301
|
Durner E, Ott W, Nash MA, Gaub HE. Post-Translational Sortase-Mediated Attachment of High-Strength Force Spectroscopy Handles. ACS OMEGA 2017; 2:3064-3069. [PMID: 30023682 PMCID: PMC6044863 DOI: 10.1021/acsomega.7b00478] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/26/2017] [Indexed: 05/27/2023]
Abstract
Single-molecule force spectroscopy greatly benefits from site-specific surface immobilization and specific probing with a functionalized cantilever. Here, we describe a streamlined approach to such experiments by covalently attaching mechanically stable receptors onto proteins of interest (POI) to improve pickup efficiency and specificity. This platform provides improved throughput, allows precise control over the pulling geometry, and allows for multiple constructs to be probed with the same ligand-modified cantilever. We employ two orthogonal enzymatic ligation reactions [sortase and phosphopantetheinyl transferase (Sfp)] to covalently immobilize POI to a pegylated surface and to subsequently ligate the POI to a mechanically stable dockerin domain at the protein's C-terminus for use as a high-strength pulling handle. Our configuration permits expression and folding of the POI to proceed independently from the mechanically stable receptor used for specific probing and requires only two short terminal peptide sequences (i.e., ybbR-tag and sortase C-tag). We applied this system successfully to proteins expressed using in vitro transcription and translation reactions without a protein purification step and to purified proteins expressed in Escherichia coli.
Collapse
Affiliation(s)
- Ellis Durner
- Lehrstuhl
für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| | - Wolfgang Ott
- Lehrstuhl
für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
- Department
of Biosystems Science & Engineering, Swiss Federal Institute of Technology (ETH-Zurich), 4058 Basel, Switzerland
| | - Hermann E. Gaub
- Lehrstuhl
für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| |
Collapse
|
302
|
Electron Transport Chain Is Biochemically Linked to Pilus Assembly Required for Polymicrobial Interactions and Biofilm Formation in the Gram-Positive Actinobacterium Actinomyces oris. mBio 2017. [PMID: 28634238 PMCID: PMC5478893 DOI: 10.1128/mbio.00399-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Gram-positive actinobacteria Actinomyces spp. are key colonizers in the development of oral biofilms due to the inherent ability of Actinomyces to adhere to receptor polysaccharides on the surface of oral streptococci and host cells. This receptor-dependent bacterial interaction, or coaggregation, requires a unique sortase-catalyzed pilus consisting of the pilus shaft FimA and the coaggregation factor CafA forming the pilus tip. While the essential role of the sortase machine SrtC2 in pilus assembly, biofilm formation, and coaggregation has been established, little is known about trans-acting factors contributing to these processes. We report here a large-scale Tn5 transposon screen for mutants defective in Actinomyces oris coaggregation with Streptococcus oralis. We obtained 33 independent clones, 13 of which completely failed to aggregate with S. oralis, and the remainder of which exhibited a range of phenotypes from severely to weakly defective coaggregation. The former had Tn5 insertions in fimA, cafA, or srtC2, as expected; the latter were mapped to genes coding for uncharacterized proteins and various nuo genes encoding the NADH dehydrogenase subunits. Electron microscopy and biochemical analyses of mutants with nonpolar deletions of nuo genes and ubiE, a menaquinone C-methyltransferase-encoding gene downstream of the nuo locus, confirmed the pilus and coaggregation defects. Both nuoA and ubiE mutants were defective in oxidation of MdbA, the major oxidoreductase required for oxidative folding of pilus proteins. Furthermore, supplementation of the ubiE mutant with exogenous menaquinone-4 rescued the cell growth and pilus defects. Altogether, we propose that the A. oris electron transport chain is biochemically linked to pilus assembly via oxidative protein folding. The Gram-positive actinobacterium A. oris expresses adhesive pili, or fimbriae, that are essential to biofilm formation and Actinomyces interactions with other bacteria, termed coaggregation. While the critical role of the conserved sortase machine in pilus assembly and the disulfide bond-forming catalyst MdbA in oxidative folding of pilins has been established, little is known about other trans-acting factors involved in these processes. Using a Tn5 transposon screen for mutants defective in coaggregation with Streptococcus oralis, we found that genetic disruption of the NADH dehydrogenase and menaquinone biosynthesis detrimentally alters pilus assembly. Further biochemical characterizations determined that menaquinone is important for reactivation of MdbA. This study supports the notion that the electron transport chain is biochemically linked to pilus assembly in A. oris via oxidative folding of pilin precursors.
Collapse
|
303
|
Milczek EM. Commercial Applications for Enzyme-Mediated Protein Conjugation: New Developments in Enzymatic Processes to Deliver Functionalized Proteins on the Commercial Scale. Chem Rev 2017. [DOI: 10.1021/acs.chemrev.6b00832] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
304
|
Li K, Zhang R, Xu Y, Wu Z, Li J, Zhou X, Jiang J, Liu H, Xiao R. Sortase A-mediated crosslinked short-chain dehydrogenases/reductases as novel biocatalysts with improved thermostability and catalytic efficiency. Sci Rep 2017; 7:3081. [PMID: 28596548 PMCID: PMC5465079 DOI: 10.1038/s41598-017-03168-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
(S)-carbonyl reductase II (SCRII) from Candida parapsilosis is a short-chain alcohol dehydrogenase/reductase. It catalyses the conversion of 2-hydroxyacetophenone to (S)-1-phenyl-1,2-ethanediol with low efficiency. Sortase was reported as a molecular “stapler” for site-specific protein conjugation to strengthen or add protein functionality. Here, we describe Staphylococcus aureus sortase A-mediated crosslinking of SCRII to produce stable catalysts for efficient biotransformation. Via a native N-terminal glycine and an added GGGGSLPETGG peptide at C-terminus of SCRII, SCRII subunits were conjugated by sortase A to form crosslinked SCRII, mainly dimers and trimers. The crosslinked SCRII showed over 6-fold and 4-fold increases, respectively, in activity and kcat/Km values toward 2-hydroxyacetophenone compared with wild-type SCRII. Moreover, crosslinked SCRII was much more thermostable with its denaturation temperature (Tm) increased to 60 °C. Biotransformation result showed that crosslinked SCRII gave a product optical purity of 100% and a yield of >99.9% within 3 h, a 16-fold decrease in transformation duration with respect to Escherichia coli/pET-SCRII. Sortase A-catalysed ligation also obviously improved Tms and product yields of eight other short-chain alcohol dehydrogenases/reductases. This work demonstrates a generic technology to improve enzyme function and thermostability through sortase A-mediated crosslinking of oxidoreductases.
Collapse
Affiliation(s)
- Kunpeng Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China. .,National Key Laboratory for Food Science, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China. .,National Key Laboratory for Food Science, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Zhimeng Wu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jing Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaotian Zhou
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jiawei Jiang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Haiyan Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854, USA.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| |
Collapse
|
305
|
Silva LN, Da Hora GCA, Soares TA, Bojer MS, Ingmer H, Macedo AJ, Trentin DS. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Sci Rep 2017; 7:2823. [PMID: 28588273 PMCID: PMC5460262 DOI: 10.1038/s41598-017-02712-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen related to a variety of life-threatening infections but for which antimicrobial resistance is liming the treatment options. We report here that myricetin, but not its glycosylated form, can remarkably decrease the production of several S. aureus virulence factors, including adhesion, biofilm formation, hemolysis and staphyloxanthin production, without interfering with growth. Myricetin affects both surface proteins and secreted proteins which indicate that its action is unrelated to inhibition of the agr quorum sensing system. Analysis of virulence related gene expression and computational simulations of pivotal proteins involved in pathogenesis demonstrate that myricetin downregulates the saeR global regulator and interacts with sortase A and α-hemolysin. Furthermore, Myr confers a significant degree of protection against staphylococcal infection in the Galleria mellonella model. The present findings reveal the potential of Myr as an alternative multi-target antivirulence candidate to control S. aureus pathogenicity.
Collapse
Affiliation(s)
- L N Silva
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 91501-970, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 90610-000, Brazil
| | - G C A Da Hora
- Departmento de Química Fundamental, Universidade Federal de Pernambuco, Recife-PE, 50670-901, Brazil
| | - T A Soares
- Departmento de Química Fundamental, Universidade Federal de Pernambuco, Recife-PE, 50670-901, Brazil
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - M S Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, 1870, Denmark
| | - H Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, 1870, Denmark
| | - A J Macedo
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 91501-970, Brazil.
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 90610-000, Brazil.
| | - D S Trentin
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 91501-970, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 90610-000, Brazil
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre-RS, 90050-170, Brazil
| |
Collapse
|
306
|
Jacobitz AW, Kattke MD, Wereszczynski J, Clubb RT. Sortase Transpeptidases: Structural Biology and Catalytic Mechanism. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 109:223-264. [PMID: 28683919 DOI: 10.1016/bs.apcsb.2017.04.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gram-positive bacteria use sortase cysteine transpeptidase enzymes to covalently attach proteins to their cell wall and to assemble pili. In pathogenic bacteria sortases are potential drug targets, as many of the proteins that they display on the microbial surface play key roles in the infection process. Moreover, the Staphylococcus aureus Sortase A (SaSrtA) enzyme has been developed into a valuable biochemical reagent because of its ability to ligate biomolecules together in vitro via a covalent peptide bond. Here we review what is known about the structures and catalytic mechanism of sortase enzymes. Based on their primary sequences, most sortase homologs can be classified into six distinct subfamilies, called class A-F enzymes. Atomic structures reveal unique, class-specific variations that support alternate substrate specificities, while structures of sortase enzymes bound to sorting signal mimics shed light onto the molecular basis of substrate recognition. The results of computational studies are reviewed that provide insight into how key reaction intermediates are stabilized during catalysis, as well as the mechanism and dynamics of substrate recognition. Lastly, the reported in vitro activities of sortases are compared, revealing that the transpeptidation activity of SaSrtA is at least 20-fold faster than other sortases that have thus far been characterized. Together, the results of the structural, computational, and biochemical studies discussed in this review begin to reveal how sortases decorate the microbial surface with proteins and pili, and may facilitate ongoing efforts to discover therapeutically useful small molecule inhibitors.
Collapse
Affiliation(s)
- Alex W Jacobitz
- The Molecular Biology Institute and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, United States
| | - Michele D Kattke
- The Molecular Biology Institute and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, United States
| | - Jeff Wereszczynski
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, United States
| | - Robert T Clubb
- The Molecular Biology Institute and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, United States.
| |
Collapse
|
307
|
Burke HM, McSweeney L, Scanlan EM. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology. Nat Commun 2017; 8:15655. [PMID: 28537277 PMCID: PMC5458133 DOI: 10.1038/ncomms15655] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
S -to-N acyl transfer is a high-yielding chemoselective process for amide bond formation. It is widely utilized by chemists for synthetic applications, including peptide and protein synthesis, chemical modification of proteins, protein-protein ligation and the development of probes and molecular machines. Recent advances in our understanding of S -to-N acyl transfer processes in biology and innovations in methodology for thioester formation and desulfurization, together with an extension of the size of cyclic transition states, have expanded the boundaries of this process well beyond peptide ligation. As the field develops, this chemistry will play a central role in our molecular understanding of Biology. The conversion of thioesters to amides via acyl transfer has become one of the most important synthetic techniques for the chemical synthesis and modification of proteins. This review discusses this S-to-N acyl transfer process, and highlights some of the key applications across chemistry and biology.
Collapse
Affiliation(s)
- Helen M. Burke
- School of Chemistry, Trinity College Dublin, Dublin D2, Ireland
| | | | - Eoin M. Scanlan
- School of Chemistry, Trinity College Dublin, Dublin D2, Ireland
| |
Collapse
|
308
|
Khare B, V L Narayana S. Pilus biogenesis of Gram-positive bacteria: Roles of sortases and implications for assembly. Protein Sci 2017; 26:1458-1473. [PMID: 28493331 DOI: 10.1002/pro.3191] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
Successful adherence, colonization, and survival of Gram-positive bacteria require surface proteins, and multiprotein assemblies called pili. These surface appendages are attractive pharmacotherapeutic targets and understanding their assembly mechanisms is essential for identifying a new class of 'anti-infectives' that do not elicit microbial resistance. Molecular details of the Gram-negative pilus assembly are available indepth, but the Gram-positive pilus biogenesis is still an emerging field and investigations continue to reveal novel insights into this process. Pilus biogenesis in Gram-positive bacteria is a biphasic process that requires enzymes called pilus-sortases for assembly and a housekeeping sortase for covalent attachment of the assembled pilus to the peptidoglycan cell wall. Emerging structural and functional data indicate that there are at least two groups of Gram-positive pili, which require either the Class C sortase or Class B sortase in conjunction with LepA/SipA protein for major pilin polymerization. This observation suggests two distinct modes of sortase-mediated pilus biogenesis in Gram-positive bacteria. Here we review the structural and functional biology of the pilus-sortases from select streptococcal pilus systems and their role in Gram-positive pilus assembly.
Collapse
Affiliation(s)
- Baldeep Khare
- Center for Structural Biology, School of Optometry, University of Alabama at Birmingham, Birmingham, USA
| | - Sthanam V L Narayana
- Center for Structural Biology, School of Optometry, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
309
|
Genotypic and phenotypic diversity of Lactobacillus rhamnosus clinical isolates, their comparison with strain GG and their recognition by complement system. PLoS One 2017; 12:e0176739. [PMID: 28493885 PMCID: PMC5426626 DOI: 10.1371/journal.pone.0176739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023] Open
Abstract
Lactobacillus rhamnosus strains are ubiquitous in fermented foods, and in the human body where they are commensals naturally present in the normal microbiota composition of gut, vagina and skin. However, in some cases, Lactobacillus spp. have been implicated in bacteremia. The aim of the study was to examine the genomic and immunological properties of 16 clinical blood isolates of L. rhamnosus and to compare them to the well-studied L. rhamnosus probiotic strain GG. Blood cultures from bacteremic patients were collected at the Helsinki University Hospital laboratory in 2005–2011 and L. rhamnosus strains were isolated and characterized by genomic sequencing. The capacity of the L. rhamnosus strains to activate serum complement was studied using immunological assays for complement factor C3a and the terminal pathway complement complex (TCC). Binding of complement regulators factor H and C4bp was also determined using radioligand assays. Furthermore, the isolated strains were evaluated for their ability to aggregate platelets and to form biofilms in vitro. Genomic comparison between the clinical L. rhamnosus strains showed them to be clearly different from L. rhamnosus GG and to cluster in two distinct lineages. All L. rhamnosus strains activated complement in serum and none of them bound complement regulators. Four out of 16 clinical blood isolates induced platelet aggregation and/or formed more biofilms than L. rhamnosus GG, which did not display platelet aggregation activity nor showed strong biofilm formation. These findings suggest that clinical L. rhamnosus isolates show considerable heterogeneity but are clearly different from L. rhamnosus GG at the genomic level. All L. rhamnosus strains are still normally recognized by the human complement system.
Collapse
|
310
|
Efficient extracellular expression of transpeptidase sortase A in Pichia pastoris. Protein Expr Purif 2017; 133:132-138. [DOI: 10.1016/j.pep.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 11/21/2022]
|
311
|
Claes J, Liesenborghs L, Peetermans M, Veloso TR, Missiakas D, Schneewind O, Mancini S, Entenza JM, Hoylaerts MF, Heying R, Verhamme P, Vanassche T. Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall. J Thromb Haemost 2017; 15:1009-1019. [PMID: 28182324 PMCID: PMC6232194 DOI: 10.1111/jth.13653] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 01/10/2023]
Abstract
Essentials Staphylococcus aureus (S. aureus) binds to endothelium via von Willebrand factor (VWF). Secreted VWF-binding protein (vWbp) mediates S. aureus adhesion to VWF under shear stress. vWbp interacts with VWF and the Sortase A-dependent surface protein Clumping factor A (ClfA). VWF-vWbp-ClfA anchor S. aureus to vascular endothelium under shear stress. SUMMARY Objective When establishing endovascular infections, Staphylococcus aureus (S. aureus) overcomes shear forces of flowing blood by binding to von Willebrand factor (VWF). Staphylococcal VWF-binding protein (vWbp) interacts with VWF, but it is unknown how this secreted protein binds to the bacterial cell wall. We hypothesized that vWbp interacts with a staphylococcal surface protein, mediating the adhesion of S. aureus to VWF and vascular endothelium under shear stress. Methods We studied the binding of S. aureus to vWbp, VWF and endothelial cells in a micro-parallel flow chamber using various mutants deficient in Sortase A (SrtA) and SrtA-dependent surface proteins, and Lactococcus lactis expressing single staphylococcal surface proteins. In vivo adhesion of bacteria was evaluated in the murine mesenteric circulation using real-time intravital vascular microscopy. Results vWbp bridges the bacterial cell wall and VWF, allowing shear-resistant binding of S. aureus to inflamed or damaged endothelium. Absence of SrtA and Clumping factor A (ClfA) reduced adhesion of S. aureus to vWbp, VWF and activated endothelial cells. ADAMTS-13 and an anti-VWF A1 domain antibody, when combined, reduced S. aureus adhesion to activated endothelial cells by 90%. Selective overexpression of ClfA in the membrane of Lactococcus lactis enabled these bacteria to bind to VWF and activated endothelial cells but only in the presence of vWbp. Absence of ClfA abolished bacterial adhesion to the activated murine vessel wall. Conclusions vWbp interacts with VWF and with the SrtA-dependent staphylococcal surface protein ClfA. The complex formed by VWF, secreted vWbp and bacterial ClfA anchors S. aureus to vascular endothelium under shear stress.
Collapse
Affiliation(s)
- J Claes
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - L Liesenborghs
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - M Peetermans
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - T R Veloso
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - D Missiakas
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - O Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - S Mancini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - J M Entenza
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - M F Hoylaerts
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - R Heying
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - P Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - T Vanassche
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
312
|
Deciphering the mode of action of cell wall-inhibiting antibiotics using metabolic labeling of growing peptidoglycan in Streptococcus pyogenes. Sci Rep 2017; 7:1129. [PMID: 28442740 PMCID: PMC5430839 DOI: 10.1038/s41598-017-01267-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/28/2017] [Indexed: 02/02/2023] Open
Abstract
Because of the scanty pipeline of antibiotics newly obtained from nature, chemical modification of established drugs is one of the major streams of current antibacterial research. Intuitive and easy-to-use assays are critical for identifying drug candidates with novel modes of action. In this study, we demonstrated that metabolic fluorescent staining of growing cell walls is a powerful tool for mode-of-action analyses of antibiotics using Streptococcus pyogenes. A set of major cell-wall-inhibiting antibiotics (bacitracin, D-cycloserine, flavomycin, oxacillin, ramoplanin, and vancomycin) was employed to validate the potential of the assay. The mechanistic differences of these antibiotics were successfully observed. For instance, D-cycloserine treatment induced fluorescently stained, excessive peripheral cell wall growth. This may indicate that the switch from the peripheral growth stage to the succeeding septal growth was disturbed by the treatment. We then applied this assay to analyze a series of vancomycin derivatives. The assay was sufficiently sensitive to detect the effects of single-site chemical modification of vancomycin on its modes of action. This metabolic fluorescent labeling method is easy to perform, especially because it does not require radiolabeled substrates. Thus, it is suitable for the preliminary evaluation of antibacterial mechanisms during antibacterial research.
Collapse
|
313
|
Schneider AFL, Hackenberger CPR. Fluorescent labelling in living cells. Curr Opin Biotechnol 2017; 48:61-68. [PMID: 28395178 DOI: 10.1016/j.copbio.2017.03.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/10/2017] [Indexed: 11/15/2022]
Abstract
The labelling of proteins with green fluorescent protein enabled the visualization of proteins in living cells for the first time. Since then, much progress has been made in the field. Modern strategies allow the labelling of proteins in live cells through a range of specialized methods with sophisticated chemical probes that show enhanced photophysical properties compared to fluorescent proteins. This review briefly summarizes recent advances in the field of fluorescent chemical protein labelling inside living cells and illustrates key aspects on the requirements and advantages of each given method.
Collapse
Affiliation(s)
- Anselm Fabian Lowell Schneider
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
| | - Christian Peter Richard Hackenberger
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, D-12489 Berlin, Germany.
| |
Collapse
|
314
|
Wang HH, Altun B, Nwe K, Tsourkas A. Proximity-Based Sortase-Mediated Ligation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hejia Henry Wang
- Department of Biochemistry and Biophysics; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA 19104 USA
| | - Burcin Altun
- Department of Bioengineering; University of Pennsylvania; 210 S. 33rd Street, 240 Skirkanich Hall Philadelphia PA 19104 USA
| | - Kido Nwe
- Department of Bioengineering; University of Pennsylvania; 210 S. 33rd Street, 240 Skirkanich Hall Philadelphia PA 19104 USA
| | - Andrew Tsourkas
- Department of Bioengineering; University of Pennsylvania; 210 S. 33rd Street, 240 Skirkanich Hall Philadelphia PA 19104 USA
| |
Collapse
|
315
|
Song AAL, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact 2017; 16:55. [PMID: 28376880 PMCID: PMC5379754 DOI: 10.1186/s12934-017-0669-x] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/28/2017] [Indexed: 02/08/2023] Open
Abstract
Lactococcus lactis has progressed a long way since its discovery and initial use in dairy product fermentation, to its present biotechnological applications in genetic engineering for the production of various recombinant proteins and metabolites that transcends the heterologous species barrier. Key desirable features of this gram-positive lactic acid non-colonizing gut bacteria include its generally recognized as safe (GRAS) status, probiotic properties, the absence of inclusion bodies and endotoxins, surface display and extracellular secretion technology, and a diverse selection of cloning and inducible expression vectors. This have made L. lactis a desirable and promising host on par with other well established model bacterial or yeast systems such as Escherichia coli, Saccharomyces [corrected] cerevisiae and Bacillus subtilis. In this article, we review recent technological advancements, challenges, future prospects and current diversified examples on the use of L. lactis as a microbial cell factory. Additionally, we will also highlight latest medical-based applications involving whole-cell L. lactis as a live delivery vector for the administration of therapeutics against both communicable and non-communicable diseases.
Collapse
Affiliation(s)
- Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Lionel L A In
- Functional Food Research Group, Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Swee Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, Perdana University, Block B and D, MAEPS Building, MARDI Complex, Jalan MAEPS Perdana, 43400, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell & Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
316
|
Wang HH, Altun B, Nwe K, Tsourkas A. Proximity-Based Sortase-Mediated Ligation. Angew Chem Int Ed Engl 2017; 56:5349-5352. [PMID: 28374553 DOI: 10.1002/anie.201701419] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Indexed: 01/31/2023]
Abstract
Protein bioconjugation has been a crucial tool for studying biological processes and developing therapeutics. Sortase A (SrtA), a bacterial transpeptidase, has become widely used for its ability to site-specifically label proteins with diverse functional moieties, but a significant limitation is its poor reaction kinetics. In this work, we address this by developing proximity-based sortase-mediated ligation (PBSL), which improves the ligation efficiency to over 95 % by linking the target protein to SrtA using the SpyTag-SpyCatcher peptide-protein pair. By expressing the target protein with SpyTag C-terminal to the SrtA recognition motif, it can be covalently captured by an immobilized SpyCatcher-SrtA fusion protein during purification. Following the ligation reaction, SpyTag is cleaved off, rendering PBSL traceless, and only the labeled protein is released, simplifying target protein purification and labeling to a single step.
Collapse
Affiliation(s)
- Hejia Henry Wang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Burcin Altun
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Kido Nwe
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| |
Collapse
|
317
|
Li N, Yu Z, Ji Q, Sun J, Liu X, Du M, Zhang W. An enzyme-mediated protein-fragment complementation assay for substrate screening of sortase A. Biochem Biophys Res Commun 2017; 486:257-263. [DOI: 10.1016/j.bbrc.2017.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
|
318
|
Wu Z, Cheng X, Hong H, Zhao X, Zhou Z. New potent and selective αvβ 3 integrin ligands: Macrocyclic peptides containing RGD motif synthesized by sortase A-mediated ligation. Bioorg Med Chem Lett 2017; 27:1911-1913. [PMID: 28351594 DOI: 10.1016/j.bmcl.2017.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022]
Abstract
Three 14-mer macrocyclic peptides 1-3 containing mono-, di- and tri-RGD structure motif were designed and synthesized by sortase A-mediated ligation in good yields. The results of in intro cell-based biological assays indicated that linear peptide 5 and macrocyclic peptide 1, containing di-RGD and mono-RGD motif respectively, showed remarkable potency and selectivity to αvβ3 integrin.
Collapse
Affiliation(s)
- Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiaozhong Cheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinrui Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
319
|
Wu Q, Ploegh HL, Truttmann MC. Hepta-Mutant Staphylococcus aureus Sortase A (SrtA 7m) as a Tool for in Vivo Protein Labeling in Caenorhabditis elegans. ACS Chem Biol 2017; 12:664-673. [PMID: 28098972 DOI: 10.1021/acschembio.6b00998] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In vivo protein ligation is of emerging interest as a means of endowing proteins with new properties in a controlled fashion. Tools to site-specifically and covalently modify proteins with small molecules, peptides, or other proteins in living cells are few and far between. Here, we describe the development of a Staphylococcus aureus sortase (SrtA)-based protein ligation approach for site-specific conjugation of fluorescent dyes and ubiquitin (Ub) to modify proteins in Caenorhabditis elegans. Hepta-mutant SrtA (SrtA7m) expressed in C. elegans is functional and supports in vitro sortase reactions in a low-Ca2+ environment. Feeding SrtA7m-expressing C. elegans with small peptide-based probes such as (Gly)3- biotin or (Gly)3-fluorophores enables in vivo target protein modification. SrtA7m also catalyzes the circularization of suitably modified linear target proteins in vivo and allows the installation of F-box domains on targets to induce their degradation in a ubiquitin-dependent manner. This is a noninvasive method to achieve in vivo protein labeling, protein circularization, and targeted degradation in C. elegans. This technique should improve our ability to monitor and alter the function of intracellular proteins in vivo.
Collapse
Affiliation(s)
- Qin Wu
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
- Department
of Biology, Massachusetts Institute of Technology (MIT), 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthias C. Truttmann
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
320
|
Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 2017; 104:365-376. [PMID: 28142193 DOI: 10.1111/mmi.13634] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
Chronic biofilm-associated infections caused by Staphylococcus aureus often lead to significant increases in morbidity and mortality, particularly when associated with indwelling medical devices. This has triggered a great deal of research attempting to understand the molecular mechanisms that control S. aureus biofilm formation and the basis for the recalcitrance of these multicellular structures to antibiotic therapy. The purpose of this review is to summarize our current understanding of S. aureus biofilm development, focusing on the description of a newly-defined, five-stage model of biofilm development and the mechanisms required for each stage. Importantly, this model includes an alternate view of the processes involved in microcolony formation in S. aureus and suggests that these structures originate as a result of stochastically regulated metabolic heterogeneity and proliferation within a maturing biofilm population, rather than a subtractive process involving the release of cell clusters from a thick, unstructured biofilm. Importantly, it is proposed that this new model of biofilm development involves the genetically programmed generation of metabolically distinct subpopulations of cells, resulting in an overall population that is better able to adapt to rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Derek E Moormeier
- Center for Staphylococcal Research, Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kenneth W Bayles
- Center for Staphylococcal Research, Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
321
|
Das S, Pawale VS, Dadireddy V, Singh AK, Ramakumar S, Roy RP. Structure and specificity of a new class of Ca 2+-independent housekeeping sortase from Streptomyces avermitilis provide insights into its non-canonical substrate preference. J Biol Chem 2017; 292:7244-7257. [PMID: 28270507 DOI: 10.1074/jbc.m117.782037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/06/2017] [Indexed: 11/06/2022] Open
Abstract
Surface proteins in Gram-positive bacteria are incorporated into the cell wall through a peptide ligation reaction catalyzed by transpeptidase sortase. Six main classes (A-F) of sortase have been identified of which class A sortase is meant for housekeeping functions. The prototypic housekeeping sortase A (SaSrtA) from Staphylococcus aureus cleaves LPXTG-containing proteins at the scissile T-G peptide bond and ligates protein-LPXT to the terminal Gly residue of the nascent cross-bridge of peptidoglycan lipid II precursor. Sortase-mediated ligation ("sortagging") of LPXTG-containing substrates and Gly-terminated nucleophiles occurs in vitro as well as in cellulo in the presence of Ca2+ and has been applied extensively for protein conjugations. Although the majority of applications emanate from SaSrtA, low catalytic efficiency, LPXTG specificity restriction, and Ca2+ requirement (particularly for in cellulo applications) remain a drawback. Given that Gram-positive bacteria genomes encode a variety of sortases, natural sortase mining can be a viable complementary approach akin to engineering of wild-type SaSrtA. Here, we describe the structure and specificity of a new class E sortase (SavSrtE) annotated to perform housekeeping roles in Streptomyces avermitilis Biochemical experiments define the attributes of an optimum peptide substrate, demonstrate Ca2+-independent activity, and provide insights about contrasting functional characteristics of SavSrtE and SaSrtA. Crystal structure, substrate docking, and mutagenesis experiments have identified a critical residue that dictates the preference for a non-canonical LAXTG recognition motif over LPXTG. These results have implications for rational tailoring of substrate tolerance in sortases. Besides, Ca2+-independent orthogonal specificity of SavSrtE is likely to expand the sortagging toolkit.
Collapse
Affiliation(s)
- Sreetama Das
- From the Department of Physics, Indian Institute of Science, Bangalore 560012, and
| | | | | | | | | | - Rajendra P Roy
- the National Institute of Immunology, Delhi 110067, India
| |
Collapse
|
322
|
Chan AH, Yi SW, Weiner EM, Amer BR, Sue CK, Wereszczynski J, Dillen CA, Senese S, Torres JZ, McCammon JA, Miller LS, Jung ME, Clubb RT. NMR structure-based optimization of Staphylococcus aureus sortase A pyridazinone inhibitors. Chem Biol Drug Des 2017; 90:327-344. [PMID: 28160417 DOI: 10.1111/cbdd.12962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus is a leading cause of hospital-acquired infections in the USA and is a major health concern as methicillin-resistant S. aureus and other antibiotic-resistant strains are common. Compounds that inhibit the S. aureus sortase (SrtA) cysteine transpeptidase may function as potent anti-infective agents as this enzyme attaches virulence factors to the bacterial cell wall. While a variety of SrtA inhibitors have been discovered, the vast majority of these small molecules have not been optimized using structure-based approaches. Here we have used NMR spectroscopy to determine the molecular basis through which pyridazinone-based small molecules inhibit SrtA. These inhibitors covalently modify the active cysteine thiol and partially mimic the natural substrate of SrtA by inducing the closure of an active site loop. Computational and synthetic chemistry methods led to second-generation analogues that are ~70-fold more potent than the lead molecule. These optimized molecules exhibit broad-spectrum activity against other types of class A sortases, have reduced cytotoxicity, and impair SrtA-mediated protein display on S. aureus cell surface. Our work shows that pyridazinone analogues are attractive candidates for further development into anti-infective agents, and highlights the utility of employing NMR spectroscopy and solubility-optimized small molecules in structure-based drug discovery.
Collapse
Affiliation(s)
- Albert H Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sung Wook Yi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ethan M Weiner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brendan R Amer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher K Sue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Carly A Dillen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Silvia Senese
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.,Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
323
|
High yield synthesis of cyclic analogues of antibacterial peptides P-113 by Sortase A-mediated ligation and their conformation studies. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
324
|
Wu Z, Hong H, Zhao X, Wang X. Efficient expression of sortase A from Staphylococcus aureus in Escherichia coli and its enzymatic characterizations. BIORESOUR BIOPROCESS 2017; 4:13. [PMID: 28261538 PMCID: PMC5316389 DOI: 10.1186/s40643-017-0143-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/07/2017] [Indexed: 02/08/2023] Open
Abstract
Background Sortase A (SrtA) is a transpeptidase found in Staphylococcus aureus, which is widely used in site-specific protein modification. However, SrtA was expressed in Escherichia coli (E. coli) in rather low level (ranging from several milligrams to 76.9 mg/L at most). The present study aims to optimize fermentation conditions for improving SrtA expression in E. coli. Results Under the optimized media (0.48 g/L glycerol, 1.37 g/L tryptone, 0.51 g/L yeast extract, MOPS 0.5 g/L, PBS buffer 180 mL/L) and condition (30 °C for 8 h) in a 7-L fermentor, the enzyme activity and the yield of SrtA reached 2458.4 ± 115.9 U/mg DCW and 232.4 ± 21.1 mg/L, respectively, which were higher by 5.8- and 4.5-folds compared with initial conditions, respectively. The yield of SrtA also represented threefold increase than the previously reported maximal level. In addition, the enzymatic characterizations of SrtA (optimal temperature, optimal pH, the influence of metal irons, and tolerance to water-soluble organic solvents) were determined. Conclusions Enhanced expression of SrtA was achieved by optimization of medium and condition. This result will have potential application for production levels of SrtA on an industry scale. Moreover, the detailed enzymatic characterizations of SrtA were examined, which will provide a useful guide for its future application. Electronic supplementary material The online version of this article (doi:10.1186/s40643-017-0143-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191 China
| | - Haofei Hong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, China
| | - Xinrui Zhao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, China
| | - Xun Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, China
| |
Collapse
|
325
|
van Harten RM, Willems RJL, Martin NI, Hendrickx APA. Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies? Trends Microbiol 2017; 25:467-479. [PMID: 28209400 DOI: 10.1016/j.tim.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/14/2016] [Accepted: 01/18/2017] [Indexed: 02/08/2023]
Abstract
Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting.
Collapse
Affiliation(s)
- Roel M van Harten
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Antoni P A Hendrickx
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
326
|
Sarpong K, Bose R. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins. Anal Biochem 2017; 521:55-58. [PMID: 28088451 DOI: 10.1016/j.ab.2017.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 11/26/2022]
Abstract
A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs.
Collapse
Affiliation(s)
- Kwabena Sarpong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Campus Box 8076, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Ron Bose
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Campus Box 8076, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
327
|
Abstract
SignalP is the currently most widely used program for prediction of signal peptides from amino acid sequences. Proteins with signal peptides are targeted to the secretory pathway, but are not necessarily secreted. After a brief introduction to the biology of signal peptides and the history of signal peptide prediction, this chapter will describe all the options of the current version of SignalP and the details of the output from the program. The chapter includes a case study where the scores of SignalP were used in a novel way to predict the functional effects of amino acid substitutions in signal peptides.
Collapse
Affiliation(s)
- Henrik Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, Bldg., 208, 3500 Kgs., Lyngby, Denmark.
| |
Collapse
|
328
|
Enzyme-Based Strategies to Generate Site-Specifically Conjugated Antibody Drug Conjugates. NEXT GENERATION ANTIBODY DRUG CONJUGATES (ADCS) AND IMMUNOTOXINS 2017. [DOI: 10.1007/978-3-319-46877-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
329
|
Qu H, Smithies BJ, Durek T, Craik DJ. Synthesis and Protein Engineering Applications of Cyclotides. Aust J Chem 2017. [DOI: 10.1071/ch16589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclotides are a group of plant-derived peptides with a head-to-tail cyclized backbone that is stabilized by three knotted disulfide bonds. Their exceptional stability and tolerance for residue substitutions have led to interest in their application as drug design scaffolds. To date, chemical synthesis has been the dominant methodology for producing cyclotides and their analogues. Native chemical ligation is the most common strategy to generate the cyclic backbone and has been highly successful at producing a wide range of cyclotides for studies of structure–activity relationships. Both this and other chemical approaches require a specific linker at the C-terminus and typically involve a non-directed folding (disulfide oxidation) regimen, which can sometimes be a limiting factor in final yields. Following the recent discovery of enzymes involved in peptide cyclization in planta, site-specific and highly efficient enzymatic ligations have been used for synthetic cyclotide backbone cyclization. In this review, chemical synthesis strategies and approaches involving cyclization via enzymes for the production of cyclotides are described.
Collapse
|
330
|
Cheng X, Zhu T, Hong H, Zhou Z, Wu Z. Sortase A-mediated on-resin peptide cleavage and in situ ligation: an efficient one-pot strategy for the synthesis of functional peptides and proteins. Org Chem Front 2017. [DOI: 10.1039/c7qo00481h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A one-pot approach combining Sortase A mediated on-resin peptide cleavage, activation and in situ ligation was developed and was employed to synthesize dual functional peptides, modify peptides with lipid, biotin and PEG, as well as protein N-terminal labeling in high efficiency.
Collapse
Affiliation(s)
- Xiaozhong Cheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Tao Zhu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| |
Collapse
|
331
|
Abstract
Bacterial pathogens utilize a multitude of methods to invade mammalian hosts, damage tissue sites, and thwart the immune system from responding. One essential component of these strategies for many bacterial pathogens is the secretion of proteins across phospholipid membranes. Secreted proteins can play many roles in promoting bacterial virulence, from enhancing attachment to eukaryotic cells, to scavenging resources in an environmental niche, to directly intoxicating target cells and disrupting their functions. Many pathogens use dedicated protein secretion systems to secrete virulence factors from the cytosol of the bacteria into host cells or the host environment. In general, bacterial protein secretion apparatuses can be divided into classes, based on their structures, functions, and specificity. Some systems are conserved in all classes of bacteria and secrete a broad array of substrates, while others are only found in a small number of bacterial species and/or are specific to only one or a few proteins. In this chapter, we review the canonical features of several common bacterial protein secretion systems, as well as their roles in promoting the virulence of bacterial pathogens. Additionally, we address recent findings that indicate that the innate immune system of the host can detect and respond to the presence of protein secretion systems during mammalian infection.
Collapse
|
332
|
Casado Muñoz MDC, Benomar N, Lavilla Lerma L, Knapp CW, Gálvez A, Abriouel H. Biocide tolerance, phenotypic and molecular response of lactic acid bacteria isolated from naturally-fermented Aloreña table to different physico-chemical stresses. Food Microbiol 2016; 60:1-12. [DOI: 10.1016/j.fm.2016.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/22/2016] [Accepted: 06/15/2016] [Indexed: 11/16/2022]
|
333
|
Siegel SD, Liu J, Ton-That H. Biogenesis of the Gram-positive bacterial cell envelope. Curr Opin Microbiol 2016; 34:31-37. [PMID: 27497053 PMCID: PMC5164837 DOI: 10.1016/j.mib.2016.07.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 01/29/2023]
Abstract
The Gram-positive cell envelope serves as a molecular platform for surface display of capsular polysaccharides, wall teichoic acids (WTAs), lipoteichoic acids (LTAs), lipoproteins, surface proteins and pili. WTAs, LTAs, and sortase-assembled pili are a few features that make the Gram-positive cell envelope distinct from the Gram-negative counterpart. Interestingly, a set of LytR-CpsA-Psr family proteins, found in all Gram-positives but limited to a minority of Gram-negative organisms, plays divergent functions, while decorating the cell envelope with glycans. Furthermore, a phylum of Gram-positive bacteria, the actinobacteria, appear to employ oxidative protein folding as the major folding mechanism, typically occurring in an oxidizing environment of the Gram-negative periplasm. These distinctive features will be highlighted, along with recent findings in the cell envelope biogenesis.
Collapse
Affiliation(s)
- Sara D Siegel
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX, USA
| | - Jun Liu
- Department of Pathology & Laboratory Medicine, University of Texas McGovern Medical School, Houston, TX, USA
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
334
|
Yin JC, Fei CH, Lo YC, Hsiao YY, Chang JC, Nix JC, Chang YY, Yang LW, Huang IH, Wang S. Structural Insights into Substrate Recognition by Clostridium difficile Sortase. Front Cell Infect Microbiol 2016; 6:160. [PMID: 27921010 PMCID: PMC5118464 DOI: 10.3389/fcimb.2016.00160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/07/2016] [Indexed: 01/07/2023] Open
Abstract
Sortases function as cysteine transpeptidases that catalyze the covalent attachment of virulence-associated surface proteins into the cell wall peptidoglycan in Gram-positive bacteria. The substrate proteins targeted by sortase enzymes have a cell wall sorting signal (CWSS) located at the C-terminus. Up to date, it is still not well understood how sortases with structural resemblance among different classes and diverse species of bacteria achieve substrate specificity. In this study, we focus on elucidating the molecular basis for specific recognition of peptide substrate PPKTG by Clostridium difficile sortase B (Cd-SrtB). Combining structural studies, biochemical assays and molecular dynamics simulations, we have constructed a computational model of Cd-SrtBΔN26-PPKTG complex and have validated the model by site-directed mutagensis studies and fluorescence resonance energy transfer (FRET)-based assay. Furthermore, we have revealed that the fourth amino acid in the N-terminal direction from cleavage site of PPKTG forms specific interaction with Cd-SrtB and plays an essential role in configuring the peptide to allow more efficient substrate-specific cleavage by Cd-SrtB.
Collapse
Affiliation(s)
- Jui-Chieh Yin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Chun-Hsien Fei
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yen-Chen Lo
- Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchu, Taiwan,Bioinformatics Program, Taiwan International Graduate Program, Academia SinicaTaipei, Taiwan
| | - Yu-Yuan Hsiao
- Department of Biological Science and Technology, National Chiao Tung UniversityHsinchu, Taiwan
| | - Jyun-Cyuan Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Yuan-Yu Chang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchu, Taiwan
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchu, Taiwan,Physics Division, National Center for Theoretical SciencesHsinchu, Taiwan,*Correspondence: Lee-Wei Yang
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan,I-Hsiu Huang
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan,Shuying Wang
| |
Collapse
|
335
|
Molecular Mechanism of the Flavonoid Natural Product Dryocrassin ABBA against Staphylococcus aureus Sortase A. Molecules 2016; 21:molecules21111428. [PMID: 27792196 PMCID: PMC6273746 DOI: 10.3390/molecules21111428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/14/2016] [Accepted: 10/23/2016] [Indexed: 11/21/2022] Open
Abstract
The intractability of bacterial resistance presents a dilemma for therapies against Staphylococcus aureus (S. aureus) infection. Effective anti-virulence strategies are urgently needed, reflecting the proliferation of resistant strains. Inhibitors of sortase A (SrtA), enzymes that anchor virulence-related surface proteins, are regarded as promising candidates for countermeasures against bacterial infections. In the present study, the inhibitory effect of dryocrassin ABBA (ABBA) against SrtA and its molecular basis has been examined. Fluorescence resonance energy transfer (FRET) assays were used to determine the inhibitory activity of ABBA against SrtA. To identify the mechanism underlying this activity, molecular dynamics simulations and mutagenesis assays were applied, and the results revealed that the direct engagement of SrtA via ABBA through binding to V166 and V168 significantly attenuated the catalytic activity of SrtA. Taken together, these findings indicated that ABBA is a potential novel antimicrobial agent for S. aureus infection via targeting SrtA.
Collapse
|
336
|
Staphylococcus epidermidis ΔSortase A strain elicits protective immunity against Staphylococcus aureus infection. Antonie van Leeuwenhoek 2016; 110:133-143. [PMID: 27757703 DOI: 10.1007/s10482-016-0784-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are two of the most significant opportunistic human pathogens, causing medical implant and nosocomial infections worldwide. These bacteria contain surface proteins that play crucial roles in multiple biological processes. It has become apparent that they have evolved a number of unique mechanisms by which they can immobilise proteins on their surface. Notably, a conserved cell membrane-anchored enzyme, sortase A (SrtA), can catalyse the covalent attachment of precursor bacterial cell wall-attached proteins to peptidoglycan. Considering its indispensable role in anchoring substrates to the cell wall and its effects on virulence, SrtA has attracted great attention. In this study, a 549-bp gene was cloned from a pathogenic S. epidermidis strain, YC-1, which shared high identity with srtA from other Staphylococcus spp. A mutant strain, YC-1ΔsrtA, was then constructed by allelic exchange mutagenesis. The direct survival rate assay suggested that YC-1ΔsrtA had a lower survival capacity in healthy mice blood compare with the wild-type strain, indicating that the deletion of srtA affects the virulence and infectious capacity of S. epidermidis YC-1. YC-1ΔsrtA was then administered via intraperitoneal injection and it provided a relative percent survival value of 72.7 % in mice against S. aureus TC-1 challenge. These findings demonstrate the possbility that YC-1ΔsrtA might be used as a live attenuated vaccine to produce cross-protection against S. aureus.
Collapse
|
337
|
Chen JL, Wang X, Yang F, Cao C, Otting G, Su XC. 3D Structure Determination of an Unstable Transient Enzyme Intermediate by Paramagnetic NMR Spectroscopy. Angew Chem Int Ed Engl 2016; 55:13744-13748. [DOI: 10.1002/anie.201606223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/15/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Gottfried Otting
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| |
Collapse
|
338
|
Chen JL, Wang X, Yang F, Cao C, Otting G, Su XC. 3D Structure Determination of an Unstable Transient Enzyme Intermediate by Paramagnetic NMR Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Gottfried Otting
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| |
Collapse
|
339
|
Acacetin Protects Mice from Staphylococcus aureus Bloodstream Infection by Inhibiting the Activity of Sortase A. Molecules 2016; 21:molecules21101285. [PMID: 27681715 PMCID: PMC6272931 DOI: 10.3390/molecules21101285] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a major cause of infection in hospitals and communities. Widespread dissemination of multi-drug resistant S. aureus is a serious threat to the health of humans and animals. An anti-virulence strategy has been widely considered as an alternative therapeutic approach. Inhibitors of virulence factors are able to treat S. aureus infections without influencing the growth or viability of bacteria and rarely lead to bacterial resistance. Sortase A (SrtA) is a membrane-associated cysteine transpeptidase that catalyzes up to 25 surface proteins that covalently bind to cell wall peptidoglycans. In S. aureus, most of these surface proteins have been identified as important virulence factors that are vital in bacterial pathogenesis. In the present study, we show that acacetin, a natural flavonoid compound, inhibits the activity of SrtA in S. aureus (IC50 = 36.46 ± 4.69 μg/mL, 128 μM) which affects the assembly of protein A (SpA) to cell walls and reduces the binding of S. aureus to fibrinogen (Fg). The mechanism of the interaction between acacetin and SrtA were preliminarily discussed using molecular dynamics simulations. The results suggested that acacetin adopted a compact conformation binding at the pocket of the SrtA via residues Arg-139 and Lys-140. By performing an animal infection model, we demonstrated that acacetin was able to protect mice from renal abscess formation induced by S. aureus and significantly increased survival rates. Taken together, these findings suggest that acacetin may be a promising candidate for the development of anti-S. aureus drugs.
Collapse
|
340
|
Nguyen GKT, Qiu Y, Cao Y, Hemu X, Liu CF, Tam JP. Butelase-mediated cyclization and ligation of peptides and proteins. Nat Protoc 2016; 11:1977-1988. [DOI: 10.1038/nprot.2016.118] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
341
|
Hansenová Maňásková S, Bikker FJ, Nazmi K, van Zuidam R, Slotman JA, van Cappellen WA, Houtsmuller AB, Veerman ECI, Kaman WE. Incorporation of a Valine-Leucine-Lysine-Containing Substrate in the Bacterial Cell Wall. Bioconjug Chem 2016; 27:2418-2423. [PMID: 27611478 DOI: 10.1021/acs.bioconjchem.6b00381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The emergence of antibiotic-resistant bacteria is a major public health threat, and therefore novel antimicrobial targets and strategies are urgently needed. In this regard, cell-wall-associated proteases are envisaged as interesting antimicrobial targets due to their role in cell wall remodeling. Here, we describe the discovery and characteristics of a protease substrate that is processed by a bacterial cell-wall-associated protease. Stationary-phase grown Gram-positive bacteria were incubated with fluorogenic protease substrates, and their cleavage and covalent incorporation into the cell wall was analyzed. Of all of the substrates used, only one substrate, containing a valine-leucine-lysine (VLK) motif, was covalently incorporated into the bacterial cell wall. Linkage of the VLK-peptide substrate appeared unrelated to sortase A and B activity, as both wild-type and sortase A and B knock out Staphylococcus aureus strains incorporated this substrate into their cell wall with comparable efficiency. Additionally, the VLK-peptide substrate showed significantly higher incorporation in the cell wall of VanA-positive Enterococcus faecium strains than in VanB- and vancomycin-susceptible isolates. In conclusion, the VLK-peptide substrate identified in this study shows promise as a vehicle for targeting antimicrobial compounds and diagnostic contrast agents to the bacterial cell wall.
Collapse
Affiliation(s)
- Silvie Hansenová Maňásková
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC , Wytemaweg 80, 3015 CE Rotterdam, The Netherlands.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam , Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam , Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam , Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Rianne van Zuidam
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC , Wytemaweg 80, 3015 CE Rotterdam, The Netherlands
| | - Johan A Slotman
- Optical Imaging Center, Department of Pathology, Josephine Nefkens Institute, Erasmus MC , Dr Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | - Wiggert A van Cappellen
- Optical Imaging Center, Department of Pathology, Josephine Nefkens Institute, Erasmus MC , Dr Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | - Adriaan B Houtsmuller
- Optical Imaging Center, Department of Pathology, Josephine Nefkens Institute, Erasmus MC , Dr Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | - Enno C I Veerman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam , Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Wendy E Kaman
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC , Wytemaweg 80, 3015 CE Rotterdam, The Netherlands.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam , Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
342
|
Choo JM, Cheung JK, Wisniewski JA, Steer DL, Bulach DM, Hiscox TJ, Chakravorty A, Smith AI, Gell DA, Rood JI, Awad MM. The NEAT Domain-Containing Proteins of Clostridium perfringens Bind Heme. PLoS One 2016; 11:e0162981. [PMID: 27637108 PMCID: PMC5026354 DOI: 10.1371/journal.pone.0162981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
The ability of a pathogenic bacterium to scavenge iron from its host is important for its growth and survival during an infection. Our studies on C. perfringens gas gangrene strain JIR325, a derivative of strain 13, showed that it is capable of utilizing both human hemoglobin and ferric chloride, but not human holo-transferrin, as an iron source for in vitro growth. Analysis of the C. perfringens strain 13 genome sequence identified a putative heme acquisition system encoded by an iron-regulated surface gene region that we have named the Cht (Clostridium perfringensheme transport) locus. This locus comprises eight genes that are co-transcribed and includes genes that encode NEAT domain-containing proteins (ChtD and ChtE) and a putative sortase (Srt). The ChtD, ChtE and Srt proteins were shown to be expressed in JIR325 cells grown under iron-limited conditions and were localized to the cell envelope. Moreover, the NEAT proteins, ChtD and ChtE, were found to bind heme. Both chtDE and srt mutants were constructed, but these mutants were not defective in hemoglobin or ferric chloride utilization. They were, however, attenuated for virulence when tested in a mouse myonecrosis model, although the virulence phenotype could not be restored via complementation and, as is common with such systems, secondary mutations were identified in these strains. In summary, this study provides evidence for the functional redundancies that occur in the heme transport pathways of this life threatening pathogen.
Collapse
Affiliation(s)
- Jocelyn M. Choo
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jackie K. Cheung
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jessica A. Wisniewski
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - David L. Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dieter M. Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Thomas J. Hiscox
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Anjana Chakravorty
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - A. Ian Smith
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - David A. Gell
- School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Julian I. Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Milena M. Awad
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- * E-mail:
| |
Collapse
|
343
|
Choby JE, Skaar EP. Heme Synthesis and Acquisition in Bacterial Pathogens. J Mol Biol 2016; 428:3408-28. [PMID: 27019298 PMCID: PMC5125930 DOI: 10.1016/j.jmb.2016.03.018] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis.
Collapse
Affiliation(s)
- Jacob E Choby
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
344
|
Crowe SO, Pham GH, Ziegler JC, Deol KK, Guenette RG, Ge Y, Strieter ER. Subunit-Specific Labeling of Ubiquitin Chains by Using Sortase: Insights into the Selectivity of Deubiquitinases. Chembiochem 2016; 17:1525-31. [PMID: 27256865 PMCID: PMC5459594 DOI: 10.1002/cbic.201600276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 12/12/2022]
Abstract
Information embedded in different ubiquitin chains is transduced by proteins with ubiquitin-binding domains (UBDs) and erased by a set of hydrolytic enzymes referred to as deubiquitinases (DUBs). Understanding the selectivity of UBDs and DUBs is necessary for decoding the functions of different ubiquitin chains. Critical to these efforts is the access to chemically defined ubiquitin chains bearing site-specific fluorescent labels. One approach toward constructing such molecules involves peptide ligation by sortase (SrtA), a bacterial transpeptidase responsible for covalently attaching cell surface proteins to the cell wall. Here, we demonstrate the utility of SrtA in modifying individual subunits of ubiquitin chains. Using ubiquitin derivatives in which an N-terminal glycine is unveiled after protease-mediated digestion, we synthesized ubiquitin dimers, trimers, and tetramers with different isopeptide linkages. SrtA was then used in combination with fluorescent depsipeptide substrates to effect the modification of each subunit in a chain. By constructing branched ubiquitin chains with individual subunits tagged with a fluorophore, we provide evidence that the ubiquitin-specific protease USP15 prefers ubiquitin trimers but has little preference for a particular isopeptide linkage. Our results emphasize the importance of subunit-specific labeling of ubiquitin chains when studying how DUBs process these chains.
Collapse
Affiliation(s)
- Sean O Crowe
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Grace H Pham
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jacob C Ziegler
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kirandeep K Deol
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Robert G Guenette
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Eric R Strieter
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
345
|
In vitro activity of plant extracts against biofilm-producing food-related bacteria. Int J Food Microbiol 2016; 238:33-39. [PMID: 27591384 DOI: 10.1016/j.ijfoodmicro.2016.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/31/2016] [Accepted: 08/15/2016] [Indexed: 01/10/2023]
Abstract
The identification of effective antimicrobial agents also active on biofilms is a topic of crucial importance in food and industrial environment. For that purpose methanol extracts of Turkish plants, Ficus carica L., Juglans regia L., Olea europaea L., Punica granatum L. and Rhus coriaria L., were investigated. Among the extracts, P. granatum L. and R. coriaria L. showed the best antibacterial activity with minimum inhibitory concentrations (MIC) of 78-625μg/ml for Listeria monocytogenes and Staphylococcus aureus and 312-1250μg/ml for Escherichia coli and Pseudomonas aeruginosa. SubMICs produced a significant biofilm inhibition equal to 80-60% for L. monocytogenes and 90-80% for S. aureus. The extracts showed also the highest polyphenol content and the strongest antioxidant activity. Bioassay-guided and HPLC procedures demonstrated the presence of apigenin 4'-O-β-glucoside in P. granatum L. and myricetrin and quercitrin in R. coriaria L. Antigenotoxicity of plant extracts was also observed The present findings promote the value-adding of P. granatum L. and R. coriaria L. leaves as natural antimicrobial/antioxidant agents for control of food-related bacterial biofilms.
Collapse
|
346
|
A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property. Sci Rep 2016; 6:30966. [PMID: 27492581 PMCID: PMC4974636 DOI: 10.1038/srep30966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/β domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase.
Collapse
|
347
|
Nuijens T, Toplak A, van de Meulenreek MB, Schmidt M, Goldbach M, Quaedflieg PJ. Improved solid phase synthesis of peptide carboxyamidomethyl (Cam) esters for enzymatic segment condensation. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.06.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
348
|
Population Genomics of Reduced Vancomycin Susceptibility in Staphylococcus aureus. mSphere 2016; 1:mSphere00094-16. [PMID: 27446992 PMCID: PMC4954867 DOI: 10.1128/msphere.00094-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/23/2016] [Indexed: 01/22/2023] Open
Abstract
The increased prevalence of vancomycin-intermediate Staphylococcus aureus (VISA) is an emerging health care threat. Genome-based comparative methods hold great promise to uncover the genetic basis of the VISA phenotype, which remains obscure. S. aureus isolates were collected from a single individual that presented with recurrent staphylococcal bacteremia at three time points, and the isolates showed successively reduced levels of vancomycin susceptibility. A population genomic approach was taken to compare patient S. aureus isolates with decreasing vancomycin susceptibility across the three time points. To do this, patient isolates were sequenced to high coverage (~500×), and sequence reads were used to model site-specific allelic variation within and between isolate populations. Population genetic methods were then applied to evaluate the overall levels of variation across the three time points and to identify individual variants that show anomalous levels of allelic change between populations. A successive reduction in the overall levels of population genomic variation was observed across the three time points, consistent with a population bottleneck resulting from antibiotic treatment. Despite this overall reduction in variation, a number of individual mutations were swept to high frequency in the VISA population. These mutations were implicated as potentially involved in the VISA phenotype and interrogated with respect to their functional roles. This approach allowed us to identify a number of mutations previously implicated in VISA along with allelic changes within a novel class of genes, encoding LPXTG motif-containing cell-wall-anchoring proteins, which shed light on a novel mechanistic aspect of vancomycin resistance. IMPORTANCE The emergence and spread of antibiotic resistance among bacterial pathogens are two of the gravest threats to public health facing the world today. We report the development and application of a novel population genomic technique aimed at uncovering the evolutionary dynamics and genetic determinants of antibiotic resistance in Staphylococcus aureus. This method was applied to S. aureus cultures isolated from a single patient who showed decreased susceptibility to the vancomycin antibiotic over time. Our approach relies on the increased resolution afforded by next-generation genome-sequencing technology, and it allowed us to discover a number of S. aureus mutations, in both known and novel gene targets, which appear to have evolved under adaptive pressure to evade vancomycin mechanisms of action. The approach we lay out in this work can be applied to resistance to any number of antibiotics across numerous species of bacterial pathogens.
Collapse
|
349
|
Nagarajan R, Hendrickx APA, Ponnuraj K. The crystal structure of the ligand-binding region of serine-glutamate repeat containing protein A (SgrA) ofEnterococcus faeciumreveals a new protein fold: functional characterization and insights into its adhesion function. FEBS J 2016; 283:3039-55. [DOI: 10.1111/febs.13792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/12/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Revathi Nagarajan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| | | | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| |
Collapse
|
350
|
CRIg Functions as a Macrophage Pattern Recognition Receptor to Directly Bind and Capture Blood-Borne Gram-Positive Bacteria. Cell Host Microbe 2016; 20:99-106. [PMID: 27345697 DOI: 10.1016/j.chom.2016.06.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/01/2016] [Accepted: 05/11/2016] [Indexed: 12/24/2022]
Abstract
Kupffer cells (KCs), the vast pool of intravascular macrophages in the liver, help to clear blood-borne pathogens. The mechanisms by which KCs capture circulating pathogens remain unknown. Here we use intra-vital imaging of mice infected with Staphylococcus aureus to directly visualize the dynamic process of bacterial capture in the liver. Circulating S. aureus were captured by KCs in a manner dependent on the macrophage complement receptor CRIg, but the process was independent of complement. CRIg bound Staphylococcus aureus specifically through recognition of lipoteichoic acid (LTA), but not cell-wall-anchored surface proteins or peptidoglycan. Blocking the recognition between CRIg and LTA in vivo diminished the bacterial capture in liver and led to systemic bacterial dissemination. All tested Gram-positive, but not Gram-negative, bacteria bound CRIg in a complement-independent manner. These findings reveal a pattern recognition role for CRIg in the direct capture of circulating Gram-positive bacteria from the bloodstream.
Collapse
|