3901
|
Maskell DP, Renault L, Serrao E, Lesbats P, Matadeen R, Hare S, Lindemann D, Engelman AN, Costa A, Cherepanov P. Structural basis for retroviral integration into nucleosomes. Nature 2015; 523:366-9. [PMID: 26061770 PMCID: PMC4530500 DOI: 10.1038/nature14495] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/15/2015] [Indexed: 01/01/2023]
Abstract
Retroviral integration is catalysed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration.
Collapse
Affiliation(s)
- Daniel P. Maskell
- Chromatin Structure and Mobile DNA, Clare Hall Laboratories, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK
| | - Ludovic Renault
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratories, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK
- National Institute for Biological Standards and Control, Microscopy and Imaging, Blanche Lane, South Mimms, EN6 3QG, UK
| | - Erik Serrao
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Paul Lesbats
- Chromatin Structure and Mobile DNA, Clare Hall Laboratories, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK
| | - Rishi Matadeen
- NeCEN, Gorlaeus Laboratory, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Stephen Hare
- Division of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Dirk Lindemann
- Institute of Virology, Technische Universität Dresden, Fetscherstr.74, Dresden, 01307, Germany
| | - Alan N. Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Alessandro Costa
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratories, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA, Clare Hall Laboratories, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK
- Division of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
3902
|
Unique double-ring structure of the peroxisomal Pex1/Pex6 ATPase complex revealed by cryo-electron microscopy. Proc Natl Acad Sci U S A 2015; 112:E4017-25. [PMID: 26170309 DOI: 10.1073/pnas.1500257112] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Members of the AAA family of ATPases assemble into hexameric double rings and perform vital functions, yet their molecular mechanisms remain poorly understood. Here, we report structures of the Pex1/Pex6 complex; mutations in these proteins frequently cause peroxisomal diseases. The structures were determined in the presence of different nucleotides by cryo-electron microscopy. Models were generated using a computational approach that combines Monte Carlo placement of structurally homologous domains into density maps with energy minimization and refinement protocols. Pex1 and Pex6 alternate in an unprecedented hexameric double ring. Each protein has two N-terminal domains, N1 and N2, structurally related to the single N domains in p97 and N-ethylmaleimide sensitive factor (NSF); N1 of Pex1 is mobile, but the others are packed against the double ring. The N-terminal ATPase domains are inactive, forming a symmetric D1 ring, whereas the C-terminal domains are active, likely in different nucleotide states, and form an asymmetric D2 ring. These results suggest how subunit activity is coordinated and indicate striking similarities between Pex1/Pex6 and p97, supporting the hypothesis that the Pex1/Pex6 complex has a role in peroxisomal protein import analogous to p97 in ER-associated protein degradation.
Collapse
|
3903
|
Voorhees RM, Hegde RS. Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. eLife 2015; 4. [PMID: 26158507 PMCID: PMC4497383 DOI: 10.7554/elife.07975] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/07/2015] [Indexed: 12/11/2022] Open
Abstract
The universally conserved signal recognition particle (SRP) is essential for the biogenesis of most integral membrane proteins. SRP scans the nascent chains of translating ribosomes, preferentially engaging those with hydrophobic targeting signals, and delivers these ribosome-nascent chain complexes to the membrane. Here, we present structures of native mammalian SRP-ribosome complexes in the scanning and engaged states. These structures reveal the near-identical SRP architecture of these two states, show many of the SRP-ribosome interactions at atomic resolution, and suggest how the polypeptide-binding M domain selectively engages hydrophobic signals. The scanning M domain, pre-positioned at the ribosomal exit tunnel, is auto-inhibited by a C-terminal amphipathic helix occluding its hydrophobic binding groove. Upon engagement, the hydrophobic targeting signal displaces this amphipathic helix, which then acts as a protective lid over the signal. Biochemical experiments suggest how scanning and engagement are coordinated with translation elongation to minimize exposure of hydrophobic signals during membrane targeting. DOI:http://dx.doi.org/10.7554/eLife.07975.001 Proteins are long chain-like molecules built from smaller building blocks, called amino acids, by a large molecular machine known as a ribosome. Although all proteins are assembled inside cells, some of them must be delivered to the outside or inserted into cell membranes. It is important to understand how this selective delivery system works because secreted proteins (i.e., those delivered outside) and membrane-embedded proteins are essential for cells to communicate with their surroundings. Proteins destined for secretion or membrane insertion contain characteristic stretches of amino acids that act as a targeting signal for delivery to the membrane. These targeting signals are recognized by the ‘signal recognition particle’ (or SRP for short), a large complex found in all living organisms. The SRP has the task of finding ribosomes that are assembling proteins with a targeting signal, and then taking them to the membrane. The protein being assembled can then either cross the membrane for secretion by the cell, or get embedded within the membrane. So, how can the SRP scan the broad range of proteins that are made by the ribosome and engage with only those containing targeting signals? Voorhees and Hegde investigated this question by analyzing SRPs bound to ribosomes that were at different stages of building a membrane protein. The experiment was devised so that SRP would be in two different states: in the first state, the SRP was scanning for its targeting signal and, in the second, it was engaged with the targeting signal. Voorhees and Hegde took many thousands of pictures of these samples using a technique called cryo-electron microscopy, and reconstructed the three-dimensional structures of both states. This revealed fine details of how SRP positions itself immediately next to the part of the ribosome where newly formed protein chains emerge. From here, the SRP scans the protein until the targeting signal emerges and then it engages with the protein. Engaging the targeting signal just as it emerges from the ribosome is probably important because targeting signals tend to aggregate if they are exposed to the contents of a cell. The new structures show how SRP cradles the targeting signal inside a binding groove and covers it with a protective lid to minimize its risk of aggregation. The next challenges are to figure out how SRP chooses which ribosomes to scan, and how it releases the targeting signal when it has delivered it to the membrane. DOI:http://dx.doi.org/10.7554/eLife.07975.002
Collapse
|
3904
|
Quade N, Boehringer D, Leibundgut M, van den Heuvel J, Ban N. Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution. Nat Commun 2015; 6:7646. [PMID: 26155016 PMCID: PMC4510694 DOI: 10.1038/ncomms8646] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/27/2015] [Indexed: 01/10/2023] Open
Abstract
Hepatitis C virus (HCV), a widespread human pathogen, is dependent on a highly structured 5'-untranslated region of its mRNA, referred to as internal ribosome entry site (IRES), for the translation of all of its proteins. The HCV IRES initiates translation by directly binding to the small ribosomal subunit (40S), circumventing the need for many eukaryotic translation initiation factors required for mRNA scanning. Here we present the cryo-EM structure of the human 40S ribosomal subunit in complex with the HCV IRES at 3.9 Å resolution, determined by focused refinement of an 80S ribosome-HCV IRES complex. The structure reveals the molecular details of the interactions between the IRES and the 40S, showing that expansion segment 7 (ES7) of the 18S rRNA acts as a central anchor point for the HCV IRES. The structural data rationalizes previous biochemical and genetic evidence regarding the initiation mechanism of the HCV and other related IRESs.
Collapse
Affiliation(s)
- Nick Quade
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| | - Joop van den Heuvel
- Research Group Recombinant Protein Expression, Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig 38124, Germany
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
3905
|
Sun L, Zhang X, Gao S, Rao PA, Padilla-Sanchez V, Chen Z, Sun S, Xiang Y, Subramaniam S, Rao VB, Rossmann MG. Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution. Nat Commun 2015; 6:7548. [PMID: 26144253 PMCID: PMC4493910 DOI: 10.1038/ncomms8548] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/19/2015] [Indexed: 11/28/2022] Open
Abstract
The structure and assembly of bacteriophage T4 has been extensively studied. However, the detailed structure of the portal protein remained unknown. Here we report the structure of the bacteriophage T4 portal assembly, gene product 20 (gp20), determined by cryo-electron microscopy (cryo-EM) to 3.6 Å resolution. In addition, analysis of a 10 Å resolution cryo-EM map of an empty prolate T4 head shows how the dodecameric portal assembly interacts with the capsid protein gp23 at the special pentameric vertex. The gp20 structure also verifies that the portal assembly is required for initiating head assembly, for attachment of the packaging motor, and for participation in DNA packaging. Comparison of the Myoviridae T4 portal structure with the known portal structures of φ29, SPP1 and P22, representing Podo- and Siphoviridae, shows that the portal structure probably dates back to a time when self-replicating microorganisms were being established on Earth. Tailed bacteriophages translocate the genome into and out of the capsid through a portal protein assembly located between the phage s head and tail. Here Sun et al. provide a cryo-EM structure of the bacteriophage T4 portal protein assembly, suggesting the functions and evolution of the portal structure.
Collapse
Affiliation(s)
- Lei Sun
- Department of Biological Sciences, Purdue University, 240S. Martin Jischke Drive, West Lafayette, Indiana 47907-2032, USA
| | - Xinzheng Zhang
- Department of Biological Sciences, Purdue University, 240S. Martin Jischke Drive, West Lafayette, Indiana 47907-2032, USA
| | - Song Gao
- Department of Biology, The Catholic University of America, 620 Michigan Ave. N.E., Washington, DC 20064, USA
| | - Prashant A Rao
- National Cancer Institute, National Institutes of Health, 50 South Drive, Bldg. 50 Room 4306, Bethesda, Maryland 20892, USA
| | - Victor Padilla-Sanchez
- Department of Biology, The Catholic University of America, 620 Michigan Ave. N.E., Washington, DC 20064, USA
| | - Zhenguo Chen
- Department of Biological Sciences, Purdue University, 240S. Martin Jischke Drive, West Lafayette, Indiana 47907-2032, USA
| | - Siyang Sun
- Department of Biological Sciences, Purdue University, 240S. Martin Jischke Drive, West Lafayette, Indiana 47907-2032, USA
| | - Ye Xiang
- Department of Biological Sciences, Purdue University, 240S. Martin Jischke Drive, West Lafayette, Indiana 47907-2032, USA
| | - Sriram Subramaniam
- National Cancer Institute, National Institutes of Health, 50 South Drive, Bldg. 50 Room 4306, Bethesda, Maryland 20892, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, 620 Michigan Ave. N.E., Washington, DC 20064, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, 240S. Martin Jischke Drive, West Lafayette, Indiana 47907-2032, USA
| |
Collapse
|
3906
|
Cheng Y, Grigorieff N, Penczek PA, Walz T. A primer to single-particle cryo-electron microscopy. Cell 2015; 161:438-449. [PMID: 25910204 DOI: 10.1016/j.cell.2015.03.050] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 01/14/2023]
Abstract
Cryo-electron microscopy (cryo-EM) of single-particle specimens is used to determine the structure of proteins and macromolecular complexes without the need for crystals. Recent advances in detector technology and software algorithms now allow images of unprecedented quality to be recorded and structures to be determined at near-atomic resolution. However, compared with X-ray crystallography, cryo-EM is a young technique with distinct challenges. This primer explains the different steps and considerations involved in structure determination by single-particle cryo-EM to provide an overview for scientists wishing to understand more about this technique and the interpretation of data obtained with it, as well as a starting guide for new practitioners.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | | | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin Street, MSB 6.220, Houston, TX 77030, USA
| | - Thomas Walz
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
3907
|
Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 2015; 521:241-5. [PMID: 25971514 DOI: 10.1038/nature14365] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/05/2015] [Indexed: 01/19/2023]
Abstract
Eukaryotic vacuolar H(+)-ATPases (V-ATPases) are rotary enzymes that use energy from hydrolysis of ATP to ADP to pump protons across membranes and control the pH of many intracellular compartments. ATP hydrolysis in the soluble catalytic region of the enzyme is coupled to proton translocation through the membrane-bound region by rotation of a central rotor subcomplex, with peripheral stalks preventing the entire membrane-bound region from turning with the rotor. The eukaryotic V-ATPase is the most complex rotary ATPase: it has three peripheral stalks, a hetero-oligomeric proton-conducting proteolipid ring, several subunits not found in other rotary ATPases, and is regulated by reversible dissociation of its catalytic and proton-conducting regions. Studies of ATP synthases, V-ATPases, and bacterial/archaeal V/A-ATPases have suggested that flexibility is necessary for the catalytic mechanism of rotary ATPases, but the structures of different rotational states have never been observed experimentally. Here we use electron cryomicroscopy to obtain structures for three rotational states of the V-ATPase from the yeast Saccharomyces cerevisiae. The resulting series of structures shows ten proteolipid subunits in the c-ring, setting the ATP:H(+) ratio for proton pumping by the V-ATPase at 3:10, and reveals long and highly tilted transmembrane α-helices in the a-subunit that interact with the c-ring. The three different maps reveal the conformational changes that occur to couple rotation in the symmetry-mismatched soluble catalytic region to the membrane-bound proton-translocating region. Almost all of the subunits of the enzyme undergo conformational changes during the transitions between these three rotational states. The structures of these states provide direct evidence that deformation during rotation enables the smooth transmission of power through rotary ATPases.
Collapse
|
3908
|
Schmidt M, Pande K, Basu S, Tenboer J. Room temperature structures beyond 1.5 Å by serial femtosecond crystallography. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:041708. [PMID: 26798807 PMCID: PMC4711625 DOI: 10.1063/1.4919903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/15/2015] [Accepted: 04/28/2015] [Indexed: 05/12/2023]
Abstract
About 2.5 × 10(6) snapshots on microcrystals of photoactive yellow protein (PYP) from a recent serial femtosecond crystallographic (SFX) experiment were reanalyzed to maximum resolution. The resolution is pushed to 1.46 Å, and a PYP structural model is refined at that resolution. The result is compared to other PYP models determined at atomic resolution around 1 Å and better at the synchrotron. By comparing subtleties such as individual isotropic temperature factors and hydrogen bond lengths, we were able to assess the quality of the SFX data at that resolution. We also show that the determination of anisotropic temperature factor ellipsoids starts to become feasible with the SFX data at resolutions better than 1.5 Å.
Collapse
Affiliation(s)
- Marius Schmidt
- Physics Department , University of Wisconsin Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Kanupriya Pande
- Physics Department , University of Wisconsin Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Shibom Basu
- Department of Chemistry and Biochemistry , Arizona State University, Tempe, Arizona 85287, USA
| | - Jason Tenboer
- Physics Department , University of Wisconsin Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
3909
|
Chang L, Zhang Z, Yang J, McLaughlin SH, Barford D. Atomic structure of the APC/C and its mechanism of protein ubiquitination. Nature 2015; 522:450-454. [PMID: 26083744 PMCID: PMC4608048 DOI: 10.1038/nature14471] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/10/2015] [Indexed: 12/12/2022]
Abstract
The anaphase-promoting complex (APC/C) is a multimeric RING E3 ubiquitin ligase that controls chromosome segregation and mitotic exit. Its regulation by coactivator subunits, phosphorylation, the mitotic checkpoint complex and interphase early mitotic inhibitor 1 (Emi1) ensures the correct order and timing of distinct cell-cycle transitions. Here we use cryo-electron microscopy to determine atomic structures of APC/C-coactivator complexes with either Emi1 or a UbcH10-ubiquitin conjugate. These structures define the architecture of all APC/C subunits, the position of the catalytic module and explain how Emi1 mediates inhibition of the two E2s UbcH10 and Ube2S. Definition of Cdh1 interactions with the APC/C indicates how they are antagonized by Cdh1 phosphorylation. The structure of the APC/C with UbcH10-ubiquitin reveals insights into the initiating ubiquitination reaction. Our results provide a quantitative framework for the design of future experiments to investigate APC/C functions in vivo.
Collapse
MESH Headings
- Anaphase-Promoting Complex-Cyclosome/chemistry
- Anaphase-Promoting Complex-Cyclosome/metabolism
- Anaphase-Promoting Complex-Cyclosome/ultrastructure
- Antigens, CD
- Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry
- Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism
- Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/ultrastructure
- Apc10 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry
- Apc10 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism
- Apc10 Subunit, Anaphase-Promoting Complex-Cyclosome/ultrastructure
- Apc11 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry
- Apc11 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism
- Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry
- Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism
- Apc8 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry
- Apc8 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism
- Apc8 Subunit, Anaphase-Promoting Complex-Cyclosome/ultrastructure
- Cadherins/chemistry
- Cadherins/metabolism
- Cadherins/ultrastructure
- Catalytic Domain
- Cell Cycle Proteins/chemistry
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/ultrastructure
- Cryoelectron Microscopy
- Cytoskeletal Proteins/chemistry
- Cytoskeletal Proteins/metabolism
- F-Box Proteins/chemistry
- F-Box Proteins/metabolism
- F-Box Proteins/ultrastructure
- Humans
- Lysine/metabolism
- Models, Molecular
- Phosphorylation
- Protein Binding
- Protein Subunits/chemistry
- Protein Subunits/metabolism
- Structure-Activity Relationship
- Substrate Specificity
- Ubiquitin/chemistry
- Ubiquitin/metabolism
- Ubiquitin/ultrastructure
- Ubiquitin-Conjugating Enzymes/chemistry
- Ubiquitin-Conjugating Enzymes/metabolism
- Ubiquitin-Conjugating Enzymes/ultrastructure
- Ubiquitination
Collapse
Affiliation(s)
- Leifu Chang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Stephen H McLaughlin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
3910
|
Frampton RA, Acedo EL, Young VL, Chen D, Tong B, Taylor C, Easingwood RA, Pitman AR, Kleffmann T, Bostina M, Fineran PC. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. Viruses 2015; 7:3361-79. [PMID: 26114474 PMCID: PMC4517105 DOI: 10.3390/v7072776] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.
Collapse
Affiliation(s)
- Rebekah A Frampton
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand.
| | - Elena Lopez Acedo
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- Departamento de Genetica, Universidad de Extremadura, Badajoz 06080, Spain.
| | - Vivienne L Young
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Danni Chen
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Brian Tong
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Corinda Taylor
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Richard A Easingwood
- Otago Centre for Electron Microscopy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Andrew R Pitman
- New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand.
| | - Torsten Kleffmann
- Centre for Protein Research, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- Otago Centre for Electron Microscopy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
3911
|
Stahlberg H, Biyani N, Engel A. 3D reconstruction of two-dimensional crystals. Arch Biochem Biophys 2015; 581:68-77. [PMID: 26093179 DOI: 10.1016/j.abb.2015.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023]
Abstract
Electron crystallography of two-dimensional (2D) crystals determines the structure of membrane proteins in the lipid bilayer by imaging with cryo-electron microscopy and image processing. Membrane proteins can be packed in regular 2D arrays by their reconstitution in the presence of lipids at low lipid to protein weight-to-weight ratio. The crystal quality depends on the protein purity and homogeneity, its stability, and on the crystallization conditions. A 2D crystal presents the membrane protein in a functional and fully lipidated state. Electron crystallography determines the 3D structure even of small membrane proteins up to atomic resolution, but 3D density maps have a better resolution in the membrane plane than in the vertical direction. This problem can be partly eliminated by applying an iterative algorithm that exploits additional known constraints about the 2D crystal. 2D electron crystallography is particularly attractive for the structural analysis of membrane proteins that are too small for single particle analyses and too unstable to form 3D crystals. With the recent introduction of direct electron detector cameras, the routine determination of the atomic 3D structure of membrane-embedded membrane proteins is in reach.
Collapse
Affiliation(s)
- Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nikhil Biyani
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Andreas Engel
- Department of BioNanoscience, Delft University of Technology, Van der Waalsweg 8, 2628 CH Delft, The Netherlands; Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Wood Bldg 321D, Cleveland, OH 44106-4965, USA.
| |
Collapse
|
3912
|
Description and comparison of algorithms for correcting anisotropic magnification in cryo-EM images. J Struct Biol 2015; 192:209-15. [PMID: 26087140 DOI: 10.1016/j.jsb.2015.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 11/23/2022]
Abstract
Single particle electron cryomicroscopy (cryo-EM) allows for structures of proteins and protein complexes to be determined from images of non-crystalline specimens. Cryo-EM data analysis requires electron microscope images of randomly oriented ice-embedded protein particles to be rotated and translated to allow for coherent averaging when calculating three-dimensional (3D) structures. Rotation of 2D images is usually done with the assumption that the magnification of the electron microscope is the same in all directions. However, due to electron optical aberrations, this condition is not met with some electron microscopes when used with the settings necessary for cryo-EM with a direct detector device (DDD) camera. Correction of images by linear interpolation in real space has allowed high-resolution structures to be calculated from cryo-EM images for symmetric particles. Here we describe and compare a simple real space method, a simple Fourier space method, and a somewhat more sophisticated Fourier space method to correct images for a measured anisotropy in magnification. Further, anisotropic magnification causes contrast transfer function (CTF) parameters estimated from image power spectra to have an apparent systematic astigmatism. To address this problem we develop an approach to adjust CTF parameters measured from distorted images so that they can be used with corrected images. The effect of anisotropic magnification on CTF parameters provides a simple way of detecting magnification anisotropy in cryo-EM datasets.
Collapse
|
3913
|
Sverzhinsky A, Chung JW, Deme JC, Fabre L, Levey KT, Plesa M, Carter DM, Lypaczewski P, Coulton JW. Membrane Protein Complex ExbB4-ExbD1-TonB1 from Escherichia coli Demonstrates Conformational Plasticity. J Bacteriol 2015; 197:1873-85. [PMID: 25802296 PMCID: PMC4420915 DOI: 10.1128/jb.00069-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/13/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Iron acquisition at the outer membrane (OM) of Gram-negative bacteria is powered by the proton motive force (PMF) of the cytoplasmic membrane (CM), harnessed by the CM-embedded complex of ExbB, ExbD, and TonB. Its stoichiometry, ensemble structural features, and mechanism of action are unknown. By panning combinatorial phage libraries, periplasmic regions of dimerization between ExbD and TonB were predicted. Using overexpression of full-length His6-tagged exbB-exbD and S-tagged tonB, we purified detergent-solubilized complexes of ExbB-ExbD-TonB from Escherichia coli. Protein-detergent complexes of ∼230 kDa with a hydrodynamic radius of ∼6.0 nm were similar to previously purified ExbB₄-ExbD₂ complexes. Significantly, they differed in electronegativity by native agarose gel electrophoresis. The stoichiometry was determined to be ExbB₄-ExbD₁-TonB₁. Single-particle electron microscopy agrees with this stoichiometry. Two-dimensional averaging supported the phage display predictions, showing two forms of ExbD-TonB periplasmic heterodimerization: extensive and distal. Three-dimensional (3D) particle classification showed three representative conformations of ExbB₄-ExbD₁-TonB₁. Based on our structural data, we propose a model in which ExbD shuttles a proton across the CM via an ExbB interprotein rearrangement. Proton translocation would be coupled to ExbD-mediated collapse of extended TonB in complex with ligand-loaded receptors in the OM, followed by repositioning of TonB through extensive dimerization with ExbD. Here we present the first report for purification of the ExbB-ExbD-TonB complex, molar ratios within the complex (4:1:1), and structural biology that provides insights into 3D organization. IMPORTANCE Receptors in the OM of Gram-negative bacteria allow entry of iron-bound siderophores that are necessary for pathogenicity. Numerous iron-acquisition strategies rely upon a ubiquitous and unique protein for energization: TonB. Complexed with ExbB and ExbD, the Ton system links the PMF to OM transport. Blocking iron uptake by targeting a vital nanomachine holds promise in therapeutics. Despite much research, the stoichiometry, structural arrangement, and molecular mechanism of the CM-embedded ExbB-ExbD-TonB complex remain unreported. Here we demonstrate in vitro evidence of ExbB₄-ExbD₁-TonB₁ complexes. Using 3D EM, we reconstructed the complex in three conformational states that show variable ExbD-TonB heterodimerization. Our structural observations form the basis of a model for TonB-mediated iron acquisition.
Collapse
Affiliation(s)
| | - Jacqueline W Chung
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Justin C Deme
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Lucien Fabre
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Kristian T Levey
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Maria Plesa
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - David M Carter
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
3914
|
Gaubitz C, Oliveira TM, Prouteau M, Leitner A, Karuppasamy M, Konstantinidou G, Rispal D, Eltschinger S, Robinson GC, Thore S, Aebersold R, Schaffitzel C, Loewith R. Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2. Mol Cell 2015; 58:977-88. [PMID: 26028537 DOI: 10.1016/j.molcel.2015.04.031] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/31/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Target of Rapamycin (TOR) plays central roles in the regulation of eukaryote growth as the hub of two essential multiprotein complexes: TORC1, which is rapamycin-sensitive, and the lesser characterized TORC2, which is not. TORC2 is a key regulator of lipid biosynthesis and Akt-mediated survival signaling. In spite of its importance, its structure and the molecular basis of its rapamycin insensitivity are unknown. Using crosslinking-mass spectrometry and electron microscopy, we determined the architecture of TORC2. TORC2 displays a rhomboid shape with pseudo-2-fold symmetry and a prominent central cavity. Our data indicate that the C-terminal part of Avo3, a subunit unique to TORC2, is close to the FKBP12-rapamycin-binding domain of Tor2. Removal of this sequence generated a FKBP12-rapamycin-sensitive TORC2 variant, which provides a powerful tool for deciphering TORC2 function in vivo. Using this variant, we demonstrate a role for TORC2 in G2/M cell-cycle progression.
Collapse
Affiliation(s)
- Christl Gaubitz
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Taiana M Oliveira
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France; Fondation ARC, 9 rue Guy Môquet, BP 90003, 04803 Villejuif Cedex, France
| | - Manoel Prouteau
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Manikandan Karuppasamy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Georgia Konstantinidou
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Delphine Rispal
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Sandra Eltschinger
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Graham C Robinson
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Stéphane Thore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland; University of Bordeaux, European Institute for Chemistry and Biology, ARNA Laboratory, F-33607 Pessac, France; Institut National de la Santé Et de la Recherche Médicale, INSERM-U869, ARNA Laboratory, F-33000, Bordeaux, France
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, 8057 Zürich, Switzerland
| | - Christiane Schaffitzel
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France; School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom.
| | - Robbie Loewith
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland; National Centre of Competence in Research "Chemical Biology," University of Geneva, Geneva CH-1211, Switzerland.
| |
Collapse
|
3915
|
Gerlach P, Malet H, Cusack S, Reguera J. Structural Insights into Bunyavirus Replication and Its Regulation by the vRNA Promoter. Cell 2015; 161:1267-79. [PMID: 26004069 PMCID: PMC4459711 DOI: 10.1016/j.cell.2015.05.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 12/05/2022]
Abstract
Segmented negative-strand RNA virus (sNSV) polymerases transcribe and replicate the viral RNA (vRNA) within a ribonucleoprotein particle (RNP). We present cryo-EM and X-ray structures of, respectively, apo- and vRNA bound La Crosse orthobunyavirus (LACV) polymerase that give atomic-resolution insight into how such RNPs perform RNA synthesis. The complementary 3′ and 5′ vRNA extremities are sequence specifically bound in separate sites on the polymerase. The 5′ end binds as a stem-loop, allosterically structuring functionally important polymerase active site loops. Identification of distinct template and product exit tunnels allows proposal of a detailed model for template-directed replication with minimal disruption to the circularised RNP. The similar overall architecture and vRNA binding of monomeric LACV to heterotrimeric influenza polymerase, despite high sequence divergence, suggests that all sNSV polymerases have a common evolutionary origin and mechanism of RNA synthesis. These results will aid development of replication inhibitors of diverse, serious human pathogenic viruses. Bunyavirus polymerase binds its complementary 3′ and 5′ vRNA ends in distinct sites 5′ vRNA binding allosterically structures and activates the polymerase catalytic site Distinct template/product exit tunnels explain RNA synthesis in a circularized RNP Monomeric bunyavirus and trimeric influenza polymerases are structurally similar
Collapse
Affiliation(s)
- Piotr Gerlach
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
| | - Hélène Malet
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France.
| | - Juan Reguera
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France.
| |
Collapse
|
3916
|
Chen B, Kaledhonkar S, Sun M, Shen B, Lu Z, Barnard D, Lu TM, Gonzalez RL, Frank J. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 2015; 23:1097-105. [PMID: 26004440 DOI: 10.1016/j.str.2015.04.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/16/2015] [Accepted: 04/05/2015] [Indexed: 11/25/2022]
Abstract
Ribosomal subunit association is a key checkpoint in translation initiation but its structural dynamics are poorly understood. Here, we used a recently developed mixing-spraying, time-resolved, cryogenic electron microscopy (cryo-EM) method to study ribosomal subunit association in the sub-second time range. We have improved this method and increased the cryo-EM data yield by tenfold. Pre-equilibrium states of the association reaction were captured by reacting the mixture of ribosomal subunits for 60 ms and 140 ms. We also identified three distinct ribosome conformations in the associated ribosomes. The observed proportions of these conformations are the same in these two time points, suggesting that ribosomes equilibrate among the three conformations within less than 60 ms upon formation. Our results demonstrate that the mixing-spraying method can capture multiple states of macromolecules during a sub-second reaction. Other fast processes, such as translation initiation, decoding, and ribosome recycling, are amenable to study with this method.
Collapse
Affiliation(s)
- Bo Chen
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sandip Kaledhonkar
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Bingxin Shen
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Zonghuan Lu
- Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - David Barnard
- Wadsworth Center, Albany, New York State Department of Health, Albany, NY 12201, USA
| | - Toh-Ming Lu
- Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Joachim Frank
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
3917
|
Fant CB, Taatjes DJ. All in the family: a portrait of a nuclear receptor co-activator complex. Mol Cell 2015; 57:952-954. [PMID: 25794613 DOI: 10.1016/j.molcel.2015.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this issue of Molecular Cell, Yi et al. (2015) use biochemical assays and cryo-EM to determine the molecular architecture of an estrogen receptor (ERα) co-activator complex bound to DNA.
Collapse
Affiliation(s)
- Charli B Fant
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
3918
|
Binshtein E, Ohi MD. Cryo-Electron Microscopy and the Amazing Race to Atomic Resolution. Biochemistry 2015; 54:3133-41. [DOI: 10.1021/acs.biochem.5b00114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elad Binshtein
- Department of Cell and Developmental
Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Melanie D. Ohi
- Department of Cell and Developmental
Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
3919
|
Cianfrocco MA, Leschziner AE. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud. eLife 2015; 4:e06664. [PMID: 25955969 PMCID: PMC4440898 DOI: 10.7554/elife.06664] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/01/2015] [Indexed: 01/27/2023] Open
Abstract
The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.
Collapse
Affiliation(s)
- Michael A Cianfrocco
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Andres E Leschziner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
3920
|
Molecular Basis of Transcription-Coupled Pre-mRNA Capping. Mol Cell 2015; 58:1079-89. [PMID: 25959396 DOI: 10.1016/j.molcel.2015.04.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/27/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022]
Abstract
Capping is the first step in pre-mRNA processing, and the resulting 5'-RNA cap is required for mRNA splicing, export, translation, and stability. Capping is functionally coupled to transcription by RNA polymerase (Pol) II, but the coupling mechanism remains unclear. We show that efficient binding of the capping enzyme (CE) to transcribing, phosphorylated yeast Pol II (Pol IIp) requires nascent RNA with an unprocessed 5'-triphosphate end. The transcribing Pol IIp-CE complex catalyzes the first two steps of capping, and its analysis by mass spectrometry, cryo-electron microscopy, and protein crosslinking revealed the molecular basis for transcription-coupled pre-mRNA capping. CE docks to the Pol II wall and spans the end of the RNA exit tunnel to position the CE active sites for sequential binding of the exiting RNA 5' end. Thus, the RNA 5' end triggers its own capping when it emerges from Pol II, to ensure seamless RNA protection from 5'-exonucleases during early transcription.
Collapse
|
3921
|
Li W, Liu Z, Koripella RK, Langlois R, Sanyal S, Frank J. Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G. SCIENCE ADVANCES 2015; 1:e1500169. [PMID: 26229983 PMCID: PMC4517844 DOI: 10.1126/sciadv.1500169] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
During protein synthesis, elongation of the polypeptide chain by each amino acid is followed by a translocation step in which mRNA and transfer RNA (tRNA) are advanced by one codon. This crucial step is catalyzed by elongation factor G (EF-G), a guanosine triphosphatase (GTPase), and accompanied by a rotation between the two ribosomal subunits. A mutant of EF-G, H91A, renders the factor impaired in guanosine triphosphate (GTP) hydrolysis and thereby stabilizes it on the ribosome. We use cryogenic electron microscopy (cryo-EM) at near-atomic resolution to investigate two complexes formed by EF-G H91A in its GTP state with the ribosome, distinguished by the presence or absence of the intersubunit rotation. Comparison of these two structures argues in favor of a direct role of the conserved histidine in the switch II loop of EF-G in GTPase activation, and explains why GTP hydrolysis cannot proceed with EF-G bound to the unrotated form of the ribosome.
Collapse
Affiliation(s)
- Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Blackwell, 165 West 168th Street, New York, NY 10032, USA
| | - Zheng Liu
- Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Blackwell, 165 West 168th Street, New York, NY 10032, USA
| | - Ravi Kiran Koripella
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124 Uppsala, Sweden
| | - Robert Langlois
- Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Blackwell, 165 West 168th Street, New York, NY 10032, USA
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124 Uppsala, Sweden
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Blackwell, 165 West 168th Street, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
3922
|
Clemens DL, Ge P, Lee BY, Horwitz MA, Zhou ZH. Atomic structure of T6SS reveals interlaced array essential to function. Cell 2015; 160:940-951. [PMID: 25723168 DOI: 10.1016/j.cell.2015.02.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/17/2014] [Accepted: 01/28/2015] [Indexed: 10/23/2022]
Abstract
Type VI secretion systems (T6SSs) are newly identified contractile nanomachines that translocate effector proteins across bacterial membranes. The Francisella pathogenicity island, required for bacterial phagosome escape, intracellular replication, and virulence, was presumed to encode a T6SS-like apparatus. Here, we experimentally confirm the identity of this T6SS and, by cryo electron microscopy (cryoEM), show the structure of its post-contraction sheath at 3.7 Å resolution. We demonstrate the assembly of this T6SS by IglA/IglB and secretion of its putative effector proteins in response to environmental stimuli. The sheath has a quaternary structure with handedness opposite that of contracted sheath of T4 phage tail and is organized in an interlaced two-dimensional array by means of β sheet augmentation. By structure-based mutagenesis, we show that this interlacing is essential to secretion, phagosomal escape, and intracellular replication. Our atomic model of the T6SS will facilitate design of drugs targeting this highly prevalent secretion apparatus.
Collapse
Affiliation(s)
- Daniel L Clemens
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peng Ge
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; The California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bai-Yu Lee
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus A Horwitz
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; The California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
3923
|
Abstract
The four-component intramembrane protease γ-secretase is intricately linked to the development of Alzheimer's disease. Despite recent structural advances, the transmembrane segments (TMs) of γ-secretase remain to be specifically assigned. Here we report a 3D structure of human γ-secretase at 4.32-Å resolution, determined by single-particle, electron cryomicroscopy in the presence of digitonin and with a T4 lysozyme fused to the amino terminus of presenilin 1 (PS1). The overall structure of this human γ-secretase is very similar to that of wild-type γ-secretase determined in the presence of amphipols. The 20 TMs are unambiguously assigned to the four components, revealing principles of subunit assembly. Within the transmembrane region, PS1 is centrally located, with its amino-terminal fragment (NTF) packing against Pen-2 and its carboxyl-terminal fragment (CTF) interacting with Aph-1. The only TM of nicastrin associates with Aph-1 at the thick end of the TM horseshoe, and the extracellular domain of nicastrin directly binds Pen-2 at the thin end. TM6 and TM7 in PS1, which harbor the catalytic aspartate residues, are located on the convex side of the TM horseshoe. This structure serves as an important framework for understanding the function and mechanism of γ-secretase.
Collapse
|
3924
|
Zhou Q, Huang X, Sun S, Li X, Wang HW, Sui SF. Cryo-EM structure of SNAP-SNARE assembly in 20S particle. Cell Res 2015; 25:551-60. [PMID: 25906996 DOI: 10.1038/cr.2015.47] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/25/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022] Open
Abstract
N-ethylmaleimide-sensitive factor (NSF) and α soluble NSF attachment proteins (α-SNAPs) work together within a 20S particle to disassemble and recycle the SNAP receptor (SNARE) complex after intracellular membrane fusion. To understand the disassembly mechanism of the SNARE complex by NSF and α-SNAP, we performed single-particle cryo-electron microscopy analysis of 20S particles and determined the structure of the α-SNAP-SNARE assembly portion at a resolution of 7.35 Å. The structure illustrates that four α-SNAPs wrap around the single left-handed SNARE helical bundle as a right-handed cylindrical assembly within a 20S particle. A conserved hydrophobic patch connecting helices 9 and 10 of each α-SNAP forms a chock protruding into the groove of the SNARE four-helix bundle. Biochemical studies proved that this structural element was critical for SNARE complex disassembly. Our study suggests how four α-SNAPs may coordinate with the NSF to tear the SNARE complex into individual proteins.
Collapse
Affiliation(s)
- Qiang Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuan Huang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueming Li
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sen-Fang Sui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3925
|
Abstract
Until only a few years ago, single-particle electron cryo-microscopy (cryo-EM) was usually not the first choice for many structural biologists due to its limited resolution in the range of nanometer to subnanometer. Now, this method rivals X-ray crystallography in terms of resolution and can be used to determine atomic structures of macromolecules that are either refractory to crystallization or difficult to crystallize in specific functional states. In this review, I discuss the recent breakthroughs in both hardware and software that transformed cryo-microscopy, enabling understanding of complex biomolecules and their functions at atomic level.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA.
| |
Collapse
|
3926
|
Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP. Structure of the human 80S ribosome. Nature 2015; 520:640-5. [PMID: 25901680 DOI: 10.1038/nature14427] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/26/2015] [Indexed: 01/21/2023]
Abstract
Ribosomes are translational machineries that catalyse protein synthesis. Ribosome structures from various species are known at the atomic level, but obtaining the structure of the human ribosome has remained a challenge; efforts to address this would be highly relevant with regard to human diseases. Here we report the near-atomic structure of the human ribosome derived from high-resolution single-particle cryo-electron microscopy and atomic model building. The structure has an average resolution of 3.6 Å, reaching 2.9 Å resolution in the most stable regions. It provides unprecedented insights into ribosomal RNA entities and amino acid side chains, notably of the transfer RNA binding sites and specific molecular interactions with the exit site tRNA. It reveals atomic details of the subunit interface, which is seen to remodel strongly upon rotational movements of the ribosomal subunits. Furthermore, the structure paves the way for analysing antibiotic side effects and diseases associated with deregulated protein synthesis.
Collapse
Affiliation(s)
- Heena Khatter
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France [4] Université de Strasbourg, 67081 Strasbourg, France
| | - Alexander G Myasnikov
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France [4] Université de Strasbourg, 67081 Strasbourg, France
| | - S Kundhavai Natchiar
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France [4] Université de Strasbourg, 67081 Strasbourg, France
| | - Bruno P Klaholz
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France [4] Université de Strasbourg, 67081 Strasbourg, France
| |
Collapse
|
3927
|
Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 2015; 520:511-7. [PMID: 25855297 PMCID: PMC4409540 DOI: 10.1038/nature14367] [Citation(s) in RCA: 460] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/04/2015] [Indexed: 02/08/2023]
Abstract
The TRPA1 ion channel (a.k.a the ‘wasabi receptor’) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here, we use single-particle electron cryo-microscopy to determine the structure of full-length human TRPA1 to ~4Å resolution in the presence of pharmacophores, including a potent antagonist. A number of unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted TRP-like allosteric domain. These findings provide novel insights into mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents.
Collapse
|
3928
|
Amunts A, Brown A, Toots J, Scheres SHW, Ramakrishnan V. Ribosome. The structure of the human mitochondrial ribosome. Science 2015; 348:95-98. [PMID: 25838379 PMCID: PMC4501431 DOI: 10.1126/science.aaa1193] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/05/2015] [Indexed: 01/06/2023]
Abstract
The highly divergent ribosomes of human mitochondria (mitoribosomes) synthesize 13 essential proteins of oxidative phosphorylation complexes. We have determined the structure of the intact mitoribosome to 3.5 angstrom resolution by means of single-particle electron cryogenic microscopy. It reveals 80 extensively interconnected proteins, 36 of which are specific to mitochondria, and three ribosomal RNA molecules. The head domain of the small subunit, particularly the messenger (mRNA) channel, is highly remodeled. Many intersubunit bridges are specific to the mitoribosome, which adopts conformations involving ratcheting or rolling of the small subunit that are distinct from those seen in bacteria or eukaryotes. An intrinsic guanosine triphosphatase mediates a contact between the head and central protuberance. The structure provides a reference for analysis of mutations that cause severe pathologies and for future drug design.
Collapse
Affiliation(s)
- Alexey Amunts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Jaan Toots
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sjors H. W. Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
3929
|
Fischer M, Rhinow D, Zhu Z, Mills DJ, Zhao ZK, Vonck J, Grininger M. Cryo-EM structure of fatty acid synthase (FAS) from Rhodosporidium toruloides provides insights into the evolutionary development of fungal FAS. Protein Sci 2015; 24:987-95. [PMID: 25761671 DOI: 10.1002/pro.2678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 11/07/2022]
Abstract
Fungal fatty acid synthases Type I (FAS I) are up to 2.7 MDa large molecular machines composed of large multifunctional polypeptides. Half of the amino acids in fungal FAS I are involved in structural elements that are responsible for scaffolding the elaborate barrel-shaped architecture and turning fungal FAS I into highly efficient de novo producers of fatty acids. Rhodosporidium toruloides is an oleaginous fungal species and renowned for its robust conversion of carbohydrates into lipids to over 70% of its dry cell weight. Here, we use cryo-EM to determine a 7.8-Å reconstruction of its FAS I that reveals unexpected features; its novel form of splitting the multifunctional polypeptide chain into the two subunits α and β, and its duplicated ACP domains. We show that the specific distribution into α and β occurs by splitting at one of many possible sites that can be accepted by fungal FAS I. While, therefore, the specific distribution in α and β chains in R. toruloides FAS I is not correlated to increased protein activities, we also show that the duplication of ACP is an evolutionary late event and argue that duplication is beneficial for the lipid overproduction phenotype.
Collapse
Affiliation(s)
- Manuel Fischer
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Daniel Rhinow
- Department of Structural Biology, Max-Planck-Institute of Biophysics, 60438, Frankfurt, Germany
| | - Zhiwei Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, China
| | - Deryck J Mills
- Department of Structural Biology, Max-Planck-Institute of Biophysics, 60438, Frankfurt, Germany
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, China
| | - Janet Vonck
- Department of Structural Biology, Max-Planck-Institute of Biophysics, 60438, Frankfurt, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| |
Collapse
|
3930
|
Taylor DW, Zhu Y, Staals RHJ, Kornfeld JE, Shinkai A, van der Oost J, Nogales E, Doudna JA. Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science 2015; 348:581-5. [PMID: 25837515 PMCID: PMC4582657 DOI: 10.1126/science.aaa4535] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/11/2015] [Indexed: 12/16/2022]
Abstract
Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas surveillance complexes target double-stranded DNA, type III complexes target single-stranded RNA. Near-atomic resolution cryo-electron microscopy reconstructions of native type III Cmr (CRISPR RAMP module) complexes in the absence and presence of target RNA reveal a helical protein arrangement that positions the crRNA for substrate binding. Thumblike β hairpins intercalate between segments of duplexed crRNA:target RNA to facilitate cleavage of the target at 6-nucleotide intervals. The Cmr complex is architecturally similar to the type I CRISPR-Cascade complex, suggesting divergent evolution of these immune systems from a common ancestor.
Collapse
Affiliation(s)
- David W Taylor
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA. California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Yifan Zhu
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, Netherlands
| | - Jack E Kornfeld
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Akeo Shinkai
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan. RIKEN Structural Biology Laboratory, Kanagawa 230-0045, Japan
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, Netherlands
| | - Eva Nogales
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA. California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA. Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Jennifer A Doudna
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA. California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA. Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. Department of Chemistry, University of California, Berkeley, CA 94720, USA. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
3931
|
Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 2015; 348:303-8. [PMID: 25837512 DOI: 10.1126/science.aaa3872] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 01/10/2023]
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) synthesize mitochondrially encoded membrane proteins that are critical for mitochondrial function. Here we present the complete atomic structure of the porcine 55S mitoribosome at 3.8 angstrom resolution by cryo-electron microscopy and chemical cross-linking/mass spectrometry. The structure of the 28S subunit in the complex was resolved at 3.6 angstrom resolution by focused alignment, which allowed building of a detailed atomic structure including all of its 15 mitoribosomal-specific proteins. The structure reveals the intersubunit contacts in the 55S mitoribosome, the molecular architecture of the mitoribosomal messenger RNA (mRNA) binding channel and its interaction with transfer RNAs, and provides insight into the highly specialized mechanism of mRNA recruitment to the 28S subunit. Furthermore, the structure contributes to a mechanistic understanding of aminoglycoside ototoxicity.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Philipp Bieri
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland. Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
3932
|
Peyret H, Gehin A, Thuenemann EC, Blond D, El Turabi A, Beales L, Clarke D, Gilbert RJC, Fry EE, Stuart DI, Holmes K, Stonehouse NJ, Whelan M, Rosenberg W, Lomonossoff GP, Rowlands DJ. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLoS One 2015; 10:e0120751. [PMID: 25830365 PMCID: PMC4382129 DOI: 10.1371/journal.pone.0120751] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/26/2015] [Indexed: 01/03/2023] Open
Abstract
The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic virus-like particles (HBc VLPs) when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR) on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody) retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody.
Collapse
Affiliation(s)
- Hadrien Peyret
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Annick Gehin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Eva C. Thuenemann
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Donatienne Blond
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Aadil El Turabi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- iQur Ltd, London, United Kingdom
| | - Lucy Beales
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- iQur Ltd, London, United Kingdom
| | - Dean Clarke
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Elizabeth E. Fry
- UK Division of Structural Biology, University of Oxford, Oxford, United Kingdom
| | - David I. Stuart
- UK Division of Structural Biology, University of Oxford, Oxford, United Kingdom
| | - Kris Holmes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | | - David J. Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
3933
|
Chowdhury S, Ketcham SA, Schroer TA, Lander GC. Structural organization of the dynein-dynactin complex bound to microtubules. Nat Struct Mol Biol 2015; 22:345-7. [PMID: 25751425 PMCID: PMC4385409 DOI: 10.1038/nsmb.2996] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 03/02/2015] [Indexed: 12/12/2022]
Abstract
Cytoplasmic dynein associates with dynactin to drive cargo movement on microtubules, but the structure of the dynein-dynactin complex is unknown. Using electron microscopy, we determined the organization of native bovine dynein, dynactin and the dynein-dynactin-microtubule quaternary complex. In the microtubule-bound complex, the dynein motor domains are positioned for processive unidirectional movement, and the cargo-binding domains of both dynein and dynactin are accessible.
Collapse
Affiliation(s)
- Saikat Chowdhury
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Trina A. Schroer
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
3934
|
Andén J, Katsevich E, Singer A. COVARIANCE ESTIMATION USING CONJUGATE GRADIENT FOR 3D CLASSIFICATION IN CRYO-EM. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2015; 2015:200-204. [PMID: 26682015 DOI: 10.1109/isbi.2015.7163849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Classifying structural variability in noisy projections of biological macromolecules is a central problem in Cryo-EM. In this work, we build on a previous method for estimating the covariance matrix of the three-dimensional structure present in the molecules being imaged. Our proposed method allows for incorporation of contrast transfer function and non-uniform distribution of viewing angles, making it more suitable for real-world data. We evaluate its performance on a synthetic dataset and an experimental dataset obtained by imaging a 70S ribosome complex.
Collapse
Affiliation(s)
- Joakim Andén
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ
| | | | - Amit Singer
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ
| |
Collapse
|
3935
|
Dvornek NC, Sigworth FJ, Tagare HD. SubspaceEM: A fast maximum-a-posteriori algorithm for cryo-EM single particle reconstruction. J Struct Biol 2015; 190:200-14. [PMID: 25839831 DOI: 10.1016/j.jsb.2015.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/01/2022]
Abstract
Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-maximization (E-M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300.
Collapse
Affiliation(s)
- Nicha C Dvornek
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Fred J Sigworth
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Hemant D Tagare
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Electrical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
3936
|
Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol 2015; 22:377-82. [PMID: 25822993 DOI: 10.1038/nsmb.2995] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/25/2015] [Indexed: 01/01/2023]
Abstract
R-type pyocins are representatives of contractile ejection systems, a class of biological nanomachines that includes, among others, the bacterial type VI secretion system (T6SS) and contractile bacteriophage tails. We report atomic models of the Pseudomonas aeruginosa precontraction pyocin sheath and tube, and the postcontraction sheath, obtained by cryo-EM at 3.5-Å and 3.9-Å resolutions, respectively. The central channel of the tube is negatively charged, in contrast to the neutral and positive counterparts in T6SSs and phage tails. The sheath is interwoven by long N- and C-terminal extension arms emanating from each subunit, which create an extensive two-dimensional mesh that has the same connectivity in the extended and contracted state of the sheath. We propose that the contraction process draws energy from electrostatic and shape complementarities to insert the inner tube through bacterial cell membranes to eventually kill the bacteria.
Collapse
|
3937
|
Kaushal PS, Sharma MR, Agrawal RK. The 55S mammalian mitochondrial ribosome and its tRNA-exit region. Biochimie 2015; 114:119-26. [PMID: 25797916 DOI: 10.1016/j.biochi.2015.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/12/2015] [Indexed: 11/25/2022]
Abstract
Mitochondria carry their own genetic material and gene-expression machinery, including ribosomes, which are responsible for synthesizing polypeptides that form essential components of the complexes involved in oxidative phosphorylation (or ATP generation) for the eukaryotic cell. Mitochondrial ribosomes (mitoribosomes) are quite divergent from cytoplasmic ribosomes in both composition and structure even as their main functional cores, such as the mRNA decoding and peptidyl transferase sites, are highly conserved. Remarkable progress has been made recently towards understanding the structure of mitoribosomes, by obtaining high-resolution cryo-electron microscopic (cryo-EM) maps. These studies confirm previous structural findings that had revealed that a significant reduction in size of ribosomal RNAs has caused topological changes in some of the functionally relevant regions, including the transfer RNA (tRNA)-binding sites and the nascent polypeptide-exit tunnel, within the structure of the mammalian mitoribosome. In addition, these studies provide unprecedented detailed views of the molecular architecture of those regions. In this review, we summarize the current state of knowledge of the structure of the mammalian mitoribosome and describe the molecular environment of its tRNA-exit region.
Collapse
Affiliation(s)
- Prem S Kaushal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA.
| |
Collapse
|
3938
|
Allosteric communication in the dynein motor domain. Cell 2015; 159:857-68. [PMID: 25417161 DOI: 10.1016/j.cell.2014.10.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/30/2014] [Accepted: 10/07/2014] [Indexed: 01/15/2023]
Abstract
Dyneins power microtubule motility using ring-shaped, AAA-containing motor domains. Here, we report X-ray and electron microscopy (EM) structures of yeast dynein bound to different ATP analogs, which collectively provide insight into the roles of dynein's two major ATPase sites, AAA1 and AAA3, in the conformational change mechanism. ATP binding to AAA1 triggers a cascade of conformational changes that propagate to all six AAA domains and cause a large movement of the "linker," dynein's mechanical element. In contrast to the role of AAA1 in driving motility, nucleotide transitions in AAA3 gate the transmission of conformational changes between AAA1 and the linker, suggesting that AAA3 acts as a regulatory switch. Further structural and mutational studies also uncover a role for the linker in regulating the catalytic cycle of AAA1. Together, these results reveal how dynein's two major ATP-binding sites initiate and modulate conformational changes in the motor domain during motility.
Collapse
|
3939
|
Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 2015; 521:545-9. [PMID: 25778700 PMCID: PMC4519040 DOI: 10.1038/nature14247] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
Anthrax toxin, comprising protective antigen (PA), lethal factor (LF) and edema factor (EF), is the major virulence factor of Bacillus anthracis, an agent that causes high mortality in human and animals. PA forms oligomeric prepores that undergo conversion to membrane-spanning pores by endosomal acidification, and these pores translocate the enzymes LF and EF into the cytosol of target cells1. PA is not only a vaccine component and therapeutic target for anthrax infections but also an excellent model system for understanding the mechanism of protein translocation. Based on biochemical and electrophysiological results, researchers have proposed that a Φ-clamp composed of Phe427 residues of PA catalyzes protein translocation via a charge-state dependent Brownian ratchet2–9. Although atomic structures of PA prepores are available10–14, how PA senses low pH, converts to active pore and translocates LF and EF are not well defined without an atomic model of the PA pore. Here, by cryo electron microscopy (cryoEM) with direct electron counting, we have determined the PA pore structure at 2.9-Å resolution. The structure reveals the long-sought-after catalytic Φ-clamp and the membrane-spanning translocation channel, and supports the Brownian ratchet model for protein translocation. Comparisons of four structures reveal conformational changes in prepore to pore conversion that support a multi-step mechanism by which low-pH is sensed and the membrane-spanning channel is formed.
Collapse
|
3940
|
Abstract
The signal recognition particle (SRP)-dependent pathway is essential for correct targeting of proteins to the membrane and subsequent insertion in the membrane or secretion. In Escherichia coli, the SRP and its receptor FtsY bind to ribosome-nascent chain complexes with signal sequences and undergo a series of distinct conformational changes, which ensures accurate timing and fidelity of protein targeting. Initial recruitment of the SRP receptor FtsY to the SRP-RNC complex results in GTP-independent binding of the SRP-FtsY GTPases at the SRP RNA tetraloop. In the presence of GTP, a closed state is adopted by the SRP-FtsY complex. The cryo-EM structure of the closed state reveals an ordered SRP RNA and SRP M domain with a signal sequence-bound. Van der Waals interactions between the finger loop and ribosomal protein L24 lead to a constricted signal sequence-binding pocket possibly preventing premature release of the signal sequence. Conserved M-domain residues contact ribosomal RNA helices 24 and 59. The SRP-FtsY GTPases are detached from the RNA tetraloop and flexible, thus liberating the ribosomal exit site for binding of the translocation machinery.
Collapse
|
3941
|
Pang Y, Bai XC, Yan C, Hao Q, Chen Z, Wang JW, Scheres SHW, Shi Y. Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila. Genes Dev 2015; 29:277-87. [PMID: 25644603 PMCID: PMC4318144 DOI: 10.1101/gad.255877.114] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The autocatalytic activation of an initiator caspase, exemplified by caspase-9 in mammals or its ortholog, Dronc, in fruit flies, is facilitated by a multimeric adaptor complex known as the apoptosome. Pang et al. report two cryo-EM structures: the complete Dark apoptosome at an overall resolution of 4.0 Å and a complex between the Dark apoptosome and the CARD of Dronc at 4.1 Å resolution. The structural findings, together with structure-guided biochemical analyses, allow delineation of the molecular mechanisms for Dronc activation. Apoptosis is executed by a cascade of caspase activation. The autocatalytic activation of an initiator caspase, exemplified by caspase-9 in mammals or its ortholog, Dronc, in fruit flies, is facilitated by a multimeric adaptor complex known as the apoptosome. The underlying mechanism by which caspase-9 or Dronc is activated by the apoptosome remains unknown. Here we report the electron cryomicroscopic (cryo-EM) structure of the intact apoptosome from Drosophila melanogaster at 4.0 Å resolution. Analysis of the Drosophila apoptosome, which comprises 16 molecules of the Dark protein (Apaf-1 ortholog), reveals molecular determinants that support the assembly of the 2.5-MDa complex. In the absence of dATP or ATP, Dronc zymogen potently induces formation of the Dark apoptosome, within which Dronc is efficiently activated. At 4.1 Å resolution, the cryo-EM structure of the Dark apoptosome bound to the caspase recruitment domain (CARD) of Dronc (Dronc-CARD) reveals two stacked rings of Dronc-CARD that are sandwiched between two octameric rings of the Dark protein. The specific interactions between Dronc-CARD and both the CARD and the WD40 repeats of a nearby Dark protomer are indispensable for Dronc activation. These findings reveal important mechanistic insights into the activation of initiator caspase by the apoptosome.
Collapse
Affiliation(s)
- Yuxuan Pang
- Ministry of Education Protein Science Laboratory, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiao-chen Bai
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Chuangye Yan
- Ministry of Education Protein Science Laboratory, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qi Hao
- Ministry of Education Protein Science Laboratory, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zheqin Chen
- Ministry of Education Protein Science Laboratory, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jia-Wei Wang
- Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Yigong Shi
- Ministry of Education Protein Science Laboratory, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
3942
|
Campbell MG, Veesler D, Cheng A, Potter CS, Carragher B. 2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. eLife 2015; 4. [PMID: 25760083 PMCID: PMC4391500 DOI: 10.7554/elife.06380] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/27/2015] [Indexed: 12/11/2022] Open
Abstract
Recent developments in detector hardware and image-processing software have revolutionized single particle cryo-electron microscopy (cryoEM) and led to a wave of near-atomic resolution (typically ∼3.3 Å) reconstructions. Reaching resolutions higher than 3 Å is a prerequisite for structure-based drug design and for cryoEM to become widely interesting to pharmaceutical industries. We report here the structure of the 700 kDa Thermoplasma acidophilum 20S proteasome (T20S), determined at 2.8 Å resolution by single-particle cryoEM. The quality of the reconstruction enables identifying the rotameric conformation adopted by some amino-acid side chains (rotamers) and resolving ordered water molecules, in agreement with the expectations for crystal structures at similar resolutions. The results described in this manuscript demonstrate that single particle cryoEM is capable of competing with X-ray crystallography for determination of protein structures of suitable quality for rational drug design. DOI:http://dx.doi.org/10.7554/eLife.06380.001 Proteins perform many critical tasks within cells, and to do so, they must first fold into specific shapes. Being able to visualize these shapes can help scientists to understand how proteins work, and help them create drugs that can interact with the proteins to treat diseases. The past few years have seen the rapid development of an imaging technique called single-particle cryo-electron microscopy (or cryoEM for short), and this technique is now increasingly used to investigate protein structures. First, proteins are embedded in a thin film of non-crystalline ice by rapidly cooling to around the temperature of liquid nitrogen (below −180°C). This traps the protein in the shape it has in solution. High-energy electrons are then transmitted through the protein sample and their interaction with the atoms in the protein is recorded by a direct electron camera. The analysis of a large series of images recorded in this way can be used to determine the approximate positions of the atoms in the protein. Previously, single-particle cryoEM techniques have not produced a detailed enough protein structure to be useful to scientists interested in drug development. By refining these techniques, Campbell, Veesler et al. have now obtained the most detailed cryoEM protein structure to date—a structure of an enzyme complex that helps get rid of proteins that are misfolded or that have become too abundant. The structure is so detailed that it reveals the shapes of some small groups of atoms that stick out from the sides of amino acids in the enzyme complex. (Amino acids are the building blocks of enzymes and all other proteins.) Moreover, the structure shows where individual water molecules are positioned around the protein. The level of detail in the structure produced by Campbell, Veesler et al. is high enough to be useful to drug researchers. Furthermore, because only 10% of the images Campbell, Veesler et al. collected were used to produce the structure, future work will investigate whether incorporating more of the images could reveal structures in even greater detail. DOI:http://dx.doi.org/10.7554/eLife.06380.002
Collapse
Affiliation(s)
- Melody G Campbell
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, United States
| | - David Veesler
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, United States
| | - Anchi Cheng
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, United States
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, United States
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
3943
|
Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3 Å Resolution. Mol Cell 2015; 57:925-935. [DOI: 10.1016/j.molcel.2014.12.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 12/26/2022]
|
3944
|
Alignment of direct detection device micrographs using a robust Optical Flow approach. J Struct Biol 2015; 189:163-76. [DOI: 10.1016/j.jsb.2015.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 11/19/2022]
|
3945
|
Sorzano C, Vargas J, de la Rosa-Trevín J, Otón J, Álvarez-Cabrera A, Abrishami V, Sesmero E, Marabini R, Carazo J. A statistical approach to the initial volume problem in Single Particle Analysis by Electron Microscopy. J Struct Biol 2015; 189:213-9. [DOI: 10.1016/j.jsb.2015.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
|
3946
|
Yi P, Wang Z, Feng Q, Pintilie GD, Foulds CE, Lanz RB, Ludtke SJ, Schmid MF, Chiu W, O'Malley BW. Structure of a biologically active estrogen receptor-coactivator complex on DNA. Mol Cell 2015; 57:1047-1058. [PMID: 25728767 DOI: 10.1016/j.molcel.2015.01.025] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/05/2015] [Accepted: 01/20/2015] [Indexed: 12/17/2022]
Abstract
Estrogen receptor (ER/ESR1) is a transcription factor critical for development, reproduction, metabolism, and cancer. ER function hinges on its ability to recruit primary and secondary coactivators, yet structural information on the full-length receptor-coactivator complex to complement preexisting and sometimes controversial biochemical information is lacking. Here, we use cryoelectron microscopy (cryo-EM) to determine the quaternary structure of an active complex of DNA-bound ERα, steroid receptor coactivator 3 (SRC-3/NCOA3), and a secondary coactivator (p300/EP300). Our structural model suggests the following assembly mechanism for the complex: each of the two ligand-bound ERα monomers independently recruits one SRC-3 protein via the transactivation domain of ERα; the two SRC-3s in turn bind to different regions of one p300 protein through multiple contacts. We also present structural evidence for the location of activation function 1 (AF-1) in a full-length nuclear receptor, which supports a role for AF-1 in SRC-3 recruitment.
Collapse
Affiliation(s)
- Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Clayton Foundation for Research, Houston, TX 77056, USA
| | - Zhao Wang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Grigore D Pintilie
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3947
|
Abstract
About 20 years ago, the first three-dimensional (3D) reconstructions at subnanometer (<10-Å) resolution of an icosahedral virus assembly were obtained by cryogenic electron microscopy (cryo-EM) and single-particle analysis. Since then, thousands of structures have been determined to resolutions ranging from 30 Å to near atomic (<4 Å). Almost overnight, the recent development of direct electron detectors and the attendant improvement in analysis software have advanced the technology considerably. Near-atomic-resolution reconstructions can now be obtained, not only for megadalton macromolecular complexes or highly symmetrical assemblies but also for proteins of only a few hundred kilodaltons. We discuss the developments that led to this breakthrough in high-resolution structure determination by cryo-EM and point to challenges that lie ahead.
Collapse
Affiliation(s)
- Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia;
| | | |
Collapse
|
3948
|
DiMaio F, Song Y, Li X, Brunner MJ, Xu C, Conticello V, Egelman E, Marlovits T, Cheng Y, Baker D. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement. Nat Methods 2015; 12:361-365. [PMID: 25707030 PMCID: PMC4382417 DOI: 10.1038/nmeth.3286] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022]
Abstract
We describe a general approach for refining protein structure models on the basis of cryo-electron microscopy maps with near-atomic resolution. The method integrates Monte Carlo sampling with local density-guided optimization, Rosetta all-atom refinement and real-space B-factor fitting. In tests on experimental maps of three different systems with 4.5-Å resolution or better, the method consistently produced models with atomic-level accuracy largely independently of starting-model quality, and it outperformed the molecular dynamics-based MDFF method. Cross-validated model quality statistics correlated with model accuracy over the three test systems.
Collapse
Affiliation(s)
- Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Yifan Song
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Cyrus Biotechnology, Inc., Seattle, WA, USA
| | - Xueming Li
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Matthias J Brunner
- Center for Structural Systems Biology (CSSB) University Medical Center Eppendorf-Hamburg (UKE), Hamburg, Germany.,Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Chunfu Xu
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | | | - Edward Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Thomas Marlovits
- Center for Structural Systems Biology (CSSB) University Medical Center Eppendorf-Hamburg (UKE), Hamburg, Germany.,Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Yifan Cheng
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3949
|
Structure of the E. coli ribosome–EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM. Nature 2015; 520:567-70. [DOI: 10.1038/nature14275] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/30/2015] [Indexed: 12/18/2022]
|
3950
|
Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 2015; 521:237-40. [PMID: 25707805 DOI: 10.1038/nature14185] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Abstract
ATP, the universal energy currency of cells, is produced by F-type ATP synthases, which are ancient, membrane-bound nanomachines. F-type ATP synthases use the energy of a transmembrane electrochemical gradient to generate ATP by rotary catalysis. Protons moving across the membrane drive a rotor ring composed of 8-15 c-subunits. A central stalk transmits the rotation of the c-ring to the catalytic F1 head, where a series of conformational changes results in ATP synthesis. A key unresolved question in this fundamental process is how protons pass through the membrane to drive ATP production. Mitochondrial ATP synthases form V-shaped homodimers in cristae membranes. Here we report the structure of a native and active mitochondrial ATP synthase dimer, determined by single-particle electron cryomicroscopy at 6.2 Å resolution. Our structure shows four long, horizontal membrane-intrinsic α-helices in the a-subunit, arranged in two hairpins at an angle of approximately 70° relative to the c-ring helices. It has been proposed that a strictly conserved membrane-embedded arginine in the a-subunit couples proton translocation to c-ring rotation. A fit of the conserved carboxy-terminal a-subunit sequence places the conserved arginine next to a proton-binding c-subunit glutamate. The map shows a slanting solvent-accessible channel that extends from the mitochondrial matrix to the conserved arginine. Another hydrophilic cavity on the lumenal membrane surface defines a direct route for the protons to an essential histidine-glutamate pair. Our results provide unique new insights into the structure and function of rotary ATP synthases and explain how ATP production is coupled to proton translocation.
Collapse
|