3501
|
Raman EP, Guvench O, MacKerell AD. CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. J Phys Chem B 2011; 114:12981-94. [PMID: 20845956 DOI: 10.1021/jp105758h] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Presented is an extension of the CHARMM additive carbohydrate all-atom force field to enable modeling of polysaccharides containing furanose sugars. The new force field parameters encompass 1 ↔ 2, 1 → 3, 1 → 4, and 1 → 6 pyranose-furanose linkages and 2 → 1 and 2 → 6 furanose-furanose linkages, building on existing hexopyranose and furanose monosaccharide parameters. The model compounds were chosen to be monomers or glycosidic-linked dimers of tetrahydropyran (THP) and tetrahydrofuran (THF) as to contain the key atoms in full carbohydrates. Target data for optimization included two-dimensional quantum mechanical (QM) potential energy scans of the Φ/Ψ glycosidic dihedral angles, with geometry optimization at the MP2/6-31G(d) level followed by MP2/cc-pVTZ single-point energies. All possible chiralities of the model compounds at the linkage carbons were considered, and for each geometry, the THF ring was constrained to the favorable south or north conformations. Target data also included QM vibrational frequencies and pair interaction energies and distances with water molecules. Force field validation included comparison of computed crystal properties, aqueous solution densities, and NMR J-coupling constants to experimental reference values. Simulations of infinite crystals showed good agreement with experimental values for intramolecular geometries as well as for crystal unit cell parameters. Additionally, aqueous solution densities and available NMR data were reproduced to a high degree of accuracy, thus validating the hierarchically optimized parameters in both crystalline and aqueous condensed phases. The newly developed parameters allow for the modeling of linear, branched, and cyclic pyranose/furanose polysaccharides both alone and in heterogeneous systems including proteins, nucleic acids, and/or lipids when combined with existing additive CHARMM biomolecular force fields.
Collapse
Affiliation(s)
- E Prabhu Raman
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street HSF II, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
3502
|
Rosenbaum DM, Zhang C, Lyons J, Holl R, Aragao D, Arlow DH, Rasmussen SGF, Choi HJ, DeVree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK. Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature 2011; 469:236-40. [PMID: 21228876 PMCID: PMC3074335 DOI: 10.1038/nature09665] [Citation(s) in RCA: 632] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/11/2010] [Indexed: 12/12/2022]
Abstract
G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human β(2) adrenergic receptor (β(2)AR) as a guide, we designed a β(2)AR agonist that can be covalently tethered to a specific site on the receptor through a disulphide bond. The covalent β(2)AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound β(2)AR-T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method, and determined its structure at 3.5 Å resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30 μs) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.
Collapse
Affiliation(s)
- Daniel M. Rosenbaum
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, Palo Alto, California 94305, USA
| | - Cheng Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, Palo Alto, California 94305, USA
| | - Joseph Lyons
- Department of Chemical and Environmental Sciences at the University of Limerick, Limerick, Ireland
- Membrane Structural and Functional Biology Group, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Ralph Holl
- Department of Chemistry and Pharmacy, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangan, Germany
| | - David Aragao
- Membrane Structural and Functional Biology Group, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | | | - Søren G. F. Rasmussen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, Palo Alto, California 94305, USA
| | - Hee-Jung Choi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, Palo Alto, California 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, 279 Campus Drive, Stanford, Palo Alto, California 94305, USA
| | - Brian T. DeVree
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Roger K. Sunahara
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Pil Seok Chae
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | - William I. Weis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, Palo Alto, California 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, 279 Campus Drive, Stanford, Palo Alto, California 94305, USA
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangan, Germany
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, Palo Alto, California 94305, USA
| |
Collapse
|
3503
|
Abstract
The development of the CHARMM additive all-atom lipid force field (FF) is traced from the early 1990's to the most recent version (C36) published in 2010. Though simulations with early versions yielded useful results, they failed to reproduce two important quantities: a zero surface tension at the experimental bilayer surface area, and the signature splitting of the deuterium order parameters in the glycerol and upper chain carbons. Systematic optimization of parameters based on high level quantum mechanical data and free energy simulations have resolved these issues, and bilayers with a wide range of lipids can be simulated in tensionless ensembles using C36. Issues associated with other all-atom lipid FFs, success and limitations in the C36 FF and ongoing developments are also discussed.
Collapse
Affiliation(s)
- R.W. Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
- Department of Pharmaceutical Sciences, 20 Penn Street, Room 629, University of Maryland, Baltimore, Maryland 21201
| | | |
Collapse
|
3504
|
Moutsatsou P, Papoutsi Z, Kassi E, Heldring N, Zhao C, Tsiapara A, Melliou E, Chrousos GP, Chinou I, Karshikoff A, Nilsson L, Dahlman-Wright K. Fatty acids derived from royal jelly are modulators of estrogen receptor functions. PLoS One 2010; 5:e15594. [PMID: 21203528 PMCID: PMC3008742 DOI: 10.1371/journal.pone.0015594] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 11/15/2010] [Indexed: 12/28/2022] Open
Abstract
Royal jelly (RJ) excreted by honeybees and used as a nutritional and medicinal agent has estrogen-like effects, yet the compounds mediating these effects remain unidentified. The possible effects of three RJ fatty acids (FAs) (10-hydroxy-2-decenoic-10H2DA, 3,10-dihydroxydecanoic-3,10DDA, sebacic acid-SA) on estrogen signaling was investigated in various cellular systems. In MCF-7 cells, FAs, in absence of estradiol (E2), modulated the estrogen receptor (ER) recruitment to the pS2 promoter and pS2 mRNA levels via only ERβ but not ERα, while in presence of E2 FAs modulated both ERβ and ERα. Moreover, in presence of FAs, the E2-induced recruitment of the EAB1 co-activator peptide to ERα is masked and the E2-induced estrogen response element (ERE)-mediated transactivation is inhibited. In HeLa cells, in absence of E2, FAs inhibited the ERE-mediated transactivation by ERβ but not ERα, while in presence of E2, FAs inhibited ERE-activity by both ERβ and ERα. Molecular modeling revealed favorable binding of FAs to ERα at the co-activator-binding site, while binding assays showed that FAs did not bind to the ligand-binding pocket of ERα or ERβ. In KS483 osteoblasts, FAs, like E2, induced mineralization via an ER-dependent way. Our data propose a possible molecular mechanism for the estrogenic activities of RJ's components which, although structurally entirely different from E2, mediate estrogen signaling, at least in part, by modulating the recruitment of ERα, ERβ and co-activators to target genes.
Collapse
Affiliation(s)
- Paraskevi Moutsatsou
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3505
|
Hirschi JS, Arora K, Brooks CL, Schramm VL. Conformational dynamics in human purine nucleoside phosphorylase with reactants and transition-state analogues. J Phys Chem B 2010; 114:16263-72. [PMID: 20936808 PMCID: PMC3005859 DOI: 10.1021/jp108056s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic motions of human purine nucleoside phosphorylase (hPNP) in complex with transition-state analogues and reactants were studied using 10 ns explicit solvent molecular dynamics simulations. hPNP is a homotrimer that catalyzes the phosphorolysis of purine 6-oxynucleosides. The ternary complex of hPNP includes the binding of a ligand and phosphate to the active site. Molecular dynamics simulations were performed on the ternary complex of six ligands including the picomolar transition-state analogues, Immucillin-H (K(d) = 56 pM), DADMe-Immucillin-H (K(d) = 8.5 pM), DATMe-Immucillin-H (K(d) = 8.6 pM), SerMe-Immucillin-H (K(d) = 5.2 pM), the substrate inosine, and a complex containing only phosphate. Protein-inhibitor complexes of the late transition-state inhibitors, DADMe-Imm-H and DATMe-Imm-H, are inflexible. Despite the structural similarity of SerMe-Imm-H and DATMe-Imm-H, the protein complex of SerMe-Imm-H is flexible, and the inhibitor is highly mobile within the active sites. All inhibitors exhibit an increased number of nonbonding interactions in the active site relative to the substrate inosine. Water density within the catalytic site is lower for DADMe-ImmH, DATMe-Imm-H, and SerMe-Imm-H than that for the substrate inosine. Tight binding of the picomolar inhibitors results from increased interactions within the active site and a reduction in the number of water molecules organized within the catalytic site relative to the substrate inosine.
Collapse
Affiliation(s)
- Jennifer S Hirschi
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, United States
| | | | | | | |
Collapse
|
3506
|
Rais R, Acharya C, MacKerell AD, Polli JE. Structural determinants for transport across the intestinal bile acid transporter using C-24 bile acid conjugates. Mol Pharm 2010; 7:2240-54. [PMID: 20939504 PMCID: PMC2997912 DOI: 10.1021/mp100233v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human apical sodium dependent bile acid transporter (hASBT) reabsorbs gram quantities of bile acid daily and is a potential prodrug target to increase oral drug absorption. In the absence of a high resolution hASBT crystal structure, 3D-QSAR modeling may prove beneficial in designing prodrug targets to hASBT. The objective was to derive a conformationally sampled pharmacophore 3D-QSAR (CSP-SAR) model for the uptake of bile acid conjugates by hASBT. A series of bile acid conjugates of glutamyl chenodeoxycholate were evaluated in terms of K(m) and normalized V(max) (normV(max)) using hASBT-MDCK cells. All monoanionic conjugates were potent substrates. Dianions, cations and zwitterions, which bound with a high affinity, were not substrates. CSP-SAR models were derived using structural and physicochemical descriptors, and evaluated via cross validation. The best CSP-SAR model for K(m) included two structural and two physiochemical descriptors, where substrate hydrophobicity enhanced affinity. A best CSP-SAR model for K(m)/normV(max) employed one structural and three physicochemical descriptors, also indicating hydrophobicity enhanced efficiency. Overall, the bile acid C-24 region accommodated a range of substituted anilines, provided a single negative charge was present near C-24. In comparing uptake findings to prior inhibition results, increased hydrophobicity enhanced activity, with dianions and zwitterions hindering activity.
Collapse
Affiliation(s)
- Rana Rais
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - Chayan Acharya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - James E. Polli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| |
Collapse
|
3507
|
Flower DR, Phadwal K, Macdonald IK, Coveney PV, Davies MN, Wan S. T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges. Immunome Res 2010; 6 Suppl 2:S4. [PMID: 21067546 PMCID: PMC2981876 DOI: 10.1186/1745-7580-6-s2-s4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics.
Collapse
Affiliation(s)
- Darren R Flower
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Kanchan Phadwal
- Oxford Biomedical Research Centre, The John Radcliffe Hospital, Room 4503, Corridor 4b, Level 4, Oxford, OX 3 9DU, UK
| | - Isabel K Macdonald
- OncImmune Limited, Clinical Sciences Building, Nottingham City Hospital, Hucknall Rd. Nottingham, NG5 1PB, UK
| | - Peter V Coveney
- Centre for Computational Science, Chemistry Department, University College of London, 20 Gordon Street, WC1H 0AJ, London, UK
| | - Matthew N Davies
- SGDP, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Shunzhou Wan
- Centre for Computational Science, Chemistry Department, University College of London, 20 Gordon Street, WC1H 0AJ, London, UK
| |
Collapse
|
3508
|
Chen W, Gilson MK, Webb SP, Potter MJ. Modeling Protein-Ligand Binding by Mining Minima. J Chem Theory Comput 2010; 6:3540-3557. [PMID: 22639555 DOI: 10.1021/ct100245n] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present the first application of the mining minima algorithm to protein-small molecule binding. This end-point approach use an empirical force field and implicit solvent models, treats the protein binding-site as fully flexible and estimates free energies as sums over local energy wells. The calculations are found to yield encouraging agreement with experiment for three sets of HIV-1protease inhibitors and a set of phosphodiesterase 10a inhibitors. The contributions of various aspects of the model to its accuracy are examined, and the Poisson-Boltzmann correction is found to be the most critical. Interestingly, the computed changes in configurational entropy upon binding fall roughly along the same entropy-energy correlation previously observed for smaller host-guest systems. Strengths and weaknesses of the method are discussed, as are the prospects for enhancing accuracy and speed.
Collapse
|
3509
|
Sayyed-Ahmad A, Lichtenberger LM, Gorfe AA. Structure and dynamics of cholic acid and dodecylphosphocholine-cholic acid aggregates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:13407-14. [PMID: 20695585 PMCID: PMC2924285 DOI: 10.1021/la102106t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bile acids are powerful detergents that emulsify and solubilize lipids, vitamins, cholesterol and other molecules in the biliary tract and intestines. It has long been known that bile acids form soluble mixed micelles with lipids. However, the detailed thermodynamic and structural properties of these micelles are not fully understood. This study sheds light on this issue based on results from multiple molecular dynamics simulations of cholic acid (CA) and dodecylphosphocholine (DPC) mixed micelles. We found that CA molecules form aggregates of up to 12 monomers with a mean size of 5-6. In agreement with several previous simulations and earlier predictions, the overall shape of these CA clusters is oblate disk-like such that the methyl groups point toward the core of the aggregate and the hydroxyl groups point away from it. The self-aggregation behavior of the CA clusters in the DPC-CA mixture is similar to the pure CA. Furthermore, the sizes and aggregation numbers of the DPC-CA mixed micelles are linearly dependent on CA molarity. In agreement with the radial shell model of Nichols and Ozarowski [Nichols, J. W.; Ozarowski, J. Biochemistry 1990, 29, 4600], our results demonstrate that CA molecules form a wedge between the DPC molecules with their hydroxyl and carboxyl groups facing the aqueous phase while their methyl groups are buried in and face the hydrocarbon core of the DPC micelle. The DPC-CA micelles simulated here tend to be spherical to prolate in shape, with the deviation from spherical geometry significantly increasing with increasing CA:DPC ratio.
Collapse
Affiliation(s)
- Abdallah Sayyed-Ahmad
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Lenard M Lichtenberger
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
3510
|
Rais R, Acharya C, Tririya G, MacKerell AD, Polli JE. Molecular switch controlling the binding of anionic bile acid conjugates to human apical sodium-dependent bile acid transporter. J Med Chem 2010; 53:4749-60. [PMID: 20504026 PMCID: PMC2891776 DOI: 10.1021/jm1003683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human apical sodium-dependent bile acid transporter (hASBT) may serve as a prodrug target for oral drug absorption. Synthetic, biological, NMR, and computational approaches identified the structure-activity relationships of mono- and dianionic bile acid conjugates for hASBT binding. Experimental data combined with a conformationally sampled pharmacophore/QSAR modeling approach (CSP-SAR) predicted that dianionic substituents with intramolecular hydrogen bonding between hydroxyls on the cholane skeleton and the acid group on the conjugate's aromatic ring increased conjugate hydrophobicity and improved binding affinity. Notably, the model predicted the presence of a conformational molecular switch, where shifting the carboxylate substituent on an aromatic ring by a single position controlled binding affinity. Model validation was performed by effectively shifting the spatial location of the carboxylate by inserting a methylene adjacent to the aromatic ring, resulting in the predicted alteration in binding affinity. This work illustrates conformation as a determinant of ligand physiochemical properties and ligand binding affinity to a biological transporter.
Collapse
Affiliation(s)
| | | | - Gasirat Tririya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - James E. Polli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| |
Collapse
|
3511
|
Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 2010. [PMID: 20496934 DOI: 10.1021/jp101759q.update] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
A significant modification to the additive all-atom CHARMM lipid force field (FF) is developed and applied to phospholipid bilayers with both choline and ethanolamine containing head groups and with both saturated and unsaturated aliphatic chains. Motivated by the current CHARMM lipid FF (C27 and C27r) systematically yielding values of the surface area per lipid that are smaller than experimental estimates and gel-like structures of bilayers well above the gel transition temperature, selected torsional, Lennard-Jones and partial atomic charge parameters were modified by targeting both quantum mechanical (QM) and experimental data. QM calculations ranging from high-level ab initio calculations on small molecules to semiempirical QM studies on a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer in combination with experimental thermodynamic data were used as target data for parameter optimization. These changes were tested with simulations of pure bilayers at high hydration of the following six lipids: DPPC, 1,2-dimyristoyl-sn-phosphatidylcholine (DMPC), 1,2-dilauroyl-sn-phosphatidylcholine (DLPC), 1-palmitoyl-2-oleoyl-sn-phosphatidylcholine (POPC), 1,2-dioleoyl-sn-phosphatidylcholine (DOPC), and 1-palmitoyl-2-oleoyl-sn-phosphatidylethanolamine (POPE); simulations of a low hydration DOPC bilayer were also performed. Agreement with experimental surface area is on average within 2%, and the density profiles agree well with neutron and X-ray diffraction experiments. NMR deuterium order parameters (S(CD)) are well predicted with the new FF, including proper splitting of the S(CD) for the aliphatic carbon adjacent to the carbonyl for DPPC, POPE, and POPC bilayers. The area compressibility modulus and frequency dependence of (13)C NMR relaxation rates of DPPC and the water distribution of low hydration DOPC bilayers also agree well with experiment. Accordingly, the presented lipid FF, referred to as C36, allows for molecular dynamics simulations to be run in the tensionless ensemble (NPT), and is anticipated to be of utility for simulations of pure lipid systems as well as heterogeneous systems including membrane proteins.
Collapse
Affiliation(s)
- Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3512
|
Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 2010; 114:7830-43. [PMID: 20496934 PMCID: PMC2922408 DOI: 10.1021/jp101759q] [Citation(s) in RCA: 3420] [Impact Index Per Article: 228.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A significant modification to the additive all-atom CHARMM lipid force field (FF) is developed and applied to phospholipid bilayers with both choline and ethanolamine containing head groups and with both saturated and unsaturated aliphatic chains. Motivated by the current CHARMM lipid FF (C27 and C27r) systematically yielding values of the surface area per lipid that are smaller than experimental estimates and gel-like structures of bilayers well above the gel transition temperature, selected torsional, Lennard-Jones and partial atomic charge parameters were modified by targeting both quantum mechanical (QM) and experimental data. QM calculations ranging from high-level ab initio calculations on small molecules to semiempirical QM studies on a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer in combination with experimental thermodynamic data were used as target data for parameter optimization. These changes were tested with simulations of pure bilayers at high hydration of the following six lipids: DPPC, 1,2-dimyristoyl-sn-phosphatidylcholine (DMPC), 1,2-dilauroyl-sn-phosphatidylcholine (DLPC), 1-palmitoyl-2-oleoyl-sn-phosphatidylcholine (POPC), 1,2-dioleoyl-sn-phosphatidylcholine (DOPC), and 1-palmitoyl-2-oleoyl-sn-phosphatidylethanolamine (POPE); simulations of a low hydration DOPC bilayer were also performed. Agreement with experimental surface area is on average within 2%, and the density profiles agree well with neutron and X-ray diffraction experiments. NMR deuterium order parameters (S(CD)) are well predicted with the new FF, including proper splitting of the S(CD) for the aliphatic carbon adjacent to the carbonyl for DPPC, POPE, and POPC bilayers. The area compressibility modulus and frequency dependence of (13)C NMR relaxation rates of DPPC and the water distribution of low hydration DOPC bilayers also agree well with experiment. Accordingly, the presented lipid FF, referred to as C36, allows for molecular dynamics simulations to be run in the tensionless ensemble (NPT), and is anticipated to be of utility for simulations of pure lipid systems as well as heterogeneous systems including membrane proteins.
Collapse
Affiliation(s)
- Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742
| | - Richard M. Venable
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - J. Alfredo Freites
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Joseph W. O’Connor
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742
| | - Douglas J. Tobias
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Carlos Mondragon-Ramirez
- Department of Pharmaceutical Sciences, 20 Penn Street HSF II, University of Maryland, Baltimore, Maryland 21201
| | - Igor Vorobyov
- Department of Pharmaceutical Sciences, 20 Penn Street HSF II, University of Maryland, Baltimore, Maryland 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, 20 Penn Street HSF II, University of Maryland, Baltimore, Maryland 21201
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
3513
|
Vellore NA, Yancey JA, Collier G, Latour RA, Stuart SJ. Assessment of the transferability of a protein force field for the simulation of peptide-surface interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:7396-404. [PMID: 20222735 PMCID: PMC2868960 DOI: 10.1021/la904415d] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to evaluate the transferability of existing empirical force fields for all-atom molecular simulations of protein adsorption behavior, we have developed and applied a method to calculate the adsorption free energy (DeltaG(ads)) of model peptides on functionalized surfaces for comparison with available experimental data. Simulations were conducted using the CHARMM program and force field using a host-guest peptide with the sequence TGTG-X-GTGT (where G and T are glycine and threonine amino acid residues, respectively, with X representing valine, threonine, aspartic acid, phenylalanine or lysine) over nine different functionalized alkanethiol self-assembled monolayer (SAM) surfaces with explicitly represented solvent. DeltaG(ads) was calculated using biased-energy replica exchange molecular dynamics to adequately sample the conformational states of the system. The simulation results showed that the CHARMM force-field was able to represent DeltaG(ads) within 1 kcal/mol of the experimental values for most systems, while deviations as large as 4 kcal/mol were found for others. In particular, the simulations reveal that CHARMM underestimates the strength of adsorption on the hydrophobic and positively charged amine surfaces. These results clearly show that improvements in force field parameterization are needed in order to accurately represent interactions between amino acid residues and functional groups of a surface and they provide a means for force field evaluation and modification for the eventual development and validation of an interfacial force field for the accurate simulation of protein adsorption behavior.
Collapse
Affiliation(s)
- Nadeem A Vellore
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | |
Collapse
|
3514
|
Aleksandrov A, Schuldt L, Hinrichs W, Simonson T. Tetracycline-tet repressor binding specificity: insights from experiments and simulations. Biophys J 2010; 97:2829-38. [PMID: 19917238 DOI: 10.1016/j.bpj.2009.08.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/19/2009] [Accepted: 08/31/2009] [Indexed: 11/16/2022] Open
Abstract
Tetracycline (Tc) antibiotics have been put to new uses in the construction of artificial gene regulation systems, where they bind to the Tet repressor protein (TetR) and modulate its affinity for DNA. Many Tc variants have been produced, both to overcome bacterial resistance and to achieve a broad range of binding strengths. To better understand TetR-Tc binding, we investigate a library of 16 tetracyclines, using fluorescence experiments and molecular dynamics free energy simulations (MDFE). The relative TetR binding free energies are computed by reversibly transforming one Tc variant into another during the simulation, with no adjustable parameters. The chemical variations involve polar and nonpolar substitutions along one entire edge of the elongated Tc structure, which provides many of the protein-ligand contacts. The binding constants span five orders of magnitude. The simulations reproduce the experimental binding free energies, when available, within the uncertainty of either method (+/-0.5 kcal/mol), and reveal many additional details. Contributions of individual Tc substituents are evaluated, along with their additivity and transferability among different positions on the Tc scaffold; differences between D- and B-class repressors are quantified. With increasing computer power, the MDFE approach provides an attractive complement to experiment and should play an increasing role in the understanding and engineering of protein-ligand recognition.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Laboratoire de Biochimie, Department of Biology, Ecole Polytechnique, Centre National de la Recherche Scientifique UMR 7654, Palaiseau, France
| | | | | | | |
Collapse
|
3515
|
Computational study of hydrogen-bonding complex formation of helical polypeptides with water molecule. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2009.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3516
|
Cheatham TE, Brooks BR, Kollman PA. Molecular modeling of nucleic acid structure: setup and analysis. ACTA ACUST UNITED AC 2008; Chapter 7:Unit 7.10. [PMID: 18428869 DOI: 10.1002/0471142700.nc0710s06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The last in a set of units by these authors, this unit addresses some important remaining questions about molecular modeling of nucleic acids. It describes how to choose an appropriate molecular mechanics force field; how to set up and equilibrate the system for accurate simulation of a nucleic acid in an explicit solvent by molecular dynamics or Monte Carlo simulation; and how to analyze molecular dynamics trajectories.
Collapse
|