survey the F. graminearum genome for alterations. Conclusions This study demonstrates that whole-genome re-sequencing to 22x fold genome coverage is an efficient tool to characterise single and multi-copy insertion mutants in the filamentous ascomycete Fusarium graminearum. In some cases insertion events are accompanied with large untagged chromosomal deletions while in other cases a straight-forward insertion event could be confirmed. The FindInsertSeq analysis workflow presented in this study enables researchers to efficiently characterise insertion and deletion mutants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1412-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Urban
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | - Robert King
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | - Keywan Hassani-Pak
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | - Kim E Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| |
Collapse
|