301
|
Bovbjerg ML. Current Resources for Evidence-Based Practice, March 2019. J Obstet Gynecol Neonatal Nurs 2019; 48:230-248. [PMID: 30735623 DOI: 10.1016/j.jogn.2019.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A review of new resources to support the provision of evidence-based care for women and infants.
Collapse
|
302
|
Kampmann U, Knorr S, Fuglsang J, Ovesen P. Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. J Diabetes Res 2019; 2019:5320156. [PMID: 31828161 PMCID: PMC6885766 DOI: 10.1155/2019/5320156] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
Insulin resistance changes over time during pregnancy, and in the last half of the pregnancy, insulin resistance increases considerably and can become severe, especially in women with gestational diabetes and type 2 diabetes. Numerous factors such as placental hormones, obesity, inactivity, an unhealthy diet, and genetic and epigenetic contributions influence insulin resistance in pregnancy, but the causal mechanisms are complex and still not completely elucidated. In this review, we strive to give an overview of the many components that have been ascribed to contribute to the insulin resistance in pregnancy. Knowledge about the causes and consequences of insulin resistance is of extreme importance in order to establish the best possible treatment during pregnancy as severe insulin resistance can result in metabolic dysfunction in both mother and offspring on a short as well as long-term basis.
Collapse
Affiliation(s)
- Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Sine Knorr
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jens Fuglsang
- Department of Obstetrics and Gynecology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Per Ovesen
- Department of Obstetrics and Gynecology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
303
|
Mottola MF, Davenport MH, Ruchat SM, Davies GA, Poitras VJ, Gray CE, Jaramillo Garcia A, Barrowman N, Adamo KB, Duggan M, Barakat R, Chilibeck P, Fleming K, Forte M, Korolnek J, Nagpal T, Slater LG, Stirling D, Zehr L. 2019 Canadian guideline for physical activity throughout pregnancy. Br J Sports Med 2018; 52:1339-1346. [DOI: 10.1136/bjsports-2018-100056] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2018] [Indexed: 01/01/2023]
Abstract
The objective is to provide guidance for pregnant women and obstetric care and exercise professionals on prenatal physical activity. The outcomes evaluated were maternal, fetal or neonatal morbidity, or fetal mortality during and following pregnancy. Literature was retrieved through searches of MEDLINE, EMBASE, PsycINFO, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, Scopus and Web of Science Core Collection, CINAHL Plus with Full Text, Child Development & Adolescent Studies, Education Resources Information Center, SPORTDiscus, ClinicalTrials.gov and the Trip Database from inception up to 6 January 2017. Primary studies of any design were eligible, except case studies. Results were limited to English-language, Spanish-language or French-language materials. Articles related to maternal physical activity during pregnancy reporting on maternal, fetal or neonatal morbidity, or fetal mortality were eligible for inclusion. The quality of evidence was rated using the Grading of Recommendations Assessment, Development and Evaluation methodology. The Guidelines Consensus Panel solicited feedback from end users (obstetric care providers, exercise professionals, researchers, policy organisations, and pregnant and postpartum women). The development of these guidelines followed the Appraisal of Guidelines for Research and Evaluation II instrument. The benefits of prenatal physical activity are moderate and no harms were identified; therefore, the difference between desirable and undesirable consequences (net benefit) is expected to be moderate. The majority of stakeholders and end users indicated that following these recommendations would be feasible, acceptable and equitable. Following these recommendations is likely to require minimal resources from both individual and health systems perspectives.
Collapse
|
304
|
2019 Canadian Guideline for Physical Activity Throughout Pregnancy: Methodology. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2018; 40:1468-1483. [PMID: 30343979 DOI: 10.1016/j.jogc.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
305
|
Davenport MH, Meah VL, Ruchat SM, Davies GA, Skow RJ, Barrowman N, Adamo KB, Poitras VJ, Gray CE, Jaramillo Garcia A, Sobierajski F, Riske L, James M, Kathol AJ, Nuspl M, Marchand AA, Nagpal TS, Slater LG, Weeks A, Barakat R, Mottola MF. Impact of prenatal exercise on neonatal and childhood outcomes: a systematic review and meta-analysis. Br J Sports Med 2018; 52:1386-1396. [DOI: 10.1136/bjsports-2018-099836] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
Abstract
ObjectiveWe aimed to identify the relationship between maternal prenatal exercise and birth complications, and neonatal and childhood morphometric, metabolic and developmental outcomes.DesignSystematic review with random-effects meta-analysis and meta-regression.Data sourcesOnline databases were searched up to 6 January 2017.Study eligibility criteriaStudies of all designs were eligible (except case studies and reviews) if published in English, Spanish or French, and contained information on the relevant population (pregnant women without contraindication to exercise), intervention (subjective/objective measures of frequency, intensity, duration, volume or type of exercise, alone (‘exercise-only’) or in combination with other intervention components (eg, dietary; ‘exercise+cointervention’)), comparator (no exercise or different frequency, intensity, duration, volume, type or trimester of exercise) and outcomes (preterm birth, gestational age at delivery, birth weight, low birth weight (<2500 g), high birth weight (>4000 g), small for gestational age, large for gestational age, intrauterine growth restriction, neonatal hypoglycaemia, metabolic acidosis (cord blood pH, base excess), hyperbilirubinaemia, Apgar scores, neonatal intensive care unit admittance, shoulder dystocia, brachial plexus injury, neonatal body composition (per cent body fat, body weight, body mass index (BMI), ponderal index), childhood obesity (per cent body fat, body weight, BMI) and developmental milestones (including cognitive, psychosocial, motor skills)).ResultsA total of 135 studies (n=166 094) were included. There was ‘high’ quality evidence from exercise-only randomised controlled trials (RCTs) showing a 39% reduction in the odds of having a baby >4000 g (macrosomia: 15 RCTs, n=3670; OR 0.61, 95% CI 0.41 to 0.92) in women who exercised compared with women who did not exercise, without affecting the odds of growth-restricted, preterm or low birth weight babies. Prenatal exercise was not associated with the other neonatal or infant outcomes that were examined.ConclusionsPrenatal exercise is safe and beneficial for the fetus. Maternal exercise was associated with reduced odds of macrosomia (abnormally large babies) and was not associated with neonatal complications or adverse childhood outcomes.
Collapse
|
306
|
Davenport MH, Sobierajski F, Mottola MF, Skow RJ, Meah VL, Poitras VJ, Gray CE, Jaramillo Garcia A, Barrowman N, Riske L, James M, Nagpal TS, Marchand AA, Slater LG, Adamo KB, Davies GA, Barakat R, Ruchat SM. Glucose responses to acute and chronic exercise during pregnancy: a systematic review and meta-analysis. Br J Sports Med 2018; 52:1357-1366. [DOI: 10.1136/bjsports-2018-099829] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2018] [Indexed: 11/03/2022]
Abstract
ObjectiveTo perform a systematic review and meta-analysis to explore the relationship between prenatal exercise and glycaemic control.DesignSystematic review with random-effects meta-analysis and meta-regression.Data sourcesOnline databases were searched up to 6 January 2017.Study eligibility criteriaStudies of all designs were included (except case studies and reviews) if they were published in English, Spanish or French, and contained information on the population (pregnant women without contraindication to exercise), intervention (subjective or objective measures of frequency, intensity, duration, volume or type of acute or chronic exercise, alone (‘exercise-only’) or in combination with other intervention components (eg, dietary; ‘exercise+cointervention’) at any stage of pregnancy), comparator (no exercise or different frequency, intensity, duration, volume and type of exercise) and outcome (glycaemic control).ResultsA total of 58 studies (n=8699) were included. There was ‘very low’ quality evidence showing that an acute bout of exercise was associated with a decrease in maternal blood glucose from before to during exercise (6 studies, n=123; mean difference (MD) −0.94 mmol/L, 95% CI −1.18 to −0.70, I2=41%) and following exercise (n=333; MD −0.57 mmol/L, 95% CI −0.72 to −0.41, I2=72%). Subgroup analysis showed that there were larger decreases in blood glucose following acute exercise in women with diabetes (n=26; MD −1.42, 95% CI −1.69 to −1.16, I2=8%) compared with those without diabetes (n=285; MD −0.46, 95% CI −0.60 to −0.32, I2=62%). Finally, chronic exercise-only interventions reduced fasting blood glucose compared with no exercise postintervention in women with diabetes (2 studies, n=70; MD −2.76, 95% CI −3.18 to −2.34, I2=52%; ‘low’ quality of evidence), but not in those without diabetes (9 studies, n=2174; MD −0.05, 95% CI −0.16 to 0.05, I2=79%).ConclusionAcute and chronic prenatal exercise reduced maternal circulating blood glucose concentrations, with a larger effect in women with diabetes.
Collapse
|