301
|
Mirhosseini SA, Fooladi AAI, Amani J, Sedighian H. Production of recombinant flagellin to develop ELISA-based detection of Salmonella Enteritidis. Braz J Microbiol 2017; 48:774-781. [PMID: 28739413 PMCID: PMC5628325 DOI: 10.1016/j.bjm.2016.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 04/04/2016] [Indexed: 01/22/2023] Open
Abstract
Food-borne diseases, caused by the pathogenic bacteria, are highly prevalent in the world. Salmonella is one of the most important bacterial genera responsible for this. Salmonella Enteritidis (SE) is one of the non-typhoid Salmonellae that can be transmitted to human from poultry products, water, and contaminated food. In recent years, new and rapid detection methods such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) have been developed. In this study, recombinant FliC (rFliC) was produced to be used as an antigen. The immunization was conducted in mice with the purified recombinant FliC (rFliC). The mice were subcutaneously immunized with rFliC and elicited significant rFliC specific serum IgG antibodies. An indirect ELISA system was established for the detection of Salmonella Enteritidis. Our results confirmed that the recombinant flagellin can be one of the excellent indicators for the detection of Salmonella Enteritidis.
Collapse
Affiliation(s)
- Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Sedighian
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
302
|
Gardiner M, Bournazos AM, Maturana-Martinez C, Zhong L, Egan S. Exoproteome Analysis of the Seaweed Pathogen Nautella italica R11 Reveals Temperature-Dependent Regulation of RTX-Like Proteins. Front Microbiol 2017; 8:1203. [PMID: 28706511 PMCID: PMC5489592 DOI: 10.3389/fmicb.2017.01203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022] Open
Abstract
Climate fluctuations have been linked to an increased prevalence of disease in seaweeds, including the red alga Delisea pulchra, which is susceptible to a bleaching disease caused by the bacterium Nautella italica R11 under elevated seawater temperatures. To further investigate the role of temperature in the induction of disease by N. italica R11, we assessed the effect of temperature on the expression of the extracellular proteome (exoproteome) in this bacterium. Label-free quantitative mass spectrometry was used to identify 207 proteins secreted into supernatant fraction, which is equivalent to 5% of the protein coding genes in the N. italica R11 genome. Comparative analysis demonstrated that expression of over 30% of the N. italica R11 exoproteome is affected by temperature. The temperature-dependent proteins include traits that could facilitate the ATP-dependent transport of amino acid and carbohydrate, as well as several uncharacterized proteins. Further, potential virulence determinants, including two RTX-like proteins, exhibited significantly higher expression in the exoproteome at the disease inducing temperature of 24°C relative to non-inducing temperature (16°C). This is the first study to demonstrate that temperature has an influence exoproteome expression in a macroalgal pathogen. The results have revealed several temperature regulated candidate virulence factors that may have a role in macroalgal colonization and invasion at elevated sea-surface temperatures, including novel RTX-like proteins.
Collapse
Affiliation(s)
- Melissa Gardiner
- School of Biological Earth and Environmental Sciences-Centre for Marine Bio-Innovation, The University of New South Wales, Sydney,NSW, Australia
| | - Adam M Bournazos
- School of Biological Earth and Environmental Sciences-Centre for Marine Bio-Innovation, The University of New South Wales, Sydney,NSW, Australia
| | - Claudia Maturana-Martinez
- School of Biological Earth and Environmental Sciences-Centre for Marine Bio-Innovation, The University of New South Wales, Sydney,NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales, SydneyNSW, Australia
| | - Suhelen Egan
- School of Biological Earth and Environmental Sciences-Centre for Marine Bio-Innovation, The University of New South Wales, Sydney,NSW, Australia
| |
Collapse
|
303
|
Lee J, Kim DJ, Yeom JH, Lee K. Bdm-Mediated Regulation of Flagellar Biogenesis in Escherichia coli and Salmonella enterica Serovar Typhimurium. Curr Microbiol 2017; 74:1015-1020. [PMID: 28603807 DOI: 10.1007/s00284-017-1270-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/23/2017] [Indexed: 11/24/2022]
Abstract
Synthesis of the flagellar apparatus in Escherichia coli is mediated via complex regulatory pathways. A previous study indicated that the protein encoded by the biofilm-dependent modulation (bdm) gene is linked closely with a regulatory pathway for flagellar assembly. However, the specific role of Bdm in flagellar biogenesis remains unknown. Herein, we showed that Bdm interacts with FlgM and inhibits its function as an anti-σ28 factor, which induces the transcription of flagellar late-class genes in E. coli. In addition, we observed that deletion of the yddX gene, a potential Salmonella enterica serovar Typhimurium homolog of bdm, also resulted in downregulation of flagellar late-class genes and in the formation of short flagella, leading to decreased virulence in mice. The expression levels of late-class flagellar genes in yddX-deleted S. Typhimurium cells were restored to those of the wild type when either E. coli bdm or S. Typhimurium yddX was expressed exogenously. These results suggest that Bdm-mediated regulation of flagellar assembly is a conserved regulatory pathway in those members of the Enterobacteriaceae family whose genomes show the existence of homologs of bdm.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dae-Jun Kim
- Sejong Science High School, Guro-gu, Seoul, 08258, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
304
|
Weller‐Stuart T, Toth I, De Maayer P, Coutinho T. Swimming and twitching motility are essential for attachment and virulence of Pantoea ananatis in onion seedlings. MOLECULAR PLANT PATHOLOGY 2017; 18:734-745. [PMID: 27226224 PMCID: PMC6638301 DOI: 10.1111/mpp.12432] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 05/05/2023]
Abstract
Pantoea ananatis is a widespread phytopathogen with a broad host range. Despite its ability to infect economically important crops, such as maize, rice and onion, relatively little is known about how this bacterium infects and colonizes host tissue or spreads within and between hosts. To study the role of motility in pathogenicity, we analysed both swimming and twitching motility in P. ananatis LMG 20103. Genetic recombineering was used to construct four mutants affected in motility. Two flagellar mutants were disrupted in the flgK and motA genes, required for flagellar assembly and flagellar rotation, respectively. Similarly, two twitching motility mutants were generated, impaired in the structure (pilA) and functioning (pilT) of the type IV pili. The role of swimming and twitching motility during the infection cycle of P. ananatis in onion seedlings was determined by comparing the mutant- and wild-type strains using several in vitro and in planta assays. From the results obtained, it was evident that flagella aid P. ananatis in locating and attaching to onion leaf surfaces, as well as in pathogenicity, whereas twitching motility is instrumental in the spread of the bacteria on the surface once attachment has occurred. Both swimming and twitching motility contribute towards the ability of P. ananatis to cause disease in onions.
Collapse
Affiliation(s)
- Tania Weller‐Stuart
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002 South Africa
| | - Ian Toth
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002 South Africa
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DA UK
| | - Pieter De Maayer
- Department of Microbiology, Centre of Microbial Ecology and Genomics (CMEG)University of PretoriaPretoria0002 South Africa
| | - Teresa Coutinho
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002 South Africa
| |
Collapse
|
305
|
Hoel S, Vadstein O, Jakobsen AN. Species Distribution and Prevalence of Putative Virulence Factors in Mesophilic Aeromonas spp. Isolated from Fresh Retail Sushi. Front Microbiol 2017; 8:931. [PMID: 28596762 PMCID: PMC5442234 DOI: 10.3389/fmicb.2017.00931] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022] Open
Abstract
Aeromonas spp. are ubiquitous bacteria that have received increasing attention as human pathogens because of their widespread occurrence in food, especially seafood and vegetables. The aim of this work was to assess the species identity and phylogenetic relationship of 118 Aeromonas strains isolated from fresh retail sushi from three producers, and to characterize the isolates with respect to genetic and phenotypic virulence factors. We also evaluate the potential hazard associated with their presence in ready-to-eat seafood not subjected to heat treatment. Mesophilic Aeromonas salmonicida was most prevalent (74%), followed by A. bestiarum (9%), A. dhakensis (5%), A. caviae (5%), A. media (4%), A. hydrophila (2%), and A. piscicola (1%). All isolates were considered potentially pathogenic due to the high prevalence of genes encoding hemolysin (hlyA) (99%), aerolysin (aerA) (98%), cytotoxic enterotoxin (act) (86%), heat-labile cytotonic enterotoxin (alt) (99%), and heat-stable cytotonic enterotoxin (ast) (31%). The shiga-like toxins 1 and 2 (stx-1 and stx-2) were not detected. Moreover, there was heterogeneity in toxin gene distribution among the isolates, and the combination of act/alt/hlyA/aerA was most commonly detected (63%). β-hemolysis was species-dependent and observed in 91% of the isolates. All A. media and A. caviae strains were non-hemolytic. For isolates belonging to this group, lack of hemolysis was possibly related to the absence of the act gene. Swimming motility, linked to adhesion and host invasion, occurred in 65% of the isolates. Partial sequencing of the gyrB gene demonstrated its suitability as a genetic marker for Aeromonas species identification and for assessment of the phylogenetic relationship between the isolates. The gyrB sequence divergence within a given species ranged from 1.3 to 2.9%. A. bestiarum, A. salmonicida, and A. piscicola were the most closely related species; their sequences differed by 2.7-3.4%. The average gyrB sequence similarity between all species was 93%, demonstrating its acceptable taxonomic resolution. The presence of multiple species of potential pathogenic Aeromonas in fresh retail sushi raises new food safety issues related to the increased consumption of ready-to-eat food composed of raw ingredients.
Collapse
Affiliation(s)
- Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Anita N Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and TechnologyTrondheim, Norway
| |
Collapse
|
306
|
Nielsen SM, Meyer RL, Nørskov-Lauritsen N. Differences in Gene Expression Profiles between Early and Late Isolates in Monospecies Achromobacter Biofilm. Pathogens 2017; 6:E20. [PMID: 28534862 PMCID: PMC5488654 DOI: 10.3390/pathogens6020020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 11/30/2022] Open
Abstract
Bacteria of genus Achromobacter are emerging pathogens in cystic fibrosis (CF) capable of biofilm formation and development of antimicrobial resistance. Evolutionary adaptions in the transition from primary to chronic infection were assessed by transcriptomic analysis of successive isolates of Achromobacter xylosoxidans from a single CF patient. Several efflux pump systems targeting antimicrobial agents were upregulated during the course of the disease, whereas all genes related to motility were downregulated. Genes annotated to subsystems of sulfur metabolism, protein metabolism and potassium metabolism exhibited the strongest upregulation. K+ channel genes were hyperexpressed, and a putative sulfite oxidase was more than 1500 times upregulated. The transcriptome patterns indicated a pivotal role of sulfur metabolism and electrical signalling in Achromobacter biofilms during late stage CF lung disease.
Collapse
Affiliation(s)
- Signe M Nielsen
- Department of Clinical Medicine, Health, Aarhus University, DK-8200 Aarhus, Denmark.
- Department of Clinical Microbiology, Aarhus University Hospital, DK-8200 Aarhus, Denmark.
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus, Denmark.
| | | |
Collapse
|
307
|
Enterotoxigenic Escherichia coli Flagellin Inhibits TNF-Induced NF-κB Activation in Intestinal Epithelial Cells. Pathogens 2017; 6:pathogens6020018. [PMID: 28513540 PMCID: PMC5488652 DOI: 10.3390/pathogens6020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/02/2017] [Accepted: 05/14/2017] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes childhood diarrhea in developing countries. ETEC strains produce the heat-labile enterotoxin (LT) and/or heat-stable enterotoxins (ST) and encode a diverse set of colonization factors used for adherence to intestinal epithelial cells. We previously found that ETEC secretes a heat-stable protein we designated as ETEC Secreted Factor (ESF) that inhibits the extent of NF-κB activation normally induced by tumor necrosis factor alpha (TNF). Here we fractionated ETEC supernatants using fast protein liquid chromatography (FPLC) and determined that ETEC flagellin was necessary and sufficient to protect IκBα from degradation in response to TNF stimulation. These data suggest a potentially novel mechanism by which ETEC may evade the host innate immune response by down-regulating NF-κB-dependent host responses.
Collapse
|
308
|
Sarshar S, Brandt S, Asadi Karam MR, Habibi M, Bouzari S, Lechtenberg M, Dobrindt U, Qin X, Goycoolea FM, Hensel A. Aqueous extract from Orthosiphon stamineus leaves prevents bladder and kidney infection in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 28:1-9. [PMID: 28478807 DOI: 10.1016/j.phymed.2017.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Extracts from the leaves of Orthosiphon stamineus are used in phytotherapy for treatment of uncomplicated urinary tract infections. PURPOSES Evaluation of an aqueous extract against infection with uropathogenic Escherichia coli in vivo; investigation of underlying microbiological mechanisms. STUDY DESIGN In vivo studies in mice and in vitro investigations on cytotoxicity, antiadhesive potential, influence on bacterial gene expression and quorum sensing. METHODS Extract OWE was prepared by hot water extraction. For in vivo studies BALB/c mice were used in an UPEC infection model. The effect of OWE on bacterial load in bladder/kidney tissue was monitored in pre- and posttreatment. Cytotoxicity of OWE against different UPEC strains, T24 bladder/A498 kidney cells, gene expression analysis, monitoring of phenotypic motility and quorum sensing was investigated by standard methods of microbiology. RESULTS OWE was quantified (UHPLC) according to the content of rosmarinic acid, cichoric acid, caffeic acid. Three- and 5-day treatment of animals with OWE (750mg/kg) after transurethral infection with UPEC CFT073 reduced the bacterial load in bladder and kidney, similar to norfloxacin. Four- and 7-day pretreatment of mice prior to the infection with UPEC NU14 reduced bacterial bladder colonization. In vitro investigations indicated that OWE (≤2mg/ml) has no cytotoxic or proliferation-inhibiting activity against different UPEC strains as well as against T24 bladder and A498 kidney cells. OWE exerts a dose dependent antiadhesive activity against UPEC strains NU14 and UTI89. OWE reduced gene expression of fimH, but evoked increase of the expression of motility/fitness gene fliC. Increase of bacterial motility on gene level was confirmed by a changed bacterial phenotype by an increased bacterial motility in soft agar assay. OWE inhibited in a concentration-dependent manner bacterial quorum sensing. CONCLUSION OWE is assessed as a strong antiadhesive plant extract for which the traditional use in phytotherapy for UTI might be justified.
Collapse
Affiliation(s)
- S Sarshar
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| | - S Brandt
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| | - M R Asadi Karam
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Avenue, Teheran 13164, Iran
| | - M Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Avenue, Teheran 13164, Iran
| | - S Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Avenue, Teheran 13164, Iran
| | - M Lechtenberg
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| | - U Dobrindt
- University Hospital Münster, Institute of Hygiene, Mendelstraße 7, D-48149 Münster, Germany
| | - X Qin
- University of Münster, Institute of Biology and Plant Biotechnology, Schlossgarten 3, D-48149 Münster, Germany
| | - F M Goycoolea
- University of Münster, Institute of Biology and Plant Biotechnology, Schlossgarten 3, D-48149 Münster, Germany
| | - A Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany.
| |
Collapse
|
309
|
Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level. Sci Rep 2017; 7:1433. [PMID: 28469201 PMCID: PMC5431167 DOI: 10.1038/s41598-017-01619-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/30/2017] [Indexed: 01/02/2023] Open
Abstract
Host-microbe interactions determine the outcome of host responses to commensal and pathogenic microbes. Previously, two epithelial cell-binding peptides were found to be homologues of two sites (B, aa168–174; F, aa303–309) in the flagellar hook protein FlgE of Pseudomonas aeruginosa. Tertiary modeling predicted these sites at the interface of neighboring FlgE monomers in the fully formed hook. Recombinant FlgE protein stimulated proinflammatory cytokine production in a human cell line and in murine lung organoid culture as detected with real-time RT-PCR and ELISA assays. When administered to mice, FlgE induced lung inflammation and enhanced the Th2-biased humoral response to ovalbumin. A pull-down assay performed with FlgE-saturated resin identified caveolin-1 as an FlgE-binding protein, and caveolin-1 deficiency impaired FlgE-induced inflammation and downstream Erk1/2 pathway activation in lung organoids. Intact flagellar hooks from bacteria were also proinflammatory. Mutations to sites B and F impaired bacteria motility and proinflammatory potency of FlgE without altering adjuvanticity of FlgE. These findings suggest that the flagellar hook and FlgE are novel players in host-bacterial interactions at immunological level. Further studies along this direction would provide new opportunities for understanding and management of diseases related with bacterial infection.
Collapse
|
310
|
Gu H. Role of Flagella in the Pathogenesis of Helicobacter pylori. Curr Microbiol 2017; 74:863-869. [PMID: 28444418 PMCID: PMC5447363 DOI: 10.1007/s00284-017-1256-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
Abstract
This review aimed to investigate the role of Helicobacter pylori flagella on the pathogenicity of this bacterium in humans. Helicobacter pylori is a flagellated pathogen that colonizes the human gastroduodenal mucosa and produces inflammation, and is responsible for gastrointestinal disease. Its pathogenesis is attributed to colonization and virulence factors. The primary function of H. pylori flagella is to provide motility. We believe that H. pylori flagella play an important role in the colonization of the gastrointestinal mucosa. Therefore, we reviewed previous studies on flagellar morphology and motility in order to explore the relationship between H. pylori flagella and pathogenicity. Further investigation is required to confirm the association between flagella and pathogenicity in H. pylori.
Collapse
Affiliation(s)
- Haiying Gu
- Medical School, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
311
|
Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis. Pathogens 2017; 6:pathogens6010010. [PMID: 28282951 PMCID: PMC5371898 DOI: 10.3390/pathogens6010010] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa.
Collapse
|
312
|
Hoeflinger JL, Miller MJ. Cronobacter sakazakii ATCC 29544 Autoaggregation Requires FliC Flagellation, Not Motility. Front Microbiol 2017; 8:301. [PMID: 28293226 PMCID: PMC5328975 DOI: 10.3389/fmicb.2017.00301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/14/2017] [Indexed: 01/06/2023] Open
Abstract
Cronobacter sakazakii is an opportunistic nosocomial and foodborne pathogen that causes severe infections with high morbidity and mortality rates in neonates, the elderly, and immunocompromised individuals. Little is known about the pathogenesis mechanism of this pathogen and if there are any consequences of C. sakazakii colonization in healthy individuals. In this study, we characterized the mechanisms of autoaggregation in C. sakazakii ATCC 29544 (CS29544). Autoaggregation in CS29544 occurred rapidly, within 30 min, and proceeded to a maximum of 70%. Frameshift mutations in two flagellum proteins (FlhA and FliG) were identified in two nonautoaggregating CS29544 clonal variant isolates. Strategic gene knockouts were generated to determine if structurally intact and functional flagella were required for autoaggregation in CS29544. All structural knockouts (ΔflhA, ΔfliG, and ΔfliC) abolished autoaggregation, whereas the functional knockout (ΔmotAB) did not prevent autoaggregation. Complementation with FliC (ΔfliC/cfliC) restored autoaggregation. Autoaggregation was also disrupted by the addition of exogenous wild-type CS29544 filaments in a dose-dependent manner. Finally, filament supercoils tethering neighboring wild-type CS29544 cells together were observed by transmission electron microscopy. In silico analyses suggest that direct interactions of neighboring CS29544 FliC filaments proceed by hydrophobic bonding between the externally exposed hypervariable regions of the CS29544 FliC flagellin protein. Further research is needed to confirm if flagella-mediated autoaggregation plays a prominent role in C. sakazakii pathogenesis.
Collapse
Affiliation(s)
- Jennifer L Hoeflinger
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign Urbana, IL, USA
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign Urbana, IL, USA
| |
Collapse
|
313
|
Freitag CM, Strijbis K, van Putten JPM. Host cell binding of the flagellar tip protein of Campylobacter jejuni. Cell Microbiol 2017; 19. [PMID: 28008697 DOI: 10.1111/cmi.12714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 12/16/2016] [Indexed: 12/29/2022]
Abstract
Flagella are nanofibers that drive bacterial movement. The filaments are generally composed of thousands of tightly packed flagellin subunits with a terminal cap protein, named FliD. Here, we report that the FliD protein of the bacterial pathogen Campylobacter jejuni binds to host cells. Live-cell imaging and confocal microscopy showed initial contact of the bacteria with epithelial cells via the flagella tip. Recombinant FliD protein bound to the surface of intestinal epithelial cells in a dose-dependent fashion. Search for the FliD binding site on the host cell using cells with defined glycosylation defects indicated glycosaminoglycans as a putative target. Heparinase treatment of wild type cells and an excess of soluble heparin abolished FliD binding. Binding assays showed direct and specific binding of FliD to heparin. Addition of an excess of purified FliD or heparin reduced the attachment of viable C. jejuni to the host cells. The host cell binding domain of FliD was mapped to the central region of the protein. Overall, our results indicate that the C. jejuni flagellar tip protein FliD acts as an attachment factor that interacts with cell surface heparan sulfate glycosaminoglycan receptors.
Collapse
Affiliation(s)
- Claudia M Freitag
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
314
|
Comparative metagenomics reveals taxonomically idiosyncratic yet functionally congruent communities in periodontitis. Sci Rep 2016; 6:38993. [PMID: 27991530 PMCID: PMC5172196 DOI: 10.1038/srep38993] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023] Open
Abstract
The phylogenetic characteristics of microbial communities associated with periodontitis have been well studied, however, little is known about the functional endowments of this ecosystem. The present study examined 73 microbial assemblages from 25 individuals with generalized chronic periodontitis and 25 periodontally healthy individuals using whole genome shotgun sequencing. Core metabolic networks were computed from taxa and genes identified in at least 80% of individuals in each group. 50% of genes and species identified in health formed part of the core microbiome, while the disease-associated core microbiome contained 33% of genes and only 1% of taxa. Clinically healthy sites in individuals with periodontitis were more aligned with sites with disease than with health. 68% of the health-associated metagenome was dedicated to energy utilization through oxidative pathways, while in disease; fermentation and methanogenesis were predominant energy transfer mechanisms. Expanded functionality was observed in periodontitis, with unique- or over-representation of genes encoding for fermentation, antibiotic resistance, detoxification stress, adhesion, invasion and intracellular resistance, proteolysis, quorum sensing, Type III/IV secretion systems, phages and toxins in the disease-associated core microbiome. However, different species or consortia contributed to these functions in each individual. Several genes, but not species, demonstrated robust discriminating power between health and disease.
Collapse
|
315
|
Mesa D, Lourenço M, Souza A, Bueno A, Pereira A, Sfeir M, Santin E. Influence of Covering Reused Broiler Litter with Plastic Canvas on Litter Characteristics and Bacteriology and the Subsequent Immunity and Microbiology of Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1806-9061-2015-0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- D Mesa
- Federal University of Paraná, Brazil
| | | | | | - A Bueno
- Federal University of Paraná, Brazil
| | - A Pereira
- Federal University of Paraná, Brazil
| | - M Sfeir
- Federal University of Paraná, Brazil
| | - E Santin
- Federal University of Paraná, Brazil
| |
Collapse
|
316
|
Barnes AC, Delamare-Deboutteville J, Gudkovs N, Brosnahan C, Morrison R, Carson J. Whole genome analysis of Yersinia ruckeri isolated over 27 years in Australia and New Zealand reveals geographical endemism over multiple lineages and recent evolution under host selection. Microb Genom 2016; 2:e000095. [PMID: 28348835 PMCID: PMC5320707 DOI: 10.1099/mgen.0.000095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023] Open
Abstract
Yersinia ruckeri is a salmonid pathogen with widespread distribution in cool-temperate waters including Australia and New Zealand, two isolated environments with recently developed salmonid farming industries. Phylogenetic comparison of 58 isolates from Australia, New Zealand, USA, Chile, Finland and China based on non-recombinant core genome SNPs revealed multiple deep-branching lineages, with a most recent common ancestor estimated at 18 500 years BP (12 355–24 757 95% HPD) and evidence of Australasian endemism. Evolution within the Tasmanian Atlantic salmon serotype O1b lineage has been slow, with 63 SNPs describing the variance over 27 years. Isolates from the prevailing lineage are poorly/non-motile compared to a lineage pre-vaccination, introduced in 1997, which is highly motile but has not been isolated since from epizootics. A non-motile phenotype has arisen independently in Tasmania compared to Europe and USA through a frameshift in fliI, encoding the ATPase of the flagella cluster. We report for the first time lipopolysaccharide O-antigen serotype O2 isolates in Tasmania. This phenotype results from deletion of the O-antigen cluster and consequent loss of high-molecular-weight O-antigen. This phenomenon has occurred independently on three occasions on three continents (Australasia, North America and Asia) as O2 isolates from the USA, China and Tasmania share the O-antigen deletion but occupy distant lineages. Despite the European and North American origins of the Australasian salmonid stocks, the lineages of Y. ruckeri in Australia and New Zealand are distinct from those of the northern hemisphere, suggesting they are pre-existing ancient strains that have emerged and evolved with the introduction of susceptible hosts following European colonization.
Collapse
Affiliation(s)
- Andrew C Barnes
- 1School of Biological Sciences, The University of Queensland, Gehrmann Laboratories (60), St Lucia, Brisbane, QL 4072, Australia
| | - Jerome Delamare-Deboutteville
- 1School of Biological Sciences, The University of Queensland, Gehrmann Laboratories (60), St Lucia, Brisbane, QL 4072, Australia
| | - Nicholas Gudkovs
- 2CSIRO Australian Animal Health Laboratory, Newcomb, VIC 3219, Australia
| | - Cara Brosnahan
- 3Ministry for Primary Industries, Animal Health Laboratory, Wallaceville, New Zealand
| | - Richard Morrison
- 4Department of Primary Industries Parks Water & Environment (DPIPWE), Kings Meadows, Launceston, TAS 7249, Australia
| | - Jeremy Carson
- 4Department of Primary Industries Parks Water & Environment (DPIPWE), Kings Meadows, Launceston, TAS 7249, Australia
| |
Collapse
|
317
|
Nagano K, Hasegawa Y, Yoshida Y, Yoshimura F. Comparative analysis of motility and other properties of Treponema denticola strains. Microb Pathog 2016; 102:82-88. [PMID: 27914958 DOI: 10.1016/j.micpath.2016.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/18/2016] [Accepted: 11/29/2016] [Indexed: 01/27/2023]
Abstract
The periodontitis-associated pathogen Treponema denticola is a spirochetal bacterium that swims by rotating its cell body like a corkscrew using periplasmic flagella. We compared physiologic and pathogenic properties, including motility, in four strains of T. denticola. Phase-contrast microscopy showed differential motility between the strains; ATCC 35404 showed the highest motility, followed by ATCC 33521, and the remaining two strains (ATCC 35405 and ATCC 33520) showed the lowest motility. Transmission electron microscopy showed that the low motility strains exhibited extracellular flagellar protrusions resulting from elongated flagella. Treponemal flagellar filaments are composed of three flagellins of FlaB1, FlaB2 and FlaB3. FlaB1 expression was comparable between the strains, whereas FlaB2 expression was lowest in ATCC 35404. FlaB3 expression varied among strains, with ATCC 35405, ATCC 33520, ATCC 33521, and ATCC 35404 showing the highest to lowest expression levels, respectively. Additionally, the low motility strains showed faster electrophoretic mobility of FlaB3, suggesting that posttranslational modifications of these proteins may have varied, because the amino acid sequences of FlaB3 were identical between the strains. These results suggest that inappropriate expression of FlaB2 and FlaB3 caused the unusual elongation of flagella that resulted in decreased motility. Furthermore, the low motility strains grew to higher bacterial density, and showed greater chymotrypsin-like protease activity, and more bacterial cells associated with gingival epithelial cells in comparison with the high motility strains. There may be a relationship between motility and these properties, but the genetic factors underlying this association remain unclear.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
318
|
Laganenka L, Colin R, Sourjik V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat Commun 2016; 7:12984. [PMID: 27687245 PMCID: PMC5056481 DOI: 10.1038/ncomms12984] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022] Open
Abstract
Bacteria communicate by producing and sensing extracellular signal molecules called autoinducers. Such intercellular signalling, known as quorum sensing, allows bacteria to coordinate and synchronize behavioural responses at high cell densities. Autoinducer 2 (AI-2) is the only known quorum-sensing molecule produced by Escherichia coli but its physiological role remains elusive, although it is known to regulate biofilm formation and virulence in other bacterial species. Here we show that chemotaxis towards self-produced AI-2 can mediate collective behaviour-autoaggregation-of E. coli. Autoaggregation requires motility and is strongly enhanced by chemotaxis to AI-2 at physiological cell densities. These effects are observed regardless whether cell-cell interactions under particular growth conditions are mediated by the major E. coli adhesin (antigen 43) or by curli fibres. Furthermore, AI-2-dependent autoaggregation enhances bacterial stress resistance and promotes biofilm formation.
Collapse
Affiliation(s)
- Leanid Laganenka
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043 Marburg, Germany
| | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043 Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043 Marburg, Germany
| |
Collapse
|
319
|
Postel S, Deredge D, Bonsor DA, Yu X, Diederichs K, Helmsing S, Vromen A, Friedler A, Hust M, Egelman EH, Beckett D, Wintrode PL, Sundberg EJ. Bacterial flagellar capping proteins adopt diverse oligomeric states. eLife 2016; 5. [PMID: 27664419 PMCID: PMC5072837 DOI: 10.7554/elife.18857] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/23/2016] [Indexed: 11/13/2022] Open
Abstract
Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD from Pseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find that Pseudomonas FliD exhibits unexpected structural similarity to other flagellar proteins at the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies. DOI:http://dx.doi.org/10.7554/eLife.18857.001 Many bacteria, including several that cause diseases in people, have long whip-like appendages called flagella that extend well beyond their cell walls. Flagella can rotate and propel the bacteria through liquids, such as water or blood, and they are constructed primarily from thousands of copies of a single protein called flagellin. When flagella are built, the flagellin proteins are placed in their proper positions by another protein called FliD, several copies of which form a cap on the end of flagella. Without FliD, bacteria cannot properly assemble flagella and, thus, can no longer swim; this also hinders their ability to cause disease. Determining the three-dimensional structure of a protein, down to the level of its individual atoms, can provide unique insights into how the protein operates. However, no one had resolved the structure of a FliD protein from any bacterium to this level of detail before. Now, Postel et al. report the high-resolution structure of a large fragment of FliD from the bacterium Pseudomonas aeruginosa. The structure reveals that parts of this FliD protein are shaped like parts of other proteins from which flagella are constructed, including the flagellin protein that FliD places into position. Some parts of the FliD protein are also very flexible and these parts of the protein are responsible for holding numerous FliD proteins together as a cap. Finally, Postel et al. saw that six copies of FliD bind to one another to form a protein complex on the end of flagella. This last finding was particularly unexpected since it was thought that all FliD proteins formed five-membered cap complexes, an assumption that was based largely on studies of FliD from another bacterium called Salmonella. The current structure covers about half of the FliD protein, and so the next challenge is to determine the structure of the full-length protein. An improved understanding of the structure of FliD may, in future, help researchers to design drugs that stop bacteria from building flagella and, therefore, from swimming and causing disease. DOI:http://dx.doi.org/10.7554/eLife.18857.002
Collapse
Affiliation(s)
- Sandra Postel
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, United States
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, United States
| | - Daniel A Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, United States
| | - Xiong Yu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| | - Kay Diederichs
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Saskia Helmsing
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Aviv Vromen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Hust
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland College Park, Baltimore, United States
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, United States
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, United States.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
320
|
Recognition and targeting mechanisms by chaperones in flagellum assembly and operation. Proc Natl Acad Sci U S A 2016; 113:9798-803. [PMID: 27528687 DOI: 10.1073/pnas.1607845113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The flagellum is a complex bacterial nanomachine that requires the proper assembly of several different proteins for its function. Dedicated chaperones are central in preventing aggregation or undesired interactions of flagellar proteins, including their targeting to the export gate. FliT is a key flagellar chaperone that binds to several flagellar proteins in the cytoplasm, including its cognate filament-capping protein FliD. We have determined the solution structure of the FliT chaperone in the free state and in complex with FliD and the flagellar ATPase FliI. FliT adopts a four-helix bundle and uses a hydrophobic surface formed by the first three helices to recognize its substrate proteins. We show that the fourth helix constitutes the binding site for FlhA, a membrane protein at the export gate. In the absence of a substrate protein FliT adopts an autoinhibited structure wherein both the binding sites for substrates and FlhA are occluded. Substrate binding to FliT activates the complex for FlhA binding and thus targeting of the chaperone-substrate complex to the export gate. The activation and targeting mechanisms reported for FliT appear to be shared among the other flagellar chaperones.
Collapse
|
321
|
Luo G, Huang L, Su Y, Qin Y, Xu X, Zhao L, Yan Q. flrA, flrB and flrC regulate adhesion by controlling the expression of critical virulence genes in Vibrio alginolyticus. Emerg Microbes Infect 2016; 5:e85. [PMID: 27485498 PMCID: PMC5034100 DOI: 10.1038/emi.2016.82] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Adhesion is an important virulence trait of Vibrio alginolyticus. Bacterial adhesion is influenced by environmental conditions; however, the molecular mechanism underlying this effect remains unknown. The expression levels of flrA, flrB and flrC were significantly downregulated in adhesion-deficient V. alginolyticus strains cultured under Cu2+, Pb2+, Hg2+ and low-pH stresses. Silencing these genes led to deficiencies in adhesion, motility, flagellar assembly, biofilm formation and exopolysaccharide (EPS) production. The expression levels of fliA, flgH, fliS, fliD, cheR, cheV and V12G01_22158 (Gene ID) were significantly downregulated in all of the RNAi groups, whereas the expression levels of toxT, ctxB, acfA, hlyA and tlh were upregulated in flrA- and flrC-silenced groups. These genes play a key role in the virulence mechanisms of most pathogenic Vibrio species. Furthermore, the expression of flrA, flrB and flrC was significantly influenced by temperature, salinity, starvation and pH. These results indicate that (1) flrA, flrB and flrC are important for V. alginolyticus adhesion; (2) flrA, flrB and flrC significantly influence bacterial adhesion, motility, biofilm formation and EPS production by controlling expression of key genes involved in those phenotypes; and (3) flrA, flrB and flrC regulate adhesion in the natural environment with different temperatures, pH levels, salinities and starvation time.
Collapse
Affiliation(s)
- Gang Luo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian 352000, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian 352000, China
| |
Collapse
|
322
|
Monteiro R, Ageorges V, Rojas-Lopez M, Schmidt H, Weiss A, Bertin Y, Forano E, Jubelin G, Henderson IR, Livrelli V, Gobert AP, Rosini R, Soriani M, Desvaux M. A secretome view of colonisation factors in Shiga toxin-encodingEscherichia coli(STEC): from enterohaemorrhagicE. coli(EHEC) to related enteropathotypes. FEMS Microbiol Lett 2016; 363:fnw179. [DOI: 10.1093/femsle/fnw179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
|
323
|
Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant Natural Products Targeting Bacterial Virulence Factors. Chem Rev 2016; 116:9162-236. [PMID: 27437994 DOI: 10.1021/acs.chemrev.6b00184] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Karine Rigon Zimmer
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Instituto Nacional do Semiárido , Campina Grande, Paraı́ba 58429-970, Brazil
| | - Danielle Silva Trentin
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| |
Collapse
|
324
|
Qin Y, Lin G, Chen W, Xu X, Yan Q. Flagellar motility is necessary for Aeromonas hydrophila adhesion. Microb Pathog 2016; 98:160-6. [PMID: 27432325 DOI: 10.1016/j.micpath.2016.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022]
Abstract
Adhesion to host surface or cells is the initial step in bacterial pathogenesis, and the adhesion mechanisms of the fish pathogenic bacteria Aeromonas hydrophila were investigated in this study. First, a mutagenesis library of A. hydrophila that contained 332 random insertion mutants was constructed via mini-Tn10 Km mutagenesis. Four mutants displayed the most attenuated adhesion. Sequence analysis revealed that the mini-Tn10 insertion sites in the four mutant strains were flgC(GenBank accession numbers KX261880), cytb4(GenBank accession numbers JN133621), rbsR(GenBank accession numbers KX261881) and flgE(GenBank accession numbers JQ974982). To further study the roles of flgC and flgE in the adhesion of A. hydrophila, some biological characteristics of the wild-type strain B11, the mutants M121 and M240, and the complemented strains C121 and C240 were investigated. The results showed that the mutation in flgC or flgE led to the flagellar motility of A. hydrophila significant reduction or abolishment. flgC was not necessary for flagellar biosynthesis but was necessary for the full motility of A. hydrophila, flgE was involved in both flagellar biosynthesis and motility. The flagellar motility is necessary for A. hydrophila to adhere to the host mucus, which suggests flagellar motility plays crucial roles in the early infection process of this bacterium.
Collapse
Affiliation(s)
- Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Guifang Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Wenbo Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China.
| |
Collapse
|
325
|
Gu H, Chen A, Song X, Brasch ME, Henderson JH, Ren D. How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography. Sci Rep 2016; 6:29516. [PMID: 27412365 PMCID: PMC4944170 DOI: 10.1038/srep29516] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Bacterial response to surface topography during biofilm formation was studied using 5 μm tall line patterns of poly (dimethylsiloxane) (PDMS). Escherichia coli cells attached on top of protruding line patterns were found to align more perpendicularly to the orientation of line patterns when the pattern narrowed. Consistently, cell cluster formation per unit area on 5 μm wide line patterns was reduced by 14-fold compared to flat PDMS. Contrasting the reduced colony formation, cells attached on narrow patterns were longer and had higher transcriptional activities, suggesting that such unfavorable topography may present a stress to attached cells. Results of mutant studies indicate that flagellar motility is involved in the observed preference in cell orientation on narrow patterns, which was corroborated by the changes in cell rotation pattern before settling on different surface topographies. These findings led to a set of new design principles for creating antifouling topographies, which was validated using 10 μm tall hexagonal patterns.
Collapse
Affiliation(s)
- Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Aaron Chen
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Xinran Song
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Megan E Brasch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - James H Henderson
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA.,Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA.,Department of Biology, Syracuse University, Syracuse, NY 13244, United States
| |
Collapse
|
326
|
Purcell EB, Tamayo R. Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiol Rev 2016; 40:753-73. [PMID: 27354347 DOI: 10.1093/femsre/fuw013] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 12/14/2022] Open
Abstract
The nucleotide second messenger 3'-5' cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria.
Collapse
Affiliation(s)
- Erin B Purcell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
327
|
Behrouz B, Amirmozafari N, Khoramabadi N, Bahroudi M, Legaee P, Mahdavi M. Cloning, Expression, and Purification of Pseudomonas aeruginosa Flagellin, and Characterization of the Elicited Anti-Flagellin Antibody. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e28271. [PMID: 27621933 PMCID: PMC5004508 DOI: 10.5812/ircmj.28271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/30/2015] [Accepted: 04/15/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is an important opportunistic human pathogen that causes serious infections in immunocompromised hosts. The single polar flagellum is an important factor in both virulence and colonization. OBJECTIVES As flagellin is the major component of the flagellar filament, the main aims of the present study are to identify, clone, express, and purify the recombinant type B flagellin (r-B-flagellin) of P. aeruginosa, as well as to evaluate the functional activity of the rabbit polyclonal antibody raised against this r-B-flagellin. MATERIALS AND METHODS In the current experimental study, the r-B-flagellin gene was isolated from the P. aeruginosa PAO1 strain by PCR. It was cloned into the pET-28a vector and then transformed into the E. coli BL21 strain. Next, r-B-flagellin was overexpressed and affinity purified by Ni-NTA agarose-affinity chromatography, followed by on-column resolubilization. Polyclonal antisera against the recombinant flagellin were raised in rabbits, and the functional activity of the anti-r-B-flagellin antibody was determined by in vitro assays. RESULTS The polyclonal antibodies raised against this r-B-flagellin inhibited the motility of the homologous PAO1 strain of P. aeruginosa, which significantly decreased the invasion of the PAO1 strain into the A549 cells and also enhanced the opsonophagocytosis of this strain. However, our polyclonal antibody showed little effect on the heterologous PAK strain. CONCLUSIONS The r-B-flagellin carried antigenic epitopes just like the native flagellin, while the polyclonal antibody raised against it exhibited functional activity.
Collapse
Affiliation(s)
- Bahador Behrouz
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Nour Amirmozafari, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, IR Iran. Tel: +98-2188058649, E-mail:
| | - Nima Khoramabadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Mahboobeh Bahroudi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Parisa Legaee
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, IR Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, IR Iran
| |
Collapse
|
328
|
Immunogenicity and protective efficacy of Pseudomonas aeruginosa type a and b flagellin vaccines in a burned mouse model. Mol Immunol 2016; 74:71-81. [DOI: 10.1016/j.molimm.2016.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 04/07/2016] [Accepted: 04/14/2016] [Indexed: 12/31/2022]
|
329
|
Lo YL, Shen L, Chang CH, Bhuwan M, Chiu CH, Chang HY. Regulation of Motility and Phenazine Pigment Production by FliA Is Cyclic-di-GMP Dependent in Pseudomonas aeruginosa PAO1. PLoS One 2016; 11:e0155397. [PMID: 27175902 PMCID: PMC4866697 DOI: 10.1371/journal.pone.0155397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/28/2016] [Indexed: 12/21/2022] Open
Abstract
The transcription factor FliA, also called sigma 28, is a major regulator of bacterial flagellar biosynthesis genes. Growing evidence suggest that in addition to motility, FliA is involved in controlling numerous bacterial behaviors, even though the underlying regulatory mechanism remains unclear. By using a transcriptional fusion to gfp that responds to cyclic (c)-di-GMP, this study revealed a higher c-di-GMP concentration in the fliA deletion mutant of Pseudomonas aeruginosa than in its wild-type strain PAO1. A comparative analysis of transcriptome profiles of P. aeruginosa PAO1 and its fliA deletion mutant revealed an altered expression of several c-di-GMP-modulating enzyme-encoding genes in the fliA deletion mutant. Moreover, the downregulation of PA4367 (bifA), a Glu-Ala-Leu motif-containing phosphodiesterase, in the fliA deletion mutant was confirmed using the β-glucuronidase reporter gene assay. FliA also altered pyocyanin and pyorubin production by modulating the c-di-GMP concentration. Complementing the fliA mutant strain with bifA restored the motility defect and pigment overproduction of the fliA mutant. Our results indicate that in addition to regulating flagellar gene transcription, FliA can modulate the c-di-GMP concentration to regulate the swarming motility and phenazine pigment production in P. aeruginosa.
Collapse
Affiliation(s)
- Yi-Ling Lo
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Lunda Shen
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Chih-Hsuan Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Manish Bhuwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
- * E-mail:
| |
Collapse
|
330
|
Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli. Infect Immun 2016; 84:1112-1122. [PMID: 26831466 DOI: 10.1128/iai.01001-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022] Open
Abstract
The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliCa nd fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of a EPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of a EPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The a EPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of a EPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process.
Collapse
|
331
|
Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: The case of Shewanella oneidensis MR-1. Biointerphases 2016; 11:011003. [PMID: 26746161 DOI: 10.1116/1.4939244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The bacterial cell envelope forms the interface between the interior of the cell and the outer world and is, thus, the means of communication with the environment. In particular, the outer cell surface mediates the adhesion of bacteria to the surface, the first step in biofilm formation. While a number of ligand-based interactions are known for the attachment process in commensal organisms and, as a result, opportunistic pathogens, the process of nonspecific attachment is thought to be mediated by colloidal, physiochemical, interactions. It is becoming clear, however, that colloidal models ignore the heterogeneity of the bacterial surface, and that the so-called nonspecific attachment may be mediated by specific regions of the cell surface, whether or not the relevant interaction is ligand-mediate. The authors introduce surface functionalized gold nanoparticles to probe the surface chemistry of Shewanella oneidensis MR-1 as it relates to surface attachment to ω-substituted alkanethiolates self-assembled monolayers (SAMs). A linear relationship between the attachment of S. oneidensis to SAM modified planar substrates and the number of similarly modified nanoparticles attached to the bacterial surfaces was demonstrated. In addition, the authors demonstrate that carboxylic acid-terminated nanoparticles attach preferentially to the subpolar region of the S. oneidensis and obliteration of that binding preference corresponds in loss of attachment to carboxylic acid terminated SAMs. Moreover, this region corresponds to suspected functional regions of the S. oneidensis surface. Because this method can be employed over large numbers of cells, this method is expected to be generally applicable for understanding cell surface organization across populations.
Collapse
|
332
|
Ghorbanalizadgan M, Bakhshi B, Najar-Peerayeh S. PCR-RFLP Provides Discrimination for Total flaA Sequence Analysis in Clinical Campylobacter jejuni Isolates. Jpn J Infect Dis 2016; 69:373-7. [PMID: 26743147 DOI: 10.7883/yoken.jjid.2015.386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aims of this study were to determine the genetic relatedness among 20 clinical Campylobacter jejuni samples isolated from children with diarrhea in Iran and to introduce the best method of discrimination based on flagellin gene (flaA) sequence divergence. A total of 400 stool specimens were obtained from children under 5 years of age from July 2012 to June 2013. Primers were designed based on conserved sequences flanking the flaA gene that encompassed and amplified the entire flaA gene and followed by sequencing and data analysis with MEGA version 6.0.6 software. Ninety amino acids and 560 nucleotide polymorphic sequences were detected within 1,681 bp of the flaA sequence of which 43 (2.5%) and 12 (0.7%) were singletons, respectively. New repeat boxes within the flaA sequences were found in this study. Unweighted Pair Group Method with Arithmetic Mean dendrogram based on nucleotides of the full length flaA gene, the flaA short variable region gene and the in silico flaA phylogenic tree of DdeI restriction fragment length polymorphism (RFLP) profiles produced very similar clustering with a diversity index of 0.86 for each of the 3 methods. We conclude that flaA typing based on DdeI RFLP of the PCR products is a cheap, rapid, and reliable method for the epidemiological study of C. jejuni isolates of clinical origin in resource-limited regions or in large-scale population surveillance.
Collapse
|
333
|
Zabielska J, Tyfa A, Kunicka-Styczyńska A. Methods for eradication of the biofilms formed by opportunistic pathogens using novel techniques – A review. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/fobio-2016-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The inconvenient environmental conditions force microorganisms to colonize either abiotic surfaces or animal and plant tissues and, therefore, form more resistant structures – biofilms. The phenomenon of microbial adherence, opportunistic pathogens in particular, is of a great concern. Colonization of medical devices and biofilm formation on their surface, may lead to severe infections mainly in humans with impaired immune system. Although, current research consider various methods for prevention of microbial biofilms formation, still, once a biofilm is formed, its elimination is almost impossible. This study focuses on the overview of novel methods applied for eradication of mature opportunistic pathogens' biofilms. Among various techniques the following: cold plasma, electric field, ultrasounds, ozonated water treatment, phagotherapy, matrix targeting enzymes, bacteriocins, synthetic chemicals and natural origin compounds used for biofilm matrix disruption were briefly described.
Collapse
|
334
|
García-Gareta E, Davidson C, Levin A, Coathup MJ, Blunn GW. Biofilm formation in total hip arthroplasty: prevention and treatment. RSC Adv 2016. [DOI: 10.1039/c6ra09583f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review assesses the current knowledge on treatments, pathogenesis and the prevention of infections associated with orthopaedic implants, with a focus on total hip arthroplasty.
Collapse
Affiliation(s)
| | - Christopher Davidson
- John Scales Centre for Biomedical Engineering
- Institute of Orthopaedics and Musculoskeletal Science
- Division of Surgery and Interventional Science
- University College London
- Royal National Orthopaedic Hospital
| | - Alexandra Levin
- RAFT Institute of Plastic Surgery
- Mount Vernon Hospital
- Northwood HA6 2RN
- UK
| | - Melanie J. Coathup
- John Scales Centre for Biomedical Engineering
- Institute of Orthopaedics and Musculoskeletal Science
- Division of Surgery and Interventional Science
- University College London
- Royal National Orthopaedic Hospital
| | - Gordon W. Blunn
- John Scales Centre for Biomedical Engineering
- Institute of Orthopaedics and Musculoskeletal Science
- Division of Surgery and Interventional Science
- University College London
- Royal National Orthopaedic Hospital
| |
Collapse
|
335
|
Faezi S, Bahrmand AR, Mahdavi M, Siadat SD, Nikokar I, Sardari S, Holder IA. High Yield Overexpression, Refolding, Purification and Characterization of Pseudomonas aeruginosa Type B-Flagellin: An Improved Method Without Sonication. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2016; 5:37-48. [PMID: 27386437 PMCID: PMC4916782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pseudomonas aeruginosa as an opportunistic pathogen is a significant cause of acute and chronic infections in patients with compromised defenses. This bacterium is motile via a single polar flagellum made of polymerized flagellin subunits differentiated into two major serotypes: A and B. flagellin plays an important role as a virulence factor in the adhesion, colonization and invasion of P. aeruginosa into host epithelial cells. To develop a functional vaccine that can be used in practical application to prevent and treat infection, type B-flagellin was produced as recombinant protein. In this work, the fliC gene was introduced into a pET28a vector and expressed in Escherichia coli BL21 (DE3). The expressed recombinant protein was purified by a modified method without sonication using a HisTrap affinity column. The functional activities of produced flagellin were confirmed by ELISA, western blot analysis, motility inhibition assay and opsonophagocytosis test. The purification process of the type B-flagellin was lead to a high yield. The produced recombinant type B-flagellin showed high biological activity in all of these standard assays. In conclusions, this report provides the new protocol to efficiently obtain the type B-flagellin with high biological activity and immunogenicity. This immunogen can be introduced as an adjuvant or vaccine in the future study.
Collapse
Affiliation(s)
- Sobhan Faezi
- Departments of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| | - Ahmad Reza Bahrmand
- Departments of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| | - Mehdi Mahdavi
- Departments of Immunology, Pasteur Institute of Iran, Tehran, Iran.,Corresponding author: Departments of Immunology, Pasteur Institute of Iran, Tehran, Iran. E-mail:
| | - Seyed Davar Siadat
- Departments of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| | - Iraj Nikokar
- Laboratory of Microbiology and Immunology of Infectious Diseases, Paramedicine Faculty, Guilan University of Medical Sciences, Guilan, Iran.
| | - Soroush Sardari
- Biotechnology Research Center, Drug Design and Bioinformatics Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Ian Alan Holder
- Departments of Microbiology and Surgery, College of Medicine, University of Cincinnati, and Shriners Burns Institute, Cincinnati, Ohio, USA.
| |
Collapse
|
336
|
King JE, Roberts IS. Bacterial Surfaces: Front Lines in Host-Pathogen Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:129-56. [PMID: 27193542 DOI: 10.1007/978-3-319-32189-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All bacteria are bound by at least one membrane that acts as a barrier between the cell's interior and the outside environment. Surface components within and attached to the cell membrane are essential for ensuring that the overall homeostasis of the cell is maintained. However, many surface components of the bacterial cell also have an indispensable role mediating interactions of the bacteria with their immediate environment and as such are essential to the pathogenesis of infectious disease. During the course of an infection, bacterial pathogens will encounter many different ecological niches where environmental conditions such as salinity, temperature, pH, and the availability of nutrients fluctuate. It is the bacterial cell surface that is at the front-line of these host-pathogen interactions often protecting the bacterium from hostile surroundings but at the same time playing a critical role in the adherence to host tissues promoting colonization and subsequent infection. To deal effectively with the changing environments that pathogens may encounter in different ecological niches within the host many of the surface components of the bacterial cell are subject to phenotypic variation resulting in heterogeneous subpopulations of bacteria within the clonal population. This dynamic phenotypic heterogeneity ensures that at least a small fraction of the population will be adapted for a particular circumstance should it arise. Diversity within the clonal population has often been masked by studies on entire bacterial populations where it was often assumed genes were expressed in a uniform manner. This chapter, therefore, aims to highlight the non-uniformity in certain cell surface structures and will discuss the implication of this heterogeneity in bacterial-host interaction. Some of the recent advances in studying bacterial surface structures at the single cell level will also be reviewed.
Collapse
Affiliation(s)
- Jane E King
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
337
|
Strategies to Block Bacterial Pathogenesis by Interference with Motility and Chemotaxis. Curr Top Microbiol Immunol 2016; 398:185-205. [PMID: 27000091 DOI: 10.1007/82_2016_493] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infections by motile, pathogenic bacteria, such as Campylobacter species, Clostridium species, Escherichia coli, Helicobacter pylori, Listeria monocytogenes, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Salmonella species, Vibrio cholerae, and Yersinia species, represent a severe economic and health problem worldwide. Of special importance in this context is the increasing emergence and spread of multidrug-resistant bacteria. Due to the shortage of effective antibiotics for the treatment of infections caused by multidrug-resistant, pathogenic bacteria, the targeting of novel, virulence-relevant factors constitutes a promising, alternative approach. Bacteria have evolved distinct motility structures for movement across surfaces and in aqueous environments. In this review, I will focus on the bacterial flagellum, the associated chemosensory system, and the type-IV pilus as motility devices, which are crucial for bacterial pathogens to reach a preferred site of infection, facilitate biofilm formation, and adhere to surfaces or host cells. Thus, those nanomachines constitute potential targets for the development of novel anti-infectives that are urgently needed at a time of spreading antibiotic resistance. Both bacterial flagella and type-IV pili (T4P) are intricate macromolecular complexes made of dozens of different proteins and their motility function relies on the correct spatial and temporal assembly of various substructures. Specific type-III and type-IV secretion systems power the export of substrate proteins of the bacterial flagellum and type-IV pilus, respectively, and are homologous to virulence-associated type-III and type-II secretion systems. Accordingly, bacterial flagella and T4P represent attractive targets for novel antivirulence drugs interfering with synthesis, assembly, and function of these motility structures.
Collapse
|
338
|
Kakkanat A, Totsika M, Schaale K, Duell BL, Lo AW, Phan MD, Moriel DG, Beatson SA, Sweet MJ, Ulett GC, Schembri MA. The role of H4 flagella in Escherichia coli ST131 virulence. Sci Rep 2015; 5:16149. [PMID: 26548325 PMCID: PMC4637896 DOI: 10.1038/srep16149] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/02/2015] [Indexed: 01/04/2023] Open
Abstract
Escherichia coli sequence type 131 (ST131) is a globally dominant multidrug resistant clone associated with urinary tract and bloodstream infections. Most ST131 strains exhibit resistance to multiple antibiotics and cause infections associated with limited treatment options. The largest sub-clonal ST131 lineage is resistant to fluoroquinolones, contains the type 1 fimbriae fimH30 allele and expresses an H4 flagella antigen. Flagella are motility organelles that contribute to UPEC colonisation of the upper urinary tract. In this study, we examined the specific role of H4 flagella in ST131 motility and interaction with host epithelial and immune cells. We show that the majority of H4-positive ST131 strains are motile and are enriched for flagella expression during static pellicle growth. We also tested the role of H4 flagella in ST131 through the construction of specific mutants, over-expression strains and isogenic mutants that expressed alternative H1 and H7 flagellar subtypes. Overall, our results revealed that H4, H1 and H7 flagella possess conserved phenotypes with regards to motility, epithelial cell adhesion, invasion and uptake by macrophages. In contrast, H4 flagella trigger enhanced induction of the anti-inflammatory cytokine IL-10 compared to H1 and H7 flagella, a property that may contribute to ST131 fitness in the urinary tract.
Collapse
Affiliation(s)
- Asha Kakkanat
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kolja Schaale
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Duell
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Danilo G Moriel
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
339
|
Chaban B, Hughes HV, Beeby M. The flagellum in bacterial pathogens: For motility and a whole lot more. Semin Cell Dev Biol 2015; 46:91-103. [DOI: 10.1016/j.semcdb.2015.10.032] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 02/05/2023]
|
340
|
Leitner DR, Lichtenegger S, Temel P, Zingl FG, Ratzberger D, Roier S, Schild-Prüfert K, Feichter S, Reidl J, Schild S. A combined vaccine approach against Vibrio cholerae and ETEC based on outer membrane vesicles. Front Microbiol 2015; 6:823. [PMID: 26322032 PMCID: PMC4531250 DOI: 10.3389/fmicb.2015.00823] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022] Open
Abstract
Enteric infections induced by pathogens like Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) remain a massive burden in developing countries with increasing morbidity and mortality rates. Previously, we showed that the immunization with genetically detoxified outer membrane vesicles (OMVs) derived from V. cholerae elicits a protective immune response based on the generation of O antigen antibodies, which effectively block the motility by binding to the sheathed flagellum. In this study, we investigated the potential of lipopolysaccharide (LPS)-modified and toxin negative OMVs isolated from V. cholerae and ETEC as a combined OMV vaccine candidate. Our results indicate that the immunization with V. cholerae or ETEC OMVs induced a species-specific immune response, whereas the combination of both OMV species resulted in a high-titer, protective immune response against both pathogens. Interestingly, the immunization with V. cholerae OMVs alone resulted in a so far uncharacterized and cholera toxin B-subunit (CTB) independent protection mechanism against an ETEC colonization. Furthermore, we investigated the potential use of V. cholerae OMVs as delivery vehicles for the heterologously expression of the ETEC surface antigens, CFA/I, and FliC. Although we induced a detectable immune response against both heterologously expressed antigens, none of these approaches resulted in an improved protection compared to a simple combination of V. cholerae and ETEC OMVs. Finally, we expanded the current protection model from V. cholerae to ETEC by demonstrating that the inhibition of motility via anti-FliC antibodies represents a relevant protection mechanism of an OMV-based ETEC vaccine candidate in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Stefan Schild
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| |
Collapse
|
341
|
A Periplasmic Complex of the Nitrite Reductase NirS, the Chaperone DnaK, and the Flagellum Protein FliC Is Essential for Flagellum Assembly and Motility in Pseudomonas aeruginosa. J Bacteriol 2015; 197:3066-75. [PMID: 26170416 DOI: 10.1128/jb.00415-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is a ubiquitously occurring environmental bacterium and opportunistic pathogen responsible for various acute and chronic infections. Obviously, anaerobic energy generation via denitrification contributes to its ecological success. To investigate the structural basis for the interconnection of the denitrification machinery to other essential cellular processes, we have sought to identify the protein interaction partners of the denitrification enzyme nitrite reductase NirS in the periplasm. We employed NirS as an affinity-purifiable bait to identify interacting proteins in vivo. Results obtained revealed that both the flagellar structural protein FliC and the protein chaperone DnaK form a complex with NirS in the periplasm. The interacting domains of NirS and FliC were tentatively identified. The NirS-interacting stretch of amino acids lies within its cytochrome c domain. Motility assays and ultrastructure analyses revealed that a nirS mutant was defective in the formation of flagella and correspondingly in swimming motility. In contrast, the fliC mutant revealed an intact denitrification pathway. However, deletion of the nirF gene, coding for a heme d1 biosynthetic enzyme, which leads to catalytically inactive NirS, did not abolish swimming ability. This pointed to a structural function for the NirS protein. FliC and NirS were found colocalized with DnaK at the cell surface of P. aeruginosa. A function of the detected periplasmic NirS-DnaK-FliC complex in flagellum formation and motility was concluded and discussed. IMPORTANCE Physiological functions in Gram-negative bacteria are connected with the cellular compartment of the periplasm and its membranes. Central enzymatic steps of anaerobic energy generation and the motility mediated by flagellar activity use these cellular structures in addition to multiple other processes. Almost nothing is known about the protein network functionally connecting these processes in the periplasm. Here, we demonstrate the existence of a ternary complex consisting of the denitrifying enzyme NirS, the chaperone DnaK, and the flagellar protein FliC in the periplasm of the pathogenic bacterium P. aeruginosa. The dependence of flagellum formation and motility on the presence of an intact NirS was shown, structurally connecting both cellular processes, which are important for biofilm formation and pathogenicity of the bacterium.
Collapse
|
342
|
Yang J, Barrila J, Roland KL, Kilbourne J, Ott CM, Forsyth RJ, Nickerson CA. Characterization of the Invasive, Multidrug Resistant Non-typhoidal Salmonella Strain D23580 in a Murine Model of Infection. PLoS Negl Trop Dis 2015; 9:e0003839. [PMID: 26091096 PMCID: PMC4474555 DOI: 10.1371/journal.pntd.0003839] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023] Open
Abstract
A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of the more human-restricted pathogen, Salmonella enterica serovar Typhi. It has since been shown through tissue distribution studies that D23580 is able to establish an invasive infection in chickens. However, it remains unclear whether ST313 can cause lethal disease in a non-human host following a natural course of infection. Herein we report that D23580 causes lethal and invasive disease in a murine model of infection following peroral challenge. The LD50 of D23580 in female BALB/c mice was 4.7 x 105 CFU. Tissue distribution studies performed 3 and 5 days post-infection confirmed that D23580 was able to more rapidly colonize the spleen, mesenteric lymph nodes and gall bladder in mice when compared to the well-characterized S. Typhimurium strain SL1344. D23580 exhibited enhanced resistance to acid stress relative to SL1344, which may lend towards increased capability to survive passage through the gastrointestinal tract as well as during its intracellular lifecycle. Interestingly, D23580 also displayed higher swimming motility relative to SL1344, S. Typhi strain Ty2, and the ST313 strain A130. Biochemical tests revealed that D23580 shares many similar metabolic features with SL1344, with several notable differences in the Voges-Proskauer and catalase tests, as well alterations in melibiose, and inositol utilization. These results represent the first full duration infection study using an ST313 strain following the entire natural course of disease progression, and serve as a benchmark for ongoing and future studies into the pathogenesis of D23580. A deadly form of non-typhoidal Salmonella has emerged as a major cause of invasive disease in sub-Saharan Africa. Initial genomic profiling of this novel Salmonella sequence type, ST313, indicated that although it is technically classified as S. Typhimurium (a serovar characterized by a broad host range), it may be evolving towards becoming a more human-specific, ‘typhoid-like’ pathogen. However, it was recently demonstrated that ST313 strains were indeed able to establish an invasive and damaging infection in chickens. Despite these important findings, it remains unclear whether ST313 is able to cause lethal disease in a non-human host, since no study has yet followed the entire natural course of disease progression. As such, there are no data available concerning the median lethal dose (LD50) of any ST313 strain. This is an important metric, as the LD50 value will serve as a benchmark for mechanistic studies focused on understanding the relationship between virulence and the phenotypic and molecular genetic attributes associated with ST313 infections. Here we report that D23580 causes lethal disease in BALB/c mice and determined the LD50 following peroral challenge. Phenotypic characterization revealed distinct differences in tissue distribution, acid stress resistance, and biochemical utilization between D23580 and the ‘classic’ Typhimurium strain SL1344.
Collapse
Affiliation(s)
- Jiseon Yang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jennifer Barrila
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Kenneth L. Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jacquelyn Kilbourne
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, United States of America
| | - Rebecca J. Forsyth
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Cheryl A. Nickerson
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
343
|
Yoshihara A, Nobuhira N, Narahara H, Toyoda S, Tokumoto H, Konishi Y, Nomura T. Estimation of the adhesive force distribution for the flagellar adhesion of Escherichia coli on a glass surface. Colloids Surf B Biointerfaces 2015; 131:67-72. [PMID: 25956746 DOI: 10.1016/j.colsurfb.2015.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/09/2015] [Accepted: 04/15/2015] [Indexed: 01/20/2023]
Abstract
The effects of the presence or absence of microbial flagella and the microbial motility on the colloidal behaviors of microbial cells were quantitatively evaluated. The microbial cell attachment and detachment processes on a glass surface were observed directly using a parallel-plate flow chamber. Wild-type, flagellar paralyzed, and nonflagellated Escherichia coli strains were used as model microbial cells. In the cell attachment tests, the microbial adhesion rate in a 160mM NaCl solution was approximately 10 times higher than that in a 10mM solution, for all E. coli strains. The colloidal behavior of the microbial cells agreed well with the predictions of the DLVO theory. In addition, the microbial flagella and motility did not significantly affect the cell attachment, regardless of the existence of a potential barrier between the cell and the glass substratum. In the cell detachment tests, the cumulative number of microbial cells detached from the glass substratum with increasing flow rate was fit well with the Weibull distribution function. The list of strains arranged in order of increasing median drag force required to remove them was nonflagellated strain, flagellar paralyzed strain, and wild-type strain. These results indicated that the flagella and the flagellar motility inhibited the cell detachment from the glass substratum. Furthermore, a large external force would likely be required to inhibit the microbial adhesion in the early stage of the biofilm formation.
Collapse
Affiliation(s)
- Akinori Yoshihara
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan; Corporate Engineering Center, Corporate Production Management & Engineering Division, Sumitomo Bakelite Co., Ltd., 2100 Takayanagi, Fujieda, Shizuoka 426-0041, Japan.
| | - Noritaka Nobuhira
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hisaya Narahara
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Syunsuke Toyoda
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hayato Tokumoto
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yasuhiro Konishi
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Toshiyuki Nomura
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
344
|
Rossez Y, Wolfson EB, Holmes A, Gally DL, Holden NJ. Bacterial flagella: twist and stick, or dodge across the kingdoms. PLoS Pathog 2015; 11:e1004483. [PMID: 25590430 PMCID: PMC4295861 DOI: 10.1371/journal.ppat.1004483] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The flagellum organelle is an intricate multiprotein assembly best known for its rotational propulsion of bacteria. However, recent studies have expanded our knowledge of other functions in pathogenic contexts, particularly adherence and immune modulation, e.g., for Salmonella enterica, Campylobacter jejuni, Pseudomonas aeruginosa, and Escherichia coli. Flagella-mediated adherence is important in host colonisation for several plant and animal pathogens, but the specific interactions that promote flagella binding to such diverse host tissues has remained elusive. Recent work has shown that the organelles act like probes that find favourable surface topologies to initiate binding. An emerging theme is that more general properties, such as ionic charge of repetitive binding epitopes and rotational force, allow interactions with plasma membrane components. At the same time, flagellin monomers are important inducers of plant and animal innate immunity: variation in their recognition impacts the course and outcome of infections in hosts from both kingdoms. Bacteria have evolved different strategies to evade or even promote this specific recognition, with some important differences shown for phytopathogens. These studies have provided a wider appreciation of the functions of bacterial flagella in the context of both plant and animal reservoirs.
Collapse
Affiliation(s)
- Yannick Rossez
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Eliza B. Wolfson
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Ashleigh Holmes
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
| | - David L. Gally
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Nicola J. Holden
- Cellular and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
345
|
Lim S, Han A, Kim D, Seo HS. Transcriptional Profiling of an AttenuatedSalmonellaTyphimuriumptsIMutant Strain Under Low-oxygen Conditions using Microarray Analysis. ACTA ACUST UNITED AC 2015. [DOI: 10.4167/jbv.2015.45.3.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Ahreum Han
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Dongho Kim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| |
Collapse
|
346
|
Kumar D, R. Kundapur R. Importance of Natural Proteins in Infectious Diseases. BIOMEDICAL APPLICATIONS OF NATURAL PROTEINS 2015. [PMCID: PMC7123379 DOI: 10.1007/978-81-322-2491-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Proteins are important biomolecules, extensively involved in almost all biological processes. A number of proteins are also implicated in infectious diseases. Bacterial proteins used in adhesion to host epithelium, bacterial toxins, and viral membrane glycoproteins are some of the proteins involved in infectious diseases. Even components of the host innate immune system like Toll-like receptors and Nod-like receptors and adaptive immune components like immunoglobulins aiding in defense against pathogens are important biological proteins. Chaperones like acid and heat shock proteins provide protection from high temperatures, metabolic poisons, and other stressful conditions. Several natural and artificial proteins are components of vaccines, a key strategy to control fatal diseases, lacking empirical treatment. It is necessary to investigate these proteins, to develop new biomedical tools and technologies, aiding in eradication of various diseases. Thus, further research should be carried out in this field, for saving and improving quality of human lives.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Department of Zoology, School of Life Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh India
| | - Rajesh R. Kundapur
- Department of Molecular Biology, National AIDS Research Institute, Pune, Maharashtra India
| |
Collapse
|
347
|
Kao CY, Lin WH, Tseng CC, Wu AB, Wang MC, Wu JJ. The complex interplay among bacterial motility and virulence factors in different Escherichia coli infections. Eur J Clin Microbiol Infect Dis 2014; 33:2157-62. [PMID: 24957011 DOI: 10.1007/s10096-014-2171-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/20/2014] [Indexed: 01/12/2023]
Abstract
Motility mediated by the flagella of Escherichia coli is important for the bacteria to move toward host cells. Here, we present the relationship among bacterial motility, virulence factors, antimicrobial susceptibility, and types of infection. A total of 231 clinical E. coli isolates from different infections were collected and analyzed. Higher-motility strains (motility diameter ≥6.6 mm) were more common in spontaneous bacterial peritonitis (SBP) (SBP 59 %, colonization 32 %, urinary tract infection 16 %, urosepsis 34 %, and biliary tract infection 29 %; p < 0.0001). Compared with the higher-motility group, there was a higher prevalence of afa and ompT genes (p = 0.0160 and p = 0.0497, respectively) in E. coli strains with lower motility. E. coli isolates with higher and lower motility were in different phylogenetic groups (p = 0.018), with a lower prevalence of A and B1 subgroups in higher-motility strains. Also, the patterns of virulence factors and antibiotic susceptibility of E. coli isolates derived from various infections were significantly different. This study demonstrates that the prevalence of higher-motility strains was greater in E. coli isolates from SBP compared to other types of infection. Various types of E. coli infection were associated with differences in bacterial motility, virulence factors, and antibiotic susceptibility. More bacterial virulence factors may be necessary for the development of extraintestinal infections caused by E. coli isolates with lower motility.
Collapse
Affiliation(s)
- C Y Kao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|