301
|
Daghastanli NA, Itri R, Baptista MS. Singlet oxygen reacts with 2',7'-dichlorodihydrofluorescein and contributes to the formation of 2',7'-dichlorofluorescein. Photochem Photobiol 2008; 84:1238-43. [PMID: 18422880 DOI: 10.1111/j.1751-1097.2008.00345.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There are controversial reports in the literature concerning the reactivity of singlet oxygen ((1)O(2)) with the redox probe 2',7'-dichlorodihydrofluorescein (DCFH). By carefully preparing solutions in which (1)O(2) is quantitatively generated in the presence of DCFH, we were able to show that the formation rate of the fluorescent molecule derived from DCFH oxidation, which is 2',7'-dichlorofluorescein (DCF), increases in D(2)O and decreases in sodium azide, proving the direct role of (1)O(2) in this process. We have also prepared solutions in which either (1)O(2) or dication (MB(2+)) and semi-reduced (MB) radicals of the sensitizer and subsequently super-oxide radical (O(2)(-)) are generated. The absence of any effect of SOD and catalase ruled out the DCFH oxidation by O(2)(-), indicating that both (1)O(2) and MB(2+) react with DCFH. Although the formation of DCF was 1 order of magnitude larger in the presence of MB(2+) than in the presence of (1)O(2), considering the rate of spontaneous decays of these species in aqueous solution, we were able to conclude that the reactivity of (1)O(2) with DCFH is actually larger than that of MB(2+). We conclude that DCFH can continue to be used as a probe to monitor general redox misbalance induced in biologic systems by oxidizing radicals and (1)O(2).
Collapse
|
302
|
He YY, Council SE, Feng L, Bonini MG, Chignell CF. Spatial distribution of protein damage by singlet oxygen in keratinocytes. Photochem Photobiol 2008; 84:69-74. [PMID: 18173704 DOI: 10.1111/j.1751-1097.2007.00199.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Singlet oxygen may be generated in cells by either endogenous or exogenous photosensitizers as a result of exposure to UV or visible irradiation. We have used immuno-spin trapping (Free Radic. Biol. Med. 36: 1214, 2004) to identify the subcellular targets of singlet oxygen generated by rose bengal (RB). Confocal fluorescence microscopy of HaCaT keratinocytes incubated with RB clearly showed that the dye entered the cells and was located mainly in the perinuclear region, probably associated with the Golgi apparatus and endoplasmic reticulum. Previous studies by Wright et al. (Free Radic. Biol. Med.34: 637, 2003) have shown that long-lived protein hydroperoxides (POOH) are present in cells exposed to singlet oxygen-generating dyes. The addition of reducing metal ions such as Cu+ to POOH results in the generation of protein-derived radicals, POO(*) and PO(*), which react with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to give relatively stable spin adducts. In order to determine the subcellular localization of the protein-DMPO adducts, we exposed keratinocytes to RB/light exposure and then incubated the cells with Cu+ and DMPO. After staining with antibody against DMPO followed by a secondary Alexa Fluor 488 goat anti-rabbit IgG, the intracellular distribution of protein-DMPO adducts was determined by confocal microscopy. The subcellular localization of the protein DMPO adducts was coincident with that of RB. This approach may provide information on the spatial distribution of singlet oxygen generated in cells.
Collapse
Affiliation(s)
- Yu-Ying He
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | | | | | | |
Collapse
|
303
|
Girotti AW. Translocation as a means of disseminating lipid hydroperoxide-induced oxidative damage and effector action. Free Radic Biol Med 2008; 44:956-68. [PMID: 18206663 PMCID: PMC2361152 DOI: 10.1016/j.freeradbiomed.2007.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 12/06/2007] [Accepted: 12/06/2007] [Indexed: 11/25/2022]
Abstract
Lipid hydroperoxides (LOOHs) generated in cells and lipoproteins under oxidative pressure may induce waves of damaging chain lipid peroxidation near their sites of origin if O2 is readily available and antioxidant capacity is overwhelmed. However, recent studies have demonstrated that chain induction is not necessarily limited to a nascent LOOH's immediate surroundings but can extend to other cell membranes or lipoproteins by means of LOOH translocation through the aqueous phase. Mobilization and translocation can also extend the range of LOOHs as redox signaling molecules and in this sense they could act like the small, readily diffusible inorganic analogue H2O2, which has been studied much more extensively in this regard. In this article, basic mechanisms of free-radical- and singlet-oxygen-mediated LOOH formation and one-electron and two-electron LOOH reduction pathways and their biological consequences are reviewed. The first studies to document spontaneous and protein-assisted LOOH transfer in model systems and cells are described. Finally, LOOH translocation is discussed in the context of cytotoxicity vs detoxification and expanded effector action, i.e., redox signaling activity.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226-4801, USA.
| |
Collapse
|
304
|
Ijeri VS, Daasbjerg K, Ogilby PR, Poulsen L. Spatial and temporal electrochemical control of singlet oxygen production and decay in photosensitized experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1070-1079. [PMID: 18173293 DOI: 10.1021/la7028577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Active spatial and temporal modulation of domains of singlet oxygen activity is demonstrated using electrochemical tools. Using singlet oxygen microscopy in photosensitized experiments, it is shown that singlet oxygen concentrations around an ultramicroelectrode can be controlled by applying a bias voltage to the electrode. Two phenomena that can be exploited separately or collectively are examined: (1) the singlet oxygen concentration can be altered by local oxidation or reduction of the photosensitizer, which is the precursor to singlet oxygen, and (2) the reduction of oxygen to produce the superoxide anion which, among other things, is an effective singlet oxygen quencher, results in a local decrease in the concentration of singlet oxygen around the electrode. Both of these phenomena depend significantly on the diffusion of molecules along concentration gradients established by the biased electrode. The results reported herein demonstrate that one can indeed exert local electrochemical control and readily manipulate the population of singlet oxygen produced in a photosensitized process.
Collapse
Affiliation(s)
- Vijaykumar S Ijeri
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Arhus, Denmark
| | | | | | | |
Collapse
|
305
|
Johnsen M, Paterson MJ, Arnbjerg J, Christiansen O, Nielsen CB, Jørgensen M, Ogilby PR. Effects of conjugation length and resonance enhancement on two-photon absorption in phenylene–vinylene oligomers. Phys Chem Chem Phys 2008; 10:1177-91. [DOI: 10.1039/b715441k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
306
|
Jockusch S, Turro NJ, Thompson EK, Gouterman M, Callis JB, Khalil GE. Singlet molecular oxygen by direct excitation. Photochem Photobiol Sci 2008; 7:235-9. [DOI: 10.1039/b714286b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
307
|
Valencia A, Kochevar IE. Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes. J Invest Dermatol 2007; 128:214-22. [PMID: 17611574 DOI: 10.1038/sj.jid.5700960] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
UVA radiation is a major environmental stress on skin, causing acute and chronic photodamage. These responses are mediated by reactive oxygen species (ROS), although the cellular source of these ROS is unknown. We tested the hypotheses that UVA-induced activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is required for ROS generation in human keratinocytes (HK) and that these ROS initiate rapid prostaglandin E2 (PGE2) synthesis. Treatment of HK with a non-toxic dose of UVA rapidly increased NADPH oxidase activity and intracellular ROS, which were partially blocked by an inhibitor of NADPH oxidase and by a mitochondria-selective antioxidant. Depleting the Nox1 isoform of the catalytic subunit of NADPH oxidase using small interfering RNA (siRNA) blocked the UVA-induced ROS increase, indicating that ROS produced by mitochondria or other sources are downstream from Nox1. Nox1 siRNA also blocked UVA-initiated PGE2 synthesis. The mechanism for activation of Nox1 is mediated by an increase in intracellular calcium. Ceramide, which has been proposed to mediate responses to UVA in HK, also activated NADPH oxidase. These results indicate that UVA activates Nox1-based NADPH oxidase to produce ROS that stimulate PGE2 synthesis, and that Nox1 may be an appropriate target for agents designed to block UVA-induced skin injury.
Collapse
Affiliation(s)
- Antonio Valencia
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
308
|
Arnbjerg J, Paterson MJ, Nielsen CB, Jørgensen M, Christiansen O, Ogilby PR. One- and Two-Photon Photosensitized Singlet Oxygen Production: Characterization of Aromatic Ketones as Sensitizer Standards. J Phys Chem A 2007; 111:5756-67. [PMID: 17564419 DOI: 10.1021/jp071197l] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Singlet molecular oxygen, O2(a1Deltag), can be efficiently produced in a photosensitized process using either one- or two-photon irradiation. The aromatic ketone 1-phenalenone (PN) is an established one-photon singlet oxygen sensitizer with many desirable attributes for use as a standard. In the present work, photophysical properties of two other aromatic ketones, pyrene-1,6-dione (PD) and benzo[cd]pyren-5-one (BP), are reported and compared to those of PN. Both PD and BP sensitize the production of singlet oxygen with near unit quantum efficiency in a nonpolar (toluene) and a polar (acetonitrile) solvent. With their more extensive pi networks, the one-photon absorption spectra for PD and BP extend out to longer wavelengths than that for PN, thus providing increased flexibility for sensitizer excitation over the range approximately 300-520 nm. Moreover, PD and BP have much larger two-photon absorption cross sections than PN over the range 655-840 nm which, in turn, results in amounts of singlet oxygen that are readily detected in optical experiments. One- and two-photon absorption spectra of PD and BP obtained using high-level calculations model the salient features of the experimental data well. In particular, the ramifications of molecular symmetry are clearly reflected in both the experimental and calculated spectra. The use of PD and BP as standards for both the one- and two-photon photosensitized production of singlet oxygen is expected to facilitate the development of new sensitizers for application in singlet-oxygen-based imaging experiments.
Collapse
Affiliation(s)
- Jacob Arnbjerg
- Department of Chemistry, University of Aarhus, DK-8000 Arhus, Denmark
| | | | | | | | | | | |
Collapse
|
309
|
Jacobsen MF, Cló E, Mokhir A, Gothelf KV. Model Systems for Activation of Nucleic Acid Encoded Prodrugs. ChemMedChem 2007; 2:793-9. [PMID: 17436260 DOI: 10.1002/cmdc.200700013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of more selective chemotherapeutic agents for benign treatments of malicious diseases is highly desirable. In recent years model systems for the release of small molecule drugs from nucleic acid conjugates by templated chemical or photochemical reactions have been designed. Common for these systems is that the stoichiometric or catalytic drug release is controlled by the highly selective hybridization between complementary strands of nucleic acids. Herein, the concepts of the new field of nucleic acid templated release reactions are outlined.
Collapse
Affiliation(s)
- Mikkel F Jacobsen
- Centre for DNA Nanotechnology, Center for Catalysis and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, University of Aarhus, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
310
|
Affiliation(s)
- Peter R Ogilby
- Department of Chemistry, University of Aarhus, Arhus DK-8000, Denmark.
| |
Collapse
|
311
|
Kazakov DV, Schmidt R. On the Effect of 1,4-Diazabicyclo[2.2.2]octane on the Singlet-Oxygen Dimol Emission: Photosensitized Generation of (1O2)2. J Phys Chem A 2007; 111:4274-9. [PMID: 17455925 DOI: 10.1021/jp070630o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved singlet-oxygen dimol luminescence has been recorded upon laser-pulsed photosensitization of singlet oxygen by 2-acetonaphthone or 1-H-phenalen-1-one in perfluorobenzene, perdeuterobenzene, and perdeuteroacetonitrile. It is shown that 1,4-diazabicyclo[2.2.2]octane (DABCO) does not enhance radiative properties of the dimol species generated by the photosensitization. Instead, DABCO strongly reduces the singlet-oxygen dimol luminescence. Rate constants for the quenching of the dimol luminescence by DABCO have been determined for the three solvents used.
Collapse
Affiliation(s)
- Dmitri V Kazakov
- Institute of Organic Chemistry, Ufa Scientific Center of the RAS, 71 Prospect Oktyabrya, 450054 Ufa, Russia.
| | | |
Collapse
|
312
|
Cló E, Snyder JW, Ogilby PR, Gothelf KV. Control and Selectivity of Photosensitized Singlet Oxygen Production: Challenges in Complex Biological Systems. Chembiochem 2007; 8:475-81. [PMID: 17323398 DOI: 10.1002/cbic.200600454] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Singlet molecular oxygen is a reactive oxygen species that plays an important role in a number of biological processes, both as a signalling agent and as an intermediate involved in oxidative degradation reactions. Singlet oxygen is commonly generated by the so-called photosensitization process wherein a light-absorbing molecule, the sensitizer, transfers its energy of excitation to ground-state oxygen to make singlet oxygen. This process forms the basis of photodynamic therapy, for example, where light, a sensitizer, and oxygen are used to initiate cell death and ultimately destroy undesired tissue. Although the photosensitized production of singlet oxygen has been studied and used in biologically pertinent systems for years, the photoinitiated behaviour is often indiscriminate and difficult to control. In this Concept, we discuss new ideas and results in which spatial and temporal control of photosensitized singlet oxygen production can be implemented through the incorporation of the sensitizer into a conjugate system that selectively responds to certain triggers or stimuli.
Collapse
Affiliation(s)
- Emiliano Cló
- Department of Chemistry and iNANO, University of Aarhus, Langelandsgade 140, 8000 Arhus C, Denmark
| | | | | | | |
Collapse
|
313
|
Hatz S, Lambert JDC, Ogilby PR. Measuring the lifetime of singlet oxygen in a single cell: addressing the issue of cell viability. Photochem Photobiol Sci 2007; 6:1106-16. [PMID: 17914485 DOI: 10.1039/b707313e] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Singlet molecular oxygen, O(2)(a(1)Delta(g)), has been detected from single neurons and HeLa cells in time-resolved optical experiments by its 1270 nm phosphorescence (a(1)Delta(g)--> X(3)Sigma(-)(g)) upon irradiation of a photosensitizer incorporated into the cell. The cells were maintained in a buffered medium and their viability was assessed by live/dead assays. To facilitate the detection of singlet oxygen, intracellular H(2)O was replaced with D(2)O by an osmotic de- and rehydration process. The effect of this insult on the cells was likewise assessed. The data indicate that, in the complicated transition from a "live" to "dead" cell, the majority of our cells have the metabolic activity and morphology characteristic of a live cell. Quenching experiments demonstrate that the singlet oxygen lifetime in our cells is principally determined by interactions with intracellular water and not by interactions with other cell constituents. The data indicate that in a viable, metabolically-functioning, and H(2)O-containing cell, the lifetime of singlet oxygen is approximately 3 micros. This is consistent with our previous reports, and confirms that the singlet oxygen lifetime in a cell is much longer than hitherto believed. This implies that, in a cell, singlet oxygen is best characterized as a selective rather than reactive intermediate. This is important when considering roles played by singlet oxygen as a signaling agent and as a component in events that result in cell death. The data reported herein also demonstrate that spatially-resolved optical probes can be used to monitor selected events in the light-induced, singlet-oxygen-mediated death of a single cell.
Collapse
Affiliation(s)
- Sonja Hatz
- Department of Chemistry University of Aarhus, DK-8000, Arhus, Denmark
| | | | | |
Collapse
|