301
|
Veronesi F, Della Bella E, Cepollaro S, Brogini S, Martini L, Fini M. Novel therapeutic targets in osteoarthritis: Narrative review on knock-out genes involved in disease development in mouse animal models. Cytotherapy 2016; 18:593-612. [DOI: 10.1016/j.jcyt.2016.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/21/2016] [Accepted: 02/04/2016] [Indexed: 01/17/2023]
|
302
|
Bottini M, Magrini A, Fadeel B, Rosato N. Tackling chondrocyte hypertrophy with multifunctional nanoparticles. Gene Ther 2016; 23:560-4. [DOI: 10.1038/gt.2016.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 01/09/2023]
|
303
|
Xu W, Xie Y, Wang Q, Wang X, Luo F, Zhou S, Wang Z, Huang J, Tan Q, Jin M, Qi H, Tang J, Chen L, Du X, Zhao C, Liang G, Chen L. A novel fibroblast growth factor receptor 1 inhibitor protects against cartilage degradation in a murine model of osteoarthritis. Sci Rep 2016; 6:24042. [PMID: 27041213 PMCID: PMC4819196 DOI: 10.1038/srep24042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022] Open
Abstract
The attenuated degradation of articular cartilage by cartilage-specific deletion of fibroblast growth factor receptor 1 (FGFR1) in adult mice suggests that FGFR1 is a potential target for treating osteoarthritis (OA). The goal of the current study was to investigate the effect of a novel non-ATP-competitive FGFR1 inhibitor, G141, on the catabolic events in human articular chondrocytes and cartilage explants and on the progression of cartilage degradation in a murine model of OA. G141 was screened and identified via cell-free kinase-inhibition assay. In the in vitro study, G141 decreased the mRNA levels of catabolic markers ADAMTS-5 and MMP-13, the phosphorylation of Erk1/2, JNK and p38 MAPK, and the protein level of MMP-13 in human articular chondrocytes. In the ex vivo study, proteoglycan loss was markedly reduced in G141 treated human cartilage explants. For the in vivo study, intra-articular injection of G141 attenuated the surgical destabilization of the medial meniscus (DMM) induced cartilage destruction and chondrocyte hypertrophy and apoptosis in mice. Our data suggest that pharmacologically antagonize FGFR1 using G141 protects articular cartilage from osteoarthritic changes, and intra-articular injection of G141 is potentially an effective therapy to alleviate OA progression.
Collapse
Affiliation(s)
- Wei Xu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yangli Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Quan Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaofeng Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Fengtao Luo
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Siru Zhou
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zuqiang Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Junlan Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Qiaoyan Tan
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Min Jin
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Huabing Qi
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Junzhou Tang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Liang Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Chengguang Zhao
- Institute of Biological and Natural Medicine, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Guang Liang
- Institute of Biological and Natural Medicine, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
304
|
Ribeiro M, López de Figueroa P, Blanco FJ, Mendes AF, Caramés B. Insulin decreases autophagy and leads to cartilage degradation. Osteoarthritis Cartilage 2016; 24:731-9. [PMID: 26549531 DOI: 10.1016/j.joca.2015.10.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/16/2015] [Accepted: 10/28/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Autophagy, a key homeostasis mechanism, is defective in Osteoarthritis (OA) and Type 2 Diabetes (T2D). T2D has been proposed as a risk factor for OA. We hypothesized that diabetes impairs articular cartilage integrity by decreasing autophagy. Our objective was to investigate the effects of high glucose and insulin, characteristics of T2D, on cartilage homeostasis. METHODS Immortalized human chondrocytes (TC28a2) and primary human chondrocytes (HC) were cultured in 25 mM or 0 mM glucose and treated with insulin (10, 100, 500 nM) for 2, 6 or 24 h. Activity of LC3-II, Akt and rpS6 was evaluated by Western blotting (WB). Human cartilage explants were cultivated with 25 mM glucose and insulin (100,1000 nM) for 24 h to evaluate histopathology. MMP-13 and IL-1β expression was determined by immunohistochemistry and WB. Effects of Rapamycin (10 μM) were analyzed by WB. LC3 and rpS6 expression was determined by WB in chondrocytes from Healthy, Non Diabetic-OA and Diabetic-OA patients. RESULTS Insulin downregulates autophagy by reducing LC3 II expression and increasing Akt and rpS6 phosphorylation. Loss of proteoglycans and increased MMP-13 and IL-1β expression was observed after insulin treatment. Autophagy activation by rapamycin reversed insulin effects. Importantly, chondrocytes from diabetic-OA patients showed decreased LC3 and increased p-rpS6 expression compared to Healthy and Non-Diabetic OA patients. CONCLUSIONS These results suggest that decreased autophagy might be a mechanism by which diabetes influences cartilage degradation. Pharmacological activation of autophagy may be an effective therapeutic approach to prevent T2D-induced cartilage damage.
Collapse
Affiliation(s)
- M Ribeiro
- Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain; Centre for Neuroscience and Cell Biology and Faculty of Pharmacy, University of Coimbra, Portugal
| | - P López de Figueroa
- Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - F J Blanco
- Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - A F Mendes
- Centre for Neuroscience and Cell Biology and Faculty of Pharmacy, University of Coimbra, Portugal
| | - B Caramés
- Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain.
| |
Collapse
|
305
|
Preitschopf A, Schörghofer D, Kinslechner K, Schütz B, Zwickl H, Rosner M, Joó JG, Nehrer S, Hengstschläger M, Mikula M. Rapamycin-Induced Hypoxia Inducible Factor 2A Is Essential for Chondrogenic Differentiation of Amniotic Fluid Stem Cells. Stem Cells Transl Med 2016; 5:580-90. [PMID: 27025692 DOI: 10.5966/sctm.2015-0262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Amniotic fluid stem (AFS) cells represent a major source of donor cells for cartilage repair. Recently, it became clear that mammalian target of rapamycin (mTOR) inhibition has beneficial effects on cartilage homeostasis, but the effect of mTOR on chondrogenic differentiation is still elusive. Therefore, the objectives of this study were to investigate the effects of mammalian target of rapamycin complex 1 (mTORC1) modulation on the expression of SOX9 and on its downstream targets during chondrogenic differentiation of AFS cells. We performed three-dimensional pellet culturing of AFS cells and of in vitro-expanded, human-derived chondrocytes in the presence of chondrogenic factors. Inhibition of mTORC1 by rapamycin or by small interfering RNA-mediated targeting of raptor (gene name, RPTOR) led to increased AKT activation, upregulation of hypoxia inducible factor (HIF) 2A, and an increase in SOX9, COL2A1, and ACAN abundance. Here we show that HIF2A expression is essential for chondrogenic differentiation and that AKT activity regulates HIF2A amounts. Importantly, engraftment of AFS cells in cell pellets composed of human chondrocytes revealed an advantage of raptor knockdown cells compared with control cells in their ability to express SOX9. Our results demonstrate that mTORC1 inhibition leads to AKT activation and an increase in HIF2A expression. Therefore, we suggest that mTORC1 inhibition is a powerful tool for enhancing chondrogenic differentiation of AFS cells and also of in vitro-expanded adult chondrocytes before transplantation. SIGNIFICANCE Repair of cartilage defects is still an unresolved issue in regenerative medicine. Results of this study showed that inhibition of the mammalian target of rapamycin complex 1 (mTORC1) pathway, by rapamycin or by small interfering RNA-mediated targeting of raptor (gene name, RPTOR), enhanced amniotic fluid stem cell differentiation toward a chondrocytic phenotype and increased their engrafting efficiency into cartilaginous structures. Moreover, freshly isolated and in vitro passaged human chondrocytes also showed redifferentiation upon mTORC1 inhibition during culturing. Therefore, this study revealed that rapamycin could enable a more efficient clinical use of cell-based therapy approaches to treat articular cartilage defects.
Collapse
Affiliation(s)
- Andrea Preitschopf
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria Center for Regenerative Medicine, Danube University Krems, Krems, Austria
| | - David Schörghofer
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Birgit Schütz
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Hannes Zwickl
- Center for Regenerative Medicine, Danube University Krems, Krems, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - József Gabor Joó
- First Department of Obstetrics and Gynaecology, Medical School, Semmelweis University, Budapest, Hungary
| | - Stefan Nehrer
- Center for Regenerative Medicine, Danube University Krems, Krems, Austria
| | | | - Mario Mikula
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
306
|
Bouderlique T, Vuppalapati KK, Newton PT, Li L, Barenius B, Chagin AS. Targeted deletion of Atg5 in chondrocytes promotes age-related osteoarthritis. Ann Rheum Dis 2016; 75:627-31. [PMID: 26438374 PMCID: PMC4789686 DOI: 10.1136/annrheumdis-2015-207742] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/06/2015] [Accepted: 08/11/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVES It has been suggested that the lysosomal recycling process called macro-autophagy plays a role in osteoarthritis development. We thus decided to genetically ablate the autophagy-indispensable Atg5 gene specifically in chondrocytes and analyse the development of osteoarthritis upon aging and in a post-traumatic model. METHODS Mice lacking the Atg5 gene in their chondrocytes (Atg5cKO) were generated by crossing Atg5-floxed mice with transgenic mice that expressed cre recombinase driven by the collagen type 2 promoter. Animals were analysed at the age of 2, 6 and 12 months for age-related osteoarthritis or underwent mini-open partial medial meniscectomy at 2 months of age and were analysed 1 or 2 months after surgery. We evaluated osteoarthritis using the Osteoarthritis Research Society International (OARSI) scoring on safranin-O-stained samples. Cell death was evaluated by terminal deoxy-nucleotidyl-transferase-mediated deoxy-UTP nick end labelling (TUNEL) and by immunostaining of cleaved caspases. RESULTS We observed the development of osteoarthritis in Atg5cKO mice with aging including fibrillation and loss of proteoglycans, which was particularly severe in males. The ablation of Atg5 was associated with an increased cell death as assessed by TUNEL, cleaved caspase 3 and cleaved caspase 9. Surprisingly, no difference in the development of post-traumatic osteoarthritis was observed between Atg5cKO and control mice. CONCLUSIONS Autophagy protects from age-related osteoarthritis by facilitating chondrocyte survival.
Collapse
Affiliation(s)
- Thibault Bouderlique
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Karuna K Vuppalapati
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Phillip T Newton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lei Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Barenius
- Orthopaedic Section, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
307
|
Li YS, Zhang FJ, Zeng C, Luo W, Xiao WF, Gao SG, Lei GH. Autophagy in osteoarthritis. Joint Bone Spine 2016; 83:143-8. [DOI: 10.1016/j.jbspin.2015.06.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/21/2015] [Indexed: 01/15/2023]
|
308
|
Chagin AS. Effectors of mTOR-autophagy pathway: targeting cancer, affecting the skeleton. Curr Opin Pharmacol 2016; 28:1-7. [PMID: 26921601 DOI: 10.1016/j.coph.2016.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/23/2016] [Accepted: 02/09/2016] [Indexed: 12/17/2022]
Abstract
Although some modulators of autophagy are emerging as drugs or supplements for anti-cancer therapy, the effects of these compounds on normal tissues must be examined carefully. Here, I review the role of autophagy in skeletal tissues in this context. First, I briefly review preclinical studies indicating the role of autophagy in cancer, as well as related on-going clinical trials. Thereafter, the role of autophagy in the physiology of skeletal tissues is discussed, with a focus on recent genetic preclinical studies. Specifically, I discuss the mTOR-autophagy pathway in relationship to epiphyseal chondrocytes, articular chondrocytes, osteoblasts, osteocytes and osteoclasts and potential side effects of targeting either mTOR pathway or autophagy in general in connection with anti-cancer therapy. Current preclinical findings indicate that inhibiting autophagy will not seriously reduce bone mass and enhance osteoporosis. However, inhibition of autophagy might damage articular cartilage and cause osteoarthritis, whereas treatment with rapalogs might result in relatively beneficial effects on articular cartilage. Modulation of the mTOR pathway or autophagy during childhood may have an undesirable influence on adult height, as well as acquisition of bone mass.
Collapse
Affiliation(s)
- Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden.
| |
Collapse
|
309
|
Abstract
Osteoarthritis (OA) is the commonest chronic disease, with an estimated 9.6 % of men and 18.0 % of women aged over 60 years having symptomatic OA according to the World Health Organisation. Despite this prevalence, no therapies to slow disease progression are currently available. Oxidative stress has been described as an important factor in various diseases, and more recently in OA. Evidence for using antioxidants to reduce OA severity is slowly accumulating but further understanding of their chondroprotective mechanisms in joint tissues is still required to demonstrate potential benefit to patients. A new study implicates the transcriptional repressor Bach-1 and its downstream target HO-1 as important players in this process.
Collapse
Affiliation(s)
- Blandine Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
310
|
Abstract
Mechanistic target of rapamycin (mTOR, also known as mammalian target of rapamycin) is a ubiquitous serine/threonine kinase that regulates cell growth, proliferation and survival. These effects are cell-type-specific, and are elicited in response to stimulation by growth factors, hormones and cytokines, as well as to internal and external metabolic cues. Rapamycin was initially developed as an inhibitor of T-cell proliferation and allograft rejection in the organ transplant setting. Subsequently, its molecular target (mTOR) was identified as a component of two interacting complexes, mTORC1 and mTORC2, that regulate T-cell lineage specification and macrophage differentiation. mTORC1 drives the proinflammatory expansion of T helper (TH) type 1, TH17, and CD4(-)CD8(-) (double-negative, DN) T cells. Both mTORC1 and mTORC2 inhibit the development of CD4(+)CD25(+)FoxP3(+) T regulatory (TREG) cells and, indirectly, mTORC2 favours the expansion of T follicular helper (TFH) cells which, similarly to DN T cells, promote B-cell activation and autoantibody production. In contrast to this proinflammatory effect of mTORC2, mTORC1 favours, to some extent, an anti-inflammatory macrophage polarization that is protective against infections and tissue inflammation. Outside the immune system, mTORC1 controls fibroblast proliferation and chondrocyte survival, with implications for tissue fibrosis and osteoarthritis, respectively. Rapamycin (which primarily inhibits mTORC1), ATP-competitive, dual mTORC1/mTORC2 inhibitors and upstream regulators of the mTOR pathway are being developed to treat autoimmune, hyperproliferative and degenerative diseases. In this regard, mTOR blockade promises to increase life expectancy through treatment and prevention of rheumatic diseases.
Collapse
Affiliation(s)
- Andras Perl
- Division of Rheumatology, Departments of Medicine, Microbiology and Immunology, and Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, 750 East Adams Street, Syracuse, New York 13210, USA
| |
Collapse
|
311
|
Inflammation and intracellular metabolism: new targets in OA. Osteoarthritis Cartilage 2015; 23:1835-42. [PMID: 26521729 PMCID: PMC4668929 DOI: 10.1016/j.joca.2014.12.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 02/02/2023]
Abstract
Articular cartilage degeneration is hallmark of osteoarthritis (OA). Low-grade chronic inflammation in the joint can promote OA progression. Emerging evidence indicates that bioenergy sensors couple metabolism with inflammation to switch physiological and clinical phenotypes. Changes in cellular bioenergy metabolism can reprogram inflammatory responses, and inflammation can disturb cellular energy balance and increase cell stress. AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) are two critical bioenergy sensors that regulate energy balance at both cellular and whole-body levels. Dysregulation of AMPK and SIRT1 has been implicated in diverse human diseases and aging. This review reveals recent findings on the role of AMPK and SIRT1 in joint tissue homeostasis and OA, with a focus on how AMPK and SIRT1 in articular chondrocytes modulate intracellular energy metabolism during stress responses (e.g., inflammatory responses) and how these changes dictate specific effector functions, and discusses translational significance of AMPK and SIRT1 as new therapeutic targets for OA.
Collapse
|
312
|
Takada T, Miyaki S, Ishitobi H, Hirai Y, Nakasa T, Igarashi K, Lotz MK, Ochi M. Bach1 deficiency reduces severity of osteoarthritis through upregulation of heme oxygenase-1. Arthritis Res Ther 2015; 17:285. [PMID: 26458773 PMCID: PMC4603301 DOI: 10.1186/s13075-015-0792-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction BTB and CNC homology 1 (Bach1) is a transcriptional repressor of Heme oxygenase-1 (HO-1), which is cytoprotective through its antioxidant effects. The objective of this study was to define the role of Bach1 in cartilage homeostasis and osteoarthritis (OA) development using in vitro models and Bach1-/- mice. Methods HO-1 expression in Bach1-/- mice was analyzed by real-time PCR, immunohistochemistry and immunoblotting. Knee joints from Bach1-/- and wild-type mice with age-related OA and surgically-induced OA were evaluated by OA scoring systems. Levels of autophagy proteins and superoxide dismutase 2 (SOD2) were determined by immunohistochemistry. The relationship between HO-1 and the protective effects for OA was determined in chondrocytes treated with small interfering RNA (siRNA) targeting HO-1 gene. Results HO-1 expression decreased with aging in articular cartilages and menisci of mouse knees. Bach1-/- mice showed reduced severity of age-related OA and surgically-induced OA compared with wild-type mice. Microtubule-associated protein 1 light chain 3 (LC3), autophagy marker, and SOD2 were increased in articular cartilage of Bach1-/- mice compared with wild-type mice. Interleukin-1β (IL-1β) induced a significant increase in Adamts-5 in wild-type chondrocytes but not in Bach1-/- chondrocytes. The expression of SOD2 and the suppression of apoptosis in Bach1-/- chondrocytes were mediated by HO-1. Conclusions Bach1 deficiency reduces the severity of OA-like changes. This may be due to maintenance of cartilage homeostasis and joint health by antioxidant effects through HO-1 and downregulation of extracellular matrix degrading enzymes. These results suggest that inactivation of Bach1 is a novel target and signaling pathway in OA prevention.
Collapse
Affiliation(s)
- Tsuyoshi Takada
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan.
| | - Shigeru Miyaki
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan. .,Department of Regenerative Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan.
| | - Hiroyuki Ishitobi
- Department of Regenerative Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan.
| | - Yuya Hirai
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan.
| | - Tomoyuki Nakasa
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan.
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| | - Martin K Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Mitsuo Ochi
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan.
| |
Collapse
|
313
|
Dai Y, Hu S. Recent insights into the role of autophagy in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 2015; 55:403-10. [PMID: 26342228 DOI: 10.1093/rheumatology/kev337] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 12/19/2022] Open
Abstract
Autophagy appears to play a dual role in eukaryotic cells. It manifests cytoprotective effects through the regulation of catabolic processes and the clearance of pathogens; however, a correlation between autophagy and the pathogenesis of autoimmune/autoinflammatory conditions has recently been described. Autophagy has emerged as a mediator in the pathogenesis of RA. Autophagy may regulate apoptosis resistance and hyperplasia in synovial fibroblasts, promote osteoclastogenesis and stimulate osteoclast-mediated bone resorption through the delivery of citrullinated peptides to MHC compartments, which results in the activation of the innate and adaptive immune response, thereby resulting in RA. Given the likely importance of autophagy in the pathogenesis of RA, here we reviewed the detailed mechanisms concerning the pathogenicity of autophagy and autophagy proteins in RA.
Collapse
Affiliation(s)
- Yujie Dai
- Department of Rheumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoxian Hu
- Department of Rheumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
314
|
Caramés B, Olmer M, Kiosses WB, Lotz MK. The relationship of autophagy defects to cartilage damage during joint aging in a mouse model. Arthritis Rheumatol 2015; 67:1568-76. [PMID: 25708836 DOI: 10.1002/art.39073] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/10/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Aging is a main risk factor for osteo arthritis (OA), the most prevalent musculoskeletal disorder. Defects in autophagy, an essential cellular homeostasis mechanism, have recently been observed in OA articular cartilage. The objectives of this study were to establish the constitutive level of autophagy activation in normal cartilage and to monitor the temporal relationship between changes in autophagy and aging-related degradation of cartilage in a mouse model. METHODS In GFP-LC3-transgenic mice, green fluorescent protein (GFP)-light chain 3 (LC3) is ubiquitously expressed, and the accumulation of GFP puncta, representing autophagosomes, was quantified by confocal microscopy as a measure of autophagy activation. Expression of the autophagy proteins autophagy-related protein 5 (ATG-5) and microtubule-associated protein 1 light chain 3 (LC3) was analyzed by immunohistochemistry. Cartilage cellularity, apoptotic cell death, and cartilage structural damage and changes in synovium and bone were examined by histology and immunohistochemistry. RESULTS Basal autophagy activation was detected in liver and knee articular cartilage from young (6-month-old) mice, with higher levels in cartilage than in liver in the same animals. In 28-month-old mice, there was a statistically significant reduction in the total number of autophagic vesicles per cell (P < 0.01) and in the total area of vesicles per cell (P < 0.01) in the articular cartilage as compared to that from young 6-month-old mice. With increasing age, the expression of ATG-5 and LC3 decreased, and this was followed by a reduction in cartilage cellularity and an increase in the apoptosis marker poly(ADP-ribose) polymerase p85. Cartilage structural damage progressed in an age-dependent manner subsequent to the autophagy changes. CONCLUSION Autophagy is constitutively activated in normal cartilage. This is compromised with aging and precedes cartilage cell death and structural damage.
Collapse
Affiliation(s)
- Beatriz Caramés
- The Scripps Research Institute La Jolla California and Instituto de Investigación Biomédica de A Coruña Complexo Hospitalario Universitario de A Coruña SERGAS and Universidade da Coruña, A Coruña, Spain
| | - Merissa Olmer
- The Scripps Research Institute, La Jolla, California
| | | | - Martin K Lotz
- The Scripps Research Institute, La Jolla, California
| |
Collapse
|
315
|
Liu Z, Cai H, Zheng X, Zhang B, Xia C. The Involvement of Mutual Inhibition of ERK and mTOR in PLCγ1-Mediated MMP-13 Expression in Human Osteoarthritis Chondrocytes. Int J Mol Sci 2015; 16:17857-69. [PMID: 26247939 PMCID: PMC4576213 DOI: 10.3390/ijms160817857] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 01/29/2023] Open
Abstract
The issue of whether ERK activation determines matrix synthesis or degradation in osteoarthritis (OA) pathogenesis currently remains controversial. Our previous study shows that PLCγ1 and mTOR are involved in the matrix metabolism of OA cartilage. Investigating the interplays of PLCγ1, mTOR and ERK in matrix degradation of OA will facilitate future attempts to manipulate ERK in OA prevention and therapy. Here, cultured human normal chondrocytes and OA chondrocytes were treated with different inhibitors or transfected with expression vectors, respectively. The levels of ERK, p-ERK, PLCγ1, p-PLCγ1, mTOR, p-mTOR and MMP-13 were then evaluated by Western blotting analysis. The results manifested that the expression level of ERK in human OA chondrocytes was lower than that in human normal articular chondrocytes, and the up-regulation of ERK could promote matrix synthesis, including the decrease in MMP-13 level and the increase in Aggrecan level in human OA chondrocytes. Furthermore, the PLCγ1/ERK axis and a mutual inhibition of mTOR and ERK were observed in human OA chondrocytes. Interestingly, activated ERK had no inhibitory effect on MMP-13 expression in PLCγ1-transformed OA chondrocytes. Combined with our previous study, the non-effective state of ERK activation by PLCγ1 on MMP-13 may be partly attributed to the inhibition of the PLCγ1/mTOR axis on the PLCγ1/ERK axis. Therefore, the study indicates that the mutual inhibition of ERK and mTOR is involved in PLCγ1-mediated MMP-13 expression in human OA chondrocytes, with important implication for the understanding of OA pathogenesis as well as for its prevention and therapy.
Collapse
Affiliation(s)
- Zejun Liu
- Department of Sports Medicine & Joint Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361004, China.
- The People\\\'s Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Heguo Cai
- Department of Sports Medicine & Joint Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361004, China.
| | - Xinpeng Zheng
- Department of Sports Medicine & Joint Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361004, China.
| | - Bing Zhang
- Medical School, Xiamen University, Xiamen 361102, China.
| | - Chun Xia
- Department of Sports Medicine & Joint Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361004, China.
| |
Collapse
|
316
|
Emerging targets in osteoarthritis therapy. Curr Opin Pharmacol 2015; 22:51-63. [PMID: 25863583 DOI: 10.1016/j.coph.2015.03.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/17/2015] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is a destructive joint disease in which the initiation may be attributed to direct injury and mechanical disruption of joint tissues, but the progressive changes are dependent on active cell-mediated processes that can be observed or inferred during the generally long time-course of the disease. Based on clinical observations and experimental studies, it is now recognized a that it is possible for individual patients to exhibit common sets of symptoms and structural abnormalities due to distinct pathophysiological pathways that act independently or in combination. Recent research that has focused on the underlying mechanisms involving biochemical cross talk among the cartilage, synovium, bone, and other joint tissues within a background of poorly characterized genetic factors will be addressed in this review.
Collapse
|
317
|
Vasheghani F, Zhang Y, Li YH, Blati M, Fahmi H, Lussier B, Roughley P, Lagares D, Endisha H, Saffar B, Lajeunesse D, Marshall WK, Rampersaud YR, Mahomed NN, Gandhi R, Pelletier JP, Martel-Pelletier J, Kapoor M. PPARγ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Ann Rheum Dis 2015; 74:569-78. [PMID: 25573665 PMCID: PMC4345902 DOI: 10.1136/annrheumdis-2014-205743] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/18/2014] [Accepted: 12/07/2014] [Indexed: 11/15/2022]
Abstract
OBJECTIVES We have previously shown that peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor, is essential for the normal growth and development of cartilage. In the present study, we created inducible cartilage-specific PPARγ knockout (KO) mice and subjected these mice to the destabilisation of medial meniscus (DMM) model of osteoarthritis (OA) to elucidate the specific in vivo role of PPARγ in OA pathophysiology. We further investigated the downstream PPARγ signalling pathway responsible for maintaining cartilage homeostasis. METHODS Inducible cartilage-specific PPARγ KO mice were generated and subjected to DMM model of OA. We also created inducible cartilage-specific PPARγ/mammalian target for rapamycin (mTOR) double KO mice to dissect the PPARγ signalling pathway in OA. RESULTS Compared with control mice, PPARγ KO mice exhibit accelerated OA phenotype with increased cartilage degradation, chondrocyte apoptosis, and the overproduction of OA inflammatory/catabolic factors associated with the increased expression of mTOR and the suppression of key autophagy markers. In vitro rescue experiments using PPARγ expression vector reduced mTOR expression, increased expression of autophagy markers and reduced the expression of OA inflammatory/catabolic factors, thus reversing the phenotype of PPARγ KO mice chondrocytes. To dissect the in vivo role of mTOR pathway in PPARγ signalling, we created and subjected PPARγ-mTOR double KO mice to the OA model to see if the genetic deletion of mTOR in PPARγ KO mice (double KO) can rescue the accelerated OA phenotype observed in PPARγ KO mice. Indeed, PPARγ-mTOR double KO mice exhibit significant protection/reversal from OA phenotype. SIGNIFICANCE PPARγ maintains articular cartilage homeostasis, in part, by regulating mTOR pathway.
Collapse
Affiliation(s)
- Faezeh Vasheghani
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Yue Zhang
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Ying-Hua Li
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Meryem Blati
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Bertrand Lussier
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Peter Roughley
- Genetics Unit, Shriners Hospital, McGill University, Montreal, Quebec, Canada
| | - David Lagares
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Massachusetts, USA
| | - Helal Endisha
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Bahareh Saffar
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Daniel Lajeunesse
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Wayne K Marshall
- Division of Orthopedics, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Y Raja Rampersaud
- Division of Orthopedics, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Nizar N Mahomed
- Division of Orthopedics, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Rajiv Gandhi
- Division of Orthopedics, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
- Division of Orthopedics, Toronto Western Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
318
|
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the progressive loss of articular cartilage, remodeling of the subchondral bone, and synovial inflammation. Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that controls critical cellular processes such as growth, proliferation, and protein synthesis. Recent studies suggest that mTOR plays a vital role in cartilage growth and development and in altering the articular cartilage homeostasis as well as contributing to the process of cartilage degeneration associated with OA. Both pharmacological inhibition and genetic deletion of mTOR have been shown to reduce the severity of OA in preclinical mouse models. In this review article, we discuss the roles of mTOR in cartilage development, in maintaining articular cartilage homeostasis, and its potential as an OA therapeutic target.
Collapse
Affiliation(s)
- Bandna Pal
- Division of Genetics and Development, The Toronto Western Research Institute, Toronto Western Hospital, The University Health Network (UHN), 60 Leonard Avenue, Toronto, ON M5T 2S8 Canada
| | - Helal Endisha
- Division of Genetics and Development, The Toronto Western Research Institute, Toronto Western Hospital, The University Health Network (UHN), 60 Leonard Avenue, Toronto, ON M5T 2S8 Canada
| | - Yue Zhang
- Division of Genetics and Development, The Toronto Western Research Institute, Toronto Western Hospital, The University Health Network (UHN), 60 Leonard Avenue, Toronto, ON M5T 2S8 Canada
| | - Mohit Kapoor
- Division of Genetics and Development, The Toronto Western Research Institute, Toronto Western Hospital, The University Health Network (UHN), 60 Leonard Avenue, Toronto, ON M5T 2S8 Canada
- Department of Surgery, University of Toronto, Toronto, ON Canada
- Division of Orthopaedics, Toronto Western Hospital, Toronto, ON Canada
| |
Collapse
|
319
|
Affiliation(s)
- Francesco Dell'Accio
- William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Joanna Sherwood
- Institute for Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|