301
|
Vogt J, Wagener R, Montesinos-Rongen M, Ammerpohl O, Paulus W, Deckert M, Siebert R. Array-based profiling of the lymphoma cell DNA methylome does not unequivocally distinguish primary lymphomas of the central nervous system from non-CNS diffuse large B-cell lymphomas. Genes Chromosomes Cancer 2018; 58:66-69. [PMID: 30284345 DOI: 10.1002/gcc.22687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/02/2023] Open
Abstract
Primary lymphomas of the central nervous system (PCNSL) are diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). We here performed array-based DNA methylation analyses of 26 PCNSL and 78 DLBCL and validated our findings in an independent dataset. We identified 2847 CpGs differentially methylated between PCNSL and non-CNS-DLBCL. Neither a supervised analysis using these CpGs nor application of 3 CpG classifiers selected for class separation unambiguously separated PCNSL from non-CNS-DLBCL. Remarkably, 6/78 non-CNS-DLBCL consistently segregated with PCNSL, which displayed molecular features typical for PCNSL. Our findings suggest that a subset of non-CNS-DLBCL exists which molecularly resembles PCNSL.
Collapse
Affiliation(s)
- Julia Vogt
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Martina Deckert
- Institute of Neuropathology, University Hospital of Cologne, Cologne, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
302
|
Kwon HJ, Yang JM, Lee JO, Lee JS, Paik JH. Clinicopathologic implication of PD-L1 and phosphorylated STAT3 expression in diffuse large B cell lymphoma. J Transl Med 2018; 16:320. [PMID: 30458835 PMCID: PMC6245852 DOI: 10.1186/s12967-018-1689-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/09/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Antitumor immune response of programmed cell death ligand (PD-L1) has shown clinical value not only in Hodgkin lymphoma and EBV-associated lymphomas but also in EBV-negative diffuse large B cell lymphoma (DLBCL) of non-germinal center B cell-like (non-GCB) subtype. Signal transducer and activator of transcription 3 (STAT3) is known to induce PD-L1 in immune cells and its activated form, phosphorylated STAT3 (pSTAT3), is also frequently expressed in non-GCB DLBCL. Herein, we investigated associations between PD-L1 expression/gene alteration, pSTAT3 expression and clinicopathologic variables in EBV-negative DLBCL. METHODS In 107 cases of DLBCLs with non-GCB subtype (67%; 72/107), GCB subtype (25%; 27/107) and unclassifiable cases (8%; 8/107), we performed PD-L1 and pSTAT3 immunohistochemistry and fluorescence in situ hybridization for PD-L1 gene translocation and copy number gain/amplification. RESULTS PD-L1 was expressed in tumor cells (PD-L1t) in 21% (23/107; 30% cutoff), immune cells (PD-L1i) in 36% (38/107; 20% cutoff), and pSTAT3 in tumor nuclei in 41% (44/107; 40% cutoff). PD-L1 gene alteration was observed in 10% (10/102) including translocation in 6% (6/102) and copy number gain/amplification in 4% (4/102). Non-GCB subtype was associated with PD-L1t and pSTAT3 (p = 0.006 and p = 0.042), and tended to have PD-L1 gene alteration (p = 0.058). Tumoral PD-L1 expression without gene alteration (PD-L1t+ GA-) correlated with pSTAT3-positive tumor cell proportions (%) (p = 0.033). In survival analysis, pSTAT3 expression independently predicted shorter PFS in total cohort (p = 0.017) and R-CHOP-treated group (p = 0.007), and in pSTAT3-negative R-CHOP-treated subset, PD-L1 expression in immune cells (PD-L1i) correlated with shorter PFS (p = 0.042). CONCLUSIONS Gene alteration and protein expression of PD-L1 and pSTAT3 expression were closely related in DLBCL and constituted features of non-GCB subtype. In addition to known clinical significance of pSTAT3, immune cell expression of PD-L1 (PD-L1i) had also clinical value in pSTAT3-dependent manner. These findings may provide an insight into immunotherapeutic strategy and risk stratification in DLBCL patients.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cohort Studies
- Disease-Free Survival
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Kaplan-Meier Estimate
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Phosphorylation/drug effects
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 463-707 South Korea
| | - Jeong Mi Yang
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 463-707 South Korea
| | - Jeong-Ok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Jong Seok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 463-707 South Korea
| |
Collapse
|
303
|
Pouzoulet F, Alentorn A, Royer-Perron L, Assayag F, Mokhtari K, Labiod D, Le Garff-Tavernier M, Daniau M, Menet E, Peyre M, Schnitzler A, Guegan J, Davi F, Hoang-Xuan K, Soussain C. Primary CNS lymphoma patient-derived orthotopic xenograft model capture the biological and molecular characteristics of the disease. Blood Cells Mol Dis 2018; 75:1-10. [PMID: 30502564 DOI: 10.1016/j.bcmd.2018.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
Primary CNS lymphomas (PCNSL) are rare and poor prognosis diffuse large B-cell lymphomas. Because of the brain tumor environment and the restricted distribution of drugs in the CNS, specific PCNSL patient-derived orthotopic xenograft (PDOX) models are needed for preclinical research to improve the prognosis of PCNSL patients. PCNSL patient specimens (n = 6) were grafted in the caudate nucleus of immunodeficient nude mice with a 83% rate of success, while subcutaneous implantation in nude mice of human PCNSL sample did not generate lymphoma, supporting the role of the brain microenvironment in the PCNSL physiopathology. PDOXs showed diffuse infiltration of B-cell lymphoma cells in the brain parenchyma. Each model had a unique mutational signature for genes in the BCR and NF-κB pathways and retained the mutational profile of the primary tumor. The models can be stored as cryopreserved biobank. Human IL-10 levels measured in the plasma of PCNSL-PDOX mice showed to be a reliable tool to monitor the tumor burden. Treatment response could be measured after a short treatment with the targeted therapy ibrutinib. In summary, we established a panel of human PCNSL-PDOX models that capture the histological and molecular characteristics of the disease and that proved suitable for preclinical experiments. Our methods of generation and characterization will enable the generation of additional PDOX-PCNSL models, essential tools for cognitive and preclinical drug discovery.
Collapse
Affiliation(s)
- Frédéric Pouzoulet
- Experimental Radiotherapy Platform, Translationnal Research Department, Institut Curie, Orsay, France
| | - Agusti Alentorn
- Groupe Hospitalier Pitié-Salpétrière, Neuro-oncology, Paris, France; Paris University Sorbonne UPMC, INSERM U1127, CNRS UMR 7225, IHU, ICM, France
| | - Louis Royer-Perron
- Paris University Sorbonne UPMC, INSERM U1127, CNRS UMR 7225, IHU, ICM, France
| | - Franck Assayag
- Experimental Radiotherapy Platform, Translationnal Research Department, Institut Curie, Orsay, France
| | - Karima Mokhtari
- Groupe Hospitalier Pitié-Salpétrière, Neuro-Pathology, Paris, France
| | - Dalila Labiod
- Experimental Radiotherapy Platform, Translationnal Research Department, Institut Curie, Orsay, France
| | - Magali Le Garff-Tavernier
- Groupe Hospitalier Pitié-Salpétrière, Biological Hematology, Paris, France; Paris University Sorbonne UPMC, INSERM UMRS 1138, Paris, France
| | - Mailys Daniau
- Paris University Sorbonne UPMC, INSERM U1127, CNRS UMR 7225, IHU, ICM, France
| | | | - Matthieu Peyre
- Groupe Hospitalier Pitié-Salpétrière, Neurosurgery, Paris, France
| | - Anne Schnitzler
- Institut Curie, Site Paris, Pharmacogenomics Unit, Genetics Department, Paris, France
| | - Justine Guegan
- Paris University Sorbonne UPMC, INSERM U1127, CNRS UMR 7225, IHU, ICM, France
| | - Frédéric Davi
- Groupe Hospitalier Pitié-Salpétrière, Biological Hematology, Paris, France
| | - Khê Hoang-Xuan
- Groupe Hospitalier Pitié-Salpétrière, Neuro-oncology, Paris, France
| | - Carole Soussain
- Institut Curie, Site Saint-Cloud Hematology, Saint-Cloud, France.
| |
Collapse
|
304
|
Hiemcke-Jiwa LS, Leguit RJ, Snijders TJ, Bromberg JEC, Nierkens S, Jiwa NM, Minnema MC, Huibers MMH. MYD88 p.(L265P) detection on cell-free DNA in liquid biopsies of patients with primary central nervous system lymphoma. Br J Haematol 2018; 185:974-977. [PMID: 30408153 DOI: 10.1111/bjh.15674] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Laura S Hiemcke-Jiwa
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Roos J Leguit
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Tom J Snijders
- Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Jacoline E C Bromberg
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - N Mehdi Jiwa
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Monique C Minnema
- Deparment of Haematology, University Medical Centre Utrecht Cancer Centre, Utrecht, the Netherlands
| | - Manon M H Huibers
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
305
|
Hu B, Jacobs R, Ghosh N. Checkpoint Inhibitors Hodgkin Lymphoma and Non-Hodgkin Lymphoma. Curr Hematol Malig Rep 2018; 13:543-554. [DOI: 10.1007/s11899-018-0484-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
306
|
Löw S, Han CH, Batchelor TT. Primary central nervous system lymphoma. Ther Adv Neurol Disord 2018; 11:1756286418793562. [PMID: 30305848 PMCID: PMC6174646 DOI: 10.1177/1756286418793562] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal non-Hodgkin lymphoma (NHL), confined to the brain, eyes, spinal cord or leptomeninges without systemic involvement. Overall prognosis, diagnosis and management of PCNSL differ from other types of NHL. Prompt diagnosis and initiation of treatment are vital to improving clinical outcomes. PCNSL is responsive to radiation therapy, however whole-brain radiotherapy (WBRT) inadequately controls the disease when used alone and its delayed neurotoxicity causes neurocognitive impairment, especially in elderly patients. High-dose methotrexate (HD-MTX)-based induction chemotherapy with or without autologous stem cell transplantation (ASCT) or reduced-dose WBRT leads to durable disease control and less neurotoxicity. The optimal treatment has yet to be defined, however HD-MTX-based induction chemotherapy is considered standard for newly diagnosed PCNSL. Ongoing randomized trials address the role of rituximab, and of consolidative treatment using ASCT or reduced-dose WBRT. Despite high tumor response rates to initial treatment, many patients have relapsing disease with very poor prognosis. The optimal treatment for refractory or relapsed PCNSL is poorly defined. The choice of salvage treatment depends on age, previous treatment and response, performance status and comorbidities at the time of relapse. Novel therapeutics targeting underlying tumor biology include small molecule inhibitors of B-cell receptor, cereblon, and mammalian target of rapamycin signaling, and immunotherapy programmed cell death 1 receptor inhibitors and chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Sarah Löw
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Catherine H Han
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tracy T Batchelor
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Yawkey 9E, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
307
|
Phase 1 study of pomalidomide and dexamethasone for relapsed/refractory primary CNS or vitreoretinal lymphoma. Blood 2018; 132:2240-2248. [PMID: 30262659 DOI: 10.1182/blood-2018-02-835496] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
The combination of pomalidomide (POM) and dexamethasone (DEX) was evaluated for relapsed/refractory primary central nervous system lymphoma (PCNSL) and primary vitreoretinal lymphoma (PVRL) to determine the maximal tolerated dose (MTD) of POM as the primary objective, and overall response rate (ORR), progression-free survival (PFS), and safety profile as secondary objectives. A cohorts-of-3 study design was used with a dose-escalation schedule consisting of POM (3, 5, 7, or 10 mg) orally daily for 21 days every 28 days and DEX 40 mg orally every week. After 2 cycles, POM was continued alone until disease progression, intolerance, or subject withdrawal. Following MTD determination, the MTD cohort was expanded. Twenty-five of 29 patients with the median of 3 prior treatments were eligible for assessment as per international PCNSL collaborative group criteria. The MTD of POM was 5 mg daily for 21 days every 28 days. Whole-study ORR was 48% (12 of 25; 95% confidence interval [CI], 27.8%, 68.7%) with 6 complete response (CR), 2 complete response, unconfirmed (CRu), and 4 partial response (PR). MTD cohort ORR was 50% (8 of 16; 95% CI, 24.7%, 75.4%) with 5 CR, 1 CRu, and 2 PR. Median PFS was 5.3 months (whole study) and 9 months (for responders). One patient had pseudoprogression. Grade 3/4 hematologic toxicities included neutropenia (21%), anemia (8%), and thrombocytopenia (8%). Grade 3/4 nonhematologic toxicities included lung infection (12%), sepsis (4%), fatigue (8%), syncope (4%), dyspnea (4%), hypoxia (4%), respiratory failure (8%), and rash (4%). POM/DEX treatment is feasible with significant therapeutic activity against relapsed/refractory PCNSL and PVRL. This trial was registered at www.clinicaltrials.gov as #NCT01722305.
Collapse
|
308
|
Hyper- N-glycosylated SAMD14 and neurabin-I as driver autoantigens of primary central nervous system lymphoma. Blood 2018; 132:2744-2753. [PMID: 30249786 DOI: 10.1182/blood-2018-03-836932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023] Open
Abstract
To address the role of chronic antigenic stimulation in primary central nervous system lymphoma (PCNSL), we searched for autoantigens and identified sterile α-motif domain containing protein 14 (SAMD14) and neural tissue-specific F-actin binding protein I (neurabin-I) as autoantigenic targets of the B-cell receptors (BCRs) from 8/12 PCNSLs. In the respective cases, SAMD14 and neurabin-I were atypically hyper-N-glycosylated (SAMD14 at ASN339 and neurabin-I at ASN1277), explaining their autoimmunogenicity. SAMD14 and neurabin-I induced BCR pathway activation and proliferation of aggressive lymphoma cell lines transfected with SAMD14- and neurabin-I-reactive BCRs. Moreover, the BCR binding epitope of neurabin-I conjugated to truncated Pseudomonas exotoxin-killed lymphoma cells expressing the respective BCRs. These results support the role of chronic antigenic stimulation by posttranslationally modified central nervous system (CNS) driver autoantigens in the pathogenesis of PCNSL, serve as an explanation for their CNS tropism, and provide the basis for a novel specific treatment approach.
Collapse
|
309
|
Scott DW, Rimsza LM. Dissecting aggressive B-cell lymphoma through genomic analysis - What is clinically relevant? Best Pract Res Clin Haematol 2018; 31:187-198. [PMID: 30213388 DOI: 10.1016/j.beha.2018.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
The aggressive B-cell lymphomas are a diverse collection of cancers grouped together based on clinical behavior and derivation from B lymphocytes. Genomic analyses on these tumours are now translating into improved classification systems and identification of underpinning targetable biology. Simple karyotyping revealed key translocations involving MYC, BCL2, and BCL6 that have impacted lymphoma classification in the World Health Organization classification scheme. Subsequently, gene expression profiling identified molecular subgroups within the most common lymphoma, diffuse large B-cell lymphoma (DLBCL): activated B-cell-like and germinal centre B-cell-like. Finally, next generation sequencing has revealed a modest number of frequently mutated genes and a long list of infrequent mutations. The mutational landscapes involve diverse genes associated with dysregulated signalling, epigenetic modification, blockade of cellular differentiation, and immune evasion. These mutational "signatures" are enriched in the different aggressive lymphoma subtypes impacting phenotypes and identifying therapeutic targets. Challenges to implementing genomic assays into clinical practice remain.
Collapse
Affiliation(s)
- David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
310
|
Rubenstein JL. Can rituximab unlock the innate potential of checkpoint blockade in the CNS? Leuk Lymphoma 2018; 60:281-283. [PMID: 30188237 DOI: 10.1080/10428194.2018.1510496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- James L Rubenstein
- a Hematology/Oncology , University of California , San Francisco , CA , USA.,b Helen Diller Family Comprehensive Cancer Center , University of California , San Francisco , CA , USA
| |
Collapse
|
311
|
Graham MS, DeAngelis LM. Improving outcomes in primary CNS lymphoma. Best Pract Res Clin Haematol 2018; 31:262-269. [PMID: 30213395 PMCID: PMC10481403 DOI: 10.1016/j.beha.2018.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 01/23/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is an aggressive disease with previously poor prognosis. The advent of high-dose methotrexate-based induction regimens as well as use of consolidation therapy has greatly improved this prognosis in recent decades, but durable remission still eludes half of patients. In this review, we summarize the progress made in the treatment of PCNSL as well as the challenges that remain, with a focus on defining optimal induction and consolidation regimens, including the promise of developing biotherapies. Future studies will help delineate the best combination of existing and novel treatment strategies, with the goal of expanding the cohort of patients achieving a cure.
Collapse
Affiliation(s)
- Maya S Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Lisa M DeAngelis
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
312
|
Goodman AM, Piccioni D, Kato S, Boichard A, Wang HY, Frampton G, Lippman SM, Connelly C, Fabrizio D, Miller V, Sicklick JK, Kurzrock R. Prevalence of PDL1 Amplification and Preliminary Response to Immune Checkpoint Blockade in Solid Tumors. JAMA Oncol 2018; 4:1237-1244. [PMID: 29902298 PMCID: PMC6139049 DOI: 10.1001/jamaoncol.2018.1701] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
Importance Copy number alterations in programmed cell death ligand 1 (PDL1 or CD274), programmed cell death 1 ligand 2 (PDCD1LG2 or PDL2), and Janus kinase 2 (JAK2) genes (chromosome 9p24.1) characterize Hodgkin lymphoma, resulting in high response rates to programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) blockade. The prevalence and utility of PDL1 amplification as a response biomarker to PD-1/PD-L1 blockade are unknown in other tumors. Objectives To examine the prevalence of PDL1 amplification and its utility as a response biomarker to PD-1/PD-L1 blockade in solid tumors. Design, Setting, and Participants This retrospective study (October 1, 2012, to October 1, 2017) used a deidentified tumor database from a commercial company and annotated clinical records from a subset of patients treated at a university tertiary referral center. The study analyzed 118 187 tumors from the deidentified database, including a clinically annotated subgroup of 2039 malignant tumors. Interventions Comprehensive genomic profiling was performed on all samples to determine PDL1 amplification, microsatellite instability, and tumor mutational burden (TMB). A subset of patients was treated with PD-1/PD-L1 blockade. Main Outcomes and Measures The prevalence of PDL1 amplification was determined among 118 187 patient samples that underwent next-generation sequencing. Solid tumors treated with checkpoint blockade were evaluated for response and progression-free survival (PFS). Results Of the 118 187 deidentified tumor samples, PDL1 amplifications were identified in 843 (0.7%), including more than 100 types of solid tumors. Most PDL1-amplified tumors (84.8%) had a low to intermediate TMB. PDL1 amplification did not always correlate with high-positive PD-L1 expression by immunohistochemical analysis. Six of 9 patients (66.7%) from 1 center with PDL1-amplified solid tumors had objective responses after checkpoint blockade administration. The median PFS among all treated patients was 15.2 months. Responders included 1 patient with glioblastoma (PFS, ≥5.2 months), 2 patients with head and neck squamous cell cancer (PFS, ≥9 and 15.2 months), 2 patients with metastatic basal cell cancer (PFS, 3.8 and ≥24.1 months), and 1 patient with urothelial cancer (PFS, ≥17.8 months). Conclusions and Relevance The results of this study suggest that PDL1 amplification occurs in a small subset of malignant tumors. Additional large-scale, prospective studies of PDL1-amplified cancers are warranted to confirm the responses to checkpoint blockade described herein, even in the absence of microsatellite instability, high PD-L1 expression, and a high TMB.
Collapse
Affiliation(s)
- Aaron M. Goodman
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, La Jolla
- Moores Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego, La Jolla
| | - David Piccioni
- Division of Neurological Oncology, Department of Neurology, University of California, San Diego, La Jolla
| | - Shumei Kato
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, La Jolla
- Moores Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla
| | - Amélie Boichard
- Moores Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla
| | - Huan-You Wang
- Department of Pathology, University of California, San Diego, La Jolla
| | | | - Scott M. Lippman
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, La Jolla
- Moores Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla
| | | | | | | | - Jason K. Sicklick
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, La Jolla
| | - Razelle Kurzrock
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, La Jolla
- Moores Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla
| |
Collapse
|
313
|
Zorofchian S, El-Achi H, Yan Y, Esquenazi Y, Ballester LY. Characterization of genomic alterations in primary central nervous system lymphomas. J Neurooncol 2018; 140:509-517. [PMID: 30171453 DOI: 10.1007/s11060-018-2990-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/22/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Primary central nervous system lymphoma (PCNSL) is a non-Hodgkin lymphoma that affects the central nervous system (CNS). Although previous studies have reported the most common mutated genes in PCNSL, including MYD88 and CD79b, our understanding of genetic characterizations in primary CNS lymphomas is limited. The aim of this study was to perform a retrospective analysis investigating the most frequent mutation types, and their frequency, in PCNSL. METHODS Fifteen patients with a diagnosis of PCNSL from our institution were analyzed for mutations in 406 genes and rearrangements in 31 genes by next generation sequencing (NGS). RESULTS Missense mutations were identified as the most common mutation type (32%) followed by frame shift mutations (23%). The highest mutation rate was reported in the MYD88 (33.3%), CDKN2A/B (33.3%), and TP53 (26.7%) genes. Intermediate tumor mutation burden (TMB) and high TMB was detected in 13.3% and 26.7% of PCNSL, respectively. The most frequent gene rearrangement involved the IGH-BCL6 genes (20%). CONCLUSIONS This study shows the most common genetic alterations in PCNSL as determined by a commercial next generation sequencing assay. MYD88 and CD79b are frequently mutated in PCNSL, IGH-BCL6 is the most frequent gene rearrangement and approximately 1/4 of cases show a high TMB. Mutations in multiple genes, in addition to high TMB and gene rearrangements, highlights the complex molecular heterogeneity of PCNSL. Knowledge about genetic alterations in PCNSL can inform the development of novel targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Soheil Zorofchian
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Hanadi El-Achi
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Yuanqing Yan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA.
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA. .,Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA.
| |
Collapse
|
314
|
Genetic alterations of 9p24 in lymphomas and their impact for cancer (immuno-)therapy. Virchows Arch 2018; 474:497-509. [DOI: 10.1007/s00428-018-2438-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/25/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022]
|
315
|
|
316
|
Zerdes I, Matikas A, Bergh J, Rassidakis GZ, Foukakis T. Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations. Oncogene 2018; 37:4639-4661. [PMID: 29765155 PMCID: PMC6107481 DOI: 10.1038/s41388-018-0303-3] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023]
Abstract
The programmed death protein 1 (PD-1) and its ligand (PD-L1) represent a well-characterized immune checkpoint in cancer, effectively targeted by monoclonal antibodies that are approved for routine clinical use. The regulation of PD-L1 expression is complex, varies between different tumor types and occurs at the genetic, transcriptional and post-transcriptional levels. Copy number alterations of PD-L1 locus have been reported with varying frequency in several tumor types. At the transcriptional level, a number of transcriptional factors seem to regulate PD-L1 expression including HIF-1, STAT3, NF-κΒ, and AP-1. Activation of common oncogenic pathways such as JAK/STAT, RAS/ERK, or PI3K/AKT/MTOR, as well as treatment with cytotoxic agents have also been shown to affect tumoral PD-L1 expression. Correlative studies of clinical trials with PD-1/PD-L1 inhibitors have so far shown markedly discordant results regarding the value of PD-L1 expression as a marker of response to treatment. As the indications for immune checkpoint inhibition broaden, understanding the regulation of PD-L1 in cancer will be of utmost importance for defining its role as predictive marker but also for optimizing strategies for cancer immunotherapy. Here, we review the current knowledge of PD-L1 regulation, and its use as biomarker and as therapeutic target in cancer.
Collapse
Affiliation(s)
- Ioannis Zerdes
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden
| | - George Z Rassidakis
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
317
|
Jacobson CA, Armand P. Immunotherapy in aggressive B-cell lymphomas. Best Pract Res Clin Haematol 2018; 31:299-305. [PMID: 30213400 DOI: 10.1016/j.beha.2018.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 07/20/2018] [Indexed: 02/05/2023]
Abstract
The idea that the immune system could be co-opted to treat cancer is not new; it has existed for centuries. However, what is new is the advancement of our understanding of how the immune system is regulated and how a tumor evolves to evade an immune response. This knowledge, combined with modern technologies to manipulate the immune system, both pharmacologically and genetically, has led to the realization of immuno-oncology as a new frontier in cancer therapeutics. This review will focus on pharmacologic immunotherapies in aggressive B cell lymphomas: checkpoint inhibition and bispecific antibodies. The success of checkpoint inhibitors in this heterogenous collection of diseases has largely been limited to those that genetic aberrations involving genes for checkpoint ligands, whereas bispecific antibodies appear to be more broadly efficacious but responses are short-lived. Investigation into the tumor microenvironment for each of the aggressive B cell lymphoma histologies, and interrogation of mechanisms of resistance as well as predictors of response to these immunotherapy approaches, will undoubtedly identify rational combinations as well as new therapeutic targets such that outcomes can be improved across these diseases.
Collapse
Affiliation(s)
- Caron A Jacobson
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
| | - Philippe Armand
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| |
Collapse
|
318
|
Kim SJ, Hyeon J, Cho I, Ko YH, Kim WS. Comparison of Efficacy of Pembrolizumab between Epstein-Barr Virus‒Positive and ‒Negative Relapsed or Refractory Non-Hodgkin Lymphomas. Cancer Res Treat 2018; 51:611-622. [PMID: 30025443 PMCID: PMC6473267 DOI: 10.4143/crt.2018.191] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022] Open
Abstract
Purpose Pembrolizumab, a programmed cell death protein 1 (PD1) inhibitor inhibits the interplay between PD1 of T-cell and programmed cell death ligand 1 (PDL1) on tumor cells. Although pembrolizumab has been tried to various subtypes of non-Hodgkin lymphoma (NHL), real-world data about the efficacy of pembrolizumab in NHL patients are limited. Materials and methods We analyzed the outcome of 30 relapsed or refractory NHL patients treated with pembrolizumab, and compared the outcome between Epstein-Barr virus (EBV)‒positive and negative subtypes because EBV infection of tumor cells can upregulate PDL1 expression. Results Seven patients with EBV-positive NHL showed a response including NK/T-cell lymphoma (6/14, 44%) and primary mediastinal B-cell lymphoma (1/4, 25%) whereas EBV-negative subtypes did not respond such as diffuse large B-cell lymphoma and T-lymphoblastic lymphoma. We also evaluated PDL1 expression using tumor tissue of 76 patients. High PDL1 expression (positive staining of > 50% of tumor cells) was more frequent in NK/T-cell lymphoma and primary mediastinal B-cell lymphoma than other subtypes. Thus, PDL1 expression was significantly higher in EBV-positive (18/32, 56%) than EBV-negative NHL (4/38, 11%, p < 0.001). Furthermore, NK/T-cell lymphoma patients with high PDL1 expression showed a higher response (4/6, 67%) than those with low PDL1 expression (1/5, 20%). Conclusion Pembrolizumab could be useful as a salvage treatment for relapsed or refractory EBV-positive NHL, especially NK/T-cell lymphoma. However, its efficacy in EBV-negative NHL with low or absent PDL1 expression is still not clear although pembrolizumab could be a potential treatment option for relapsed or refractory NHL.
Collapse
Affiliation(s)
- Seok-Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyeon Hyeon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Inju Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
319
|
Pollari M, Brück O, Pellinen T, Vähämurto P, Karjalainen-Lindsberg ML, Mannisto S, Kallioniemi O, Kellokumpu-Lehtinen PL, Mustjoki S, Leivonen SK, Leppä S. PD-L1 + tumor-associated macrophages and PD-1 + tumor-infiltrating lymphocytes predict survival in primary testicular lymphoma. Haematologica 2018; 103:1908-1914. [PMID: 30026337 PMCID: PMC6278972 DOI: 10.3324/haematol.2018.197194] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022] Open
Abstract
Primary testicular lymphoma is a rare and aggressive lymphoid malignancy, most often representing diffuse large B-cell lymphoma histologically. Tumor-associated macrophages and tumor-infiltrating lymphocytes have been associated with survival in diffuse large B-cell lymphoma, but their prognostic impact in primary testicular lymphoma is unknown. Here, we aimed to identify macrophages, their immunophenotypes and association with lymphocytes, and translate the findings into survival of patients with primary testicular lymphoma. We collected clinical data and tumor tissue from 74 primary testicular lymphoma patients, and used multiplex immunohistochemistry and digital image analysis to examine macrophage markers (CD68, CD163, and c-Maf), T-cell markers (CD3, CD4, and CD8), B-cell marker (CD20), and three checkpoint molecules (PD-L1, PD-L2, and PD-1). We demonstrate that a large proportion of macrophages (median 41%, range 0.08–99%) and lymphoma cells (median 34%, range 0.1–100%) express PD-L1. The quantity of PD-L1+ CD68+ macrophages correlates positively with the amount of PD-1+ lymphocytes, and a high proportion of either PD-L1+ CD68+ macrophages or PD-1+ CD4+ and PD-1+ CD8+ T cells translates into favorable survival. In contrast, the number of PD-L1+lymphoma cells or PD-L1− macrophages do not associate with outcome. In multivariate analyses with IPI, PD-L1+ CD68+ macrophage and PD-1+ lymphocyte contents remain as independent prognostic factors for survival. In conclusion, high PD-L1+ CD68+ macrophage and PD-1+ lymphocyte contents predict favorable survival in patients with primary testicular lymphoma. The findings implicate that the tumor microenvironment and PD-1 – PD-L1 pathway have a significant role in regulating treatment outcome. They also bring new insights to the targeted thera py of primary testicular lymphoma.
Collapse
Affiliation(s)
- Marjukka Pollari
- Research Program Unit, Faculty of Medicine, University of Helsinki, Finland.,Department of Oncology, Tampere University Hospital, Finland
| | - Oscar Brück
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Pauli Vähämurto
- Research Program Unit, Faculty of Medicine, University of Helsinki, Finland.,Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, Finland
| | | | - Susanna Mannisto
- Research Program Unit, Faculty of Medicine, University of Helsinki, Finland.,Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland.,Science for Life Laboratory, Karolinska Institutet, Department of Oncology and Pathology, Solna, Sweden
| | - Pirkko-Liisa Kellokumpu-Lehtinen
- Department of Oncology, Tampere University Hospital, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki, Finland.,Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, Finland
| | - Suvi-Katri Leivonen
- Research Program Unit, Faculty of Medicine, University of Helsinki, Finland.,Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, Finland
| | - Sirpa Leppä
- Research Program Unit, Faculty of Medicine, University of Helsinki, Finland .,Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, Finland
| |
Collapse
|
320
|
de Charette M, Houot R. Hide or defend, the two strategies of lymphoma immune evasion: potential implications for immunotherapy. Haematologica 2018; 103:1256-1268. [PMID: 30006449 PMCID: PMC6068015 DOI: 10.3324/haematol.2017.184192] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Evading immune eradication is a prerequisite for neoplastic progression and one of the hallmarks of cancer. Here, we review the different immune escape strategies of lymphoma and classify them into two main mechanisms. First, lymphoma cells may “hide” to become invisible to the immune system. This can be achieved by losing or downregulating MHC and/or molecules involved in antigen presentation (including antigen processing machinery and adhesion molecules), thereby preventing their recognition by the immune system. Second, lymphoma cells may “defend” themselves to become resistant to immune eradication. This can be achieved in several ways: by becoming resistant to apoptosis, by expressing inhibitory ligands that deactivate immune cells and/or by inducing an immunosuppressive (humoral and cellular) microenvironment. These immune escape mechanisms may have therapeutic implications. Their identification may be used to guide “personalized immunotherapy” for lymphoma.
Collapse
Affiliation(s)
| | - Roch Houot
- CHU Rennes, Service Hématologie Clinique, F-35033, France .,INSERM, U1236, F-35043, France
| |
Collapse
|
321
|
Novel agents for primary central nervous system lymphoma: evidence and perspectives. Blood 2018; 132:681-688. [PMID: 29986908 DOI: 10.1182/blood-2018-01-791558] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/04/2018] [Indexed: 12/11/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare aggressive extranodal non- Hodgkin lymphoma. Although high remission rates can be achieved with high-dose methotrexate-based immunochemotherapy, risk of relapse and associated death is still substantial in at least a third of patients. Novel agents for treating lymphoid malignancies have substantially enriched treatment options for PCNSL. We herein systematically review the existing clinical evidence of novel agents in treatment of PCNSL, summarize ongoing studies, and discuss perspectives. The body of evidence for novel agents is still limited to noncomparative studies, but the most promising approaches include Bruton kinase inhibition with ibrutinib and immunomodulatory treatment (eg, with lenalidomide). Targeting the mammalian target of rapamycin pathway does not seem to have a meaningful clinical benefit, and evidence of checkpoint inhibition with nivolumab is limited to anecdotal evidence. Future studies should embrace the concept of induction and maintenance therapy as well as the combination of drugs with different mechanisms of action. Selection of patients based on molecular profiling and relapse patterns should be another aspect informing future comparative trials, which are urgently needed to improve prognosis for patients with PCNSL.
Collapse
|
322
|
Bruno A, Labreche K, Daniau M, Boisselier B, Gauchotte G, Royer-Perron L, Rahimian A, Lemoine F, de la Grange P, Guégan J, Bielle F, Polivka M, Adam C, Meyronet D, Figarella-Branger D, Villa C, Chrétien F, Eimer S, Davi F, Rousseau A, Houillier C, Soussain C, Mokhtari K, Hoang-Xuan K, Alentorn A. Identification of novel recurrent ETV6-IgH fusions in primary central nervous system lymphoma. Neuro Oncol 2018; 20:1092-1100. [PMID: 29432597 PMCID: PMC6280140 DOI: 10.1093/neuonc/noy019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Primary central nervous system lymphoma (PCNSL) represents a particular entity within non-Hodgkin lymphomas and is associated with poor outcome. The present study addresses the potential clinical relevance of chimeric transcripts in PCNSL discovered by using RNA sequencing (RNA-seq). Methods Seventy-two immunocompetent and newly diagnosed PCNSL cases were included in the present study. Among them, 6 were analyzed by RNA-seq to detect new potential fusion transcripts. We confirmed the results in the remaining 66 PCNSL. The gene fusion was validated by fluorescence in situ hybridization (FISH) using formalin-fixed paraffin-embedded (FFPE) samples. We assessed the biological and clinical impact of one new gene fusion. Results We identified a novel recurrent gene fusion, E26 transformation-specific translocation variant 6-immunoglobulin heavy chain (ETV6-IgH). Overall, ETV6-IgH was found in 13 out of 72 PCNSL (18%). No fusion conserved an intact functional domain of ETV6, and ETV6 was significantly underexpressed at gene level, suggesting an ETV6 haploinsufficiency mechanism. The presence of the gene fusion was also validated by FISH in FFPE samples. Finally, PCNSL samples harboring ETV6-IgH showed a better prognosis in multivariate analysis, P = 0.03, hazard ratio = 0.33, 95% CI = 0.12-0.88. The overall survival at 5 years was 69% for PCNSL harboring ETV6-IgH versus 29% for samples without this gene fusion. Conclusions ETV6-IgH is a new potential surrogate marker of PCNSL with favorable prognosis with ETV6 haploinsufficiency as a possible mechanism. The potential clinical impact of ETV6-IgH should be validated in larger prospective studies.
Collapse
Affiliation(s)
- Aurélie Bruno
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Universités, UPMC, University Paris, Institut du Cerveau et de la Moelle épinière, INSERM, CNRS UMR, Paris, France
| | - Karim Labreche
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Universités, UPMC, University Paris, Institut du Cerveau et de la Moelle épinière, INSERM, CNRS UMR, Paris, France
| | - Maïlys Daniau
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Universités, UPMC, University Paris, Institut du Cerveau et de la Moelle épinière, INSERM, CNRS UMR, Paris, France
- Institut du Cerveau et de la Moelle épinière, Plateforme iGenSeq, Paris, France
| | - Blandine Boisselier
- Département de pathologie cellulaire et tissulaire, CHU d’Angers, Angers, France
| | | | - Louis Royer-Perron
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Universités, UPMC, University Paris, Institut du Cerveau et de la Moelle épinière, INSERM, CNRS UMR, Paris, France
| | - Amithys Rahimian
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Universités, UPMC, University Paris, Institut du Cerveau et de la Moelle épinière, INSERM, CNRS UMR, Paris, France
- Onconeurotek, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Frédéric Lemoine
- Genosplice, Institut du Cerveau et de la Moelle épinière, Paris, France
| | | | - Justine Guégan
- Institut du Cerveau et de la Moelle épinière, ICONICS (bioinformatic and biostatistics core facility), Paris, France
| | - Franck Bielle
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Universités, UPMC, University Paris, Institut du Cerveau et de la Moelle épinière, INSERM, CNRS UMR, Paris, France
- Onconeurotek, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Neuropathologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marc Polivka
- Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Service d’Anatomie et Cytologie Pathologiques, Paris, France
| | - Clovis Adam
- Centre Hospitalier Universitaire Bicêtre, Assistance Publique-Hôpitaux de Paris, Service d’anatomopathologie, Le Kremlin-Bicêtre Cedex, France
| | - David Meyronet
- Hospices Civils de Lyon, Hôpital Neurologique, Bron, France and INSERM U842, Université Lyon, Lyon, France
| | - Dominique Figarella-Branger
- Centre Hospitalier Universitaire La Timone, Laboratoire d’anatomie pathologique-neuropathologique and Tumorothèque de l’Assistance Publique-Hôpitaux de Marseille (AC 2013-1786), Marseille Cedex, France
- Aix-Marseille University, AP-HM, CNRS, INP, Institute Neurophypathology, Hôpital de la Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Chiara Villa
- Hôpital Foch, Service d’anatomie pathologique, Suresnes, France
| | - Fabrice Chrétien
- Centre hospitalier Sainte Anne, Université Paris Descartes, Paris, France
| | - Sandrine Eimer
- Centre Hospitalier Universitaire Bordeaux, Service de Pathologie, Site Pellegrin,Rue Léo Saignat Victor Segalen University, Bordeaux Cedex, France
| | - Frédéric Davi
- Hématologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France; and UMR_S, Sorbonne Universités, UPMC, University Paris, Paris, France
| | - Audrey Rousseau
- Département de pathologie cellulaire et tissulaire, CHU d’Angers, Angers, France
| | - Caroline Houillier
- Service de Neurologie Mazarin, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Réseau Expert National LOC (Lymphomes Oculo-Cérébraux)
| | - Carole Soussain
- Réseau Expert National LOC (Lymphomes Oculo-Cérébraux)
- Hôpital René Huguenin, Institut Curie, Service d’Hématologie, Saint Cloud, France
| | - Karima Mokhtari
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Universités, UPMC, University Paris, Institut du Cerveau et de la Moelle épinière, INSERM, CNRS UMR, Paris, France
- Onconeurotek, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Neuropathologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Khê Hoang-Xuan
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Universités, UPMC, University Paris, Institut du Cerveau et de la Moelle épinière, INSERM, CNRS UMR, Paris, France
- Service de Neurologie Mazarin, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Réseau Expert National LOC (Lymphomes Oculo-Cérébraux)
| | - Agusti Alentorn
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Universités, UPMC, University Paris, Institut du Cerveau et de la Moelle épinière, INSERM, CNRS UMR, Paris, France
- Service de Neurologie Mazarin, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
323
|
Genomic Profile and Pathologic Features of Diffuse Large B-Cell Lymphoma Subtype of Methotrexate-associated Lymphoproliferative Disorder in Rheumatoid Arthritis Patients. Am J Surg Pathol 2018; 42:936-950. [DOI: 10.1097/pas.0000000000001071] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
324
|
Chihara D, Fowler NH, Oki Y, Fanale MA, Nastoupil LJ, Westin JR, Fayad LE, Neelapu SS, Cheah CY. Impact of histologic subtypes and treatment modality among patients with primary central nervous system lymphoma: a SEER database analysis. Oncotarget 2018; 9:28897-28902. [PMID: 29988979 PMCID: PMC6034756 DOI: 10.18632/oncotarget.25622] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/31/2018] [Indexed: 01/29/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal presentation of lymphoma; however, the data for outcomes of patients with subtypes other than diffuse large B-cell lymphoma (DLBCL) are limited. Therefore, we analyzed overall survival (OS) of adult patients diagnosed with PCNSL by histologic subtype between 1998 and 2014 using the Surveillance, Epidemiology and End Results. A total of 4375 patients were identified. The median age of the patients was 64 years (range: 18-96). DLBCL was the most common histology (N=3,091), followed by follicular lymphoma (FL, N=83), peripheral T-cell lymphoma (PTCL, N=64), marginal zone lymphoma (MZL, N=63), Burkitt lymphoma (BL, N=27), small lymphocytic lymphoma (SLL, N=22), Hodgkin lymphoma (HL, N=13) and others (N=1,012). The 5-year OS rates were 30% in DLBCL, 66% in FL, 33% in PTCL, 79% in MZL, 42% in BL, 38% in SLL and 45% in HL. Radiation alone showed similar OS compared to no treatment in DLBCL, BL and PTCL, while radiation alone was associated with similar OS to chemotherapy or chemo-radiation in FL and MZL. The outcomes of patients with PCNSL are unfavorable; with the exception of FL and MZL which can potentially show prolonged survival with surgical resection or radiation monotherapy.
Collapse
Affiliation(s)
- Dai Chihara
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Nathan H Fowler
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasuhiro Oki
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle A Fanale
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loretta J Nastoupil
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason R Westin
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luis E Fayad
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chan Yoon Cheah
- Department of Haematology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Department of Haematology, Pathwest Laboratory Medicine WA, Nedlands, WA, Australia.,Medical School, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
325
|
Extranodal Diffuse Large B Cell Lymphoma: Molecular Features, Prognosis, and Risk of Central Nervous System Recurrence. Curr Treat Options Oncol 2018; 19:38. [PMID: 29931605 DOI: 10.1007/s11864-018-0555-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Diffuse large B cell lymphoma (DLBCL) arises from extranodal organs in about 30% of cases. Its prognosis and risk of recurrence in the central nervous system (CNS) vary according to the primary site of origin. Recent studies begin to clarify these differences using molecular classification. Testicular, breast, and uterine DLBCL (as well as possibly primary cutaneous DLBCL, leg-type) share a high prevalence of the non-germinal center B cell (non-GCB) phenotype and the MYD88/CD79B-mutated (MCD) genotype. These biologic features, which resemble primary CNS lymphoma, may underlie their stage-independent propensity for CNS involvement. Management of these lymphomas should involve CNS prophylaxis, preferably using systemic high-dose methotrexate to prevent intraparenchymal recurrence. Involvement of the kidneys, adrenal glands, ovary, bone marrow, lung, or pleura usually indicates disseminated disease, conferring worse prognosis. Involvement of these sites is often associated with high CNS-International Prognostic Index (IPI), concurrent MYC and BCL2 or BCL6 rearrangements, or intravascular lymphoma-risk factors warranting CNS prophylaxis. In contrast, craniofacial, thyroid, localized bone, or gastric lymphomas have a variable prevalence of the non-GCB phenotype and lack MYD88 mutations. Their outcomes with standard immunochemotherapy are excellent, and the risk of CNS recurrence is low. We recommend individualized consideration of CNS prophylaxis based on the CNS-IPI score and anatomical proximity in cases of epidural, orbital, or skull involvement. Rituximab-containing immunochemotherapy is a standard approach for all extranodal DLBCLs. Surgery is no longer required for any primary site, but routine consolidative radiation therapy is recommended for testicular lymphoma. Radiation therapy also appears to be associated with better progression-free survival in primary bone DLBCL. Future studies should better distinguish primary from secondary sites of extranodal involvement, and investigate the association of newly identified genotypes with the risk of CNS or systemic recurrence.
Collapse
|
326
|
Zhou XA, Louissaint A, Wenzel A, Yang J, Martinez-Escala ME, Moy AP, Morgan EA, Paxton CN, Hong B, Andersen EF, Guitart J, Behdad A, Cerroni L, Weinstock DM, Choi J. Genomic Analyses Identify Recurrent Alterations in Immune Evasion Genes in Diffuse Large B-Cell Lymphoma, Leg Type. J Invest Dermatol 2018; 138:2365-2376. [PMID: 29857068 DOI: 10.1016/j.jid.2018.04.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
Abstract
Cutaneous diffuse large B-cell lymphomas (DLBCLs) are aggressive lymphomas with a poor prognosis. To elucidate their genetic bases, we analyzed exome sequencing of 37 cutaneous DLBCLs, including 31 DLBCLs, leg type (DLBCL-LT) and 6 cutaneous DLBCLs-not otherwise specified (DLBCL-NOS). As reported previously, 77% of DLBCL-LT harbor NF-κB-activating MYD88 mutations. In nearly all MYD88-wild-type DLBCL-LT, we found cancer-promoting mutations that either activate the NF-κB pathway through alternative genes (NFKBIE or REL) or activate other canonical cancer pathways (BRAF, MED12, PIK3R1, and STAT3). After NF-κB, the second most commonly mutated pathway putatively enables immune evasion via mutations predicted to downregulate antigen processing (B2M, CIITA, HLA) or T-cell co-stimulation (CD58). DLBCL-LT have little genetic overlap with the genetically heterogeneous DLBCL-NOS. Instead, they resemble primary central nervous system and testicular large B-cell lymphomas (primary central nervous system lymphomas and primary testicular lymphomas). Like primary central nervous system lymphomas/primary testicular lymphomas, 40% of DLBCL-LT (vs. 0% of DLBCLs-not otherwise specified) harbored PDL1/PDL2 translocations, which lead to overexpression of PD-L1 or PD-L2 in 50% of the cases. Collectively, these data broaden our understanding of cutaneous DLBCLs and suggest novel therapeutic approaches (e.g., BRAF or PI3K inhibitors). Additionally, they suggest novel treatment paradigms, wherein DLBCL-LT can be targeted with strategies (e.g., immune checkpoint blockers) currently being developed for genomically similar primary central nervous system lymphomas/primary testicular lymphomas.
Collapse
Affiliation(s)
- Xiaolong Alan Zhou
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Abner Louissaint
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alexander Wenzel
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jingyi Yang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | | | - Andrea P Moy
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Elizabeth A Morgan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christian N Paxton
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA
| | - Bo Hong
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Erica F Andersen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Joan Guitart
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amir Behdad
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lorenzo Cerroni
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
327
|
Primary central nervous system lymphoma: time for diagnostic biomarkers and biotherapies? Curr Opin Neurol 2018; 30:669-676. [PMID: 28922238 DOI: 10.1097/wco.0000000000000492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Primary central nervous system lymphoma (PCNSL) is a rare cancer with a somber prognosis in older patients, which it affects predominantly. Only in recent years have molecular alterations characterizing PCNSL been thoroughly described. This opens possibilities for the use of targeted therapies. Developments in imaging and biomarkers have also great potential to help clinicians faced with diagnostic and prognostic uncertainties. RECENT FINDINGS Several biomarkers for PCNSL, such as different microRNAs, which could be tested in cerebrospinal fluid and vitreous fluid, and IL-10, which has been shown to have excellent sensitivity and specificity in the cerebrospinal fluid, have emerged in the last years. Methotrexate-based regimens remain the gold standard first-line treatment, with recent studies looking at the best adjunctive molecules to methotrexate, including rituximab, and at the role of autologous stem cell transplantation. As mutations leading to the activation of nuclear factor-kappa-B signaling are found in most PCNSLs, with mutations of MYD88 and CD79B particularly, ibrutinib is studied as molecule of great interest and encouraging results have been found in pilot studies. There is also great interest in the immunomodulatory drugs (lenalidomide) and immunotherapy (anti-programmed cell death 1/programmed cell death 1 ligand 1). SUMMARY Identification of molecular genetic and cytokine changes in tumor and liquid biopsies will have an increasing role in the diagnostic and follow-up of PCNSL but also in the treatment and management of the disease.
Collapse
|
328
|
Shen H, Wei Z, Zhou D, Zhang Y, Han X, Wang W, Zhang L, Yang C, Feng J. Primary extra-nodal diffuse large B-cell lymphoma: A prognostic analysis of 141 patients. Oncol Lett 2018; 16:1602-1614. [PMID: 30008843 PMCID: PMC6036320 DOI: 10.3892/ol.2018.8803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/11/2017] [Indexed: 12/27/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma. Approximately 40% of DBLCL originates from extra-nodal sites, but the diversity of clinical presentations and the genetic and molecular alterations indicate that extra-nodal DLBCLs may be distinct disease entities. The aim of the present study was to highlight the various aspects of primary extra-nodal DLBCL (PE-DLBCL) based on a single center cohort. The data from 141 patients with PE-DLBCL treated at Peking Union Medical College Hospital were retrospectively evaluated. The primary extra-nodal sites involved were the gastrointestinal tract (n=42), central nervous system (CNS; n=38), breast (n=19), adrenal gland (n=15), female genital system (FGS; n=12), thyroid (n=8) and bone (n=7). The median overall survival rate was 28 months (range, 1–116). Multivariate analysis demonstrated that an International Prognostic Index (IPI) ≤2 (P=0.049), complete remission (CR) achieved following first-line therapy (P=0.001) and chemotherapy combined with rituximab (P<0.001) were positive prognostic factors. Patients with DLBCL with primary adrenal gland or female genital system (FGS) involvement exhibited a significantly higher risk of CNS recurrence (P<0.05). Rituximab treatment may have reduced the likelihood of CNS recurrence (P=0.005), whereas prophylaxis with intrathecal injection alone was not sufficient for prevention (P>0.05). In conclusion, IPI >2 and the lack of a CR following first-line therapy were independent prognostic risk factors for PE-DLBCL. Patients with primary adrenal gland or FGS involvement exhibited a higher risk of CNS relapse. Rituximab had a positive impact on the survival of patients with PE-DLBCL, also reducing the likelihood of CNS relapse.
Collapse
Affiliation(s)
- Haorui Shen
- Department of Hematology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Zhang Wei
- Department of Hematology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Yan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Xiao Han
- Department of Hematology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Wei Wang
- Department of Hematology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Chen Yang
- Department of Hematology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Jun Feng
- Department of Hematology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| |
Collapse
|
329
|
Mendez JS, Grommes C. Treatment of Primary Central Nervous System Lymphoma: From Chemotherapy to Small Molecules. Am Soc Clin Oncol Educ Book 2018; 38:604-615. [PMID: 30231317 DOI: 10.1200/edbk_200829] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare form of extranodal non-Hodgkin lymphoma that is typically confined to the brain, eyes, and cerebrospinal fluid (CSF) without evidence of systemic spread. PCNSL is an uncommon tumor, and only four randomized trials and one phase III trial have been completed so far, all in the first-line setting. The prognosis of patients with PCNSL has improved during the past few decades with the introduction of high-dose methotrexate (HD-MTX), which now serves as the backbone of all first-line treatment regimens. Despite recent progress, results after treatment are durable in half of patients, and therapy can be associated with late neurotoxicity. Novel insights into the pathophysiology of PCNSL have identified the B-cell receptor (BCR) pathway as a key mechanism in the pathogenesis of PCNSL. The use of novel agents targeting components of the BCR pathway, namely the Bruton tyrosine kinase (BTK) inhibitor ibrutinib, and immunomodulatory drugs (IMIDs) like lenalidomide and pomalidomide, has so far been limited to patients who have recurrent/refractory PCNSL with promising high response rates. Within the past 5 years, there has been a peak in clinical trials investigating small molecules and novel reagents in the recurrent/refractory setting, including immune checkpoint inhibitors, IMIDs, and BTK and PI3K/AKT/mTOR inhibitors.
Collapse
Affiliation(s)
- Joe S Mendez
- From the Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Neurology, Weill Cornell Medical College, New York, NY
| | - Christian Grommes
- From the Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Neurology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
330
|
Hiemcke-Jiwa LS, Leguit RJ, Snijders TJ, Jiwa NM, Kuiper JJW, de Weger RA, Minnema MC, Huibers MMH. Molecular analysis in liquid biopsies for diagnostics of primary central nervous system lymphoma: Review of literature and future opportunities. Crit Rev Oncol Hematol 2018; 127:56-65. [PMID: 29891112 DOI: 10.1016/j.critrevonc.2018.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/03/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is an aggressive lymphoma with a poor prognosis, for which accurate and timely diagnosis is of utmost importance. Unfortunately, diagnosis of PCNSL can be challenging and a brain biopsy (gold standard for diagnosis) is an invasive procedure with the risk of major complications. Thus, there is an urgent need for an alternative strategy to diagnose and monitor these lymphomas. Currently, liquid biopsies from cerebrospinal fluid (CSF) are used for cytomorphologic and flow cytometric analysis. Recently, new biomarkers such as genetic mutations and interleukins have been identified in these liquid biopsies, further expanding the diagnostic armamentarium. In this review we present an overview of genetic aberrations (>70) reported in this unique lymphoma. Of these genes, we have selected those that are reported in ≥3 studies. Half of the selected genes are implicated in the NFκB pathway (CARD11, CD79B, MYD88, TBL1XR1 and TNFAIP3), while the other half are not related to this pathway (CDKN2A, ETV6, PIM1, PRDM1 and TOX). Although this underlines the crucial role of the NFκB pathway in PCNSL, CD79B and MYD88 are at present the only genes mentioned in liquid biopsy analysis. Finally, a stepwise approach is proposed for minimally invasive liquid biopsy analysis and work-up of PCNSL, incorporating molecular analysis. Prioritization and refinements of this approach can be constructed based upon multidisciplinary collaboration as well as novel scientific insights.
Collapse
Affiliation(s)
- Laura S Hiemcke-Jiwa
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Roos J Leguit
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Tom J Snijders
- Department of Neurology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - N Mehdi Jiwa
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Roel A de Weger
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht Cancer Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Manon M H Huibers
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
331
|
Sethi TK, Reddy NM. Treatment of newly diagnosed primary central nervous system lymphoma: current and emerging therapies. Leuk Lymphoma 2018; 60:6-18. [DOI: 10.1080/10428194.2018.1466296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tarsheen K. Sethi
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nishitha M. Reddy
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
332
|
|
333
|
Twa DD, Mottok A, Savage KJ, Steidl C. The pathobiology of primary testicular diffuse large B-cell lymphoma: Implications for novel therapies. Blood Rev 2018; 32:249-255. [DOI: 10.1016/j.blre.2017.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/19/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
|
334
|
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 2018; 24:679-690. [PMID: 29713087 DOI: 10.1038/s41591-018-0016-8] [Citation(s) in RCA: 1218] [Impact Index Per Article: 203.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL), the most common lymphoid malignancy in adults, is a clinically and genetically heterogeneous disease that is further classified into transcriptionally defined activated B cell (ABC) and germinal center B cell (GCB) subtypes. We carried out a comprehensive genetic analysis of 304 primary DLBCLs and identified low-frequency alterations, captured recurrent mutations, somatic copy number alterations, and structural variants, and defined coordinate signatures in patients with available outcome data. We integrated these genetic drivers using consensus clustering and identified five robust DLBCL subsets, including a previously unrecognized group of low-risk ABC-DLBCLs of extrafollicular/marginal zone origin; two distinct subsets of GCB-DLBCLs with different outcomes and targetable alterations; and an ABC/GCB-independent group with biallelic inactivation of TP53, CDKN2A loss, and associated genomic instability. The genetic features of the newly characterized subsets, their mutational signatures, and the temporal ordering of identified alterations provide new insights into DLBCL pathogenesis. The coordinate genetic signatures also predict outcome independent of the clinical International Prognostic Index and suggest new combination treatment strategies. More broadly, our results provide a roadmap for an actionable DLBCL classification.
Collapse
|
335
|
|
336
|
Takano S, Hattori K, Ishikawa E, Narita Y, Iwadate Y, Yamaguchi F, Nagane M, Akimoto J, Oka H, Tanaka S, Sakata M, Matsuda M, Yamamoto T, Chiba S, Matsumura A. MyD88 Mutation in Elderly Predicts Poor Prognosis in Primary Central Nervous System Lymphoma: Multi-Institutional Analysis. World Neurosurg 2018; 112:e69-e73. [DOI: 10.1016/j.wneu.2017.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/17/2023]
|
337
|
Gravelle P, Burroni B, Péricart S, Rossi C, Bezombes C, Tosolini M, Damotte D, Brousset P, Fournié JJ, Laurent C. Mechanisms of PD-1/PD-L1 expression and prognostic relevance in non-Hodgkin lymphoma: a summary of immunohistochemical studies. Oncotarget 2018; 8:44960-44975. [PMID: 28402953 PMCID: PMC5546533 DOI: 10.18632/oncotarget.16680] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoint blockade therapeutics, notably antibodies targeting the programmed death 1 (PD-1) receptor and its PD-L1 and PD-L2 ligands, are currently revolutionizing the treatment of cancer. For a sizeable fraction of patients with melanoma, lung, kidney and several other solid cancers, monoclonal antibodies that neutralize the interactions of the PD-1/PD-L1 complex allow the reconstitution of long-lasting antitumor immunity. In hematological malignancies this novel therapeutic strategy is far less documented, although promising clinical responses have been seen in refractory and relapsed Hodgkin lymphoma patients. This review describes our current knowledge of PD-1 and PD-L1 expression, as reported by immunohistochemical staining in both non-Hodgkin lymphoma cells and their surrounding immune cells. Here, we discuss the multiple intrinsic and extrinsic mechanisms by which both T and B cell lymphomas up-regulate the PD-1/PD-L1 axis, and review current knowledge about the prognostic significance of its immunohistochemical detection. This body of literature establishes the cell surface expression of PD-1/PD-L1 as a critical determinant for the identification of non-Hodgkin lymphoma patients eligible for immune checkpoint blockade therapies.
Collapse
Affiliation(s)
- Pauline Gravelle
- Département de Pathologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Barbara Burroni
- Service de Pathologie Hôpitaux Universitaires Paris Centre, Hopital Cochin, Paris, France
| | - Sarah Péricart
- Département de Pathologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Cédric Rossi
- Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,CHU le Bocage, Hématologie Clinique, Dijon, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Christine Bezombes
- Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Marie Tosolini
- Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Diane Damotte
- Service de Pathologie Hôpitaux Universitaires Paris Centre, Hopital Cochin, Paris, France.,Centre de Recherche des Cordeliers, INSERM U1138, Paris, France
| | - Pierre Brousset
- Département de Pathologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| | - Camille Laurent
- Département de Pathologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Institut Universitaire du Cancer de Toulouse, Toulouse, France.,Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse III, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Institut Carnot CALYM, Toulouse, France.,Paul-Sabatier, ERL 5294 CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
338
|
Grondona P, Bucher P, Schulze-Osthoff K, Hailfinger S, Schmitt A. NF-κB Activation in Lymphoid Malignancies: Genetics, Signaling, and Targeted Therapy. Biomedicines 2018; 6:biomedicines6020038. [PMID: 29587428 PMCID: PMC6027339 DOI: 10.3390/biomedicines6020038] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The NF-κB transcription factor family plays a crucial role in lymphocyte proliferation and survival. Consequently, aberrant NF-κB activation has been described in a variety of lymphoid malignancies, including diffuse large B-cell lymphoma, Hodgkin lymphoma, and adult T-cell leukemia. Several factors, such as persistent infections (e.g., with Helicobacter pylori), the pro-inflammatory microenvironment of the cancer, self-reactive immune receptors as well as genetic lesions altering the function of key signaling effectors, contribute to constitutive NF-κB activity in these malignancies. In this review, we will discuss the molecular consequences of recurrent genetic lesions affecting key regulators of NF-κB signaling. We will particularly focus on the oncogenic mechanisms by which these alterations drive deregulated NF-κB activity and thus promote the growth and survival of the malignant cells. As the concept of a targeted therapy based on the mutational status of the malignancy has been supported by several recent preclinical and clinical studies, further insight in the function of NF-κB modulators and in the molecular mechanisms governing aberrant NF-κB activation observed in lymphoid malignancies might lead to the development of additional treatment strategies and thus improve lymphoma therapy.
Collapse
Affiliation(s)
- Paula Grondona
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Philip Bucher
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Anja Schmitt
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| |
Collapse
|
339
|
Nam SJ, Kim S, Kwon D, Kim H, Kim S, Lee E, Kim TM, Heo DS, Park SH, Lim MS, Kim CW, Jeon YK. Prognostic implications of tumor-infiltrating macrophages, M2 macrophages, regulatory T-cells, and indoleamine 2,3-dioxygenase-positive cells in primary diffuse large B-cell lymphoma of the central nervous system. Oncoimmunology 2018; 7:e1442164. [PMID: 29900049 PMCID: PMC5993494 DOI: 10.1080/2162402x.2018.1442164] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 11/05/2022] Open
Abstract
Primary diffuse large B-cell lymphoma of the central nervous system (CNS-DLBCL) is an aggressive disease with a poor prognosis. The status of the tumor immune microenvironment in CNS-DLBCL remains unclear. We investigated the prognostic implications of tumor-associated macrophages (TAMs), regulatory T-cells (Tregs), and indoleamine 2,3-dioxygenase (IDO)+ cells in primary CNS-DLBCL (n = 114) by immunohistochemical analysis. The numbers of tumor-infiltrating immune cells, including CD68+ TAMs, CD163+ or CD204+ M2 macrophages, FOXP3+ Tregs, and IDO+ cells were all significantly lower in CNS-DLBCL versus systemic DLBCL (n = 165; all P < 0.001), but with little difference in the ratio of CD163+/CD68+ or CD204+/CD68+ cells. An increase in CD68+ cell numbers was significantly associated with prolonged progression-free survival (PFS) and overall survival in patients with CNS-DLBCL (P = 0.004 and 0.021, respectively). In contrast, an increase in CD204+ cell numbers or a higher ratio of CD204+/CD68+ cells was related to a shorter PFS (P = 0.020 and 0.063, respectively). An increase in IDO+ cell numbers was associated with a significantly longer PFS (P = 0.019). In combination, the status of low IDO+ cell numbers combined with low CD68+ cell numbers, high CD204+ cell numbers, or a high CD204+/CD68+ cell ratio all predicted poor PFS in multivariate analyses. This study showed that an increase in CD204+ cell numbers, suggestive of M2 macrophages, was associated with poor clinical outcome in CNS-DLBCL, whereas increased CD68+ or IDO+ cell numbers were related to a favorable prognosis. The analysis of tumor-infiltrating immune cells could help in predicting the prognosis of CNS-DLBCL patients and determining therapeutic strategies targeting tumor microenvironment.
Collapse
Affiliation(s)
- Soo Jeong Nam
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dohee Kwon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hannah Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Eunyoung Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chul Woo Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
340
|
Menter T, Tzankov A. Mechanisms of Immune Evasion and Immune Modulation by Lymphoma Cells. Front Oncol 2018; 8:54. [PMID: 29564225 PMCID: PMC5845888 DOI: 10.3389/fonc.2018.00054] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose Targeting cancer cells by modulating the immune system has become an important new therapeutic option in many different malignancies. Inhibition of CTLA4/B7 and PD1/PDL1 signaling is now also being investigated and already successfully applied to various hematologic malignancies. Methods A literature review of PubMed and results of our own studies were compiled in order to give a comprehensive overview on this topic. Results We elucidate the pathophysiological role of immunosuppressive networks in lymphomas, ranging from changes in the cellular microenvironment composition to distinct signaling pathways such as PD1/PDL1 or CTLA4/B7/CD28. The prototypical example of a lymphoma manipulating and thereby silencing the immune system is Hodgkin lymphoma. Also other lymphomas, e.g., primary mediastinal B-cell lymphoma and some Epstein–Barr virus (EBV)-driven malignancies, use analogous survival strategies, while diffuse large B-cell lymphoma of the activated B-cell type, follicular lymphoma and angioimmunoblastic T-cell lymphoma to name a few, exert further immune escape strategies each. These insights have already led to new treatment opportunities and results of the most important clinical trials based on this concept are briefly summarized. Immune checkpoint inhibition might also have severe side effects; the mechanisms of the rather un(der)recognized hematological side effects of this treatment approach are discussed. Conclusion Silencing the host’s immune system is an important feature of various lymphomas. Achieving a better understanding of distinct pathways of interactions between lymphomas and different immunological microenvironment compounds yields substantial potential for new treatment concepts.
Collapse
Affiliation(s)
- Thomas Menter
- Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
341
|
PD-L1 and PD-L2 Are Differentially Expressed by Macrophages or Tumor Cells in Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type. Am J Surg Pathol 2018; 42:326-334. [DOI: 10.1097/pas.0000000000000983] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
342
|
Manson G, Houot R. Next-generation immunotherapies for lymphoma: one foot in the future. Ann Oncol 2018; 29:588-601. [DOI: 10.1093/annonc/mdy032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
343
|
Abstract
PURPOSE OF REVIEW Primary central nervous system lymphoma (PCNSL) is an aggressive malignancy confined to the brain, spinal cord, leptomeninges, and eyes. Due to its rarity, there is a paucity of randomized trials and a varied approach to its management in the oncologic community. This review summarizes recent literature guiding current clinical practice. RECENT FINDINGS The presentation, work up, and management of PCNSL are discussed. Induction therapy incorporates a methotrexate-based chemotherapy regimen and is generally followed by a consolidation regimen including high dose chemotherapy (with or without autologous stem cell rescue). Whole brain radiation therapy (WBRT) is a potential additional consolidation strategy. Management of relapsed and refractory disease poses a special challenge due to poor outcomes. Immunotherapy and targeted treatments are promising novel strategies for recurrent/refractory patients. Currently, there is little consensus in the management of PCNSL. Treatment recommendations should be tailored to the individual patient, with consideration for risk of neurotoxicity. New, exciting strategies are in development and when feasible, enrollment in a clinical trial should be considered.
Collapse
Affiliation(s)
- Lauren R Schaff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- , New York, USA.
| |
Collapse
|
344
|
Willems M, Dubois N, Musumeci L, Bours V, Robe PA. IκBζ: an emerging player in cancer. Oncotarget 2018; 7:66310-66322. [PMID: 27579619 PMCID: PMC5323236 DOI: 10.18632/oncotarget.11624] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/23/2016] [Indexed: 01/12/2023] Open
Abstract
IκBζ, an atypical member of the nuclear IκB family of proteins, is expressed at low levels in most resting cells, but is induced upon stimulation of Toll-like/IL-1 receptors through an IRAK1/IRAK4/NFκB-dependent pathway. Like its homolog Bcl3, IκBζ can regulate the transcription of a set of inflamatory genes through its association with the p50 or p52 subunits of NF-κB. Long studied as a key component of the immune response, IκBζ emerges as an important regulator of inflammation, cell proliferation and survival. As a result, growing evidence support the role of this transcription factor in the pathogenesis number of human hematological and solid malignancies.
Collapse
Affiliation(s)
- Marie Willems
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Nadège Dubois
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Lucia Musumeci
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Vincent Bours
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Pierre A Robe
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium.,Department of Neurology and Neurosurgery, T&P Bohnenn Laboratory for Neuro-Oncology, Brain Center Rudolf Magnus, University Medical Center of Utrecht, Heidelberglaan, Utrecht, The Netherlands
| |
Collapse
|
345
|
Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA, Baras AS, Patel SS, Anders RA, Rimm DL, Cimino-Mathews A. Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 2018; 31:214-234. [PMID: 29192647 PMCID: PMC6132263 DOI: 10.1038/modpathol.2017.156] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/06/2017] [Accepted: 09/24/2017] [Indexed: 02/06/2023]
Abstract
Characterizing the tumor immune microenvironment enables the identification of new prognostic and predictive biomarkers, the development of novel therapeutic targets and strategies, and the possibility to guide first-line treatment algorithms. Although the driving elements within the tumor microenvironment of individual primary organ sites differ, many of the salient features remain the same. The presence of a robust antitumor milieu characterized by an abundance of CD8+ cytotoxic T-cells, Th1 helper cells, and associated cytokines often indicates a degree of tumor containment by the immune system and can even lead to tumor elimination. Some of these features have been combined into an 'Immunoscore', which has been shown to complement the prognostic ability of the current TNM staging for early stage colorectal carcinomas. Features of the immune microenvironment are also potential therapeutic targets, and immune checkpoint inhibitors targeting the PD-1/PD-L1 axis are especially promising. FDA-approved indications for anti-PD-1/PD-L1 are rapidly expanding across numerous tumor types and, in certain cases, are accompanied by companion or complimentary PD-L1 immunohistochemical diagnostics. Pathologists have direct visual access to tumor tissue and in-depth knowledge of the histological variations between and within tumor types and thus are poised to drive forward our understanding of the tumor microenvironment. This review summarizes the key components of the tumor microenvironment, presents an overview of and the challenges with PD-L1 antibodies and assays, and addresses newer candidate biomarkers, such as CD8+ cell density and mutational load. Characteristics of the local immune contexture and current pathology-related practices for specific tumor types are also addressed. In the future, characterization of the host antitumor immune response using multiplexed and multimodality biomarkers may help predict which patients will respond to immune-based therapies.
Collapse
Affiliation(s)
- Janis M Taube
- Department of Dermatology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD
- Department of Pathology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche des Cordeliers, Paris, France
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tricia R Cottrell
- Department of Pathology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
| | - Nicolas A Giraldo
- Department of Dermatology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD
- Department of Pathology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
| | - Alexander S Baras
- Department of Pathology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
| | - Sanjay S Patel
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert A Anders
- Department of Pathology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley Cimino-Mathews
- Department of Pathology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University SOM and Bloomberg-Kimmel Institute for Immunotherapy, Baltimore, MD, USA
| |
Collapse
|
346
|
Dunleavy K, Erdmann T, Lenz G. Targeting the B-cell receptor pathway in diffuse large B-cell lymphoma. Cancer Treat Rev 2018; 65:41-46. [PMID: 29549872 DOI: 10.1016/j.ctrv.2018.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous diagnostic category with different molecular subtypes defined by distinct gene expression patterns and divergent mechanisms of oncogenic activation. Several studies have suggested an inferior survival for patients of the activated B-cell-like (ABC) versus the germinal center B-cell-like (GCB) DLBCL subtype which has led to increasing interest in investigating pharmacological inhibition of signaling pathways which contribute to lymphomagenesis and that are specifically utilized by ABC DLBCL cells. One of these signaling cascades is the B-cell receptor (BCR) pathway and several approaches in clinical trials to target this cascade have demonstrated promising therapeutic activity. This review discusses our current understanding of the role of BCR signaling in different DLBCL subtypes, including primary central nervous system lymphoma (PCNSL), a subgroup of DLBCL that is particularly dependent on BCR signaling. One specific aim of this review is to highlight novel approaches to therapeutically target BCR signaling in DLBCL.
Collapse
Affiliation(s)
- Kieron Dunleavy
- George Washington University Cancer Center, Washington DC, USA.
| | - Tabea Erdmann
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| |
Collapse
|
347
|
Xu-Monette ZY, Zhou J, Young KH. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood 2018; 131:68-83. [PMID: 29118007 PMCID: PMC5755041 DOI: 10.1182/blood-2017-07-740993] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/28/2017] [Indexed: 12/29/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) blockade targeting the PD-1 immune checkpoint has demonstrated unprecedented clinical efficacy in the treatment of advanced cancers including hematologic malignancies. This article reviews the landscape of PD-1/programmed death-ligand 1 (PD-L1) expression and current PD-1 blockade immunotherapy trials in B-cell lymphomas. Most notably, in relapsed/refractory classical Hodgkin lymphoma, which frequently has increased PD-1+ tumor-infiltrating T cells, 9p24.1 genetic alteration, and high PD-L1 expression, anti-PD-1 monotherapy has demonstrated remarkable objective response rates (ORRs) of 65% to 87% and durable disease control in phase 1/2 clinical trials. The median duration of response was 16 months in a phase 2 trial. PD-1 blockade has also shown promise in a phase 1 trial of nivolumab in relapsed/refractory B-cell non-Hodgkin lymphomas, including follicular lymphoma, which often displays abundant PD-1 expression on intratumoral T cells, and diffuse large B-cell lymphoma, which variably expresses PD-1 and PD-L1. In primary mediastinal large B-cell lymphoma, which frequently has 9p24.1 alterations, the ORR was 35% in a phase 2 trial of pembrolizumab. In contrast, the ORR with pembrolizumab was 0% in relapsed chronic lymphocytic leukemia (CLL) and 44% in CLL with Richter transformation in a phase 2 trial. T cells from CLL patients have elevated PD-1 expression; CLL PD-1+ T cells can exhibit a pseudo-exhaustion or a replicative senescence phenotype. PD-1 expression was also found in marginal zone lymphoma but not in mantle cell lymphoma, although currently anti-PD-1 clinical trial data are not available. Mechanisms and predictive biomarkers for PD-1 blockade immunotherapy, treatment-related adverse events, hyperprogression, and combination therapies are discussed in the context of B-cell lymphomas.
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jianfeng Zhou
- Department of Hematology and Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; and
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Graduate School of Biomedical Science, The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
348
|
Chang A, Schlafer D, Flowers CR, Allen PB. Investigational PD-1 inhibitors in HL and NHL and biomarkers for predictors of response and outcome. Expert Opin Investig Drugs 2018; 27:55-70. [PMID: 29228840 PMCID: PMC5762391 DOI: 10.1080/13543784.2018.1416091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Inhibitors against the PD-1/PD-L1 pathway are revolutionizing the treatment and management of malignancies. AREAS COVERED We summarize our current understanding of the function of PD-1, its role in immune evasion, the clinical data available that support the use of PD-1 antagonist in Hodgkin and non-Hodgkin lymphomas, and potential predictors of response. EXPERT OPINION We anticipate that in the next 10 years, agents that modulate the immune system such as PD-1 antagonists will be increasingly used in favor over traditional cytotoxic chemotherapeutic agents. PD-1 antagonists will be combined with future immunotherapies or used as adjuncts to cellular therapy to boost tumor-specific immune responses.
Collapse
Affiliation(s)
- Andres Chang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Danielle Schlafer
- Department of Pharmaceutical Services, Emory Healthcare, Atlanta, GA 30322
| | - Christopher R. Flowers
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| | - Pamela B. Allen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
349
|
Abstract
The development of immunotherapies for lymphoma has undergone a revolutionary evolution over the past decades. Since the advent of rituximab as the first successful immunotherapy for B-cell non-Hodgkin lymphoma over two decades ago, a plethora of new immunotherapeutic approaches to treat lymphoma has ensued. Four of the most exciting classes of immunotherapies include: chimeric antigen receptor T-cells, bispecific antibodies, immune checkpoint inhibitors, and vaccines. However, with addition of these novel therapies the appropriate timing of treatment, optimal patient population, duration of therapy, toxicity, and cost must be considered. In this review, we describe the most-promising immunotherapeutic approaches for the treatment of lymphoma in clinical development, specifically focusing on clinical trials performed to date and strategies for improvement.
Collapse
Affiliation(s)
- Benjamin Heyman
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine.,Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
350
|
Ichikawa T. Primary CNS Lymphoma Treatment : Current Status and Future Directions. ACTA ACUST UNITED AC 2018. [DOI: 10.7887/jcns.27.99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tomotsugu Ichikawa
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| |
Collapse
|