301
|
Ramishetti S, Peer D. Engineering lymphocytes with RNAi. Adv Drug Deliv Rev 2019; 141:55-66. [PMID: 30529305 DOI: 10.1016/j.addr.2018.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/31/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Lymphocytes are the gatekeepers of the body's immune system and are involved in pathogenesis if their surveillance is stalled by inhibitory molecules or when they act as mediators for viral entry. Engineering lymphocytes in order to restore their functions is an unmet need in immunological disorders, cancer and in lymphotropic viral infections. Recently, the FDA approved several therapeutic antibodies for blocking inhibitory signals on T cells. This has revolutionized the field of solid tumor care, together with chimeric antigen receptor T cell (CAR-T) therapy that did the same for hematological malignancies. RNA interference (RNAi) is a promising approach where gene function can be inhibited in almost all types of cells. However, manipulation of genes in lymphocyte subsets are difficult due to their hard-to-transfect nature and in vivo targeting remains challenging as they are dispersed throughout the body. The ability of RNAi molecules to gain entry into cells is almost impossible without delivery strategy. Nanotechnology approaches are rapidly growing and their impact in the field of drug and gene delivery applications to transport payloads inside cells have been extensively studied. Here we discuss various technologies available for RNAi delivery to lymphocytes. We shed light on the importance of targeting molecules in order to target lymphocytes in vivo. In addition, we discuss recent developments of RNAi delivery to lymphocyte subsets, and detail the potential implication for the future of molecular medicine in leukocytes implicated diseases.
Collapse
|
302
|
IGBT-Based Pulsed Electric Fields Generator for Disinfection: Design and In Vitro Studies on Pseudomonas aeruginosa. Ann Biomed Eng 2019; 47:1314-1325. [PMID: 30726513 DOI: 10.1007/s10439-019-02225-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/30/2019] [Indexed: 01/20/2023]
Abstract
Irreversible electroporation of cell membrane with pulsed electric fields is an emerging physical method for disinfection that aims to reduce the doses and volumes of used antibiotics for wound healing. Here we report on the design of the IGBT-based pulsed electric field generator that enabled eradication of multidrug resistant Pseudomonas aeruginosa PAO1 on the gel. Using a concentric electric configuration we determined that the lower threshold of the electric field required to kill P. aeruginosa PAO1 was 89.28 ± 12.89 V mm-1, when 200 square pulses of 300 µs duration are delivered at 3 Hz. These parameters disinfected 38.14 ± 0.79 mm2 area around the single needle electrode. This study provides a step towards the design of equipment required for multidrug-resistant bacteria disinfection in patients with pulsed electric fields.
Collapse
|
303
|
Ruzgys P, Jakutavičiūtė M, Šatkauskienė I, Čepurnienė K, Šatkauskas S. Effect of electroporation medium conductivity on exogenous molecule transfer to cells in vitro. Sci Rep 2019; 9:1436. [PMID: 30723286 PMCID: PMC6363740 DOI: 10.1038/s41598-018-38287-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/21/2018] [Indexed: 12/02/2022] Open
Abstract
In this study we evaluated the influence of medium conductivity to propidium iodide (PI) and bleomycin (BLM) electroporation mediated transfer to cells. Inverse dependency between the extracellular conductivity and the efficiency of the transfer had been found. Using 1 high voltage (HV) pulse, the total molecule transfer efficiency decreased 4.67 times when external medium conductivity increased from 0.1 to 0.9 S/m. Similar results had been found using 2 HV and 3 HV pulses. The percentage of cells killed by BLM electroporation mediated transfer had also decreased with the conductivity increase, from 79% killed cells in 0.1 S/m conductivity medium to 28% killed cells in 0.9 S/m conductivity medium. We hypothesize that the effect of external medium conductivity on electroporation mediated transfer is triggered by cell deformation during electric field application. In high conductivity external medium cell assumes oblate shape, which causes a change of voltage distribution on the cell membrane, leading to lower electric field induced transmembrane potential. On the contrary, low conductivity external medium leads to prolate cell shape and increased transmembrane potential at the electrode facing cell poles.
Collapse
Affiliation(s)
- Paulius Ruzgys
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania
| | - Milda Jakutavičiūtė
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania
| | - Ingrida Šatkauskienė
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania
| | - Karolina Čepurnienė
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania
| | - Saulius Šatkauskas
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania.
| |
Collapse
|
304
|
Molecular and histological study on the effects of electrolytic electroporation on the liver. Bioelectrochemistry 2019; 125:79-89. [DOI: 10.1016/j.bioelechem.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023]
|
305
|
Rems L, Viano M, Kasimova MA, Miklavčič D, Tarek M. The contribution of lipid peroxidation to membrane permeability in electropermeabilization: A molecular dynamics study. Bioelectrochemistry 2019; 125:46-57. [DOI: 10.1016/j.bioelechem.2018.07.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 01/04/2023]
|
306
|
Vera-Tizatl AL, Vera-Tizatl CE, Vera-Hernández A, Leija-Salas L, Rodríguez S, Miklavčič D, Kos B. Computational Feasibility Analysis of Electrochemotherapy With Novel Needle-Electrode Arrays for the Treatment of Invasive Breast Ductal Carcinoma. Technol Cancer Res Treat 2019; 17:1533033818794939. [PMID: 30157721 PMCID: PMC6116067 DOI: 10.1177/1533033818794939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Breast cancer represents a rising problem concerning public health worldwide. Current efforts are aimed to the development of new minimally invasive and conservative treatment procedures for this disease. A treatment approach for invasive breast ductal carcinoma could be based on electroporation. Hence, in order to determine the effectiveness of electrochemotherapy in the treatment of this disease, 12 electrode models were investigated on realistic patient-specific computational breast models of 3 patients diagnosed by Digital Breast Tomosynthesis imaging. The electrode models exhibit 4, 5, and 6 needles arranged in 4 geometric configurations (delta, diamond, and star) and 3 different needle spacing resulting in a total of 12 needle-electrode arrays. Electric field distribution in the tumors and a surrounding safety margin of 1 cm around the tumor edge is computed using the finite element method. Efficiency of the electrode arrays was determined hierarchically based on (1) percentage of tumor volume reversibly electroporated, (2) percentage of tumor volume irreversibly electroporated, (3) percentage of treated safety margin volume, (4) minimal invasiveness, that is, minimal number of electrodes used, (5) minimal activated electrode pairs, and (6) minimal electric current. Results show that 3 electrode arrays (4 needle-delta, 5 needle-diamond, and 6 needle-star) with fixed-geometry configuration could be used in the treatment with electrochemotherapy of invasive breast ductal carcinomas ranging from 1 to 5 cm3 along with a surrounding safety margin of 1 cm.
Collapse
Affiliation(s)
- Adriana Leticia Vera-Tizatl
- 1 Department of Electrical Engineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Claudia Elizabeth Vera-Tizatl
- 2 Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Arturo Vera-Hernández
- 1 Department of Electrical Engineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Lorenzo Leija-Salas
- 1 Department of Electrical Engineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | | | - Damijan Miklavčič
- 4 Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Bor Kos
- 4 Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
307
|
Zhang Y, Yu J, Kahkoska AR, Wang J, Buse JB, Gu Z. Advances in transdermal insulin delivery. Adv Drug Deliv Rev 2019; 139:51-70. [PMID: 30528729 PMCID: PMC6556146 DOI: 10.1016/j.addr.2018.12.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/06/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Insulin therapy is necessary to regulate blood glucose levels for people with type 1 diabetes and commonly used in advanced type 2 diabetes. Although subcutaneous insulin administration via hypodermic injection or pump-mediated infusion is the standard route of insulin delivery, it may be associated with pain, needle phobia, and decreased adherence, as well as the risk of infection. Therefore, transdermal insulin delivery has been widely investigated as an attractive alternative to subcutaneous approaches for diabetes management in recent years. Transdermal systems designed to prevent insulin degradation and offer controlled, sustained release of insulin may be desirable for patients and lead to increased adherence and glycemic outcomes. A challenge for transdermal insulin delivery is the inefficient passive insulin absorption through the skin due to the large molecular weight of the protein drug. In this review, we focus on the different transdermal insulin delivery techniques and their respective advantages and limitations, including chemical enhancers-promoted, electrically enhanced, mechanical force-triggered, and microneedle-assisted methods.
Collapse
Affiliation(s)
- Yuqi Zhang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Anna R Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; California NanoSystems Institute, Jonsson Comprehensive Cancer Center, Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
308
|
Pomatto MAC, Bussolati B, D'Antico S, Ghiotto S, Tetta C, Brizzi MF, Camussi G. Improved Loading of Plasma-Derived Extracellular Vesicles to Encapsulate Antitumor miRNAs. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:133-144. [PMID: 30788382 PMCID: PMC6370572 DOI: 10.1016/j.omtm.2019.01.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 12/26/2022]
Abstract
Extracellular vesicles (EVs) carry various molecules involved in intercellular communication and have raised great interest as drug delivery systems. Several engineering methods have been investigated for vesicle loading. Here, we studied the electroporation of EVs isolated from plasma to load antitumor microRNAs (miRNAs). First, we optimized the transfection protocol using miRNA cel-39 by evaluating different parameters (voltage and pulse) for their effect on vesicle morphology, loading capacity, and miRNA transfer to target cells. When compared with direct incubation of EVs with miRNA, mild electroporation allowed more efficient loading and better protection of miRNA from RNase degradation. Moreover, electroporation preserved the naive vesicle cargo, including RNAs and proteins, and their ability to be taken up by target cells, supporting the absence of vesicle damage. EVs engineered with antitumor miRNAs (miR-31 and miR-451a) successfully promoted apoptosis of the HepG2 hepatocellular carcinoma cell line, silencing target genes involved in anti-apoptotic pathways. Our findings indicate an efficient and functional miRNA encapsulation in plasma-derived EVs following an electroporation protocol that preserves EV integrity.
Collapse
Affiliation(s)
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Sergio D'Antico
- Blood Bank, A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Sara Ghiotto
- Blood Bank, A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | | | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.,2i3T Scarl, Univerity of Turin, 10126 Turin, Italy
| |
Collapse
|
309
|
Zakelj MN, Prevc A, Kranjc S, Cemazar M, Todorovic V, Savarin M, Scancar J, Kosjek T, Groselj B, Strojan P, Sersa G. Electrochemotherapy of radioresistant head and neck squamous cell carcinoma cells and tumor xenografts. Oncol Rep 2019; 41:1658-1668. [PMID: 30628709 PMCID: PMC6365705 DOI: 10.3892/or.2019.6960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
Electrochemotherapy is an established local ablative method used for the treatment of different tumor types, including tumors of the head and neck area. Clinical studies have demonstrated a lower response rate of tumors that recur in pre-irradiated area. The aim of the present study was to explore the response of experimentally induced radioresistant cells and tumors to electrochemotherapy with cisplatin or bleomycin. The radioresistant cells (FaDu-RR) were established by fractionated irradiation of parental human squamous cell carcinoma cell line, FaDu. We compared the 2 cell lines in response to chemotherapy and electrochemotherapy with cisplatin or bleomycin in vitro and in vivo. Using specific mass spectrometry-based analytical methods we determined the difference in the uptake of chemotherapeutics in tumors after electrochemotherapy. Additionally, we compared the capacity of the cells to repair DNA double-strand breaks (DSB) after exposure to the drugs used in electrochemotherapy with the γH2AX foci resolution determined by immunofluorescence microscopy. Our results indicate radio- and cisplatin cross-resistance, confirmed with the lower response rate of radioresistant tumors after electrochemotherapy with cisplatin. On the other hand, the sensitivity to electrochemotherapy with bleomycin was similar in both cell lines and tumors. While the uptake of chemotherapeutics after electrochemotherapy was comparable in both tumor models, there was a difference between the cell lines in capacity to repair DNA DSB-the radioresistant cells had a lower level of DSB and faster DNA repair rate after exposure to both, cisplatin or bleomycin. Due to the higher complete response rate after electrochemotherapy with bleomycin than with cisplatin, we conclude that the results favor bleomycin-over cisplatin-based electrochemotherapy for treatment of radioresistant tumors and/or tumors that regrow after radiotherapy.
Collapse
Affiliation(s)
- Martina Niksic Zakelj
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Ajda Prevc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Simona Kranjc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Vesna Todorovic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Monika Savarin
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Janez Scancar
- Department of Environmental Sciences, Jozef Stefan Institute, SI‑1000 Ljubljana, Slovenia
| | - Tina Kosjek
- Department of Environmental Sciences, Jozef Stefan Institute, SI‑1000 Ljubljana, Slovenia
| | - Blaz Groselj
- Department of Radiation Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Primoz Strojan
- Faculty of Medicine, University of Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| |
Collapse
|
310
|
Dermol-Cerne J, Miklavcic D. From Cell to Tissue Properties-Modeling Skin Electroporation With Pore and Local Transport Region Formation. IEEE Trans Biomed Eng 2019; 65:458-468. [PMID: 29364121 DOI: 10.1109/tbme.2017.2773126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current models of tissue electroporation either describe tissue with its bulk properties or include cell level properties, but model only a few cells of simple shapes in low-volume fractions or are in two dimensions. We constructed a three-dimensional model of realistically shaped cells in realistic volume fractions. By using a 'unit cell' model, the equivalent dielectric properties of whole tissue could be calculated. We calculated the dielectric properties of electroporated skin. We modeled electroporation of single cells by pore formation on keratinocytes and on the papillary dermis which gave dielectric properties of the electroporated epidermis and papillary dermis. During skin electroporation, local transport regions are formed in the stratum corneum. We modeled local transport regions and increase in their radii or density which affected the dielectric properties of the stratum corneum. The final model of skin electroporation accurately describes measured electric current and voltage drop on the skin during electroporation with long low-voltage pulses. The model also accurately describes voltage drop on the skin during electroporation with short high-voltage pulses. However, our results indicate that during application of short high-voltage pulses additional processes may occur which increase the electric current. Our model connects the processes occurring at the level of cell membranes (pore formation), at the level of a skin layer (formation of local transport region in the stratum corneum) with the tissue (skin layers) and even level of organs (skin). Using a similar approach, electroporation of any tissue can be modeled, if the morphology of the tissue is known.
Collapse
|
311
|
Konopacki M, Rakoczy R. The analysis of rotating magnetic field as a trigger of Gram-positive and Gram-negative bacteria growth. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
312
|
Abstract
The clustered regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system functions like an adaptive immune system in a variety of microbes and has recently been engineered as a powerful tool for manipulating genomic sequences in a huge variety of cell types. In mammals, CRISPR/Cas9 has the potential to bring curative therapies to patients with genetic diseases, although it remained unknown whether suitable in vivo methods for its use are feasible. It is now appreciated that the efficient delivery of these genome-editing tools into most tissue types, including skin, remains a major challenge. Here, we describe a detailed protocol for performing in vivo gene editing of genomic sequences in mouse skin stem cells using Cas9/sgRNAs ribonucleoproteins in combination with electrotransfer technology. We here present all of the required methods needed for the protocol, including molecular cloning, in vitro sgRNA expression and sgRNA purification, Cas9 protein purification, and in vivo delivery of cas9 ribonucleoproteins. This protocol provides a novel in vivo gene editing strategy using ribonucleoproteins for skin stem cells and can potentially be used as curative treatment for genetic diseases in skin and other somatic tissues.
Collapse
Affiliation(s)
- Wenbo Wu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Ting Chen
- National Institute of Biological Sciences, Beijing, China.
| |
Collapse
|
313
|
Abstract
Electroporation technique is widely used in biotechnology and medicine for the transport of various molecules through the membranes of biological cells. Different mathematical models of electroporation have been proposed in the literature to study pore formation in plasma and nuclear membranes. These studies are mainly based on models using a single isolated cell with a canonical shape. In this work, a space–time (x,y,t) multiphysics model based on quasi-static Maxwell’s equations and nonlinear Smoluchowski’s equation has been developed to investigate the electroporation phenomenon induced by pulsed electric field in multicellular systems having irregularly shape. The dielectric dispersion of the cell compartments such as nuclear and plasmatic membranes, cytoplasm, nucleoplasm and external medium have been incorporated into the numerical algorithm, too. Moreover, the irregular cell shapes have been modeled by using the Gielis transformations.
Collapse
|
314
|
Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Adv Drug Deliv Rev 2019; 138:56-67. [PMID: 30414494 DOI: 10.1016/j.addr.2018.10.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/05/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Electric fields are among physical stimuli that have revolutionized therapy. Occurring endogenously or exogenously, the electric field can be used as a trigger for controlled drug release from electroresponsive drug delivery systems, can stimulate wound healing and cell proliferation, may enhance endocytosis or guide stem cell differentiation. Electric field pulses may be applied to induce cell fusion, can increase the penetration of therapeutic agents into cells, or can be applied as a standalone therapy to ablate tumors. This review describes the main therapeutic trends and overviews the main physical, chemical and biological mechanisms underlying the actions of electric fields. Overall, the electric field can be used in therapeutic approaches in several ways. The electric field can act on drug carriers, cells and tissues. Understanding the multiple effects of this powerful tool will help harnessing its full therapeutic potential in an efficient and safe way.
Collapse
|
315
|
Pintar M, Langus J, Edhemović I, Brecelj E, Kranjc M, Sersa G, Šuštar T, Rodič T, Miklavčič D, Kotnik T, Kos B. Time-Dependent Finite Element Analysis of In Vivo Electrochemotherapy Treatment. Technol Cancer Res Treat 2018; 17:1533033818790510. [PMID: 30089424 PMCID: PMC6083743 DOI: 10.1177/1533033818790510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrochemotherapy and irreversible electroporation are gaining importance in clinical practice for the treatment of solid tumors. For successful treatment, it is extremely important that the coverage and exposure time of the treated tumor to the electric field are within the specified range. In order to ensure successful coverage of the entire target volume with sufficiently strong electric fields, numerical treatment planning has been proposed and its use has also been demonstrated in practice. Most of numerical models in treatment planning are based on charge conservation equation and are not able to provide time course of electric current, electrical conductivity, or electric field distribution changes established in the tissue during pulse delivery. Recently, a model based on inverse analysis of experimental data that delivers time course of tissue electroporation has been introduced. The aim of this study was to apply the previously reported time-dependent numerical model to a complex in vivo example of electroporation with different tissue types and with a long-term follow-up. The model, consisting of a tumor placed in the liver with 2 needle electrodes inserted in the center of the tumor and 4 around the tumor, was validated by comparison of measured and calculated time course of applied electric current. Results of simulations clearly indicated that proposed numerical model can successfully capture transient effects, such as evolution of electric current during each pulse, and effects of pulse frequency due to electroporation effects in the tissue. Additionally, the model can provide evolution of electric field amplitude and electrical conductivity in the tumor with consecutive pulse sequences.
Collapse
Affiliation(s)
| | | | | | - Erik Brecelj
- 2 Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Matej Kranjc
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- 2 Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | - Tomaž Rodič
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavčič
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Kotnik
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Bor Kos
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
316
|
Du X, Wang J, Zhou Q, Zhang L, Wang S, Zhang Z, Yao C. Advanced physical techniques for gene delivery based on membrane perforation. Drug Deliv 2018; 25:1516-1525. [PMID: 29968512 PMCID: PMC6058615 DOI: 10.1080/10717544.2018.1480674] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gene delivery as a promising and valid tool has been used for treating many serious diseases that conventional drug therapies cannot cure. Due to the advancement of physical technology and nanotechnology, advanced physical gene delivery methods such as electroporation, magnetoporation, sonoporation and optoporation have been extensively developed and are receiving increasing attention, which have the advantages of briefness and nontoxicity. This review introduces the technique detail of membrane perforation, with a brief discussion for future development, with special emphasis on nanoparticles mediated optoporation that have developed as an new alternative transfection technique in the last two decades. In particular, the advanced physical approaches development and new technology are highlighted, which intends to stimulate rapid advancement of perforation techniques, develop new delivery strategies and accelerate application of these techniques in clinic.
Collapse
Affiliation(s)
- Xiaofan Du
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Jing Wang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Quan Zhou
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Luwei Zhang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Sijia Wang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Zhenxi Zhang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Cuiping Yao
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| |
Collapse
|
317
|
Lu Y, Hu Q, Jiang C, Gu Z. Platelet for drug delivery. Curr Opin Biotechnol 2018; 58:81-91. [PMID: 30529814 DOI: 10.1016/j.copbio.2018.11.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/14/2018] [Indexed: 01/09/2023]
Abstract
Platelets play a vital physiological role in hemostasis, inflammation and tissue regeneration, which are associated with wound healing as well as cancer development and metastasis. These years, a variety of platelet-mediated drug delivery approaches have been developed due to their unique properties, such as quick replenishment and site-specific activation/adhesion. In this Current Opinion, focuses are put on strategies leveraging the physiological functions of platelets for the design of drug delivery systems, including platelet engineering, platelet hitchhiking, membrane coating, synthetic platelet fabrication and platelet-triggered drug release for different applications.
Collapse
Affiliation(s)
- Yifei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Quanyin Hu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, Jonsson Comprehensive Cancer Center, and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
318
|
Silve A, Kian CB, Papachristou I, Kubisch C, Nazarova N, Wüstner R, Leber K, Strässner R, Frey W. Incubation time after pulsed electric field treatment of microalgae enhances the efficiency of extraction processes and enables the reduction of specific treatment energy. BIORESOURCE TECHNOLOGY 2018; 269:179-187. [PMID: 30172181 DOI: 10.1016/j.biortech.2018.08.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Pulsed Electric Field (PEF) pre-treatment, applied on fresh microalgae Auxenochlorella protothecoides, induces spontaneous release of a substantial water fraction and enables subsequent lipid extraction using ethanol-hexane blends. In this study, fresh microalgae suspensions were treated with PEF and incubated under inert conditions. Incubation promotes the release of ions and carbohydrates and increases the yields of subsequent lipid extraction thus enabling a considerable reduction of PEF-treatment energy. With a 20 h incubation period at 25 °C, almost total lipid extraction is achieved with a specific PEF-treatment energy of only 0.25 MJ/kgDW. Incubation on ice remains beneficial but less efficient than at 25 °C. Additionally, incubating microalgae cells in suspension at 100gDW/L or in a dense paste, was almost equally efficient. Correlation between the different results suggests that spontaneous release of ions and carbohydrates facilitates more successful lipid extraction. A direct causality between the two phenomena remains to be demonstrated.
Collapse
Affiliation(s)
- Aude Silve
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Eggenstein-Leopoldshafen, Germany.
| | - Chua Boon Kian
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Eggenstein-Leopoldshafen, Germany
| | - Ioannis Papachristou
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Eggenstein-Leopoldshafen, Germany
| | - Christin Kubisch
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Eggenstein-Leopoldshafen, Germany
| | - Natalja Nazarova
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Eggenstein-Leopoldshafen, Germany
| | - Rüdiger Wüstner
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Eggenstein-Leopoldshafen, Germany
| | - Klaus Leber
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Eggenstein-Leopoldshafen, Germany
| | - Ralf Strässner
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Frey
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
319
|
Li X, Saeidi N, Villiger M, Albadawi H, Jones JD, Quinn KP, Austin WG, Golberg A, Yarmush ML. Rejuvenation of aged rat skin with pulsed electric fields. J Tissue Eng Regen Med 2018; 12:2309-2318. [PMID: 30353675 DOI: 10.1002/term.2763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
The demand for skin rejuvenation procedures has progressively increased in the past decade. Additionally, clinical trials have shown that current therapies might cause downtime and side effects in patients including prolonged erythema, scarring, and dyspigmentation. The goal of this study was to explore the effect of partial irreversible electroporation (pIRE) with pulsed electric fields in aged skin rejuvenation as a novel, non-invasive skin resurfacing technique. In this study, we used an experimental model of aged rats. We showed that treatment with pIRE promoted keratinocyte proliferation and blood flow in aged rat skin. We also found significant evidence indicating that pIRE reformed the dermal extracellular matrix (ECM). Both the collagen protein and fibre density in aged skin increased after pIRE administration. Furthermore, using an image-processing algorithm, we found that the collagen fibre orientation in the histological sections did not change, indicating a lack of scar formation in the treated areas. The results showed that pIRE approach could effectively stimulate keratinocyte proliferation, ECM synthesis, and angiogenesis in an aged rat model.
Collapse
Affiliation(s)
- Xiaoxiang Li
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Burns Hospital, Boston, Massachusetts.,Orthopedics Oncology Institute of Chinese PLA, Department of Orthopedics, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Nima Saeidi
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Burns Hospital, Boston, Massachusetts
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hassan Albadawi
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jake D Jones
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - William G Austin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexander Golberg
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Burns Hospital, Boston, Massachusetts.,Porter School of Environmental and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Martin L Yarmush
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Burns Hospital, Boston, Massachusetts.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
320
|
Hong ZY, Zhang ZL, Tang B, Ao J, Wang C, Yu C, Pang DW. Equipping Inner Central Components of Influenza A Virus with Quantum Dots. Anal Chem 2018; 90:14020-14028. [DOI: 10.1021/acs.analchem.8b03995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zheng-Yuan Hong
- Key Laboratory
of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key
Laboratory of Virology, The Institute for Advanced Studies, and Wuhan
Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
- PET-CT/MRI Center, Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Zhi-Ling Zhang
- Key Laboratory
of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key
Laboratory of Virology, The Institute for Advanced Studies, and Wuhan
Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Bo Tang
- Key Laboratory
of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key
Laboratory of Virology, The Institute for Advanced Studies, and Wuhan
Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jian Ao
- Key Laboratory
of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key
Laboratory of Virology, The Institute for Advanced Studies, and Wuhan
Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chuan Wang
- Key Laboratory
of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key
Laboratory of Virology, The Institute for Advanced Studies, and Wuhan
Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Cong Yu
- Key Laboratory
of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key
Laboratory of Virology, The Institute for Advanced Studies, and Wuhan
Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dai-Wen Pang
- Key Laboratory
of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key
Laboratory of Virology, The Institute for Advanced Studies, and Wuhan
Institute of Biotechnology, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
321
|
Poompavai S, Gowri Sree V. Dielectric Property Measurement of Breast—Tumor Phantom Model Under Pulsed Electric Field Treatment. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2018.2868818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
322
|
Raun A, Saklayen N, Zgrabik C, Shen W, Madrid M, Huber M, Hu E, Mazur E. A comparison of inverted and upright laser-activated titanium nitride micropyramids for intracellular delivery. Sci Rep 2018; 8:15595. [PMID: 30349063 PMCID: PMC6197185 DOI: 10.1038/s41598-018-33885-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
The delivery of biomolecules into cells relies on porating the plasma membrane to allow exterior molecules to enter the cell via diffusion. Various established delivery methods, including electroporation and viral techniques, come with drawbacks such as low viability or immunotoxicity, respectively. An optics-based delivery method that uses laser pulses to excite plasmonic titanium nitride (TiN) micropyramids presents an opportunity to overcome these shortcomings. This laser excitation generates localized nano-scale heating effects and bubbles, which produce transient pores in the cell membrane for payload entry. TiN is a promising plasmonic material due to its high hardness and thermal stability. In this study, two designs of TiN micropyramid arrays are constructed and tested. These designs include inverted and upright pyramid structures, each coated with a 50-nm layer of TiN. Simulation software shows that the inverted and upright designs reach temperatures of 875 °C and 307 °C, respectively, upon laser irradiation. Collectively, experimental results show that these reusable designs achieve maximum cell poration efficiency greater than 80% and viability greater than 90% when delivering calcein dye to target cells. Overall, we demonstrate that TiN microstructures are strong candidates for future use in biomedical devices for intracellular delivery and regenerative medicine.
Collapse
Affiliation(s)
- Alexander Raun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Nabiha Saklayen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Christine Zgrabik
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Weilu Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Marinna Madrid
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Marinus Huber
- Department of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
| | - Evelyn Hu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Eric Mazur
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
323
|
Ultrasonographic changes in the liver tumors as indicators of adequate tumor coverage with electric field for effective electrochemotherapy. Radiol Oncol 2018; 52:383-391. [PMID: 30352044 PMCID: PMC6287182 DOI: 10.2478/raon-2018-0041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
Background The aim of the study was to characterize ultrasonographic (US) findings during and after electrochem-otherapy of liver tumors to determine the actual ablation zone and to verify the coverage of the treated tumor with a sufficiently strong electric field for effective electrochemotherapy. Patients and methods US findings from two representative patients that describe immediate and delayed tumor changes after electrochemotherapy of colorectal liver metastases are presented. Results The US findings were interrelated with magnetic resonance imaging (MRI). Electrochemotherapy-treated tumors were exposed to electric pulses based on computational treatment planning. The US findings indicate immediate appearance of hyperechogenic microbubbles along the electrode tracks. Within minutes, the tumors became evenly hyperechogenic, and simultaneously, an oedematous rim was formed presenting as a hypoechogenic formation which persisted for several hours after treatment. The US findings overlapped with computed electric field distribution in the treated tissue, indicating adequate coverage of tumors with sufficiently strong electric field, which may predict an effective treatment outcome. Conclusions US provides a tool for assessment of appropriate electrode insertion for intraoperative electrochemo-therapy of liver tumors and assessment of the appropriate coverage of a tumor with a sufficiently strong electric field and can serve as predictor of the response of tumors.
Collapse
|
324
|
Prevc A, Niksic Zakelj M, Kranjc S, Cemazar M, Scancar J, Kosjek T, Strojan P, Sersa G. Electrochemotherapy with cisplatin or bleomycin in head and neck squamous cell carcinoma: Improved effectiveness of cisplatin in HPV-positive tumors. Bioelectrochemistry 2018; 123:248-254. [DOI: 10.1016/j.bioelechem.2018.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/09/2018] [Accepted: 06/05/2018] [Indexed: 11/28/2022]
|
325
|
In vitro analysis of various cell lines responses to electroporative electric pulses by means of electrical impedance spectroscopy. Biosens Bioelectron 2018; 117:207-216. [DOI: 10.1016/j.bios.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/17/2022]
|
326
|
Callahan SJ, Tepan S, Zhang YM, Lindsay H, Burger A, Campbell NR, Kim IS, Hollmann TJ, Studer L, Mosimann C, White RM. Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ). Dis Model Mech 2018; 11:dmm.034561. [PMID: 30061297 PMCID: PMC6177007 DOI: 10.1242/dmm.034561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Transgenic animals are invaluable for modeling cancer genomics, but often require complex crosses of multiple germline alleles to obtain the desired combinations. Zebrafish models have advantages in that transgenes can be rapidly tested by mosaic expression, but typically lack spatial and temporal control of tumor onset, which limits their utility for the study of tumor progression and metastasis. To overcome these limitations, we have developed a method referred to as Transgene Electroporation in Adult Zebrafish (TEAZ). TEAZ can deliver DNA constructs with promoter elements of interest to drive fluorophores, oncogenes or CRISPR-Cas9-based mutagenic cassettes in specific cell types. Using TEAZ, we created a highly aggressive melanoma model via Cas9-mediated inactivation of Rb1 in the context of BRAFV600E in spatially constrained melanocytes. Unlike prior models that take ∼4 months to develop, we found that TEAZ leads to tumor onset in ∼7 weeks, and these tumors develop in fully immunocompetent animals. As the resulting tumors initiated at highly defined locations, we could track their progression via fluorescence, and documented deep invasion into tissues and metastatic deposits. TEAZ can be deployed to other tissues and cell types, such as the heart, with the use of suitable transgenic promoters. The versatility of TEAZ makes it widely accessible for rapid modeling of somatic gene alterations and cancer progression at a scale not achievable in other in vivo systems.
Collapse
Affiliation(s)
- Scott J Callahan
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA.,Memorial Sloan Kettering Cancer Center, Developmental Biology, New York, NY 10065, USA.,Memorial Sloan Kettering Cancer Center, Gerstner Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Stephanie Tepan
- Memorial Sloan Kettering Cancer Center, 2017 Summer Clinical Oncology Research Experience (SCORE) Program, New York, NY 10065, USA.,Hunter College, New York, NY 10065, USA
| | - Yan M Zhang
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA
| | - Helen Lindsay
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich 8057, Switzerland
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Nathaniel R Campbell
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Isabella S Kim
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA
| | - Travis J Hollmann
- Memorial Sloan Kettering Cancer Center, Pathology, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA .,Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
327
|
Dunham RA, Elaswad A, Qin Z. Gene Editing in Channel Catfish via Double Electroporation of Zinc-Finger Nucleases. Methods Mol Biol 2018; 1867:201-214. [PMID: 30155825 DOI: 10.1007/978-1-4939-8799-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The traditional approach for gene editing with zinc-finger nucleases (ZFNs) in fish has been microinjection of mRNA. Here, we develop and describe an alternative protocol in which ZFN plasmids are electroporated to channel catfish, Ictalurus punctatus, sperm, and embryos. Briefly, plasmids were propagated to supply a sufficient quantity for electroporation. Sperm cells were prepared in saline solution, electroporated with plasmids, and then used for fertilization. Embryos were incubated with the plasmids before performing electroporation just prior to first cell division. Plasmids were then transcribed and translated by embryonic cells to produce ZFNs for gene editing, resulting in mutated fry.
Collapse
Affiliation(s)
- Rex A Dunham
- School of Fisheries Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA.
| | - Ahmed Elaswad
- School of Fisheries Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Zhenkui Qin
- School of Fisheries Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, China
| |
Collapse
|
328
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 449] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
329
|
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering; Tohoku University; 6-6-11 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Yuji Nashimoto
- Graduate School of Engineering; Tohoku University; 6-6-11 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
- Frontier Research Institute for Interdisciplinary Sciences; Tohoku University; 6-3 Aramaki-aza Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Noriko Taira
- Graduate School of Engineering; Tohoku University; 6-6-11 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Javier Ramon Azcon
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
| | - Hitoshi Shiku
- Graduate School of Engineering; Tohoku University; 6-6-11 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| |
Collapse
|
330
|
Dermol-Černe J, Vidmar J, Ščančar J, Uršič K, Serša G, Miklavčič D. Connecting the in vitro and in vivo experiments in electrochemotherapy - a feasibility study modeling cisplatin transport in mouse melanoma using the dual-porosity model. J Control Release 2018; 286:33-45. [PMID: 30016733 DOI: 10.1016/j.jconrel.2018.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
In electrochemotherapy two conditions have to be met to be successful - the electric field of sufficient amplitude and sufficient uptake of chemotherapeutics in the tumor. Current treatment plans only take into account critical electric field to achieve cell membrane permeabilization. However, permeabilization alone does not guarantee uptake of chemotherapeutics and consequently successful treatment. We performed a feasibility study to determine whether the transport of cisplatin in vivo could be calculated based on experiments performed in vitro. In vitro, a spectrum of parameters can be explored without ethical issues. Mouse melanoma B16-F1 cell suspension and inoculated B16-F10 tumors were exposed to electric pulses in the presence of chemotherapeutic cisplatin. The uptake of cisplatin was measured by inductively coupled plasma mass spectrometry. We modeled the transport of cisplatin with the dual-porosity model, which is based on the diffusion equation, connects pore formation with membrane permeability, and includes transport between several compartments. In our case, there were three compartments - tumor cells, interstitial fraction and peritumoral region. Our hypothesis was that in vitro permeability coefficient could be introduced in vivo, as long as tumor physiology was taken into account. Our hypothesis was confirmed as the connection of in vitro and in vivo experiments was possible by introducing a transformation coefficient which took into account the in vivo characteristics, i.e., smaller available area of the plasma membrane for transport due to cell density, presence of cell-matrix in vivo, and reduced drug mobility. We thus show that it is possible to connect in vitro and in vivo experiments of electrochemotherapy. However, more experimental work is required for model validation.
Collapse
Affiliation(s)
- Janja Dermol-Černe
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Janja Vidmar
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Janez Ščančar
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Katja Uršič
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Gregor Serša
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloška cesta 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
331
|
Ramesan S, Rezk AR, Dekiwadia C, Cortez-Jugo C, Yeo LY. Acoustically-mediated intracellular delivery. NANOSCALE 2018; 10:13165-13178. [PMID: 29964280 DOI: 10.1039/c8nr02898b] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent breakthroughs in gene editing have necessitated practical ex vivo methods to rapidly and efficiently re-engineer patient-harvested cells. Many physical membrane-disruption or pore-forming techniques for intracellular delivery, however, result in poor cell viability, while most carrier-mediated techniques suffer from suboptimal endosomal escape and hence cytoplasmic or nuclear targeting. In this work, we show that short exposure of cells to high frequency (>10 MHz) acoustic excitation facilitates temporal reorganisation of the lipid structure in the cell membrane that enhances translocation of gold nanoparticles and therapeutic molecules into the cell within just ten minutes. Due to its transient nature, rapid cell self-healing is observed, leading to high cellular viabilities (>97%). Moreover, the internalised cargo appears to be uniformly distributed throughout the cytosol, circumventing the need for strategies to facilitate endosomal escape. In the case of siRNA delivery, the method is seen to enhance gene silencing by over twofold, demonstrating its potential for enhancing therapeutic delivery into cells.
Collapse
Affiliation(s)
- Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC 3000, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology & Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
332
|
Tarantino L, Busto G, Nasto A, Nasto RA, Tarantino P, Fristachi R, Cacace L, Bortone S. Electrochemotherapy of cholangiocellular carcinoma at hepatic hilum: A feasibility study. Eur J Surg Oncol 2018; 44:1603-1609. [PMID: 30017329 DOI: 10.1016/j.ejso.2018.06.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
AIM We evaluated feasibility, safety and efficacy of Electrochemotherapy (ECT) in a prospective series of patients with unresectable Perihilar-Cholangiocarcinoma (PHCCA). PATIENTS AND METHODS Five patients with PHCCA underwent ECT. Three patients underwent percutaneous ECT of a single PHCCA nodule. One patient underwent resection of a nodule in the IV segment and intraoperative ECT of a large PHCCA in the VIII segment. Another patient underwent percutaneous ECT of a large PHCCA recurrence after left lobectomy and RF ablation of a synchronous metastasis in the VI segment. ECT was performed under US guidance. Efficacy was evaluated by contrast-enhanced multiple-detector-computed-tomography (MDCT) 4 weeks after treatment. Follow-up entailed MDCT every 6 months thereafter. RESULTS No major complication occurred. Follow-up ranges from 10 to 30 months. Four weeks post-treatment CT showed complete response in 3 cases. These patients are still alive, and follow-up CT controls demonstrated no local or distant intrahepatic recurrences and no biliary duct dilation in 2 cases and local recurrence at 18 months follow-up control in 1 patient. In the remaining 2 cases, 4-weeks-post-treatment CT showed incomplete response (>90%). In these patients follow-up CT demonstrated local progression of the disease at 6 months. One of them had bilateral external biliary drainages and died because of tumor progression at 16-months-follow-up. The other patient, died at 10 months follow-up for cardiovascular failure not related to the hepatobiliary disease. CONCLUSIONS ECT is feasible, safe and effective therapy to improve prognosis and quality of life of patients with unresectable PHCCA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sara Bortone
- Radiology-A.Tortora Cancer Hospital, Pagani, Italy
| |
Collapse
|
333
|
Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol Lett 2018; 16:687-702. [PMID: 29963134 PMCID: PMC6019900 DOI: 10.3892/ol.2018.8733] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
When Folkman first suggested a theory about the association between angiogenesis and tumor growth in 1971, the hypothesis of targeting angiogenesis to treat cancer was formed. Since then, various studies conducted across the world have additionally confirmed the theory of Folkman, and numerous efforts have been made to explore the possibilities of curing cancer by targeting angiogenesis. Among them, anti-angiogenic gene therapy has received attention due to its apparent advantages. Although specific problems remain prior to cancer being fully curable using anti-angiogenic gene therapy, several methods have been explored, and progress has been made in pre-clinical and clinical settings over previous decades. The present review aimed to provide up-to-date information concerning tumor angiogenesis and gene delivery systems in anti-angiogenic gene therapy, with a focus on recent developments in the study and application of the most commonly studied and newly identified anti-angiogenic candidates for anti-angiogenesis gene therapy, including interleukin-12, angiostatin, endostatin, tumstatin, anti-angiogenic metargidin peptide and endoglin silencing.
Collapse
Affiliation(s)
- Tinglu Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - Tingyue Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| |
Collapse
|
334
|
Abstract
Calcium electroporation (CaEP) is a novel anti-tumour treatment that induces cell death by internalization of large quantities of calcium. The anti-tumour effectiveness of CaEP has been demonstrated in vitro, in vivo, and in preliminary clinical trials; however, its effects on the vasculature have not been previously investigated. Using a dorsal window chamber tumour model, we observed that CaEP affected to the same degree normal and tumour blood vessels in vivo, as it disrupted the vessels and caused tumour eradication by necrosis. In all cases, the effect was more pronounced in small vessels, similar to electrochemotherapy (ECT) with bleomycin. In vitro studies in four different cell lines (the B16F1 melanoma, HUVEC endothelial, FADU squamous cell carcinoma, and CHO cell lines) confirmed that CaEP causes necrosis associated with acute and severe ATP depletion, a picture different from bleomycin with electroporation. Furthermore, CaEP considerably inhibited cell migratory capabilities of endothelial cells and their potential to form capillary-like structures. The finding that CaEP has anti-vascular effects and inhibits cell migration capabilities may contribute to the explanation of the high efficacy observed in preclinical and clinical studies.
Collapse
|
335
|
Forjanič T, Miklavčič D. Numerical study of gene electrotransfer efficiency based on electroporation volume and electrophoretic movement of plasmid DNA. Biomed Eng Online 2018; 17:80. [PMID: 29914508 PMCID: PMC6006849 DOI: 10.1186/s12938-018-0515-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background The efficiency of gene electrotransfer, an electroporation-based method for delivery of pDNA into target tissues, depends on several processes. The method relies on application of electric pulses with appropriate amplitude and pulse duration. A careful choice of electric pulse parameters is required to obtain the appropriate electric field distribution, which not only controls the electroporated volume, but also affects the movement of pDNA. We used numerical modeling to assess the influence of different types of electrodes and pulse parameters on reversibly electroporated volume and on the extent of pDNA–membrane interaction, which is necessary for successful gene electrotransfer. Methods A 3D geometry was built representing the mice skin tissue and intradermally injected plasmid volume. The geometry of three different types of electrodes (plate, finger, needle) was built according to the configuration and placement of electrodes used in previously reported in vivo experiments of gene electrotransfer. Electric field distribution, resulting from different pulse protocols was determined, which served for calculation of reversible electroporation volume and for simulation of electrophoretic movement of pDNA. The efficiency of gene electrotransfer was evaluated in terms of predicted amount of pDNA present inside the volume of reversible electroporation at the end of pulse delivery. Results According to results of our numerical study, finger and needle electrodes provide larger amount of pDNA inside the volume of reversible electroporation than plate electrodes. However, these results are not consistent with the experiments showing that plate electrodes achieve the best transfection efficiency. Some inconsistencies were observed also by comparing the efficiencies of different high and low voltage pulse combinations, delivered by plate electrodes. The reason for inconsistencies probably lies in insufficient knowledge regarding the electroporation of stratum corneum. Namely, the size of the regions with high electrical conductivity, created by electroporation, was found to strongly affect predicted transfection efficiency. Conclusions The presented numerical model simulates the two most important processes involved in gene electrotransfer: electroporation of cells, and electrophoretic movement of pDNA. The inconsistencies between the model and experiments indicate incomplete knowledge of skin electroporation, or the involvement of other mechanisms, whose importance has not been yet identified.
Collapse
Affiliation(s)
- Tadeja Forjanič
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
336
|
Buchmann L, Böcker L, Frey W, Haberkorn I, Nyffeler M, Mathys A. Energy input assessment for nanosecond pulsed electric field processing and its application in a case study with Chlorella vulgaris. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
337
|
Babaeva NY, Naidis GV. Modeling of Plasmas for Biomedicine. Trends Biotechnol 2018; 36:603-614. [DOI: 10.1016/j.tibtech.2017.06.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/17/2017] [Accepted: 06/23/2017] [Indexed: 02/06/2023]
|
338
|
Yadollahpour A, Rezaee Z, Bayati V, Tahmasebi Birgani MJ, Negad Dehbashi F. Radiotherapy Enhancement with Electroporation in Human Intestinal Colon Cancer HT-29 Cells. Asian Pac J Cancer Prev 2018; 19:1259-1262. [PMID: 29801410 PMCID: PMC6031833 DOI: 10.22034/apjcp.2018.19.5.1259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 04/16/2018] [Indexed: 02/05/2023] Open
Abstract
Background: The efficiency of radiotherapy for tumors can be enhanced with different radiosensitizers. Previous studies have shown that electroporation (EP) can sensitize some cancer cell lines to ionizing radiation (IR). HT-29 is a radiation resistant colorectal cancer cell line, representative of a cancer type which is the second cause of cancer mortalities in developed countries. The present study aimed to evaluate radiosensitizing effects of EP on HT-29 cells in vitro exposed to 6 MV X-ray photon beams. Methods: HT-29 cells were exposed to a 6 MV X-ray photon beam as the control or to a combination of electroporation and irradiation. The response of cells was evaluated by colony formation assay and survival curves. Results: The survival fraction of the HT-29 cells was significantly decreased by electroporation prior to radiotherapy. A single electric pulse increased colorectal HT-29 cancer cell sensitivity to megavoltage radiation by a factor of 1.36. Conclusion: Our findings showed that EP before radiotherapy can significantly enhance tumor cell sensitivity. This combined treatment modality should be assessed for its applicability in clinic settings for employment against radioresistant cancers. However, to facilitate achieving this goal, many different tumors with a broad range of radiosensitivities should be evaluated.
Collapse
Affiliation(s)
- Ali Yadollahpour
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | | | | | | | |
Collapse
|
339
|
Atomistic Simulations of Electroporation of Model Cell Membranes. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2018; 227:1-15. [PMID: 28980037 DOI: 10.1007/978-3-319-56895-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Electroporation is a phenomenon that modifies the fundamental function of the cell since it perturbs transiently or permanently the integrity of its membrane. Today, this technique is applied in fields ranging from biology and biotechnology to medicine, e.g., for drug and gene delivery into cells, tumor therapy, etc., in which it made it to preclinical and clinical treatments. Experimentally, due to the complexity and heterogeneity of cell membranes, it is difficult to provide a description of the electroporation phenomenon in terms of atomically resolved structural and dynamical processes, a prerequisite to optimize its use. Atomistic modeling in general and molecular dynamics (MD) simulations in particular have proven to be an effective approach for providing such a level of detail. This chapter provides the reader with a comprehensive account of recent advances in using such a technique to complement conventional experimental approaches in characterizing several aspects of cell membranes electroporation.
Collapse
|
340
|
Gibot L, Golzio M, Rols MP. How Imaging Membrane and Cell Processes Involved in Electropermeabilization Can Improve Its Development in Cell Biology and in Clinics. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2018; 227:107-118. [PMID: 28980043 DOI: 10.1007/978-3-319-56895-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cell membranes can be transiently permeabilized under the application of electric pulses. This process, called electropermeabilization or electroporation, allows hydrophilic molecules, such as anticancer drugs and DNA, to enter into cells and tissues. The method is nowadays used in clinics to treat cancers. Vaccination and gene therapy are other fields of application of DNA electrotransfer. A description of the mechanisms can be assayed by using different complementary systems with increasing complexities (models of membranes, cells cultivated in 2D and 3D culture named spheroids, and tissues in living mice) and different microscopy tools to visualize the processes from single molecules to entire animals. Single-cell imaging experiments revealed that the uptake of molecules (nucleic acids, antitumor drugs) takes place in well-defined membrane regions and depends on their chemical and physical properties (size, charge). If small molecules freely cross the electropermeabilized membrane and have a free access to the cytoplasm, larger molecules, such as plasmid DNA, face physical barriers (plasma membrane, cytoplasm crowding, nuclear envelope) which reduce transfection efficiency and engender a complex mechanism of transfer. Gene electrotransfer indeed involves different steps that include the initial interaction with the membrane, its crossing, transport within the cytoplasm, and finally gene expression. In vivo, additional very important effects of electric pulses are present such as blood flow modifications. The full knowledge on the way molecules are transported across the electropermeabilized membranes and within tissues is mandatory to improve the efficacy and the safety of the electropermeabilization process both in cell biology and in clinics.
Collapse
Affiliation(s)
- Laure Gibot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, BP 64182, F-31077, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, BP 64182, F-31077, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, BP 64182, F-31077, Toulouse, France.
| |
Collapse
|
341
|
Groselj A, Kranjc S, Bosnjak M, Krzan M, Kosjek T, Prevc A, Cemazar M, Sersa G. Vascularization of the tumours affects the pharmacokinetics of bleomycin and the effectiveness of electrochemotherapy. Basic Clin Pharmacol Toxicol 2018; 123:247-256. [DOI: 10.1111/bcpt.13012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Ales Groselj
- Department of Otorhinolaryngology and Cervicofacial Surgery; University Medical Centre Ljubljana; Ljubljana Slovenia
- Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
| | - Simona Kranjc
- Department of Experimental Oncology; Institute of Oncology Ljubljana; Ljubljana Slovenia
| | - Masa Bosnjak
- Department of Experimental Oncology; Institute of Oncology Ljubljana; Ljubljana Slovenia
| | - Mojca Krzan
- Faculty of Medicine; Department of Pharmacology and Experimental Toxicology; University of Ljubljana; Ljubljana Slovenia
| | - Tina Kosjek
- Department of Environmental Sciences; Jozef Stefan Institute; Ljubljana Slovenia
| | - Ajda Prevc
- Department of Experimental Oncology; Institute of Oncology Ljubljana; Ljubljana Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology; Institute of Oncology Ljubljana; Ljubljana Slovenia
- Faculty of Health Sciences; University of Primorska; Izola Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology; Institute of Oncology Ljubljana; Ljubljana Slovenia
- Faculty of Health Sciences; University of Ljubljana; Ljubljana Slovenia
- Faculty of Health Sciences; University of Primorska; Izola Slovenia
| |
Collapse
|
342
|
Yu C, Stefanson O, Liu Y, Wang ZA. Novel Method of Plasmid DNA Delivery to Mouse Bladder Urothelium by Electroporation. J Vis Exp 2018. [PMID: 29782018 DOI: 10.3791/57649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genetically engineered mouse models (GEMMs) are extremely valuable in revealing novel biological insights into the initiation and progression mechanisms of human diseases such as cancer. Transgenic and conditional knockout mice have been frequently used for gene overexpression or ablation in specific tissues or cell types in vivo. However, generating germline mouse models can be time-consuming and costly. Recent advancements in gene editing technologies and the feasibility of delivering DNA plasmids by viral infection have enabled rapid generation of non-germline autochthonous mouse cancer models for several organs. The bladder is an organ that has been difficult for viral vectors to access, due to the presence of a glycosaminoglycan layer covering the urothelium. Here, we describe a novel method developed in lab for efficient delivery of DNA plasmids into the mouse bladder urothelium in vivo. Through intravesical instillation of pCAG-GFP DNA plasmid and electroporation of surgically exposed bladder, we show that the DNA plasmid can be delivered specifically into the bladder urothelial cells for transient expression. Our method provides a fast and convenient way for overexpression and knockdown of genes in the mouse bladder, and can be applied to building GEMMs of bladder cancer and other urological diseases.
Collapse
Affiliation(s)
- Chuan Yu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz
| | - Ofir Stefanson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz
| | - Yueli Liu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz
| | - Zhu A Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz;
| |
Collapse
|
343
|
Robin A, Sack M, Israel A, Frey W, Müller G, Golberg A. Deashing macroalgae biomass by pulsed electric field treatment. BIORESOURCE TECHNOLOGY 2018; 255:131-139. [PMID: 29414158 DOI: 10.1016/j.biortech.2018.01.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Among all biomass constituents, the ashes are major hurdles for biomass processing. Ashes currently have low market value and can make a non-negligible fraction of the biomass dry weight significantly impacting its further processing by degrading equipment, lowering process yield, inhibiting reactions and decreasing products qualities. However, most of the current treatments for deashing biomass are of poor efficiency or industrial relevance. This work is the first report on the use of Pulsed Electric Field (PEF) to enhance deashing of biomass from a high ash content green marine macroalga, Ulva sp., using hydraulic pressing. By inducing cell permeabilization of the fresh biomass, PEF was able to enhance the ash extraction from 18.4% (non-treated control) to 37.4% of the total ash content in average, significantly enhancing the extraction of five of the major ash elements (K, Mg, Na, P and S) compared to pressing alone.
Collapse
Affiliation(s)
- Arthur Robin
- Porter School of Environmental Studies, Tel Aviv University, Israel
| | - Martin Sack
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alvaro Israel
- Israel Oceanographic and Limnological Research, The National Institute of Oceanography, Israel
| | - Wolfgang Frey
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Georg Müller
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander Golberg
- Porter School of Environmental Studies, Tel Aviv University, Israel.
| |
Collapse
|
344
|
Holguin SY, Thadhani NN, Prausnitz MR. Effect of laser fluence, nanoparticle concentration and total energy input per cell on photoporation of cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1667-1677. [PMID: 29719217 DOI: 10.1016/j.nano.2018.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 11/15/2022]
Abstract
Intracellular delivery of molecules can be increased by laser-exposure of carbon black nanoparticles to cause photoporation of the cells. Here we sought to determine effects of multiple laser exposure parameters on intracellular uptake and cell viability with the goal of determining a single unifying parameter that predicts cellular bioeffects. DU145 human prostate cancer cells in suspension with nanoparticles were exposed to near-infrared nanosecond laser pulses over a range of experimental conditions. Increased bioeffects (i.e., uptake and viability loss determined by flow cytometry) were seen when increasing laser fluence, number of pulses and nanoparticle concentration, and decreasing cell concentration. Bioeffects caused by different combinations of these four parameters were generally predicted by their cumulative energy input per cell, which served as a unifying parameter. This indicates that photoporation depends on what appears to be the cumulative effect of multiple cell-nanoparticle interactions from neighboring nanoparticles during a series of laser pulses.
Collapse
Affiliation(s)
- Stefany Y Holguin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Naresh N Thadhani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
345
|
Yang Y, Moser MAJ, Zhang E, Zhang W, Zhang B. Development of a statistical model for cervical cancer cell death with irreversible electroporation in vitro. PLoS One 2018; 13:e0195561. [PMID: 29694357 PMCID: PMC5919048 DOI: 10.1371/journal.pone.0195561] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The aim of this study was to develop a statistical model for cell death by irreversible electroporation (IRE) and to show that the statistic model is more accurate than the electric field threshold model in the literature using cervical cancer cells in vitro. METHODS HeLa cell line was cultured and treated with different IRE protocols in order to obtain data for modeling the statistical relationship between the cell death and pulse-setting parameters. In total, 340 in vitro experiments were performed with a commercial IRE pulse system, including a pulse generator and an electric cuvette. Trypan blue staining technique was used to evaluate cell death after 4 hours of incubation following IRE treatment. Peleg-Fermi model was used in the study to build the statistical relationship using the cell viability data obtained from the in vitro experiments. A finite element model of IRE for the electric field distribution was also built. Comparison of ablation zones between the statistical model and electric threshold model (drawn from the finite element model) was used to show the accuracy of the proposed statistical model in the description of the ablation zone and its applicability in different pulse-setting parameters. RESULTS The statistical models describing the relationships between HeLa cell death and pulse length and the number of pulses, respectively, were built. The values of the curve fitting parameters were obtained using the Peleg-Fermi model for the treatment of cervical cancer with IRE. The difference in the ablation zone between the statistical model and the electric threshold model was also illustrated to show the accuracy of the proposed statistical model in the representation of ablation zone in IRE. CONCLUSIONS This study concluded that: (1) the proposed statistical model accurately described the ablation zone of IRE with cervical cancer cells, and was more accurate compared with the electric field model; (2) the proposed statistical model was able to estimate the value of electric field threshold for the computer simulation of IRE in the treatment of cervical cancer; and (3) the proposed statistical model was able to express the change in ablation zone with the change in pulse-setting parameters.
Collapse
Affiliation(s)
- Yongji Yang
- Tumor Ablation Group, Complex and Intelligent Systems Research Center, East China University of Science and Technology, Shanghai, China
| | - Michael A. J. Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Edwin Zhang
- Division of Vascular & Interventional Radiology, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Wenjun Zhang
- Tumor Ablation Group, Complex and Intelligent Systems Research Center, East China University of Science and Technology, Shanghai, China
| | - Bing Zhang
- Biomedical Science and Technology Research Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| |
Collapse
|
346
|
Deng Y, Kizer M, Rada M, Sage J, Wang X, Cheon DJ, Chung AJ. Intracellular Delivery of Nanomaterials via an Inertial Microfluidic Cell Hydroporator. NANO LETTERS 2018; 18:2705-2710. [PMID: 29569926 DOI: 10.1021/acs.nanolett.8b00704] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The introduction of nanomaterials into cells is an indispensable process for studies ranging from basic biology to clinical applications. To deliver foreign nanomaterials into living cells, traditionally endocytosis, viral and lipid nanocarriers or electroporation are mainly employed; however, they critically suffer from toxicity, inconsistent delivery, and low throughput and are time-consuming and labor-intensive processes. Here, we present a novel inertial microfluidic cell hydroporator capable of delivering a wide range of nanomaterials to various cell types in a single-step without the aid of carriers or external apparatus. The platform inertially focuses cells into the channel center and guides cells to collide at a T-junction. Controlled compression and shear forces generate transient membrane discontinuities that facilitate passive diffusion of external nanomaterials into the cell cytoplasm while maintaining high cell viability. This hydroporation method shows superior delivery efficiency, is high-throughput, and has high controllability; moreover, its extremely simple and low-cost operation provides a powerful and practical strategy in the applications of cellular imaging, biomanufacturing, cell-based therapies, regenerative medicine, and disease diagnosis.
Collapse
Affiliation(s)
| | | | - Miran Rada
- Department of Regenerative and Cancer Cell Biology , Albany Medical College (AMC) , Albany , New York 12208 , United States
| | - Jessica Sage
- Department of Regenerative and Cancer Cell Biology , Albany Medical College (AMC) , Albany , New York 12208 , United States
| | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology , Albany Medical College (AMC) , Albany , New York 12208 , United States
| | | |
Collapse
|
347
|
Tumor cell death after electrotransfer of plasmid DNA is associated with cytosolic DNA sensor upregulation. Oncotarget 2018; 9:18665-18681. [PMID: 29721152 PMCID: PMC5922346 DOI: 10.18632/oncotarget.24816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
Cytosolic DNA sensors are a subgroup of pattern recognition receptors (PRRs) and are activated by the abnormal presence of the DNA in the cytosol. Their activation leads to the upregulation of pro-inflammatory cytokines and chemokines and can also induce cell death. The presence of cytosolic DNA sensors and inflammatory cytokines in TS/A murine mammary adenocarcinoma and WEHI 164 fibrosarcoma cells was demonstrated using real time reverse transcription polymerase chain reaction (RT-PCR), western blotting and enzyme-linked immunosorbent assay (ELISA). After electrotransfer of plasmid DNA (pDNA) using two pulse protocols, the upregulation of DNA-depended activator of interferon regulatory factor or Z-DNA binding protein 1 (DAI/ZBP1), DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 (DDX60) and interferon-inducible protein 204 (p204) mRNAs was observed in both tumor cell lines, but their expression was pulse protocol dependent. A decrease in cell survival was also observed; it was cell type, DNA concentration and pulse protocol dependent. Furthermore, the different protocols of electrotransfer led to different cell death outcomes, necrosis and apoptosis, as indicated by an annexin V and 7AAD assays. The obtained data provide new insights on the presence of cytosolic DNA sensors in tumor cells and the activation of different types of cells death after electrotransfer of pDNA. These observations have important implications on the planning of gene therapy or DNA vaccination protocols.
Collapse
|
348
|
Sugrue A, Maor E, Ivorra A, Vaidya V, Witt C, Kapa S, Asirvatham S. Irreversible electroporation for the treatment of cardiac arrhythmias. Expert Rev Cardiovasc Ther 2018; 16:349-360. [DOI: 10.1080/14779072.2018.1459185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alan Sugrue
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Elad Maor
- Leviev Heart Center, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Antoni Ivorra
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vaibhav Vaidya
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Chance Witt
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Suraj Kapa
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel Asirvatham
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
349
|
Batista Napotnik T, Miklavčič D. In vitro electroporation detection methods – An overview. Bioelectrochemistry 2018; 120:166-182. [DOI: 10.1016/j.bioelechem.2017.12.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
|
350
|
Lampreht Tratar U, Kos S, Kamensek U, Ota M, Tozon N, Sersa G, Cemazar M. Antitumor effect of antibiotic resistance gene-free plasmids encoding interleukin-12 in canine melanoma model. Cancer Gene Ther 2018; 25:260-273. [PMID: 29593358 DOI: 10.1038/s41417-018-0014-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
The electrotransfer of interleukin-12 (IL-12) has been demonstrated as an efficient and safe treatment for tumors in veterinary oncology. However, the plasmids used encode human or feline IL-12 and harbor the gene for antibiotic resistance. Therefore, our aim was to construct plasmids encoding canine IL-12 without the antibiotic resistance genes driven by two different promoters: constitutive and fibroblast-specific. The results obtained in vitro in different cell lines showed that following gene electrotransfer, the newly constructed plasmids had cytotoxicity and expression profiles comparable to plasmids with antibiotic resistance genes. Additionally, in vivo studies showed a statistically significant prolonged tumor growth delay of CMeC-1 tumors compared to control vehicle-treated mice after intratumoral gene electrotransfer. Besides the higher gene expression obtained by plasmids with constitutive promoters, the main difference between both plasmids was in the distribution of the transgene expression. Namely, after gene electrotransfer, plasmids with constitutive promoters showed an increase of serum IL-12, whereas the gene expression of IL-12, encoded by plasmids with fibroblast-specific promoters, was restricted to the tumor. Furthermore, after the gene electrotransfer of plasmids with constitutive promoters, granzyme B-positive cells were detected in the tumor and spleen, indicating a systemic effect of the therapy. Therefore, plasmids with different promoters present valuable tools for focused therapy with local or systemic effects. The results of the present study demonstrated that plasmids encoding canine IL-12 under constitutive and fibroblast-specific promoters without the gene for antibiotic resistance provide feasible tools for controlled gene delivery that could be used for the treatment of client-owned dogs.
Collapse
Affiliation(s)
- Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Spela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Maja Ota
- Department of Pathology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Natasa Tozon
- Clinic for Surgery and Small Animals, University of Ljubljana, Veterinary Faculty, Cesta v mestni log 47, 1000, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia. .,Faculty of Health Sciences, University of Primorska, Polje 42, Izola, 6310, Slovenia.
| |
Collapse
|