301
|
Lambertz RLO, Pippel J, Gerhauser I, Kollmus H, Anhlan D, Hrincius ER, Krausze J, Kühn N, Schughart K. Exchange of amino acids in the H1-haemagglutinin to H3 residues is required for efficient influenza A virus replication and pathology in Tmprss2 knock-out mice. J Gen Virol 2018; 99:1187-1198. [PMID: 30084768 PMCID: PMC6230768 DOI: 10.1099/jgv.0.001128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The haemagglutinin (HA) of H1N1 and H3N2 influenza A virus (IAV) subtypes has to be activated by host proteases. Previous studies showed that H1N1 virus cannot replicate efficiently in Tmprss2-/- knock-out mice whereas H3N2 viruses are able to replicate to the same levels in Tmprss2-/- as in wild type (WT) mice. Here, we investigated the sequence requirements for the HA molecule that allow IAV to replicate efficiently in the absence of TMPRSS2. We showed that replacement of the H3 for the H1-loop sequence (amino acids 320 to 329, at the C-terminus of HA1) was not sufficient for equal levels of virus replication or severe pathology in Tmprss2-/- knock-out mice compared to WT mice. However, exchange of a distant amino acid from H1 to H3 sequence (E31D) in addition to the HA-loop substitution resulted in virus replication in Tmprss2-/- knock-out mice that was comparable to WT mice. The higher virus replication and lung damage was associated with increased epithelial damage and higher mortality. Our results provide further evidence and insights into host proteases as a promising target for therapeutic intervention of IAV infections.
Collapse
Affiliation(s)
- Ruth L O Lambertz
- 1Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jan Pippel
- 2Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ingo Gerhauser
- 3Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Heike Kollmus
- 1Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Darisuren Anhlan
- 4Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Eike R Hrincius
- 4Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Joern Krausze
- 2Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nora Kühn
- 1Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- 1Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,6Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.,5University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
302
|
Dou D, Revol R, Östbye H, Wang H, Daniels R. Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Front Immunol 2018; 9:1581. [PMID: 30079062 PMCID: PMC6062596 DOI: 10.3389/fimmu.2018.01581] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses replicate within the nucleus of the host cell. This uncommon RNA virus trait provides influenza with the advantage of access to the nuclear machinery during replication. However, it also increases the complexity of the intracellular trafficking that is required for the viral components to establish a productive infection. The segmentation of the influenza genome makes these additional trafficking requirements especially challenging, as each viral RNA (vRNA) gene segment must navigate the network of cellular membrane barriers during the processes of entry and assembly. To accomplish this goal, influenza A viruses (IAVs) utilize a combination of viral and cellular mechanisms to coordinate the transport of their proteins and the eight vRNA gene segments in and out of the cell. The aim of this review is to present the current mechanistic understanding for how IAVs facilitate cell entry, replication, virion assembly, and intercellular movement, in an effort to highlight some of the unanswered questions regarding the coordination of the IAV infection process.
Collapse
Affiliation(s)
- Dan Dou
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rebecca Revol
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Henrik Östbye
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hao Wang
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Daniels
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
303
|
Zmora P, Hoffmann M, Kollmus H, Moldenhauer AS, Danov O, Braun A, Winkler M, Schughart K, Pöhlmann S. TMPRSS11A activates the influenza A virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1. J Biol Chem 2018; 293:13863-13873. [PMID: 29976755 PMCID: PMC6130959 DOI: 10.1074/jbc.ra118.001273] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/15/2018] [Indexed: 12/25/2022] Open
Abstract
The influenza virus hemagglutinin (HA) facilitates viral entry into target cells. Cleavage of HA by host cell proteases is essential for viral infectivity, and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease (TTSP) TMPRSS2 has been identified as an HA activator in cell culture and in the infected host. However, it is less clear whether TMPRSS2-related enzymes can also activate HA for spread in target cells. Moreover, the activity of cellular serine protease inhibitors against HA-activating TTSPs is poorly understood. Here, we show that TMPRSS11A, another member of the TTSP family, cleaves and activates the influenza A virus (FLUAV) HA and the Middle East respiratory syndrome coronavirus spike protein (MERS-S). Moreover, we demonstrate that TMPRSS11A is expressed in murine tracheal epithelium, which is a target of FLUAV infection, and in human trachea, suggesting that the protease could support FLUAV spread in patients. Finally, we show that HA activation by the TMPRSS11A-related enzymes human airway tryptase and DESC1, but not TMPRSS11A itself, is blocked by the cellular serine protease inhibitor hepatocyte growth factor activator inhibitor type-1 (HAI-1). Our results suggest that TMPRSS11A could promote FLUAV spread in target cells and that HA-activating TTSPs exhibit differential sensitivity to blockade by cellular serine protease inhibitors.
Collapse
Affiliation(s)
- Pawel Zmora
- From the Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany,
| | - Markus Hoffmann
- From the Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Heike Kollmus
- the Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Anna-Sophie Moldenhauer
- From the Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Olga Danov
- the Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of REBIRTH Cluster of Excellence, 30625 Hannover, Germany, and
| | - Armin Braun
- the Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of REBIRTH Cluster of Excellence, 30625 Hannover, Germany, and
| | - Michael Winkler
- From the Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Klaus Schughart
- the Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,the University of Veterinary Medicine Hannover, 30599 Hannover, Germany.,the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Stefan Pöhlmann
- From the Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany, .,the Faculty of Biology and Psychology, University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
304
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Priming Time: How Cellular Proteases Arm Coronavirus Spike Proteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122371 DOI: 10.1007/978-3-319-75474-1_4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coronaviruses are enveloped RNA viruses that infect mammals and birds. Infection of humans with globally circulating human coronaviruses is associated with the common cold. In contrast, transmission of animal coronaviruses to humans can result in severe disease: The severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) are responsible for hundreds of deaths in Asia and the Middle East, respectively, and are both caused by members of the genus Betacoronavirus, SARS-CoV, and MERS-CoV that were zoonotically transmitted from an animal host to humans. At present, neither vaccines nor specific treatment is available to combat coronavirus infection in humans, and novel antiviral strategies are urgently sought. The viral spike protein (S) mediates the first essential step in coronavirus infection, viral entry into target cells. For this, the S protein critically depends on priming by host cell proteases, and the responsible enzymes are potential targets for antiviral intervention. Recent studies revealed that the endosomal cysteine protease cathepsin L and the serine proteases furin and TMPRSS2 prime the S proteins of SARS-CoV and MERS-CoV and provided evidence that successive S protein cleavage at two sites is required for S protein priming. Moreover, mechanisms that control protease choice were unraveled, and insights were obtained into which enzyme promotes viral spread in the host. Here, we will provide basic information on S protein function and proteolytic priming, and we will then discuss recent progress in our understanding of the priming of the S proteins of SARS-CoV and MERS-CoV.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
305
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Membrane-Anchored Serine Proteases: Host Cell Factors in Proteolytic Activation of Viral Glycoproteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122464 DOI: 10.1007/978-3-319-75474-1_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over one third of all known proteolytic enzymes are serine proteases. Among these, the trypsin-like serine proteases comprise one of the best characterized subfamilies due to their essential roles in blood coagulation, food digestion, fibrinolysis, or immunity. Trypsin-like serine proteases possess primary substrate specificity for basic amino acids. Most of the well-characterized trypsin-like proteases such as trypsin, plasmin, or urokinase are soluble proteases that are secreted into the extracellular environment. At the turn of the millennium, a number of novel trypsin-like serine proteases have been identified that are anchored in the cell membrane, either by a transmembrane domain at the N- or C-terminus or via a glycosylphosphatidylinositol (GPI) linkage. Meanwhile more than 20 membrane-anchored serine proteases (MASPs) have been identified in human and mouse, and some of them have emerged as key regulators of mammalian development and homeostasis. Thus, the MASP corin and TMPRSS6/matriptase-2 have been demonstrated to be the activators of the atrial natriuretic peptide (ANP) and key regulator of hepcidin expression, respectively. Furthermore, MASPs have been recognized as host cell factors activating respiratory viruses including influenza virus as well as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses. In particular, transmembrane protease serine S1 member 2 (TMPRSS2) has been shown to be essential for proteolytic activation and consequently spread and pathogenesis of a number of influenza A viruses in mice and as a factor associated with severe influenza virus infection in humans. This review gives an overview on the physiological functions of the fascinating and rapidly evolving group of MASPs and a summary of the current knowledge on their role in proteolytic activation of viral fusion proteins.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps Universität, Marburg, Germany
| | - Hans Dieter Klenk
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
306
|
Menou A, Flajolet P, Duitman J, Justet A, Moog S, Jaillet M, Tabèze L, Solhonne B, Garnier M, Mal H, Mordant P, Castier Y, Cazes A, Sallenave J, A. Mailleux A, Crestani B. Human airway trypsin‐like protease exerts potent, antifibrotic action in pulmonary fibrosis. FASEB J 2018; 32:1250-1264. [DOI: 10.1096/fj.201700583r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Awen Menou
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
| | - Pauline Flajolet
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
| | - JanWillem Duitman
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
| | - Aurélien Justet
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
- Service de Pneumologie A Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Bichat Paris France
| | - Sophie Moog
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
| | - Madeleine Jaillet
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
| | - Laure Tabèze
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
- Service de Pneumologie A Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Bichat Paris France
| | - Brigitte Solhonne
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
| | - Marc Garnier
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
- Departement d'Anesthésie et Réanimation, (AP‐HP) Hôpital Tenon Paris France
| | - Hervé Mal
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
- Service de Pneumologie et Transplantation Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Bichat Paris France
| | - Pierre Mordant
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
- Service de Chirurgie Thoracique et Vasculaire Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Bichat Paris France
| | - Yves Castier
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
- Service de Chirurgie Thoracique et Vasculaire Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Bichat Paris France
| | - Aurélie Cazes
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
- Departement d'Anatomie Pathologique Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Bichat Paris France
| | - Jean‐Michel Sallenave
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
| | - Arnaud A. Mailleux
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
| | - Bruno Crestani
- INSERM, Unité 1552 Paris France
- Département Hospitalo‐Universitaire Fibrosis, Inflammation, and Remodeling in Renal and Respiratory Diseases (FIRE) Paris France
- Laboratoire d'Excellence Inflamex Paris France
- Université Paris Diderot, Sorbonne Paris Cité Paris France
- Service de Pneumologie A Assistance Publique‐Hôpitaux de Paris (AP‐HP), Hôpital Bichat Paris France
| |
Collapse
|
307
|
Shen LW, Mao HJ, Wu YL, Tanaka Y, Zhang W. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie 2017; 142:1-10. [PMID: 28778717 PMCID: PMC7116903 DOI: 10.1016/j.biochi.2017.07.016] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022]
Abstract
Influenza virus and coronavirus epidemics or pandemics have occurred in succession worldwide throughout the early 21st century. These epidemics or pandemics pose a major threat to human health. Here, we outline a critical role of the host cell protease TMPRSS2 in influenza virus and coronavirus infections and highlight an antiviral therapeutic strategy targeting TMPRSS2.
Collapse
Affiliation(s)
- Li Wen Shen
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Juan Mao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan Ling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
308
|
Cao X, Tang Z, Huang F, Jin Q, Zhou X, Shi J. High TMPRSS11D protein expression predicts poor overall survival in non-small cell lung cancer. Oncotarget 2017; 8:12812-12819. [PMID: 28086212 PMCID: PMC5355057 DOI: 10.18632/oncotarget.14559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
TMPRSS11D (HAT) belongs to the large type II transmembrane serine protease (TTSP) family, participating in various biological and physiological processes. TMPRSS11D expression has been reported during squamous cell carcinogenesis, however, its expression during non-small cell lung cancer (NSCLC) development has not been studied. In this study, we determined the mRNA and protein expression of TMPRSS11D in NSCLC tumorous and matched adjacent normal tissues by quantitative reverse transcription PCR (qRT-PCR) and tissue microarray immunohistochemistry analysis (TMA-IHC) respectively. TMPRSS11D protein expression in tumorous tissues were correlated with NSCLC patients’ clinical characteristics and overall survival. Both TMPRSS11D mRNA and protein expression levels were significantly higher in NSCLC tumorous tissues than in adjacent normal tissues. High TMPRSS11D protein expression was associated with high TNM stages, and high TMPRSS11D protein expression is an independent prognostic marker in NSCLC. Based on our results, we conclude that TMPRSS11D could play a role in NSCLC development and progression. Because of its role in proteolysis of extracellular matrix, targeting TMPRSS11D may prevent the development of metastasis in NSCLC.
Collapse
Affiliation(s)
- Xiang Cao
- Department of Cardiothoracic Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Zhiyuan Tang
- Department of Respiratory Medicine, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Fang Huang
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Qin Jin
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Xiaoyu Zhou
- Department of Respiratory Medicine, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Jiahai Shi
- Department of Cardiothoracic Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| |
Collapse
|
309
|
Laporte M, Naesens L. Airway proteases: an emerging drug target for influenza and other respiratory virus infections. Curr Opin Virol 2017; 24:16-24. [PMID: 28414992 PMCID: PMC7102789 DOI: 10.1016/j.coviro.2017.03.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/28/2017] [Accepted: 03/30/2017] [Indexed: 01/11/2023]
Abstract
To enter into airway epithelial cells, influenza, parainfluenza- and coronaviruses rely on host cell proteases for activation of the viral protein involved in membrane fusion. One protease, transmembrane protease serine 2 (TMPRSS2) was recently proven to be crucial for hemagglutinin cleavage of some human influenza viruses. Since the catalytic sites of the diverse serine proteases linked to influenza, parainfluenza- and coronavirus activation are structurally similar, active site inhibitors of these airway proteases could have broad therapeutic applicability against multiple respiratory viruses. Alternatively, superior selectivity could be achieved with allosteric inhibitors of TMPRSS2 or another critical protease. Though still in its infancy, airway protease inhibition represents an attractive host-cell targeting approach to combat respiratory viruses such as influenza.
Collapse
Affiliation(s)
- Manon Laporte
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Lieve Naesens
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
310
|
Shi W, Fan W, Bai J, Tang Y, Wang L, Jiang Y, Tang L, Liu M, Cui W, Xu Y, Li Y. TMPRSS2 and MSPL Facilitate Trypsin-Independent Porcine Epidemic Diarrhea Virus Replication in Vero Cells. Viruses 2017; 9:E114. [PMID: 28524070 PMCID: PMC5454426 DOI: 10.3390/v9050114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/27/2023] Open
Abstract
Type II transmembrane serine proteases (TTSPs) facilitate the spread and replication of viruses such as influenza and human coronaviruses, although it remains unclear whether TTSPs play a role in the progression of animal coronavirus infections, such as that by porcine epidemic diarrhea virus (PEDV). In this study, TTSPs including TMPRSS2, HAT, DESC1, and MSPL were tested for their ability to facilitate PEDV replication in Vero cells. Our results showed that TMPRSS2 and MSPL played significant roles in the stages of cell-cell fusion and virus-cell fusion, whereas HAT and DESC1 exhibited weaker effects. This activation may be involved in the interaction between TTSPs and the PEDV S protein, as the S protein extensively co-localized with TMPRSS2 and MSPL and could be cleaved by co-expression with TMPRSS2 or MSPL. Moreover, the use of Vero cells expressing TMPRSS2 and MSPL facilitated PEDV replication in the absence of exogenous trypsin. In sum, we identified two host proteases, TMPRSS2 and MSPL, which may provide insights and a novel method for enhancing viral titers, expanding virus production, and improving the adaptability of PEDV isolates in vitro.
Collapse
Affiliation(s)
- Wen Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Wenlu Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Jing Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yandong Tang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
311
|
Non-human primate orthologues of TMPRSS2 cleave and activate the influenza virus hemagglutinin. PLoS One 2017; 12:e0176597. [PMID: 28493964 PMCID: PMC5426610 DOI: 10.1371/journal.pone.0176597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/13/2017] [Indexed: 01/09/2023] Open
Abstract
The cellular serine protease TMPRSS2, a member of the type II transmembrane serine protease (TTSP) family, cleaves and activates the hemagglutinin of influenza A viruses (FLUAV) in cell culture and is essential for spread of diverse FLUAV in mice. Non-human primates (NHP), in particular rhesus and cynomolgus macaques, serve as animal models for influenza and experimental FLUAV infection of common marmosets has recently also been reported. However, it is currently unknown whether the NHP orthologues of human TMPRSS2 cleave and activate FLUAV hemagglutinin and contribute to viral spread in respiratory tissue. Here, we cloned and functionally analyzed the macaque and marmoset orthologues of human TMPRSS2. In addition, we analyzed the macaque orthologues of human TMPRSS4 and HAT, which also belong to the TTSP family. We found that all NHP orthologues of human TMPRSS2, TMPRSS4 and HAT cleave and activate HA upon directed expression and provide evidence that endogenous TMPRSS2 is expressed in the respiratory epithelium of rhesus macaques. Finally, we demonstrate that a serine protease inhibitor active against TMPRSS2 suppresses FLUAV spread in precision-cut lung slices of human, macaque and marmoset origin. These results indicate that FLUAV depends on serine protease activity for spread in diverse NHP and in humans. Moreover, our findings suggest that macaques and marmosets may serve as models to study FLUAV activation by TMPRSS2 in human patients.
Collapse
|
312
|
Menou A, Duitman J, Flajolet P, Sallenave JM, Mailleux AA, Crestani B. Human airway trypsin-like protease, a serine protease involved in respiratory diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L657-L668. [DOI: 10.1152/ajplung.00509.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 01/12/2023] Open
Abstract
More than 2% of all human genes are coding for a complex system of more than 700 proteases and protease inhibitors. Among them, serine proteases play extraordinary, diverse functions in different physiological and pathological processes. The human airway trypsin-like protease (HAT), also referred to as TMPRSS11D and serine 11D, belongs to the emerging family of cell surface proteolytic enzymes, the type II transmembrane serine proteases (TTSPs). Through the cleavage of its four major identified substrates, HAT triggers specific responses, notably in epithelial cells, within the pericellular and extracellular environment, including notably inflammatory cytokine production, inflammatory cell recruitment, or anticoagulant processes. This review summarizes the potential role of this recently described protease in mediating cell surface proteolytic events, to highlight the structural features, proteolytic activity, and regulation, including the expression profile of HAT, and discuss its possible roles in respiratory physiology and disease.
Collapse
Affiliation(s)
- Awen Menou
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - JanWillem Duitman
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Pauline Flajolet
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Jean-Michel Sallenave
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Arnaud André Mailleux
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Bruno Crestani
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
- APHP, Hôpital Bichat, Service de Pneumologie A, Paris, France
| |
Collapse
|
313
|
The Proteolytic Activation of (H3N2) Influenza A Virus Hemagglutinin Is Facilitated by Different Type II Transmembrane Serine Proteases. J Virol 2016; 90:4298-4307. [PMID: 26889029 PMCID: PMC4836353 DOI: 10.1128/jvi.02693-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/01/2016] [Indexed: 11/20/2022] Open
Abstract
Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivity in vitro. Recently, we reported that inactivation of a single HA-activating protease gene, Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after infection of Tmprss2 knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion of Tmprss4 alone in knockout mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast, Tmprss2−/−Tmprss4−/− double-knockout mice showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virus in vivo. IMPORTANCE Influenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high variability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influenza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because the virus is dependent on these host factors for replication. We reported previously that Tmprss2-deficient mice are protected against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that deletion of two host protease genes, Tmprss2 and Tmprss4, strongly reduced viral spread as well as lung pathology and resulted in increased survival after H3N2 virus infection. Thus, TMPRSS4 represents another host cell factor that is involved in cleavage activation of H3N2 influenza viruses in vivo.
Collapse
|
314
|
Abstract
Membrane-anchored serine proteases are a group of extracellular serine proteases tethered directly to plasma membranes, via a C-terminal glycosylphosphatidylinositol linkage (GPI-anchored), a C-terminal transmembrane domain (Type I), or an N-terminal transmembrane domain (Type II). A variety of biochemical, cellular, and in vivo studies have established that these proteases are important pericellular contributors to processes vital for the maintenance of homeostasis, including food digestion, blood pressure regulation, hearing, epithelial permeability, sperm maturation, and iron homeostasis. These enzymes are hijacked by viruses to facilitate infection and propagation, and their misregulation is associated with a wide range of diseases, including cancer malignancy.
Collapse
|
315
|
Zmora P, Moldenhauer AS, Hofmann-Winkler H, Pöhlmann S. TMPRSS2 Isoform 1 Activates Respiratory Viruses and Is Expressed in Viral Target Cells. PLoS One 2015; 10:e0138380. [PMID: 26379044 PMCID: PMC4574978 DOI: 10.1371/journal.pone.0138380] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/28/2015] [Indexed: 12/02/2022] Open
Abstract
The cellular protease TMPRSS2 cleaves and activates the influenza virus hemagglutinin (HA) and TMPRSS2 expression is essential for viral spread and pathogenesis in mice. Moreover, severe acute respiratory syndrome coronavirus (SARS-CoV) and other respiratory viruses are activated by TMPRSS2. However, previous studies on viral activation by TMPRSS2 focused on a 492 amino acids comprising form of the protein (isoform 2) while other TMPRSS2 isoforms, generated upon alternative splicing of the tmprss2 mRNA, have not been characterized. Here, we show that the mRNA encoding a TMPRSS2 isoform with an extended N-terminal cytoplasmic domain (isoform 1) is expressed in lung-derived cell lines and tissues. Moreover, we demonstrate that TMPRSS2 isoform 1 colocalizes with HA and cleaves and activates HA. Finally, we show that isoform 1 activates the SARS-CoV spike protein for cathepsin L-independent entry into target cells. Our results indicate that TMPRSS2 isoform 1 is expressed in viral target cells and might contribute to viral activation in the host.
Collapse
Affiliation(s)
- Pawel Zmora
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | | | | | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- * E-mail:
| |
Collapse
|
316
|
Meyer M, Jaspers I. Respiratory protease/antiprotease balance determines susceptibility to viral infection and can be modified by nutritional antioxidants. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1189-201. [PMID: 25888573 PMCID: PMC4587599 DOI: 10.1152/ajplung.00028.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
The respiratory epithelium functions as a central orchestrator to initiate and organize responses to inhaled stimuli. Proteases and antiproteases are secreted from the respiratory epithelium and are involved in respiratory homeostasis. Modifications to the protease/antiprotease balance can lead to the development of lung diseases such as emphysema or chronic obstructive pulmonary disease. Furthermore, altered protease/antiprotease balance, in favor for increased protease activity, is associated with increased susceptibility to respiratory viral infections such as influenza virus. However, nutritional antioxidants induce antiprotease expression/secretion and decrease protease expression/activity, to protect against viral infection. As such, this review will elucidate the impact of this balance in the context of respiratory viral infection and lung disease, to further highlight the role epithelial cell-derived proteases and antiproteases contribute to respiratory immune function. Furthermore, this review will offer the use of nutritional antioxidants as possible therapeutics to boost respiratory mucosal responses and/or protect against infection.
Collapse
Affiliation(s)
- Megan Meyer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
317
|
To KKW, Zhou J, Chan JFW, Yuen KY. Host genes and influenza pathogenesis in humans: an emerging paradigm. Curr Opin Virol 2015; 14:7-15. [PMID: 26079652 PMCID: PMC7102748 DOI: 10.1016/j.coviro.2015.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
The emergence of the pandemic influenza virus A(H1N1)pdm09 in 2009 and avian influenza virus A(H7N9) in 2013 provided unique opportunities for assessing genetic predispositions to severe disease because many patients did not have any underlying risk factor or neutralizing antibody against these agents, in contrast to seasonal influenza viruses. High-throughput screening platforms and large human or animal databases from international collaborations allow rapid selection of potential candidate genes for confirmatory functional studies. In the last 2 years, at least seven new human susceptibility genes have been identified in genetic association studies. Integration of knowledge from genetic and phenotypic studies is essential to identify important gene targets for treatment and prevention of influenza virus infection.
Collapse
Affiliation(s)
- Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jie Zhou
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
318
|
Carnell GW, Ferrara F, Grehan K, Thompson CP, Temperton NJ. Pseudotype-based neutralization assays for influenza: a systematic analysis. Front Immunol 2015; 6:161. [PMID: 25972865 PMCID: PMC4413832 DOI: 10.3389/fimmu.2015.00161] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/25/2015] [Indexed: 12/02/2022] Open
Abstract
The use of vaccination against the influenza virus remains the most effective method of mitigating the significant morbidity and mortality caused by this virus. Antibodies elicited by currently licensed influenza vaccines are predominantly hemagglutination-inhibition (HI)-competent antibodies that target the globular head of hemagglutinin (HA) thus inhibiting influenza virus entry into target cells. These antibodies predominantly confer homosubtypic/strain specific protection and only rarely confer heterosubtypic protection. However, recent academia or pharma-led R&D toward the production of a “universal vaccine” has centered on the elicitation of antibodies directed against the stalk of the influenza HA that has been shown to confer broad protection across a range of different subtypes (H1–H16). The accurate and sensitive measurement of antibody responses elicited by these “next-generation” influenza vaccines is, however, hampered by the lack of sensitivity of the traditional influenza serological assays HI, single radial hemolysis, and microneutralization. Assays utilizing pseudotypes, chimeric viruses bearing influenza glycoproteins, have been shown to be highly efficient for the measurement of homosubtypic and heterosubtypic broadly neutralizing antibodies, making them ideal serological tools for the study of cross-protective responses against multiple influenza subtypes with pandemic potential. In this review, we will analyze and compare literature involving the production of influenza pseudotypes with particular emphasis on their use in serum antibody neutralization assays. This will enable us to establish the parameters required for optimization and propose a consensus protocol to be employed for the further deployment of these assays in influenza vaccine immunogenicity studies.
Collapse
Affiliation(s)
- George William Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Keith Grehan
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Craig Peter Thompson
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK ; Department of Zoology, University of Oxford , Oxford , UK ; The Jenner Institute Laboratories, University of Oxford , Oxford , UK
| | - Nigel James Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| |
Collapse
|
319
|
The oncogene ERG: a key factor in prostate cancer. Oncogene 2015; 35:403-14. [PMID: 25915839 DOI: 10.1038/onc.2015.109] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022]
Abstract
ETS-related gene (ERG) is a member of the E-26 transformation-specific (ETS) family of transcription factors with roles in development that include vasculogenesis, angiogenesis, haematopoiesis and bone development. ERG's oncogenic potential is well known because of its involvement in Ewing's sarcoma and leukaemia. However, in the past decade ERG has become highly associated with prostate cancer development, particularly as a result of a gene fusion with the promoter region of the androgen-induced TMPRRSS2 gene. We review ERG's structure and function, and its role in prostate cancer. We discuss potential new therapies that are based on targeting ERG.
Collapse
|
320
|
Cheng Z, Zhou J, To KKW, Chu H, Li C, Wang D, Yang D, Zheng S, Hao K, Bossé Y, Obeidat M, Brandsma CA, Song YQ, Chen Y, Zheng BJ, Li L, Yuen KY. Identification of TMPRSS2 as a Susceptibility Gene for Severe 2009 Pandemic A(H1N1) Influenza and A(H7N9) Influenza. J Infect Dis 2015; 212:1214-21. [PMID: 25904605 PMCID: PMC7107393 DOI: 10.1093/infdis/jiv246] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/27/2015] [Indexed: 01/25/2023] Open
Abstract
The genetic predisposition to severe A(H1N1)2009 (A[H1N1]pdm09) influenza was evaluated in 409 patients, including 162 cases with severe infection and 247 controls with mild infection. We prioritized candidate variants based on the result of a pilot genome-wide association study and a lung expression quantitative trait locus data set. The GG genotype of rs2070788, a higher-expression variant of TMPRSS2, was a risk variant (odds ratio, 2.11; 95% confidence interval, 1.18-3.77; P = .01) to severe A(H1N1)pdm09 influenza. A potentially functional single-nucleotide polymorphism, rs383510, accommodated in a putative regulatory region was identified to tag rs2070788. Luciferase assay results showed the putative regulatory region was a functional element, in which rs383510 regulated TMPRSS2 expression in a genotype-specific manner. Notably, rs2070788 and rs383510 were significantly associated with the susceptibility to A(H7N9) influenza in 102 patients with A(H7N9) influenza and 106 healthy controls. Therefore, we demonstrate that genetic variants with higher TMPRSS2 expression confer higher risk to severe A(H1N1)pdm09 influenza. The same variants also increase susceptibility to human A(H7N9) influenza.
Collapse
Affiliation(s)
| | - Jie Zhou
- Department of Microbiology Research Centre of Infection and Immunology State Key Laboratory of Emerging Infectious Diseases
| | - Kelvin Kai-Wang To
- Department of Microbiology Research Centre of Infection and Immunology State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection
| | - Hin Chu
- Department of Microbiology Research Centre of Infection and Immunology State Key Laboratory of Emerging Infectious Diseases
| | - Cun Li
- Department of Microbiology
| | | | | | - Shufa Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Yohan Bossé
- Department of Molecular Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University
| | - Ma'en Obeidat
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, The Netherlands
| | - You-Qiang Song
- Department of Biochemistry, The University of Hong Kong, Pok Fu Lam
| | - Yu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Bo-Jian Zheng
- Department of Microbiology Research Centre of Infection and Immunology State Key Laboratory of Emerging Infectious Diseases
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Kwok-Yung Yuen
- Department of Microbiology Research Centre of Infection and Immunology State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection
| |
Collapse
|
321
|
Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains. J Virol 2015; 89:6093-104. [PMID: 25833045 DOI: 10.1128/jvi.00543-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Coronaviruses (CoVs) and low-pathogenicity influenza A viruses (LP IAVs) depend on target cell proteases to cleave their viral glycoproteins and prime them for virus-cell membrane fusion. Several proteases cluster into tetraspanin-enriched microdomains (TEMs), suggesting that TEMs are preferred virus entry portals. Here we found that several CoV receptors and virus-priming proteases were indeed present in TEMs. Isolated TEMs, when mixed with CoV and LP IAV pseudoparticles, cleaved viral fusion proteins to fusion-primed fragments and potentiated viral transductions. That entering viruses utilize TEMs as a protease source was further confirmed using tetraspanin antibodies and tetraspanin short hairpin RNAs (shRNAs). Tetraspanin antibodies inhibited CoV and LP IAV infections, but their virus-blocking activities were overcome by expressing excess TEM-associated proteases. Similarly, cells with reduced levels of the tetraspanin CD9 resisted CoV pseudoparticle transductions but were made susceptible by overproducing TEM-associated proteases. These findings indicated that antibodies and CD9 depletions interfere with viral proteolytic priming in ways that are overcome by surplus proteases. TEMs appear to be exploited by some CoVs and LP IAVs for appropriate coengagement with cell receptors and proteases. IMPORTANCE Enveloped viruses use their surface glycoproteins to catalyze membrane fusion, an essential cell entry step. Host cell components prime these viral surface glycoproteins to catalyze membrane fusion at specific times and places during virus cell entry. Among these priming components are proteases, which cleave viral surface glycoproteins, unleashing them to refold in ways that catalyze virus-cell membrane fusions. For some enveloped viruses, these proteases are known to reside on target cell surfaces. This research focuses on coronavirus and influenza A virus cell entry and identifies TEMs as sites of viral proteolysis, thereby defining subcellular locations of virus priming with greater precision. Implications of these findings extend to the use of virus entry antagonists, such as protease inhibitors, which might be most effective when localized to these microdomains.
Collapse
|
322
|
Tse LV, Whittaker GR. Modification of the hemagglutinin cleavage site allows indirect activation of avian influenza virus H9N2 by bacterial staphylokinase. Virology 2015; 482:1-8. [PMID: 25841078 DOI: 10.1016/j.virol.2015.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/18/2015] [Accepted: 03/05/2015] [Indexed: 01/28/2023]
Abstract
Influenza H9N2 is considered to be a low pathogenicity avian influenza (LPAI) virus that commonly infects avian species and can also infect humans. In 1996, the influenza virus, A/chicken/Korea/MS96-CE6/1996/H9N2 (MS96) was isolated from an outbreak in multiple farms in South Korea that resulted in upwards of 30% mortality in infected chickens, with the virus infecting a number of extrapulmonary tissues, indicating internal spread. However, in experimental infections, complete recovery of specific pathogen free (SPF) chickens occurred. Such a discrepancy indicated an alternative pathway for MS96 virus to gain virulence in farmed chickens. A key determinant of influenza pathogenesis is the susceptibility of the viral hemagglutinin (HA) to proteolytic cleavage/activation. Here, we identified that an amino acid substitution, Ser to Tyr found at the P2 position of the MS96 HA cleavage site optimizes cleavage by the protease plasmin (Pm). Importantly, we identified that certain Staphylococcus sp. are able to cleave and activate MS96 HA by activating plasminogen (Plg) to plasmin by use of a virulence factor, staphylokinase. Overall, these studies provide an in-vitro mechanism for bacterially mediated enhancement of influenza activation, and allow insight into the microbiological mechanisms underlying the avian influenza H9N2 outbreak in Korea in1996.
Collapse
Affiliation(s)
- Longping V Tse
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, C4127 VMC Ithaca NY 14853, United States; New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627, United States
| | - Gary R Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, C4127 VMC Ithaca NY 14853, United States; New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627, United States.
| |
Collapse
|
323
|
DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry. J Virol 2014; 88:12087-97. [PMID: 25122802 DOI: 10.1128/jvi.01427-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type II transmembrane serine protease (TTSP) TMPRSS2 cleaves and activates the influenza virus and coronavirus surface proteins. Expression of TMPRSS2 is essential for the spread and pathogenesis of H1N1 influenza viruses in mice. In contrast, H3N2 viruses are less dependent on TMPRSS2 for viral amplification, suggesting that these viruses might employ other TTSPs for their activation. Here, we analyzed TTSPs, reported to be expressed in the respiratory system, for the ability to activate influenza viruses and coronaviruses. We found that MSPL and, to a lesser degree, DESC1 are expressed in human lung tissue and cleave and activate the spike proteins of the Middle East respiratory syndrome and severe acute respiratory syndrome coronaviruses for cell-cell and virus-cell fusion. In addition, we show that these proteases support the spread of all influenza virus subtypes previously pandemic in humans. In sum, we identified two host cell proteases that could promote the amplification of influenza viruses and emerging coronaviruses in humans and might constitute targets for antiviral intervention. Importance: Activation of influenza viruses by host cell proteases is essential for viral infectivity and the enzymes responsible are potential targets for antiviral intervention. The present study demonstrates that two cellular serine proteases, DESC1 and MSPL, activate influenza viruses and emerging coronaviruses in cell culture and, because of their expression in human lung tissue, might promote viral spread in the infected host. Antiviral strategies aiming to prevent viral activation might thus need to encompass inhibitors targeting MSPL and DESC1.
Collapse
|
324
|
Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture. J Virol 2014; 88:7952-61. [PMID: 24807723 DOI: 10.1128/jvi.00297-14] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing. Importance: Recurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV.
Collapse
|
325
|
The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses. J Virol 2014; 88:5608-16. [PMID: 24600012 DOI: 10.1128/jvi.03677-13] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Proteolytic cleavage of the hemagglutinin (HA) protein is essential for influenza A virus (IAV) to acquire infectivity. This process is mediated by a host cell protease(s) in vivo. The type II transmembrane serine protease TMPRSS2 is expressed in the respiratory tract and is capable of activating a variety of respiratory viruses, including low-pathogenic (LP) IAVs possessing a single arginine residue at the cleavage site. Here we show that TMPRSS2 plays an essential role in the proteolytic activation of LP IAVs, including a recently emerged H7N9 subtype, in vivo. We generated TMPRSS2 knockout (KO) mice. The TMPRSS2 KO mice showed normal reproduction, development, and growth phenotypes. In TMPRSS2 KO mice infected with LP IAVs, cleavage of HA was severely impaired, and consequently, the majority of LP IAV progeny particles failed to gain infectivity, while the viruses were fully activated proteolytically in TMPRSS2+/+ wild-type (WT) mice. Accordingly, in contrast to WT mice, TMPRSS2 KO mice were highly tolerant of challenge infection by LP IAVs (H1N1, H3N2, and H7N9) with ≥1,000 50% lethal doses (LD50) for WT mice. On the other hand, a high-pathogenic H5N1 subtype IAV possessing a multibasic cleavage site was successfully activated in the lungs of TMPRSS2 KO mice and killed these mice, as observed for WT mice. Our results demonstrate that recently emerged H7N9 as well as seasonal IAVs mainly use the specific protease TMPRSS2 for HA cleavage in vivo and, thus, that TMPRSS2 expression is essential for IAV replication in vivo. IMPORTANCE Influenza A virus (IAV) is a leading pathogen that infects and kills many humans every year. We clarified that the infectivity and pathogenicity of IAVs, including a recently emerged H7N9 subtype, are determined primarily by a host protease, TMPRSS2. Our data showed that TMPRSS2 is the key host protease that activates IAVs in vivo through proteolytic cleavage of their HA proteins. Hence, TMPRSS2 is a good target for the development of anti-IAV drugs. Such drugs could also be effective for many other respiratory viruses, including the recently emerged Middle East respiratory syndrome (MERS) coronavirus, because they are also activated by TMPRSS2 in vitro. Consequently, the present paper could have a large impact on the battle against respiratory virus infections and contribute greatly to human health.
Collapse
|
326
|
Identification and characterization of a proteolytically primed form of the murine coronavirus spike proteins after fusion with the target cell. J Virol 2014; 88:4943-52. [PMID: 24554652 DOI: 10.1128/jvi.03451-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Enveloped viruses carry highly specialized glycoproteins that catalyze membrane fusion under strict spatial and temporal control. To prevent premature activation after biosynthesis, viral class I fusion proteins adopt a locked conformation and require proteolytic cleavage to render them fusion-ready. This priming step may occur during virus exit from the infected cell, in the extracellular milieu or during entry at or in the next target cell. Proteolytic processing of coronavirus spike (S) fusion proteins during virus entry has been suggested but not yet formally demonstrated, while the nature and functionality of the resulting subunit is still unclear. We used a prototype coronavirus--mouse hepatitis virus (MHV)--to develop a conditional biotinylation assay that enables the specific identification and biochemical characterization of viral S proteins on virions that mediated membrane fusion with the target cell. We demonstrate that MHV S proteins are indeed cleaved upon virus endocytosis, and we identify a novel processing product S2* with characteristics of a fusion-active subunit. The precise cleavage site and the enzymes involved remain to be elucidated. IMPORTANCE Virus entry determines the tropism and is a crucial step in the virus life cycle. We developed an approach to characterize structural components of virus particles after entering new target cells. A prototype coronavirus was used to illustrate how the virus fusion machinery can be controlled.
Collapse
|
327
|
Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J Virol 2014; 88:4353-65. [PMID: 24501399 DOI: 10.1128/jvi.03050-13] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. IMPORTANCE We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug.
Collapse
|
328
|
Böttcher-Friebertshäuser E, Garten W, Matrosovich M, Klenk HD. The hemagglutinin: a determinant of pathogenicity. Curr Top Microbiol Immunol 2014; 385:3-34. [PMID: 25031010 DOI: 10.1007/82_2014_384] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hemagglutinin (HA) is a prime determinant of the pathogenicity of influenza A viruses. It initiates infection by binding to cell surface receptors and by inducing membrane fusion. The fusion capacity of HA depends on cleavage activation by host proteases, and it has long been known that highly pathogenic avian influenza viruses displaying a multibasic cleavage site differ in protease sensitivity from low pathogenic avian and mammalian influenza viruses with a monobasic cleavage site. Evidence is increasing that there are also variations in proteolytic activation among the viruses with a monobasic cleavage site, and several proteases have been identified recently that activate these viruses in a natural setting. Differences in protease sensitivity of HA and in tissue specificity of the enzymes are important determinants for virus tropism in the respiratory tract and for systemic spread of infection. Protease inhibitors that interfere with cleavage activation have the potential to be used for antiviral therapy and attenuated viruses have been generated by mutation of the cleavage site that can be used for the development of inactivated and live vaccines. It has long been known that human and avian influenza viruses differ in their specificity for sialic acid-containing cell receptors, and it is now clear that human tissues contain also receptors for avian viruses. Differences in receptor-binding specificity of seasonal and zoonotic viruses and differential expression of receptors for these viruses in the human respiratory tract account, at least partially, for the severity of disease. Receptor binding and fusion activation are modulated by HA glycosylation, and interaction of the glycans of HA with cellular lectins also affects virus infectivity. Interestingly, some of the mechanisms underlying pathogenicity are determinants of host range and transmissibility, as well.
Collapse
|
329
|
Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice. PLoS Pathog 2013; 9:e1003774. [PMID: 24348248 PMCID: PMC3857797 DOI: 10.1371/journal.ppat.1003774] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/03/2013] [Indexed: 12/24/2022] Open
Abstract
Annual influenza epidemics and occasional pandemics pose a severe threat to human health. Host cell factors required for viral spread but not for cellular survival are attractive targets for novel approaches to antiviral intervention. The cleavage activation of the influenza virus hemagglutinin (HA) by host cell proteases is essential for viral infectivity. However, it is unknown which proteases activate influenza viruses in mammals. Several candidates have been identified in cell culture studies, leading to the concept that influenza viruses can employ multiple enzymes to ensure their cleavage activation in the host. Here, we show that deletion of a single HA-activating protease gene, Tmprss2, in mice inhibits spread of mono-basic H1N1 influenza viruses, including the pandemic 2009 swine influenza virus. Lung pathology was strongly reduced and mutant mice were protected from weight loss, death and impairment of lung function. Also, after infection with mono-basic H3N2 influenza A virus body weight loss and survival was less severe in Tmprss2 mutant compared to wild type mice. As expected, Tmprss2-deficient mice were not protected from viral spread and pathology after infection with multi-basic H7N7 influenza A virus. In conclusion, these results identify TMPRSS2 as a host cell factor essential for viral spread and pathogenesis of mono-basic H1N1 and H3N2 influenza A viruses.
Collapse
|
330
|
TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2013; 88:1293-307. [PMID: 24227843 DOI: 10.1128/jvi.02202-13] [Citation(s) in RCA: 653] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The type II transmembrane serine proteases TMPRSS2 and HAT can cleave and activate the spike protein (S) of the severe acute respiratory syndrome coronavirus (SARS-CoV) for membrane fusion. In addition, these proteases cleave the viral receptor, the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), and it was proposed that ACE2 cleavage augments viral infectivity. However, no mechanistic insights into this process were obtained and the relevance of ACE2 cleavage for SARS-CoV S protein (SARS-S) activation has not been determined. Here, we show that arginine and lysine residues within ACE2 amino acids 697 to 716 are essential for cleavage by TMPRSS2 and HAT and that ACE2 processing is required for augmentation of SARS-S-driven entry by these proteases. In contrast, ACE2 cleavage was dispensable for activation of the viral S protein. Expression of TMPRSS2 increased cellular uptake of soluble SARS-S, suggesting that protease-dependent augmentation of viral entry might be due to increased uptake of virions into target cells. Finally, TMPRSS2 was found to compete with the metalloprotease ADAM17 for ACE2 processing, but only cleavage by TMPRSS2 resulted in augmented SARS-S-driven entry. Collectively, our results in conjunction with those of previous studies indicate that TMPRSS2 and potentially related proteases promote SARS-CoV entry by two separate mechanisms: ACE2 cleavage, which might promote viral uptake, and SARS-S cleavage, which activates the S protein for membrane fusion. These observations have interesting implications for the development of novel therapeutics. In addition, they should spur efforts to determine whether receptor cleavage promotes entry of other coronaviruses, which use peptidases as entry receptors.
Collapse
|
331
|
Activation of influenza A viruses by host proteases from swine airway epithelium. J Virol 2013; 88:282-91. [PMID: 24155384 DOI: 10.1128/jvi.01635-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pigs are important natural hosts of influenza A viruses, and due to their susceptibility to swine, avian, and human viruses, they may serve as intermediate hosts supporting adaptation and genetic reassortment. Cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is essential for viral infectivity. Most influenza viruses, including human and swine viruses, are activated at a monobasic HA cleavage site, and we previously identified TMPRSS2 and HAT to be relevant proteases present in human airways. We investigated the proteolytic activation of influenza viruses in primary porcine tracheal and bronchial epithelial cells (PTEC and PBEC, respectively). Human H1N1 and H3N2 viruses replicated efficiently in PTECs and PBECs, and viruses containing cleaved HA were released from infected cells. Moreover, the cells supported the proteolytic activation of HA at the stage of entry. We found that swine proteases homologous to TMPRSS2 and HAT, designated swTMPRSS2 and swAT, respectively, were expressed in several parts of the porcine respiratory tract. Both proteases cloned from primary PBECs were shown to activate HA with a monobasic cleavage site upon coexpression and support multicycle replication of influenza viruses. swAT was predominantly localized at the plasma membrane, where it was present as an active protease that mediated activation of incoming virus. In contrast, swTMPRSS2 accumulated in the trans-Golgi network, suggesting that it cleaves HA in this compartment. In conclusion, our data show that HA activation in porcine airways may occur by similar proteases and at similar stages of the viral life cycle as in human airways.
Collapse
|
332
|
Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res 2013; 100:605-14. [PMID: 24121034 PMCID: PMC3889862 DOI: 10.1016/j.antiviral.2013.09.028] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/12/2013] [Accepted: 09/28/2013] [Indexed: 12/20/2022]
Abstract
The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.''
Collapse
|
333
|
Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 2013; 87:12552-61. [PMID: 24027332 DOI: 10.1128/jvi.01890-13] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes host proteases for virus entry into lung cells. In the current study, Vero cells constitutively expressing type II transmembrane serine protease (Vero-TMPRSS2 cells) showed larger syncytia at 18 h after infection with MERS-CoV than after infection with other coronaviruses. Furthermore, the susceptibility of Vero-TMPRSS2 cells to MERS-CoV was 100-fold higher than that of non-TMPRSS2-expressing parental Vero cells. The serine protease inhibitor camostat, which inhibits TMPRSS2 activity, completely blocked syncytium formation but only partially blocked virus entry into Vero-TMPRSS2 cells. Importantly, the coronavirus is thought to enter cells via two distinct pathways, one mediated by TMPRSS2 at the cell surface and the other mediated by cathepsin L in the endosome. Simultaneous treatment with inhibitors of cathepsin L and TMPRSS2 completely blocked virus entry into Vero-TMPRSS2 cells, indicating that MERS-CoV employs both the cell surface and the endosomal pathway to infect Vero-TMPRSS2 cells. In contrast, a single camostat treatment suppressed MERS-CoV entry into human bronchial submucosal gland-derived Calu-3 cells by 10-fold and virus growth by 270-fold, although treatment with both camostat and (23,25)-trans-epoxysuccinyl-L-leucylamindo-3-methylbutane ethyl ester, a cathepsin inhibitor, or treatment with leupeptin, an inhibitor of cysteine, serine, and threonine peptidases, was no more efficacious than treatment with camostat alone. Further, these inhibitors were not efficacious against MERS-CoV infection of MRC-5 and WI-38 cells, which were derived from lung, but these characters differed from those of mature pneumocytes. These results suggest that a single treatment with camostat is sufficient to block MERS-CoV entry into a well-differentiated lung-derived cell line.
Collapse
|
334
|
Leow MKS. Correlating cell line studies with tissue distribution of DPP4/TMPRSS2 and human biological samples may better define the viral tropism of MERS-CoV. J Infect Dis 2013; 208:1350-1. [PMID: 23878322 PMCID: PMC7107381 DOI: 10.1093/infdis/jit330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
335
|
Böttcher-Friebertshäuser E, Klenk HD, Garten W. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium. Pathog Dis 2013; 69:87-100. [PMID: 23821437 PMCID: PMC7108517 DOI: 10.1111/2049-632x.12053] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/03/2013] [Indexed: 11/28/2022] Open
Abstract
Influenza is an acute infection of the respiratory tract, which affects each year millions of people. Influenza virus infection is initiated by the surface glycoprotein hemagglutinin (HA) through receptor binding and fusion of viral and endosomal membranes. HA is synthesized as a precursor protein and requires cleavage by host cell proteases to gain its fusion capacity. Although cleavage of HA is crucial for virus infectivity, little was known about relevant proteases in the human airways for a long time. Recent progress in the identification and characterization of HA‐activating host cell proteases has been considerable however and supports the idea of targeting HA cleavage as a novel approach for influenza treatment. Interestingly, certain bacteria have been demonstrated to support HA activation either by secreting proteases that cleave HA or due to activation of cellular proteases and thereby may contribute to virus spread and enhanced pathogenicity. In this review, we give an overview on activation of influenza viruses by proteases from host cells and bacteria with the main focus on recent progress on HA cleavage by proteases HAT and TMPRSS2 in the human airway epithelium. In addition, we outline investigations of HA‐activating proteases as potential drug targets for influenza treatment. The authors, who are leading experts in this field, present a timely, authoritative review on the proteolytic cleavage of the influenza hemagglutinin (HA), an activation mechanism that is essential for the infectivity of influenza viruses, including the recently emerged H7N9. They also address the potential of host proteases as targets for developing new influenza drugs. This review will be of considerable interest to virologists, microbiologists and pharmaceutical companies alike.
Collapse
|
336
|
Stech J, Mettenleiter TC. Virulence determinants of high-pathogenic avian influenza viruses in gallinaceous poultry. Future Virol 2013. [DOI: 10.2217/fvl.13.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
High-pathogenic avian influenza viruses (HPAIV) cause devastating outbreaks in domestic poultry worldwide. Moreover, they repeatedly lead to severe, even fatal disease in humans, raising concerns about their pandemic potential. HPAIV have evolved from circulating low-pathogenic precursors in several independent events by spontaneous acquisition of a polybasic cleavage site in the hemagglutinin (HA) envelope protein. Remarkably, in nature, HPAIV are confined to the HA serotypes H5 and H7 from the 16 HA serotypes known in birds. However, experimental introduction of a polybasic cleavage site into non-H5/H7 HA may result in a highly pathogenic phenotype, indicating that emergence of HPAIV with novel serotypes is conceivable, but requires further adaptation to the chicken host.
Collapse
Affiliation(s)
- Jürgen Stech
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
337
|
Beaulieu A, Gravel É, Cloutier A, Marois I, Colombo É, Désilets A, Verreault C, Leduc R, Marsault É, Richter MV. Matriptase proteolytically activates influenza virus and promotes multicycle replication in the human airway epithelium. J Virol 2013; 87:4237-51. [PMID: 23365447 PMCID: PMC3624356 DOI: 10.1128/jvi.03005-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 01/24/2013] [Indexed: 01/01/2023] Open
Abstract
Influenza viruses do not encode any proteases and must rely on host proteases for the proteolytic activation of their surface hemagglutinin proteins in order to fuse with the infected host cells. Recent progress in the understanding of human proteases responsible for influenza virus hemagglutinin activation has led to the identification of members of the type II transmembrane serine proteases TMPRSS2 and TMPRSS4 and human airway trypsin-like protease; however, none has proved to be the sole enzyme responsible for hemagglutinin cleavage. In this study, we identify and characterize matriptase as an influenza virus-activating protease capable of supporting multicycle viral replication in the human respiratory epithelium. Using confocal microscopy, we found matriptase to colocalize with hemagglutinin at the apical surface of human epithelial cells and within endosomes, and we showed that the soluble form of the protease was able to specifically cleave hemagglutinins from H1 virus, but not from H2 and H3 viruses, in a broad pH range. We showed that small interfering RNA (siRNA) knockdown of matriptase in human bronchial epithelial cells significantly blocked influenza virus replication in these cells. Lastly, we provide a selective, slow, tight-binding inhibitor of matriptase that significantly reduces viral replication (by 1.5 log) of H1N1 influenza virus, including the 2009 pandemic virus. Our study establishes a three-pronged model for the action of matriptase: activation of incoming viruses in the extracellular space in its shed form, upon viral attachment or exit in its membrane-bound and/or shed forms at the apical surface of epithelial cells, and within endosomes by its membrane-bound form where viral fusion takes place.
Collapse
Affiliation(s)
| | | | | | | | - Éloïc Colombo
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche Clinique Étienne-Le Bel, Québec, Canada
| | - Antoine Désilets
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche Clinique Étienne-Le Bel, Québec, Canada
| | | | - Richard Leduc
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche Clinique Étienne-Le Bel, Québec, Canada
| | - Éric Marsault
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche Clinique Étienne-Le Bel, Québec, Canada
| | | |
Collapse
|
338
|
The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 2013; 87:5502-11. [PMID: 23468491 DOI: 10.1128/jvi.00128-13] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The novel human coronavirus EMC (hCoV-EMC), which recently emerged in Saudi Arabia, is highly pathogenic and could pose a significant threat to public health. The elucidation of hCoV-EMC interactions with host cells is critical to our understanding of the pathogenesis of this virus and to the identification of targets for antiviral intervention. Here we investigated the viral and cellular determinants governing hCoV-EMC entry into host cells. We found that the spike protein of hCoV-EMC (EMC-S) is incorporated into lentiviral particles and mediates transduction of human cell lines derived from different organs, including the lungs, kidneys, and colon, as well as primary human macrophages. Expression of the known coronavirus receptors ACE2, CD13, and CEACAM1 did not facilitate EMC-S-driven transduction, suggesting that hCoV-EMC uses a novel receptor for entry. Directed protease expression and inhibition analyses revealed that TMPRSS2 and endosomal cathepsins activate EMC-S for virus-cell fusion and constitute potential targets for antiviral intervention. Finally, EMC-S-driven transduction was abrogated by serum from an hCoV-EMC-infected patient, indicating that EMC-S-specific neutralizing antibodies can be generated in patients. Collectively, our results indicate that hCoV-EMC uses a novel receptor for protease-activated entry into human cells and might be capable of extrapulmonary spread. In addition, they define TMPRSS2 and cathepsins B and L as potential targets for intervention and suggest that neutralizing antibodies contribute to the control of hCoV-EMC infection.
Collapse
|
339
|
The human Transmembrane Protease Serine 2 is necessary for the production of Group 2 influenza A virus pseudotypes. J Mol Genet Med 2013; 7:309-14. [PMID: 23577043 PMCID: PMC3614188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/03/2022] Open
Abstract
The monomer of influenza haemagglutinin is synthesized as a single polypeptide precursor that during maturation is cleaved by proteases into two active subunits. Other studies have demonstrated that the human Transmembrane Protease Serine 2 (TMPRSS2) can cleave the HA of human seasonal influenza viruses. Consequently, we have investigated the use of human Transmembrane Protease Serine 2 to produce high titre influenza haemmagglutinin (HA) lentiviral pseudotypes from Group 2 influenza viruses. Such pseudotypes represent powerful and safe tools to study viral entry and immune responses. Influenza pseudotype particles are obtained by co-transfecting human embryonic kidney HEK293T/17 cells using plasmids coding for the influenza HA, HIV gag-pol and a lentiviral vector incorporating firefly luciferase. However, in order to produce Group 2 pseudotypes, it was necessary to co-transfect a plasmid expressing the TMPRSS2 endoprotease, to achieve the necessary HA cleavage for infective particle generation. These lentiviral pseudotypes were shown to transduce HEK293T/17 cells with high efficiency. This demonstrates that TMPRSS2 is necessary for the functional activation, in vitro, of both the HA of human seasonal influenza and other Group 2 HA influenza strains. Additionally, we show that the Group 2 influenza pseudotype particles can be used as surrogate antigens in neutralization assays and are efficiently neutralized by corresponding influenza virus reference sera. These data demonstrate that the viral pseudotype system is a powerful method for serological surveillance of a wide range of influenza viruses.
Collapse
|
340
|
Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines. mBio 2012; 3:mBio.00515-12. [PMID: 23232719 PMCID: PMC3520110 DOI: 10.1128/mbio.00515-12] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A new human coronavirus (hCoV-EMC) has emerged very recently in the Middle East. The clinical presentation resembled that of the severe acute respiratory syndrome (SARS) as encountered during the epidemic in 2002/2003. In both cases, acute renal failure was observed in humans. HCoV-EMC is a member of the same virus genus as SARS-CoV but constitutes a sister species. Here we investigated whether it might utilize angiotensin-converting enzyme 2 (ACE2), the SARS-CoV receptor. Knowledge of the receptor is highly critical because the restriction of the SARS receptor to deep compartments of the human respiratory tract limited the spread of SARS. In baby hamster kidney (BHK) cells, lentiviral transduction of human ACE2 (hACE2) conferred permissiveness and replication for SARS-CoV but not for hCoV-EMC. Monkey and human kidney cells (LLC-MK2, Vero, and 769-P) and swine kidney cells were permissive for both viruses, but only SARS-CoV infection could be blocked by anti-hACE2 antibody and could be neutralized by preincubation of virus with soluble ACE2. Our data show that ACE2 is neither necessary nor sufficient for hCoV-EMC replication. Moreover, hCoV-EMC, but not SARS-CoV, replicated in cell lines from Rousettus, Rhinolophus, Pipistrellus, Myotis, and Carollia bats, representing four major chiropteran families from both suborders. As human CoV normally cannot replicate in bat cells from different families, this suggests that hCoV-EMC might use a receptor molecule that is conserved in bats, pigs, and humans, implicating a low barrier against cross-host transmission. A new human coronavirus (hCoV) emerged recently in the Middle East. The disease resembled SARS (severe acute respiratory syndrome), causing a fatal epidemic in 2002/2003. Coronaviruses have a reservoir in bats and because this novel virus is related to SARS-CoV, we investigated whether it might replicate in bat cells and use the same receptor (angiotensin-converting enzyme 2 [ACE2]). This knowledge is highly critical, because the SARS-CoV receptor influenced pathology, and its localization in the deep respiratory tract is thought to have restricted the transmissibility of SARS. Our data show that hCoV-EMC does not need the SARS-CoV receptor to infect human cells. Moreover, the virus is capable of infecting human, pig, and bat cells. This is remarkable, as human CoVs normally cannot replicate in bat cells as a consequence of host adaptation. Our results implicate that the new virus might use a receptor that is conserved between bats, pigs and humans suggesting a low barrier against cross-host transmission.
Collapse
|