3501
|
Porcine JAB1 significantly enhances apoptosis induced by staurosporine. Cell Death Dis 2013; 4:e823. [PMID: 24091666 PMCID: PMC3824667 DOI: 10.1038/cddis.2013.357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 01/18/2023]
Abstract
c-Jun activation domain-binding protein-1 (JAB1), also known as the subunit 5 of the COP9 signalosome, is a multifunctional protein that regulates cell proliferation, apoptosis and oncogenesis by interacting with and subsequently degrading a large number of proteins. Although human JAB1 (hJAB1) has been studied for a long time, studies on porcine JAB1 (pJAB1) have never been reported. In the present study, we cloned and characterized the pJAB1 gene. The genomic structure of the pJAB1 gene was determined. The open-reading frame of pJAB1 encoded 334 amino acids. The deduced amino acid sequence was highly similar to homologs in other species. Furthermore, the tertiary structure analysis and phylogenetic analysis indicated that JAB1 was highly conservative among species. pJAB1 may interact with several proteins according to protein–protein interactions analysis. In addition, pJAB1 was found to be universally expressed in porcine tissues. Subcellular localization analysis showed that GFP–pJAB1 fusion protein distributed specifically in the cytoplasm. Flow cytometric analysis proved that pJAB1 significantly enhanced apoptosis induced by staurosporine, which at least partially depended on the activation of caspase-9 and caspase-3. This study is useful for understanding the function of pJAB1 and offers a potential molecular model for the investigation of diseases related to hJAB1.
Collapse
|
3502
|
Förster F, Unverdorben P, Śledź P, Baumeister W. Unveiling the Long-Held Secrets of the 26S Proteasome. Structure 2013; 21:1551-62. [DOI: 10.1016/j.str.2013.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 01/23/2023]
|
3503
|
Ji T, Gong D, Han Z, Wei X, Yan Y, Ye F, Ding W, Wang J, Xia X, Li F, Hu W, Lu Y, Wang S, Zhou J, Ma D, Gao Q. Abrogation of constitutive Stat3 activity circumvents cisplatin resistant ovarian cancer. Cancer Lett 2013; 341:231-9. [PMID: 23962558 DOI: 10.1016/j.canlet.2013.08.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/17/2013] [Accepted: 08/11/2013] [Indexed: 01/05/2023]
Abstract
The aim of the present study was to investigate the role of Stat3 in cisplatin resistant ovarian cancer. It was first demonstrated that higher activated Stat3 was detected in cisplatin-resistant ovarian cancer cell lines. To provide evidence that supported the hypothesis that phosphorylated-Stat3 expression may promote cisplatin resistance, ectopic Stat3 was expressed by IL-6 stimulation that partially abrogates Stat3, as opposed to the knock-down of Stat3 by specific siRNA that restores cisplatin sensitivity against ovarian cancer cells. This hypothesis was further confirmed by clinical tumor specimens of ovarian cancer obtained from patients with cisplatin-resistance. Based on these premises, Stattic, an effective small molecular inhibitor of Stat3, was used to inhibit Stat3 activation. The data presented here show that Stattic restored the sensitivity to cisplatin in chemoresistant ovarian cancer by significant reductions in the expression of the anti-apoptosis protein Bcl-2, Bcl-XL, Survivin protein and phosphorylated-Akt levels. Consistent with these observations, this experiment demonstrated the first evidence of Stattic circumvented cisplatin resistance of orthotopic xenograft ovarian cancer in vivo. Altogether, these findings emphasize the importance of Stat3 in cisplatin resistance in ovarian cancer and provide a further impetus to clinically evaluate biological modifiers that may circumvent cisplatin resistance in patients with chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Teng Ji
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3504
|
Novel multiplexed assay for identifying SH2 domain antagonists of STAT family proteins. PLoS One 2013; 8:e71646. [PMID: 23977103 PMCID: PMC3745430 DOI: 10.1371/journal.pone.0071646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
Some of the signal transducer and activator of transcription (STAT) family members are constitutively activated in a wide variety of human tumors. The activity of STAT depends on their Src homology 2 (SH2) domain-mediated binding to sequences containing phosphorylated tyrosine. Thus, antagonizing this binding is a feasible approach to inhibiting STAT activation. We have developed a novel multiplexed assay for STAT3- and STAT5b-SH2 binding, based on amplified luminescent proximity homogeneous assay (Alpha) technology. AlphaLISA and AlphaScreen beads were combined in a single-well assay, which allowed the binding of STAT3- and STAT5b-SH2 to phosphotyrosine peptides to be simultaneously monitored. Biotin-labeled recombinant human STAT proteins were obtained as N- and C-terminal deletion mutants. The spacer length of the DIG-labeled peptide, the reaction time, and the concentration of sodium chloride were optimized to establish a HTS system with Z' values of greater than 0.6 for both STAT3- and STAT5b-SH2 binding. We performed a HTS campaign for chemical libraries using this multiplexed assay and identified hit compounds. A 2-chloro-1,4-naphthalenedione derivative, Compound 1, preferentially inhibited STAT3-SH2 binding in vitro, and the nuclear translocation of STAT3 in HeLa cells. Initial structure activity relationship (SAR) studies using the multiplexed assay showed the 3-substituent effect on both the activity and selectivity of STAT3 and STAT5b inhibition. Therefore, this multiplexed assay is useful for not only searching for potential lead compounds but also obtaining SAR data for developing new STAT3/STAT5b inhibitors.
Collapse
|
3505
|
Eletr ZM, Wilkinson KD. Regulation of proteolysis by human deubiquitinating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:114-28. [PMID: 23845989 DOI: 10.1016/j.bbamcr.2013.06.027] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/07/2013] [Accepted: 06/25/2013] [Indexed: 01/26/2023]
Abstract
The post-translational attachment of one or several ubiquitin molecules to a protein generates a variety of targeting signals that are used in many different ways in the cell. Ubiquitination can alter the activity, localization, protein-protein interactions or stability of the targeted protein. Further, a very large number of proteins are subject to regulation by ubiquitin-dependent processes, meaning that virtually all cellular functions are impacted by these pathways. Nearly a hundred enzymes from five different gene families (the deubiquitinating enzymes or DUBs), reverse this modification by hydrolyzing the (iso)peptide bond tethering ubiquitin to itself or the target protein. Four of these families are thiol proteases and one is a metalloprotease. DUBs of the Ubiquitin C-terminal Hydrolase (UCH) family act on small molecule adducts of ubiquitin, process the ubiquitin proprotein, and trim ubiquitin from the distal end of a polyubiquitin chain. Ubiquitin Specific Proteases (USPs) tend to recognize and encounter their substrates by interaction of the variable regions of their sequence with the substrate protein directly, or with scaffolds or substrate adapters in multiprotein complexes. Ovarian Tumor (OTU) domain DUBs show remarkable specificity for different Ub chain linkages and may have evolved to recognize substrates on the basis of those linkages. The Josephin family of DUBs may specialize in distinguishing between polyubiquitin chains of different lengths. Finally, the JAB1/MPN+/MOV34 (JAMM) domain metalloproteases cleave the isopeptide bond near the attachment point of polyubiquitin and substrate, as well as being highly specific for the K63 poly-Ub linkage. These DUBs regulate proteolysis by: directly interacting with and co-regulating E3 ligases; altering the level of substrate ubiquitination; hydrolyzing or remodeling ubiquitinated and poly-ubiquitinated substrates; acting in specific locations in the cell and altering the localization of the target protein; and acting on proteasome bound substrates to facilitate or inhibit proteolysis. Thus, the scope and regulation of the ubiquitin pathway is very similar to that of phosphorylation, with the DUBs serving the same functions as the phosphatase. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Ziad M Eletr
- Department of Biochemistry, Emory University, Atlanta GA 30322, USA
| | | |
Collapse
|
3506
|
Crystal structure and versatile functional roles of the COP9 signalosome subunit 1. Proc Natl Acad Sci U S A 2013; 110:11845-50. [PMID: 23818606 DOI: 10.1073/pnas.1302418110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) plays key roles in many biological processes, such as repression of photomorphogenesis in plants and protein subcellular localization, DNA-damage response, and NF-κB activation in mammals. It is an evolutionarily conserved eight-protein complex with subunits CSN1 to CSN8 named following the descending order of molecular weights. Here, we report the crystal structure of the largest CSN subunit, CSN1 from Arabidopsis thaliana (atCSN1), which belongs to the Proteasome, COP9 signalosome, Initiation factor 3 (PCI) domain containing CSN subunit family, at 2.7 Å resolution. In contrast to previous predictions and distinct from the PCI-containing 26S proteasome regulatory particle subunit Rpn6 structure, the atCSN1 structure reveals an overall globular fold, with four domains consisting of helical repeat-I, linker helix, helical repeat-II, and the C-terminal PCI domain. Our small-angle X-ray scattering envelope of the CSN1-CSN7 complex agrees with the EM structure of the CSN alone (apo-CSN) and suggests that the PCI end of each molecule may mediate the interaction. Fitting of the CSN1 structure into the CSN-Skp1-Cul1-Fbox (SCF) EM structure shows that the PCI domain of CSN1 situates at the hub of the CSN for interaction with several other subunits whereas the linker helix and helical repeat-II of CSN1 contacts SCF using a conserved surface patch. Furthermore, we show that, in human, the C-terminal tail of CSN1, a segment not included in our crystal structure, interacts with IκBα in the NF-κB pathway. Therefore, the CSN complex uses multiple mechanisms to hinder NF-κB activation, a principle likely to hold true for its regulation of many other targets and pathways.
Collapse
|
3507
|
Pan Y, Xiao J, Liang G, Wang M, Wang D, Wang S, Yang H. A new curcumin analogue exhibits enhanced antitumor activity in nasopharyngeal carcinoma. Oncol Rep 2013; 30:239-245. [PMID: 23673810 DOI: 10.3892/or.2013.2457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/18/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the antitumor effects of the curcumin analogue GL63 on radioresistant nasopharyngeal carcinoma (NPC) CNE2R cells and parental CNE2 cells. The cell viability and proliferation of NPC cells were detected by MTT assay and colony formation assay. The suppressive effect on tumor growth was examined using in vivo subcutaneously inoculated NPC tumor models using nude mice. The cell cycle distribution was detected using flow cytometry. Apoptosis was examined by Hoechst 33342 and Annexin V/PI staining assay. The protein expression of endoplasmic reticulum (ER) stress pathway markers, XBP-1, ATF-4 and CHOP, were examined by western blotting. A growth inhibitory effect was observed following treatment with GL63 in a dose-dependent manner and was more potent when compared to curcumin. GL63 at 5 µM induced significant G2/M arrest and apoptosis in NPC. The tumor-suppressive activity of GL63 in NPC xenograft models was more potent when compared to curcumin. Furthermore, GL63 induced an ER stress response, upregulation of CHOP, XBP-1 and ATF-4 expression, while the same concentration of curcumin had no effect on ER stress. These results suggest that GL63 has more potent antitumor activity than curcumin, which is associated with activation of ER stress, induction of G2/M arrest and apoptosis in NPC cells.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | | | | | | | | | | | | |
Collapse
|
3508
|
Pan Y, Wang M, Bu X, Zuo Y, Wang S, Wang D, Liu Q, Su B, Xu T, Wang C, Claret FX, Yang H. Curcumin analogue T83 exhibits potent antitumor activity and induces radiosensitivity through inactivation of Jab1 in nasopharyngeal carcinoma. BMC Cancer 2013; 13:323. [PMID: 23815987 PMCID: PMC3706359 DOI: 10.1186/1471-2407-13-323] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/20/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus-associated malignancy that is most common in East Asia, Africa, and Alaska. Radiotherapy is the main treatment option; unfortunately, disease response to concurrent radiotherapy and chemotherapy varies among patients with NPC, and in many cases, NPC becomes resistant to radiotherapy. Our previous studies indicated that Jab1/CSN5 was overexpressed and plays a role in the pathogenesis and radiotherapy resistance in NPC. Therefore, it is important to seek for innovative therapeutics targeting Jab1/CSN5 for NPC. In this study, we explored the antitumor effect of a curcumin analogue T83 in NPC, and found T83 exhibits antitumor activity and induces radiosensitivity through inactivation of Jab1 in NPC. METHODS NPC cell viability and proliferation were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assays. Cell cycle distribution was detected with use of flow cytometry. Apoptosis was examined by using the Annexin V/propidium iodide staining assay and cleavage poly(ADP-ribose polymerase (PARP) and cleavage caspase-3 expression. Jab1 expression was examined by Western blotting. RESULTS A growth inhibitory effect was observed with T83 treatment in a dose- and time-dependent manner. T83 significantly induced G2/M arrest and apoptosis in NPC. In addition, T83 inhibited Jab1 expression and sensitized NPC cells to radiotherapy. CONCLUSION Our data indicate that T83 exhibits potent inhibitory activity in NPC cells and induces radiotherapy sensitivity. Thus, T83 has translational potential as a chemopreventive or therapeutic agent for NPC.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People’s Republic of China
- Department of Systems Biology, Unit 950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Mengyao Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People’s Republic of China
| | - Xianzhang Bu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yinglin Zuo
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Sumei Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People’s Republic of China
| | - Dujuan Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People’s Republic of China
| | - Qing Liu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People’s Republic of China
| | - Bojin Su
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People’s Republic of China
| | - Tao Xu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People’s Republic of China
| | - Chunhua Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People’s Republic of China
| | - Francois X Claret
- Department of Systems Biology, Unit 950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Experimental Therapeutic Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Huiling Yang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People’s Republic of China
| |
Collapse
|
3509
|
Kontos CK, Fendri A, Khabir A, Mokdad-Gargouri R, Scorilas A. Quantitative expression analysis and prognostic significance of the BCL2-associated X gene in nasopharyngeal carcinoma: a retrospective cohort study. BMC Cancer 2013; 13:293. [PMID: 23777485 PMCID: PMC3689087 DOI: 10.1186/1471-2407-13-293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/14/2013] [Indexed: 01/16/2023] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a highly metastatic epithelial malignancy showing high prevalence in Southeast Asia and North Africa. The BCL2-associated X (BAX) gene encodes the most important pro-apoptotic member of the BCL2 family. We have recently shown that BCL2 and BCL2L12, two other members of the same apoptosis-related family, possess significant prognostic value in NPC. The objective of the current study was to analyze BAX mRNA expression in nasopharyngeal biopsies of NPC patients, and to assess its prognostic potential in this disease. Methods Total RNA was isolated from 88 malignant and 9 hyperplastic nasopharyngeal biopsies, resected from Tunisian patients. After cDNA synthesis by reverse transcription of polyadenylated RNA, BAX mRNA expression was analyzed using a highly sensitive quantitative real-time polymerase chain reaction (qRT-PCR) method. Results Lower BAX mRNA levels were detected in NPC biopsies than in hyperplastic nasopharyngeal samples. BAX mRNA expression status was associated with low tumor extent, negative regional lymph node status, and absence of distant metastases. Kaplan-Meier survival analysis demonstrated that patients with BAX mRNA-positive NPC have significantly longer disease-free survival (DFS) and overall survival (OS). In accordance with these findings, Cox regression analysis revealed that BAX mRNA expression can be considered as a favorable prognostic indicator of DFS and OS in NPC, independent of their gender, age, tumor histology, tumor extent, and nodal status. Furthermore, NPC patients without distant metastases are less likely to relapse when their primary tumor is BAX mRNA-positive, compared to metastasis-free patients with a BAX-negative nasopharyngeal malignancy. Conclusion This is the first study examining the potential clinical utility of BAX as a prognostic tumor biomarker in NPC. We provide evidence that BAX mRNA expression can be considered as an independent favorable prognostic indicator of DFS and OS in NPC.
Collapse
Affiliation(s)
- Christos K Kontos
- Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| | | | | | | | | |
Collapse
|
3510
|
Pan Y, Zhang Q, Atsaves V, Yang H, Claret FX. Suppression of Jab1/CSN5 induces radio- and chemo-sensitivity in nasopharyngeal carcinoma through changes to the DNA damage and repair pathways. Oncogene 2013; 32:2756-2766. [PMID: 22797071 PMCID: PMC3566273 DOI: 10.1038/onc.2012.294] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 12/26/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus-associated malignancy most common in East Asia and Africa. Radiotherapy and cisplatin-based chemotherapy are the main treatment options. Unfortunately, disease response to concurrent chemoradiotherapy varies among patients with NPC, and many cases are resistant to cisplatin. Increased DNA damage repair is one of the mechanisms contributing to this resistance. Jab1/CSN5 is a multifunctional protein that participates in controlling cell proliferation and the stability of multiple proteins. Jab1 overexpression has been found to correlate with poor prognosis in several tumor types. However, the biological significance of Jab1 activity in response to cancer treatment is unclear. In this study, we used three NPC cell lines (CNE1, CNE2 and HONE1) to investigate the hypothesis that Jab1 positively regulates the DNA repair protein Rad51 and, in turn, cellular response to treatment with DNA-damaging agents such as cisplatin, ionizing radiation (IR) and ultraviolet (UV) radiation. We found that Jab1 was overexpressed in two relatively cisplatin-, IR- and UV-resistant NPC cell lines, and knocking down its expression conferred sensitivity to cisplatin, IR and UV radiation. By contrast, exogenous Jab1 expression enhanced the resistance of NPC cells to cisplatin, IR and UV radiation. Moreover, we provide a mechanism by which Jab1 positively regulated Rad51 through p53-dependent pathway, and increased ectopic expression of Rad51 conferred cellular resistance to cisplatin, IR and UV radiation in Jab1-deficient cells. Taken together, our findings suggest that Jab1 has an important role in the cellular response to cisplatin and irradiation by regulating DNA damage and repair pathways. Therefore, Jab1 is a novel biomarker for predicting the outcome of patients with NPC who are treated with DNA-damaging agents.
Collapse
Affiliation(s)
- Y Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
3511
|
Chen L, Tang Y, Wang J, Yan Z, Xu R. miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4. Biochem Biophys Res Commun 2013; 435:745-50. [PMID: 23707940 DOI: 10.1016/j.bbrc.2013.05.056] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023]
Abstract
microRNAs have been demonstrated to play important roles in cancer development and progression. Hence, identifying functional microRNAs and better understanding of the underlying molecular mechanisms would provide new clues for the development of targeted cancer therapies. Herein, we reported that a microRNA, miR-421 played an oncogenic role in nasopharyngeal carcinoma. Upregulation of miR-421 induced, whereas inhibition of miR-421 repressed cell proliferation and apoptosis resistance. Furthermore, we found that upregulation of miR-421 inhibited forkhead box protein O4 (FOXO4) signaling pathway following downregulation of p21, p27, Bim and FASL expression by directly targeting FOXO4 3'UTR. Additionally, we demonstrated that FOXO4 expression is critical for miR-421-induced cell growth and apoptosis resistance. Taken together, our findings not only suggest that miR-421 promotes nasopharyngeal carcinoma cell proliferation and anti-apoptosis, but also uncover a novel regulatory mechanism for inactivation of FOXO4 in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Liang Chen
- Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | | | | | | | | |
Collapse
|
3512
|
Wang D, Wang S, Liu Q, Wang M, Wang C, Yang H. SZ-685C exhibits potent anticancer activity in both radiosensitive and radioresistant NPC cells through the miR-205-PTEN-Akt pathway. Oncol Rep 2013; 29:2341-7. [PMID: 23564023 DOI: 10.3892/or.2013.2376] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/17/2013] [Indexed: 11/06/2022] Open
Abstract
Radioresistance is a major obstacle to the treatment of human nasopharyngeal carcinoma (NPC). Emerging evidence has demonstrated that miRNAs are involved in cancer therapy resistance. Our research group established the radioresistant NPC cell line CNE2R derived from the CNE2 cell line, and demonstrated that irradiation-induced miR-205 determined the resistance of NPC through directly targeting PTEN. However, specific inhibitors targeting miRNAs are largely undetermined. SZ-685C was expected to abrogate the radioresistance of CNE2 cells through the miR-205‑PTEN-Akt pathway. SZ-685C exhibited a similar cytotoxic effect on both cell lines, and we demonstrated that both intrinsic and extrinsic pathways were activated by SZ-685C in the cell lines. Importantly, the miR-205-PTEN-Akt pathway was the key cell signaling pathway activated in the CNE2R cells upon SZ-685C treatment; however, the Stat3-Jab1-p27 pathway might participate in the pro-apoptotic effect in CNE2 cells but not in CNE2R cells. SZ-685C is a promising anticancer agent for treatment of NPC, and it exhibited pro-apoptotic activity in both radiosensitive and radioresistant NPC cells. Although the mechanisms between the two cell lines were not identical, the pro-apoptotic effects were similar between the two cell lines.
Collapse
Affiliation(s)
- Dujuan Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | | | | | | | | | | |
Collapse
|
3513
|
Pan Y, Zhou F, Zhang R, Claret FX. Stat3 inhibitor Stattic exhibits potent antitumor activity and induces chemo- and radio-sensitivity in nasopharyngeal carcinoma. PLoS One 2013; 8:e54565. [PMID: 23382914 PMCID: PMC3558509 DOI: 10.1371/journal.pone.0054565] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/12/2012] [Indexed: 12/01/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus-associated malignancy most common in East Asia, Africa and Alaska. Radiotherapy and cisplatin-based chemotherapy are the main treatment options. Unfortunately, disease response to concurrent chemoradiotherapy varies among patients with NPC, and many cases are resistant to cisplatin and radiotherapy. Signal transducer and activator of transcription 3 (Stat3) has been implicated in the development and progression of various solid tumors. In this study, we assessed the activation and expression of Stat3 in NPC cells. We found that Stat3 was activated and could be blocked by the small molecule inhibitor Stattic. The inhibition of Stat3 in NPC cells by Stattic decreased the expression of cyclin D1 in a dose- and time-dependent manner. Thus, Stattic was used to target Stat3 in NPC cell lines. We found that Stattic could inhibit cell viability and proliferation in NPC cells and significantly induced apoptosis. Additionally, Stat3 transfection attenuated, whereas Stat3 knockdown enhanced, the effects of Stattic upon cell viability inhibition and apoptosis induction. Furthermore, Stattic sensitized NPC cells to cisplatin and ionizing radiation (IR) by preventing cell proliferation and inducing apoptosis. Taken together, Stattic inhibit Stat3 and display antitumor effect in NPC, and enhanced chemosensitivity and radiosensitivity in NPC. Therefore, our findings provide the base for more rational approaches to treat NPC in the clinic.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Fuling Zhou
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Clinical Hematology, the Affiliated No. 2 Hospital, Xi’an JiaoTong University, Xi’an, Shanxi, People’s Republic of China
| | - Ronghua Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Francois X. Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Experimental Therapeutic Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| |
Collapse
|
3514
|
Zhang M, Zhou X, Zhou K. Resveratrol inhibits human nasopharyngeal carcinoma cell growth via blocking pAkt/p70S6K signaling pathways. Int J Mol Med 2013; 31:621-7. [PMID: 23314035 DOI: 10.3892/ijmm.2013.1237] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/15/2012] [Indexed: 11/06/2022] Open
Abstract
Resveratrol (trans-3,4',5-trihydroxystilbene) has been shown to exert potent anticancer effects on various types of cancer through its anti-proliferative, anti-angiogenic, antioxidant and pro-apoptotic functions. There is still a lack of experimental evidence regarding whether resveratrol has potential anticancer activity in human nasopharyngeal carcinoma (NPC) cells. The purpose of this study was to explore the anticancer activity of resveratrol in human NPC cells both in vitro and in vivo. Our results indicated that treatment with resveratrol led to a time- and dose-dependent decrease in cell proliferation in NPC cells. A dose-dependent increase in apoptosis in response to resveratrol treatment was also observed in NPC cells. Flow cytometric analysis showed that treatment of NPC cells with resveratrol led to cell cycle arrest at the S and G2/M phases. Mechanistically, resveratrol treatment downregulated the expression of Bcl-2 and hypoxia-inducible factor-1α (HIF-1α) proteins and upregulated the expression of caspase-3 protein. In addition, resveratrol treatment also significantly decreased the phosphorylation levels of Akt1, p70S6K and p-4E-BP-1 and the protein expression of several cyclins involved in cell cycle regulation. In vivo studies further showed that resveratrol was able to significantly inhibit the growth of NPC tumor xenografts in nude mice. Collectively, our findings suggest that resveratrol exerts potent anti-prolife-rative and pro-apoptotic effects on human NPC cells possibly through interfering with the pAkt1/p70S6K signaling pathways, thus it may potentially be developed as an effective agent for chemoprevention and chemotherapy of human NPC.
Collapse
Affiliation(s)
- Meihong Zhang
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, PR China
| | | | | |
Collapse
|
3515
|
Pan Y, Claret FX. Targeting Jab1/CSN5 in nasopharyngeal carcinoma. Cancer Lett 2012; 326:155-160. [PMID: 22867945 PMCID: PMC3474602 DOI: 10.1016/j.canlet.2012.07.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus-associated head and neck cancer that is most common in eastern Asia. Epstein-Barr virus infection, environmental factors, and genetic susceptibility play important roles in NPC pathogenesis. Jab1/CSN5 is a multifunctional protein that participates in affecting integrin signaling, controlling cell proliferation and apoptosis, and regulating genomic instability and DNA repair. Correlation of Jab1/CSN5 overexpression with poor prognosis for NPC provides evidence that it is involved in the tumorigenic process. In this review, we highlight recent advances in studies of the oncogenic role of Jab1/CSN5 in NPC and its potential as a therapeutic target for this cancer.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Systems Biology, Unit 950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People’s Republic of China
| | - François X. Claret
- Department of Systems Biology, Unit 950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Experimental Therapeutic Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
3516
|
Kim GY, Lim SJ, Kim YW. Expression of HuR, COX-2, and survivin in lung cancers; cytoplasmic HuR stabilizes cyclooxygenase-2 in squamous cell carcinomas. Mod Pathol 2011; 24:1336-47. [PMID: 21572400 DOI: 10.1038/modpathol.2011.90] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hu antigen R (HuR) is a member of the human family of embryonic-lethal, abnormal vision-like proteins, which serves as an mRNA-binding protein. In the cytoplasm, HuR can stabilize the mRNA of cyclooxygenase-2 (COX-2), an enzyme that catalyses the synthesis of prostaglandins and is associated with promotion of carcinogenesis and tumor cell resistance to apoptosis. Intracellular (cytoplasmic and nuclear) localization of survivin has a prognostic significance as an apoptosis inhibitor and a regulator of cell division in tumors. Patients with 151 squamous cell carcinomas and 93 adenocarcinomas underwent lobectomy or pneumonectomy with hilar and mediastinal lymph node sampling. Paraffin-embedded tumor sections were retrieved for evaluation of nuclear and cytoplasmic staining of survivin and HuR, and cytoplasmic staining of COX-2. In squamous cell carcinomas, COX-2 expression was correlated with a difference of survivin (cytoplasmic-nuclear; P=0.004), cytoplasmic HuR (P=0.018), total HuR (cytoplasmic+nuclear; P=0.009), and difference of HuR (P=0.020). COX-2 was inversely correlated with nuclear survivin (P=0.006). In a univariate analysis by log-rank test, survival was associated with cytoplasmic survivin (adenocarcinoma, P<0.001; squamous cell carcinoma, P=0.005), difference of survivin (adenocarcinoma, P<0.001; squamous cell carcinoma, P=0.014), and COX-2 (squamous cell carcinoma, P=0.001). Survival was inversely associated with nuclear survivin (adenocarcinoma, P=0.006, squamous cell carcinoma, P=0.014). In a multivariate survival analysis, cytoplasmic survivin (adenocarcinoma, P=0.002; squamous cell carcinoma, P=0.015) and COX-2 (squamous cell carcinoma, P=0.020) were determined as independent prognostic factors. Cytoplasmic HuR expression is associated with COX-2 expression in squamous cell carcinomas. The expression of COX-2 in squamous cell carcinomas, and cytoplasmic survivin in adenocarcinomas and squamous cell carcinomas could be useful independent prognostic markers.
Collapse
Affiliation(s)
- Gou Young Kim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea.
| | | | | |
Collapse
|