351
|
Uccelli A, Prockop DJ. Why should mesenchymal stem cells (MSCs) cure autoimmune diseases? Curr Opin Immunol 2010; 22:768-74. [PMID: 21093239 DOI: 10.1016/j.coi.2010.10.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 12/13/2022]
Abstract
The adult stem/progenitor cells from bone marrow and other tissues referred to as mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) display a significant therapeutic plasticity as reflected by their ability to enhance tissue repair and influence the immune response both in vitro and in vivo. In this review we will focus on the paradigmatic preclinical experience achieved testing MSCs in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. We will emphasize how the paradigm changed over time from the original prediction that MSCs would enhance tissue repair through their transdifferentiation into somatic cells to the current paradigm that they can produce therapeutic benefits without engraftment into the injured tissues. The data will be reviewed in terms of the potentials of MSCs for therapy of autoimmune diseases.
Collapse
Affiliation(s)
- Antonio Uccelli
- Department of Neurosciences Ophthalmology and Genetics, University of Genoa, Italy.
| | | |
Collapse
|
352
|
Liu Y, Mu R, Wang S, Long L, Liu X, Li R, Sun J, Guo J, Zhang X, Guo J, Yu P, Li C, Liu X, Huang Z, Wang D, Li H, Gu Z, Liu B, Li Z. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther 2010; 12:R210. [PMID: 21080925 PMCID: PMC3046518 DOI: 10.1186/ar3187] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 08/24/2010] [Accepted: 11/16/2010] [Indexed: 01/03/2023] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a T-cell-mediated systemic autoimmune disease, characterized by synovium inflammation and articular destruction. Bone marrow mesenchymal stem cells (MSCs) could be effective in the treatment of several autoimmune diseases. However, there has been thus far no report on umbilical cord (UC)-MSCs in the treatment of RA. Here, potential immunosuppressive effects of human UC-MSCs in RA were evaluated. Methods The effects of UC-MSCs on the responses of fibroblast-like synoviocytes (FLSs) and T cells in RA patients were explored. The possible molecular mechanism mediating this immunosuppressive effect of UC-MSCs was explored by addition of inhibitors to indoleamine 2,3-dioxygenase (IDO), Nitric oxide (NO), prostaglandin E2 (PGE2), transforming growth factor β1 (TGF-β1) and interleukin 10 (IL-10). The therapeutic effects of systemic infusion of human UC-MSCs on collagen-induced arthritis (CIA) in a mouse model were explored. Results In vitro, UC-MSCs were capable of inhibiting proliferation of FLSs from RA patients, via IL-10, IDO and TGF-β1. Furthermore, the invasive behavior and IL-6 secretion of FLSs were also significantly suppressed. On the other hand, UC-MSCs induced hyporesponsiveness of T cells mediated by PGE2, TGF-β1 and NO and UC-MSCs could promote the expansion of CD4+ Foxp3+ regulatory T cells from RA patients. More importantly, systemic infusion of human UC-MSCs reduced the severity of CIA in a mouse model. Consistently, there were reduced levels of proinflammatory cytokines and chemokines (TNF-α, IL-6 and monocyte chemoattractant protein-1) and increased levels of the anti-inflammatory/regulatory cytokine (IL-10) in sera of UC-MSCs treated mice. Moreover, such treatment shifted Th1/Th2 type responses and induced Tregs in CIA. Conclusions In conclusion, human UC-MSCs suppressed the various inflammatory effects of FLSs and T cells of RA in vitro, and attenuated the development of CIA in vivo, strongly suggesting that UC-MSCs might be a therapeutic strategy in RA. In addition, the immunosuppressive activitiy of UC-MSCs could be prolonged by the participation of Tregs.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Mesenchymal stem cells express serine protease inhibitor to evade the host immune response. Blood 2010; 117:1176-83. [PMID: 21076046 DOI: 10.1182/blood-2010-06-287979] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical trials using mesenchymal stem cells (MSCs) have been initiated worldwide. An improved understanding of the mechanisms by which allogeneic MSCs evade host immune responses is paramount to regulating their survival after administration. This study has focused on the novel role of serine protease inhibitor (SPI) in the escape of MSCs from host immunosurveillance through the inhibition of granzyme B (GrB). Our data indicate bone marrow-derived murine MSCs express SPI6 constitutively. MSCs from mice deficient for SPI6 (SPI6(-/-)) exhibited a 4-fold higher death rate by primed allogeneic cytotoxic T cells than did wild-type MSCs. A GrB inhibitor rescued SPI6(-/-) MSCs from cytotoxic T-cell killing. Transduction of wild-type MSCs with MigR1-SPI6 also protected MSCs from cytotoxic T cell-mediated death in vitro. In addition, SPI6(-/-) MSCs displayed a shorter lifespan than wild-type MSCs when injected into an allogeneic host. We conclude that SPI6 protects MSCs from GrB-mediated killing and plays a pivotal role in their survival in vivo. Our data could serve as a basis for future SPI-based strategies to regulate the survival and function of MSCs after administration and to enhance the efficacy of MSC-based therapy for diseases.
Collapse
|
354
|
Carrión F, Nova E, Luz P, Apablaza F, Figueroa F. Opposing effect of mesenchymal stem cells on Th1 and Th17 cell polarization according to the state of CD4+ T cell activation. Immunol Lett 2010; 135:10-6. [PMID: 20888363 DOI: 10.1016/j.imlet.2010.09.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 08/30/2010] [Accepted: 09/18/2010] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors with broad immunosuppressive properties. However, their therapeutic use in autoimmune disease models has shown dissimilar effects when applied at different stages of disease. We therefore investigated the effect of the addition of MSCs on the differentiation of Th1, Treg and Th17 cells in vitro, at different states of CD4(+) T cell activation. CD4(+) T lymphocytes purified by negative selection from mouse C57BL/6 splenocytes were cultured under Th1, Th17 and Treg inducing conditions with IL-12, TGF-β+IL-6 or TGF-β, respectively. C57BL/6 bone marrow derived MSCs were added to CD4(+) T cell cultures at day 0 or after 3 days of T cell polarizing activation. Intracellular cytokines for Th1, Th17 and Treg cells were quantitated at day 6 by flow cytometry. While early addition (day 0) of MSCs suppressed all CD4(+) T cell lineages, addition at day 3 only decreased IFN-γ production by Th1 polarized cells by 64% (p<0.05) while markedly increased IL-17 production by Th17 polarized cells by 50% (p<0.05) and left IL-10 production by Treg polarized cells unchanged. MSCs exhibit their typical suppressive phenotype when added early to cell cultures in the presence of CD4(+) T cell polarizing stimuli. However, once T cell activation has occurred, MSCs show an opposite stimulating effect on Th17 cells, while leaving Treg IL-10 producing cells unchanged. These results suggest that the therapeutic use of MSCs in vivo might exert opposing effects on disease activity, according to the time of therapeutic application and the level of effector T cell activation.
Collapse
Affiliation(s)
- Flavio Carrión
- Laboratorio de Inmunología, Facultad de Medicina, Universidad de los Andes, Avenida San Carlos de Apoquindo 2200, Santiago de Chile, Postal code: 7620001, Santiago, Chile
| | | | | | | | | |
Collapse
|
355
|
Porada CD, Almeida-Porada G. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Deliv Rev 2010; 62:1156-66. [PMID: 20828588 DOI: 10.1016/j.addr.2010.08.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) possess a set of several fairly unique properties which make them ideally suited both for cellular therapies/regenerative medicine, and as vehicles for gene and drug delivery. These include: 1) relative ease of isolation; 2) the ability to differentiate into a wide variety of seemingly functional cell types of both mesenchymal and non-mesenchymal origin; 3) the ability to be extensively expanded in culture without a loss of differentiative capacity; 4) they are not only hypoimmunogenic, but they produce immunosuppression upon transplantation; 5) their pronounced anti-inflammatory properties; and 6) their ability to home to damaged tissues, tumors, and metastases following in vivo administration. In this review, we summarize the latest research in the use of mesenchymal stem cells in regenerative medicine, as immunomodulatory/anti-inflammatory agents, and as vehicles for transferring both therapeutic genes in genetic disease and genes designed to destroy malignant cells.
Collapse
|
356
|
Tsuda H, Yamahara K, Ishikane S, Otani K, Nakamura A, Sawai K, Ichimaru N, Sada M, Taguchi A, Hosoda H, Tsuji M, Kawachi H, Horio M, Isaka Y, Kangawa K, Takahara S, Ikeda T. Allogenic fetal membrane-derived mesenchymal stem cells contribute to renal repair in experimental glomerulonephritis. Am J Physiol Renal Physiol 2010; 299:F1004-13. [PMID: 20739390 DOI: 10.1152/ajprenal.00587.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSC) have been reported to be an attractive therapeutic cell source for the treatment of renal diseases. Recently, we reported that transplantation of allogenic fetal membrane-derived MSC (FM-MSC), which are available noninvasively in large amounts, had a therapeutic effect on a hindlimb ischemia model (Ishikane S, Ohnishi S, Yamahara K, Sada M, Harada K, Mishima K, Iwasaki K, Fujiwara M, Kitamura S, Nagaya N, Ikeda T. Stem Cells 26: 2625-2633, 2008). Here, we investigated whether allogenic FM-MSC administration could ameliorate renal injury in experimental glomerulonephritis. Lewis rats with anti-Thy1 nephritis intravenously received FM-MSC obtained from major histocompatibility complex-mismatched ACI rats (FM-MSC group) or a PBS (PBS group). Nephritic rats exhibited an increased urinary protein excretion in the PBS group, whereas the FM-MSC group rats had a significantly lower level of increase (P < 0.05 vs. PBS group). FM-MSC transplantation significantly reduced activated mesangial cell (MC) proliferation, glomerular monocyte/macrophage infiltration, mesangial matrix accumulation, as well as the glomerular expression of inflammatory or extracellular matrix-related genes including TNF-α, monocyte chemoattractant protein 1 (MCP-1), type I collagen, TGF-β, type 1 plasminogen activator inhibitor (PAI-1) (P < 0.05 vs. PBS group). In vitro, FM-MSC-derived conditioned medium significantly attenuated the expression of TNF-α and MCP-1 in rat MC through a prostaglandin E(2)-dependent mechanism. These data suggest that transplanted FM-MSC contributed to the healing process in injured kidney tissue by producing paracrine factors. Our results indicate that allogenic FM-MSC transplantation is a potent therapeutic strategy for the treatment of acute glomerulonephritis.
Collapse
Affiliation(s)
- Hidetoshi Tsuda
- Dept. of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Jorgensen C. Mesenchymal stem cells in arthritis: role of bone marrow microenvironment. Arthritis Res Ther 2010; 12:135. [PMID: 20804569 PMCID: PMC2945053 DOI: 10.1186/ar3105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSCs) are intensively studied for regenerative medicine. Moreover, MSCs are potent immunomodulatory cells that occur through the secretion of soluble mediators including nitric oxide, transforming growth factor beta, and HLAG5. The MSCs, however, are also able to express inflammatory mediators such as prostaglandin E2 or IL-6. MSCs in the bone marrow are in close contact with T cells and B cells, and they regulate immunological memory by organizing defined numbers of dedicated survival niches for plasma cells and memory T cells in the bone marrow. The role of MSCs in arthritis remains controversial - in some studies, murine allogeneic MSCs are able to decrease arthritis; in other studies, MSCs worsen the local inflammation. A recent paper in Arthritis Research and Therapy shows that bone marrow MSCs have decreased osteoblastic potential in rheumatoid arthritis, which may be related to chronic inflammation or to loss of expression of IL-1 receptor agonist. That article raises the importance of the bone marrow microenvironment for MSC biology.
Collapse
|
358
|
Zanone MM, Favaro E, Miceli I, Grassi G, Camussi E, Caorsi C, Amoroso A, Giovarelli M, Perin PC, Camussi G. Human mesenchymal stem cells modulate cellular immune response to islet antigen glutamic acid decarboxylase in type 1 diabetes. J Clin Endocrinol Metab 2010; 95:3788-97. [PMID: 20466784 DOI: 10.1210/jc.2009-2350] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT Mesenchymal stem cells (MSCs) exert an immunosuppressive effect on the immune system. However, studies on the immunomodulatory potential of MSCs in type 1 diabetes are lacking. OBJECTIVE We aimed to evaluate whether human MSCs may inhibit in vitro pancreatic islet antigen-specific T cell activation in type 1 diabetes. DESIGN Human MSCs were isolated and characterized. Peripheral blood mononuclear cells (PBMCs) were obtained from nine type 1 diabetic patients at disease onset and 13 healthy control subjects. IFN-gamma, IL-10, and IL-4 enzyme-linked immunospot responses of lymphocytes incubated with glutamic acid decarboxylase 65 (GAD65) were investigated in PBMC cultures and PBMC/MSC cocultures. Levels of prostaglandin E2 (PGE2), IFN-gamma, IL-4, and IL-10 in supernatants were measured by ELISA. PGE2 inhibition experiments with NS-398 and indomethacin were also performed. RESULTS Five diabetic patients were identified with a positive PBMC IFN-gamma response to GAD65 and negative IL-10 and IL-4 response. PBMC/MSC cocultures resulted in a significant decrease in the number of spots and in detection of IL-4-secreting cells. PGE2 inhibitors abrogated the immune-suppressive effect, indicating an involvement of PGE2 production, and the constitutive production of PGE2 by MSCs was enhanced in PBMC/MSC coculture. Moreover, in GAD-responder patients, GAD-stimulated PBMC/MSC cocultures significantly decreased secretion of IFN-gamma and IL-10 and increased secretion of IL-4. CONCLUSIONS These results provide evidence that human MSCs abrogate in vitro a proinflammatory T helper type 1 response to an islet antigenic stimulus in type 1 diabetes. MSCs induce IL-4-producing cells, suggesting a possible switch to an antiinflammatory T helper type 2 signaling of T cells.
Collapse
Affiliation(s)
- Maria M Zanone
- Department of Internal Medicine, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Mohanty ST, Kottam L, Gambardella A, Nicklin MJ, Coulton L, Hughes D, Wilson AG, Croucher PI, Bellantuono I. Alterations in the self-renewal and differentiation ability of bone marrow mesenchymal stem cells in a mouse model of rheumatoid arthritis. Arthritis Res Ther 2010; 12:R149. [PMID: 20649960 PMCID: PMC2945046 DOI: 10.1186/ar3098] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/18/2010] [Accepted: 07/22/2010] [Indexed: 12/11/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease primarily involving the synovium. Evidence in recent years has suggested that the bone marrow (BM) may be involved, and may even be the initiating site of the disease. Abnormalities in haemopoietic stem cells' (HSC) survival, proliferation and aging have been described in patients affected by RA and ascribed to abnormal support by the BM microenvironment. Mesenchymal stem cells (MSC) and their progeny constitute important components of the BM niche. In this study we test the hypothesis that the onset of inflammatory arthritis is associated with altered self-renewal and differentiation of bone marrow MSC, which alters the composition of the BM microenvironment. Methods We have used Balb/C Interleukin-1 receptor antagonist knock-out mice, which spontaneously develop RA-like disease in 100% of mice by 20 weeks of age to determine the number of mesenchymal progenitors and their differentiated progeny before, at the start and with progression of the disease. Results We showed a decrease in the number of mesenchymal progenitors with adipogenic potential and decreased bone marrow adipogenesis before disease onset. This is associated with a decrease in osteoclastogenesis. Moreover, at the onset of disease a significant increase in all mesenchymal progenitors is observed together with a block in their differentiation to osteoblasts. This is associated with accelerated bone loss. Conclusions Significant changes occur in the BM niche with the establishment and progression of RA-like disease. Those changes may be responsible for aspects of the disease, including the advance of osteoporosis. An understanding of the molecular mechanisms leading to those changes may lead to new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Sindhu T Mohanty
- Department of Human Metabolism, University of Sheffield, Sheffield S10 2RX, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Pistoia V, Raffaghello L. Potential of mesenchymal stem cells for the therapy of autoimmune diseases. Expert Rev Clin Immunol 2010; 6:211-8. [PMID: 20402384 DOI: 10.1586/eci.09.86] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are a heterogeneous population of stromal cells that are usually isolated from the bone marrow and differentiate into cells of mesodermal lineage. MSCs exert immunosuppressive activities by suppressing T- and B-cell proliferation, dampening the generation of mature myeloid dendritic cells, and inhibiting the proliferation, cytokine production and cytotoxic activity of natural killer cells. Their immunomodulatory features, together with their tissue-trophic properties, make MSCs good candidates to treat autoimmune disorders (ADs). Different preclinical models of ADs clearly demonstrate the beneficial effects of MSCs on injured tissues by inhibiting immune inflammation and promoting tissue repair through trophic and anti-apoptotic mechanisms. Although these results pave the way toward the design of clinical trials with MSCs in AD patients, studies published so far are few in number. However, it appears from these studies that administration of MSCs is safe and feasible.
Collapse
Affiliation(s)
- Vito Pistoia
- Laboratory of Oncology, G. Gaslini Children's Hospital, Largo G. Gaslini 5, 16148 Genova, Italy.
| | | |
Collapse
|
361
|
Jorgensen C. Mesenchymal stem cells immunosuppressive properties: is it specific to bone marrow-derived cells? Stem Cell Res Ther 2010; 1:15. [PMID: 20529386 PMCID: PMC2905091 DOI: 10.1186/scrt15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSCs) are intensively studied for regenerative medicine. Moreover, MSCs have paracrine effects, including immunomodulation that occurs through the secretion of soluble mediators, including nitric oxide or interleukin-6, transforming growth factor-beta, human leukocyte antigen G5, and prostaglandin E2. MSCs in the bone marrow are in close contact with T and B cells and regulate immunological memory by organizing defined numbers of dedicated survival niches for plasma cells and memory T cells in the bone marrow. All of these biological effects are probably shared by all stromal cells, including fibroblasts and stem cells isolated from exfoliated deciduous teeth. The therapeutical implications are discussed.
Collapse
|
362
|
Youd M, Blickarz C, Woodworth L, Touzjian T, Edling A, Tedstone J, Ruzek M, Tubo R, Kaplan J, Lodie T. Allogeneic mesenchymal stem cells do not protect NZBxNZW F1 mice from developing lupus disease. Clin Exp Immunol 2010; 161:176-86. [PMID: 20456409 DOI: 10.1111/j.1365-2249.2010.04158.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy has shown promise clinically in graft-versus-host disease and in preclinical animal models of T helper type 1 (Th1)-driven autoimmune diseases, but whether MSCs can be used to treat autoimmune disease in general is unclear. Here, the therapeutic potential of MSCs was tested in the New Zealand black (NZB)xNew Zealand white (NZW) F1 (NZB/W) lupus mouse model. The pathogenesis of systemic lupus erythematosus involves abnormal B and T cell activation leading to autoantibody formation. To test whether the immunomodulatory activity of MSCs would inhibit the development of autoimmune responses and provide a therapeutic benefit, NZB/W mice were treated with Balb/c-derived allogeneic MSCs starting before or after disease onset. Systemic MSC administration worsened disease and enhanced anti-double-stranded DNA (dsDNA) autoantibody production. The increase in autoantibody titres was accompanied by an increase in plasma cells in the bone marrow, an increase in glomerular immune complex deposition, more severe kidney pathology, and greater proteinuria. Co-culturing MSCs with plasma cells purified from NZB/W mice led to an increase in immunoglobulin G antibody production, suggesting that MSCs might be augmenting plasma cell survival and function in MSC-treated animals. Our results suggest that MSC therapy may not be beneficial in Th2-type T cell- and B cell-driven diseases such as lupus and highlight the need to understand further the appropriate application of MSC therapy.
Collapse
Affiliation(s)
- M Youd
- Stem Cell Biology, Genzyme Corporation, Framingham, MA 01701, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Abstract
Stem cells have emerged as a key element of regenerative medicine therapies due to their inherent ability to differentiate into a variety of cell phenotypes, thereby providing numerous potential cell therapies to treat an array of degenerative diseases and traumatic injuries. A recent paradigm shift has emerged suggesting that the beneficial effects of stem cells may not be restricted to cell restoration alone, but also due to their transient paracrine actions. Stem cells can secrete potent combinations of trophic factors that modulate the molecular composition of the environment to evoke responses from resident cells. Based on this new insight, current research directions include efforts to elucidate, augment and harness stem cell paracrine mechanisms for tissue regeneration. This article discusses the existing studies on stem/progenitor cell trophic factor production, implications for tissue regeneration and cancer therapies, and development of novel strategies to use stem cell paracrine delivery for regenerative medicine.
Collapse
Affiliation(s)
- Priya R Baraniak
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | |
Collapse
|
364
|
Ichim TE, Solano F, Lara F, Rodriguez JP, Cristea O, Minev B, Ramos F, Woods EJ, Murphy MP, Alexandrescu DT, Patel AN, Riordan NH. Combination stem cell therapy for heart failure. Int Arch Med 2010; 3:5. [PMID: 20398245 PMCID: PMC3003238 DOI: 10.1186/1755-7682-3-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/14/2010] [Indexed: 02/07/2023] Open
Abstract
Patients with congestive heart failure (CHF) that are not eligible for transplantation have limited therapeutic options. Stem cell therapy such as autologous bone marrow, mobilized peripheral blood, or purified cells thereof has been used clinically since 2001. To date over 1000 patients have received cellular therapy as part of randomized trials, with the general consensus being that a moderate but statistically significant benefit occurs. Therefore, one of the important next steps in the field is optimization. In this paper we discuss three ways to approach this issue: a) increasing stem cell migration to the heart; b) augmenting stem cell activity; and c) combining existing stem cell therapies to recapitulate a "therapeutic niche". We conclude by describing a case report of a heart failure patient treated with a combination stem cell protocol in an attempt to augment beneficial aspects of cord blood CD34 cells and mesenchymal-like stem cells.
Collapse
|
365
|
Nohroudi K, Arnhold S, Berhorn T, Addicks K, Hoehn M, Himmelreich U. In Vivo MRI Stem Cell Tracking Requires Balancing of Detection Limit and Cell Viability. Cell Transplant 2010; 19:431-41. [DOI: 10.3727/096368909x484699] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cell-based therapy using adult mesenchymal stem cells (MSCs) has already been the subject of clinical trials, but for further development and optimization the distribution and integration of the engrafted cells into host tissues have to be monitored. Today, for this purpose magnetic resonance imaging (MRI) is the most suitable technique, and micron-sized iron oxide particles (MPIOs) used for labeling are favorable due to their low detection limit. However, constitutional data concerning labeling efficiency, cell viability, and function are lacking. We demonstrate that cell viability and migratory potential of bone marrow mesenchymal stromal cells (BMSCs) are negatively correlated with incorporated MPIOs, presumably due to interference with the actin cytoskeleton. Nevertheless, labeling of BMSCs with low amounts of MPIOs results in maintained cellular function and sufficient contrast for in vivo observation of single cells by MRI in a rat glioma model. Conclusively, though careful titration is indicated, MPIOs are a promising tool for in vivo cell tracking and evaluation of cell-based therapies.
Collapse
Affiliation(s)
- K. Nohroudi
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - S. Arnhold
- Department of Veterinary Anatomy, University of Giessen, Giessen, Germany
| | - T. Berhorn
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - K. Addicks
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - M. Hoehn
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - U. Himmelreich
- Max Planck Institute for Neurological Research, Cologne, Germany
| |
Collapse
|
366
|
Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noël D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther 2010; 1:2. [PMID: 20504283 PMCID: PMC2873698 DOI: 10.1186/scrt2] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotential nonhematopoietic progenitor cells that are isolated from many adult tissues, in particular from the bone marrow and adipose tissue. Along with their capacity for differentiating into cells of mesodermal lineage, such as adipocytes, osteoblasts and chondrocytes, these cells have also generated great interest for their ability to display immunomodulatory capacities. Indeed, a major breakthrough came with the finding that they are able to induce peripheral tolerance, suggesting they may be used as therapeutic tools in immune-mediated disorders. The present review aims at discussing the current knowledge on the targets and mechanisms of MSC-mediated immunosuppression as well as the potential use of MSCs as modulators of immune responses in a variety of diseases related to alloreactive immunity or autoimmunity
Collapse
|
367
|
Uccelli A, Mancardi G, Chiesa S. Is there a role for mesenchymal stem cells in autoimmune diseases? Autoimmunity 2010; 41:592-5. [PMID: 18958745 DOI: 10.1080/08916930802200166] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent reports have highlighted that adult stem cells are granted with yet poorly understood properties other than multipotentiality. In particular, mesenchymal stem cells (MSCs) represent a subset of adult stromal cells that can down-regulate several functions of the immune cells. In addition, MSCs may promote survival of damaged cells and tissues through paracrine mechanisms, possibly under the guidance of environmental cues. Thus, MSCs clinical application in autoimmune diseases seems an appealing opportunity and preclinical results in different experimental models of autoimmunity further support this strategy. Despite the absolute need for caution related to several clinical and technical issues, MSCs are now on the edge of a new era of clinical applications.
Collapse
Affiliation(s)
- Antonio Uccelli
- Department of Neurosciences, Ophthalmology and Genetics, University of Genoa, Genoa, Italy.
| | | | | |
Collapse
|
368
|
Wulffraat NM, van Rooijen EM, Tewarie R, Brinkman D, Prakken B, Kuis W. Current perspectives of autologous stem cell transplantation for severe Juvenile Idiopathic Arthritis. Autoimmunity 2010; 41:632-8. [PMID: 19117174 DOI: 10.1080/08916930802200224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The majority of children with Juvenile Idiopathic Arthritis can nowadays be treated adequately. However despite the use of combinations of antirheumatic drugs, corticosteroids and the newer so called biologicals (blocking the TNF, Interleukin 1 or Interleukin 6 pathways) a proportion of children with arthritis remain resistant also to these therapies and suffer from a very severe, debilitating and potentially fatal disease. For such children autologous stem cell transplantation (ASCT) is successfully performed since 1997. Here we describe the long term outcome of the initial cohort of children with resistant Juvenile Idiopathic arthritis, treated with ASCT. The initial cohort of children was treated with a conditioning regimen containing Cyclophosphamide, anti thymocyte globulins and low dose Total Body irradiation. Overall favourable responses were seen, with a drug free remission rate of 50-55 %. In the more recent years late relapses were noted with lower percentages for drug free long term outcome. Special emphasis is given on 2 cases showing very late relapses, occurring after 7 and 9 years. The observed relapses are often less severe compared to the situation before SCT and can be treated successfully with conventional drugs in the majority of cases. More recently, ASCT was performed in 4 JIA children with a fludarabin containing regimen in stead of low dose TBI. With a 4 to 5 year follow up, these 4 patients are all in drug free full remission. Allogeneic transplant with an HLA matched family donor was reported in 2 JIA cases. Follow up of 1 and 3 year is sofar show clinical disease remission and tapering of medition. In conclusion, given the favourable long term outcome, SCT remains a valuable treatment option for children with drug resistant JIA.
Collapse
Affiliation(s)
- N M Wulffraat
- Department of Pediatric Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
369
|
Mezey É, Mayer B, Németh K. Unexpected roles for bone marrow stromal cells (or MSCs): a real promise for cellular, but not replacement, therapy. Oral Dis 2010; 16:129-35. [PMID: 19656313 PMCID: PMC2851839 DOI: 10.1111/j.1601-0825.2009.01605.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adult and embryonic stem cells have drawn a lot of attention in the last decade as new tools in regenerative medicine. A variety of such cells have been discovered and put forward as candidates for use in cell replacement therapy. Investigators hope that some, if not all, of our organs can be replaced or restored to function; that new livers, kidneys, and brain cells can be produced. Many reviews have already been written about stem cells and their potential use in regenerating tissues. In this study, we would like to call attention to a different application of a special group of adult stem cells, the stromal cells in the bone marrow (also called mesenchymal stem cells or MSCs). These cells have been discovered to modulate immune function. They can easily be expanded in culture and surprisingly, they also seem not to be immunogenic. Thus, they can be removed from donors, expanded, stored in freezers, and used as allogeneic transplants in a variety of diseases in everyday medicine.
Collapse
Affiliation(s)
- Éva Mezey
- Adult Stem Cell Unit, NIH, NIDCR, CSDB, NIH, 49 Convent Dr., 5A76, Bethesda, MD 20892, ,
| | - Balázs Mayer
- Adult Stem Cell Unit, NIH, NIDCR, CSDB, NIH, 49 Convent Dr., 5A76, Bethesda, MD 20892, ,
| | - Krisztián Németh
- Adult Stem Cell Unit, NIH, NIDCR, CSDB, NIH, 49 Convent Dr., 5A76, Bethesda, MD 20892, ,
| |
Collapse
|
370
|
A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 2010; 5:550-60. [DOI: 10.1038/nprot.2009.238] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
371
|
Schurgers E, Kelchtermans H, Mitera T, Geboes L, Matthys P. Discrepancy between the in vitro and in vivo effects of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis. Arthritis Res Ther 2010; 12:R31. [PMID: 20175883 PMCID: PMC2875665 DOI: 10.1186/ar2939] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/29/2010] [Accepted: 02/22/2010] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The goal of this study is to analyze the potential immunosuppressive properties of mesenchymal stem cells (MSC) on T cell proliferation and in collagen-induced arthritis (CIA). An additional aim is to investigate the role of interferon-gamma (IFN-gamma) in these processes. METHODS MSC were isolated from bone marrow of DBA/1 wild type and IFN-gamma receptor knock-out (IFN-gammaR KO) mice and expanded in vitro. Proliferation of anti-CD3-stimulated CD4+ T cells in the presence or absence of MSC was evaluated by thymidine incorporation. CIA was induced in DBA/1 mice and animals were treated with MSC by intravenous or intraperitoneal injections of wild type or IFN-gammaR KO MSC. RESULTS Purity of enriched MSC cultures was evaluated by flow cytometry and their ability to differentiate into osteoblasts and adipocytes. In vitro, wild type MSC dose-dependently suppressed anti-CD3-induced T cell proliferation whereas IFN-gammaR KO MSC had a significantly lower inhibitory potential. A role for inducible nitric oxide (iNOS), programmed death ligand-1 (PD-L1) and prostaglandin E2 (PGE2), but not indoleamine 2,3-dioxigenase (IDO), in the T cell inhibition was demonstrated. In vivo, neither wild type nor IFN-gammaR KO MSC were able to reduce the severity of CIA or the humoral or cellular immune response toward collagen type II. CONCLUSIONS Whereas MSC inhibit anti-CD3-induced proliferation of T cells in vitro, an effect partially mediated by IFN-gamma, MSC do not influence in vivo T cell proliferation nor the disease course of CIA. Thus there is a clear discrepancy between the in vitro and in vivo effects of MSC on T cell proliferation and CIA.
Collapse
Affiliation(s)
- Evelien Schurgers
- Laboratory of Immunobiology, Rega Institute, Faculty of Medicine, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Hilde Kelchtermans
- Laboratory of Immunobiology, Rega Institute, Faculty of Medicine, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Rega Institute, Faculty of Medicine, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Lies Geboes
- Laboratory of Immunobiology, Rega Institute, Faculty of Medicine, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute, Faculty of Medicine, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
372
|
Zhu H, Jiang XX, Guo ZK, Li H, Su YF, Yao HY, Wang XY, Li XS, Wu Y, Liu YL, Zhang Y, Mao N. Tumor necrosis factor-alpha alters the modulatory effects of mesenchymal stem cells on osteoclast formation and function. Stem Cells Dev 2010; 18:1473-84. [PMID: 19374589 DOI: 10.1089/scd.2009.0021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are characterized by their hematopoiesis-supporting and immunosuppressive capacity, while osteoclasts are main cell components in the endosteal hematopoietic stem cell niche and pivotal players in osteoimmunology. To clarify the association of these 2 kinds of cells, mouse CD11b(+) monocytes were cultured onto MSC layers in the presence or absence of macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL). The results showed that MSCs independently supported osteoclast development and this effect was enhanced by M-CSF and RANKL. Interestingly, tumor necrosis factor-alpha (TNF-alpha)-stimulated MSCs turned to inhibit osteoclast formation and protect tusk slices from osteoclastic resorption. Real-time PCR and ELISA assays demonstrated that osteoprotegerin expression at both mRNA and protein levels in TNF-alpha-stimulated MSCs was up-regulated, at least partially by activating the mitogen-activated protein kinase pathway. Furthermore, TNF-alpha-stimulated MSCs maintained their immunophenotypic, multipotential differentiation and immunosuppressive characteristics. Moreover, MSCs treated with synovial fluid from rheumatoid arthritis patients modulated osteoclast generation in close relation with the TNF-alpha levels. This study suggests that MSCs exhibit dual modulatory function on osteoclasts and the result might shed light on understanding the involvement of MSCs in the inflammatory diseases.
Collapse
Affiliation(s)
- Heng Zhu
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Ding Y, Bushell A, Wood KJ. Mesenchymal stem-cell immunosuppressive capabilities: therapeutic implications in islet transplantation. Transplantation 2010; 89:270-3. [PMID: 20145515 PMCID: PMC4452939 DOI: 10.1097/tp.0b013e3181c6ffbe] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) are known to be capable of suppressing immune responses and offer therapeutic potential for achieving transplantation tolerance. This review will discuss the impacts of MSCs on transplant immunity and focus on the potential role of MSCs in protecting islet grafts from both rejection and autoimmune attack.
Collapse
Affiliation(s)
- Yunchuan Ding
- Transplantation Research Immunology Group, Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | |
Collapse
|
374
|
Holan V, Pokorna K, Prochazkova J, Krulova M, Zajicova A. Immunoregulatory properties of mouse limbal stem cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:2124-9. [PMID: 20065115 DOI: 10.4049/jimmunol.0903049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cells have been demonstrated in nearly all adult mammalian tissues and play a vital role in their physiological renewal and healing after injury. Due to their irreplaceable role in tissue repair, these cells had to develop mechanisms protecting them from deleterious inflammatory immune reactions and ensuring their increased resistance to various apoptosis-inducing agents. In this study, we demonstrate that a population of mouse limbal cells highly enriched for cells expressing markers and characteristics of limbal stem cells (LSCs) suppresses in a dose-dependent manner the proliferation of lymphocytes elicited by mitogens or TCR-triggering and significantly inhibits the production of proinflammatory cytokines by activated T cells. The suppression was mediated by soluble factor(s) and did not affect early cell activation. LSCs were even more suppressive than mesenchymal stem cells or natural regulatory T cells. In addition, the cells expressing markers and characteristics of LSC had significantly higher levels of mRNA for Fas ligand and for the antiapoptotic molecules Mcl-1, XIAP, and survivin than other limbal cell populations. LSCs were also more resistant to staurosporin-induced apoptotic cell death and to cell-mediated cytotoxic reaction than other limbal cells. Collectively, these results suggest that SC isolated from fresh adult limbal tissue possess immunomodulatory properties and inhibit proinflammatory immune reactions. Simultaneously, these cells express high levels of mRNA for antiapoptotic molecules, which can protect them against cell-mediated cytotoxic reactions and various apoptosis-inducing agents.
Collapse
Affiliation(s)
- Vladimir Holan
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic.
| | | | | | | | | |
Collapse
|
375
|
Ichim TE, Harman RJ, Min WP, Minev B, Solano F, Rodriguez JP, Alexandrescu DT, De Necochea-Campion R, Hu X, Marleau AM, Riordan NH. Autologous stromal vascular fraction cells: A tool for facilitating tolerance in rheumatic disease. Cell Immunol 2010; 264:7-17. [DOI: 10.1016/j.cellimm.2010.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/05/2010] [Accepted: 04/06/2010] [Indexed: 12/29/2022]
|
376
|
Gonzalez-Rey E, Gonzalez MA, Varela N, O'Valle F, Hernandez-Cortes P, Rico L, Büscher D, Delgado M. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis 2010; 69:241-8. [PMID: 19124525 DOI: 10.1136/ard.2008.101881] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Adult mesenchymal stem cells were recently found to suppress effector T cell and inflammatory responses and have emerged as attractive therapeutic candidates for immune disorders. In rheumatoid arthritis (RA), a loss in the immunological self-tolerance causes the activation of autoreactive T cells against joint components and subsequent chronic inflammation. The aim of this study is to characterise the immunosuppressive activity of human adipose-derived mesenchymal stem cells (hASCs) on collagen-reactive T cells from patients with RA. METHODS The effects of hASCs on collagen-reactive RA human T cell proliferation and cytokine production were investigated, as well as effects on the production of inflammatory mediators by monocytes and fibroblast-like synoviocytes from patients with RA. RESULTS hASCs suppressed the antigen-specific response of T cells from patients with RA. hASCs inhibited the proliferative response and the production of inflammatory cytokines by collagen-activated CD4 and CD8 T cells. In contrast, the numbers of IL10-producing T cells and monocytes were significantly augmented upon hASC treatment. The suppressive activity of hASCs was cell-to-cell contact dependent and independent. hASCs also stimulated the generation of FoxP3 protein-expressing CD4(+)CD25(+) regulatory T cells, with the capacity to suppress collagen-specific T cell responses. Finally, hASCs downregulated the inflammatory response and the production of matrix-degrading enzymes by synovial cells isolated from patients with RA. CONCLUSIONS The present work identifies hASCs as key regulators of immune tolerance, with the capacity to suppress T cell and inflammatory responses and to induce the generation/activation of antigen-specific regulatory T cells.
Collapse
Affiliation(s)
- E Gonzalez-Rey
- School of Medicine, University of Seville, Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|
377
|
Chen B, Hu J, Liao L, Sun Z, Han Q, Song Z, Zhao RC. Flk-1+ mesenchymal stem cells aggravate collagen-induced arthritis by up-regulating interleukin-6. Clin Exp Immunol 2009; 159:292-302. [PMID: 20002448 DOI: 10.1111/j.1365-2249.2009.04069.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The immunomodulatory ability of mesenchymal stem cells (MSCs) may be used to develop therapies for autoimmune diseases. Flk-1(+) MSCs are a population of MSCs with defined phenotype and their safety has been evaluated in Phase 1 clinical trials. We designed this study to evaluate whether Flk-1(+) MSCs conferred a therapeutic effect on collagen-induced arthritis (CIA), an animal model of rheumatic arthritis, and to explore the underlying mechanisms. Flk-1(+) MSCs, 1-2 x 10(6), were injected into CIA mice on either day 0 or day 21. The clinical course of arthritis was monitored. Serum cytokine profile was determined by cytometric bead array kit or enzyme-linked immunosorbent assay. Flk-1(+) MSCs and splenocytes co-culture was conducted to explore the underlying mechanisms. Flk-1(+) MSCs did not confer therapeutic benefits. Clinical symptom scores and histological evaluation suggested aggravation of arthritis in mice treated with MSCs at day 21. Serum cytokine profile analysis showed marked interleukin (IL)-6 secretion immediately after MSC administration. Results of in vitro culture of splenocytes confirmed that the addition of Flk-1(+) MSCs promoted splenocyte proliferation and increased IL-6 and IL-17 secretion. Moreover, splenocyte proliferation was also enhanced in mice treated with MSCs at day 21. Accordingly, MSCs at low concentrations were found to promote lipopolysaccharide-primed splenocytes proliferation in an in vitro co-culture system. We propose that Flk-1(+) MSCs aggravate arthritis in CIA model by at least up-regulating secretion of IL-6, which favours Th17 differentiation. When Flk-1(+) MSCs are used for patients, we should be cautious about subjects with rheumatoid arthritis.
Collapse
Affiliation(s)
- B Chen
- Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
378
|
Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res 2009; 27:1675-80. [PMID: 19544397 DOI: 10.1002/jor.20933] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of this study was the assessment of clinical, biochemical, and histologic effects of intraarticular administered adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. Osteoarthritis was induced arthroscopically in the middle carpal joint of all horses, the contralateral joint being sham-operated. All horses received treatment on Day 14. Eight horses received placebo treatment and eight horses received adipose-derived stromal vascular fraction in their osteoarthritis-affected joint. The final eight horses were treated the in osteoarthritis-affected joint with bone marrow-derived mesenchymal stem cells. Evaluations included clinical, radiographic, synovial fluid analysis, gross, histologic, histochemical, and biochemical evaluations. No adverse treatment-related events were observed. The model induced a significant change in all but two parameters, no significant treatment effects were demonstrated, with the exception of improvement in synovial fluid effusion PGE2 levels with bone marrow-derived mesenchymal stem cells when compared to placebo. A greater improvement was seen with bone marrow-derived mesenchymal stem cells when compared to adipose-derived stromal vascular fraction and placebo treatment. Overall, the findings of this study were not significant enough to recommend the use of stem cells for the treatment of osteoarthritis represented in this model.
Collapse
Affiliation(s)
- David D Frisbie
- Equine Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, Colorado 80523, USA.
| | | | | | | | | |
Collapse
|
379
|
Tasso R, Augello A, Boccardo S, Salvi S, Caridà M, Postiglione F, Fais F, Truini M, Cancedda R, Pennesi G. Recruitment of a host's osteoprogenitor cells using exogenous mesenchymal stem cells seeded on porous ceramic. Tissue Eng Part A 2009; 15:2203-12. [PMID: 19265473 DOI: 10.1089/ten.tea.2008.0269] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The contribution of the host's circulating progenitor cells after implantation of mesenchymal stem cells (MSC)/bioscaffold combinations for repairing bone defects has not been elucidated, although this issue affects the clinical application of the tissue engineering approach. We implanted blocks of hydroxyapatite loaded with murine MSCs into syngenic, allogenic, and immunocompromised recipients. After 8 weeks, we found that bone tissue was formed in syngenic and immunocompromised animals. The implanted cells appeared pivotal in the early stages of tissue development, but cells of the recipient's origin finally made bone. In this system, osteoprogenitors migrated from the recipient to the implant, whereas the implanted cells left the scaffold and entered the circulatory flow. We observed rapid destruction of implanted cells when allogenic MSC/bioscaffold combinations were grafted onto immunocompetent recipients without immunosuppressant therapy. This destruction blocked the recruitment process and did not allow the formation of new bone tissue. The possibility that the implanted exogenous MSCs could engage the host's osteoprogenitor cells to form new bone tissue could open new perspectives for the tissue engineering approach to bone repair, including the opportunity of using allogenic cells combined with a temporary immunosuppressant therapy, stimulating the replacement of the exogenous cells with autologous cells.
Collapse
Affiliation(s)
- Roberta Tasso
- Department of Oncology, Biology, and Genetics, University of Genova , Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Carrion F, Nova E, Ruiz C, Diaz F, Inostroza C, Rojo D, Mönckeberg G, Figueroa FE. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 2009; 19:317-22. [PMID: 19919974 DOI: 10.1177/0961203309348983] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells (MSCs) exert suppressive effects in several disease models including lupus prone mice. However, autologous MSC therapy has not been tested in human systemic lupus erythematosus (SLE). We evaluate the safety and efficacy of bone marrow (BM)-derived MSCs in two SLE patients; the suppressor effect of these cells in-vitro and the change in CD4+CD25+FoxP3+ T regulatory (Treg) cells in response to treatment. Two females (JQ and SA) of 19 and 25 years of age, fulfilling the 1997 American College of Rheumatology (ACR) criteria for SLE were infused with autologous BM-derived MSCs. Disease activity indexes and immunological parameters were assessed at baseline, 1, 2, 7 and 14 weeks. Peripheral blood lymphocyte (PBL) subsets and Treg cells were quantitated by flow cytometry, and MSCs tested for in-vitro suppression of activation and proliferation of normal PBLs. No adverse effects or change in disease activity indexes were noted during 14 weeks of follow-up, although circulating Treg cells increased markedly. Patient MSCs effectively suppressed in-vitro PBL function. However, JQ developed overt renal disease 4 months after infusion. MSC infusion was without adverse effects, but did not modify initial disease activity in spite of increasing CD4+CD25+FoxP3+ cell counts. One patient subsequently had a renal flare. We speculate that the suppressive effects of MSC-induced Treg cells might be dependent on a more inflammatory milieu, becoming clinically evident in patients with higher degrees of disease activity.
Collapse
Affiliation(s)
- F Carrion
- Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
381
|
Jeon MS, Lim HJ, Yi TG, Im MW, Yoo HS, Choi JH, Choi EY, Song SU. Xenoreactivity of human clonal mesenchymal stem cells in a major histocompatibility complex-matched allogeneic graft-versus-host disease mouse model. Cell Immunol 2009; 261:57-63. [PMID: 20004369 DOI: 10.1016/j.cellimm.2009.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/02/2009] [Accepted: 11/05/2009] [Indexed: 02/06/2023]
Abstract
Effects of mesenchymal stem cells (MSCs) on graft-versus-host disease (GVHD) have been actively investigated since the discovery of the immunomodulation property of MSCs about a decade ago. Human clonal MSCs (hcMSCs) were isolated from human bone marrow aspirate according to our newly established isolation protocol called subfractionation culturing method, and were evaluated for their efficacy on GVHD treatment, using a mouse MHC-matched B6-->BALB.B GVHD model system. Although the hcMSCs can suppress the allogeneic proliferation of human peripheral blood mononuclear cells in in vitro, the administration of the hcMSCs failed to reduce the GVHD-related mortality of the murine recipients. One of the reasons might be that murine cytokines such as IFN-gamma and TNF-alpha cannot activate the hcMSCs. Based on these results, we suggest that xenogeneic MSCs may not be used for the treatment of GVHD.
Collapse
Affiliation(s)
- Myung-Shin Jeon
- Clinical Research Center, School of Medicine, Inha University, 7-206, 3-Ga, Shinheung-Dong, Jung-Gu, Incheon 400-711, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
382
|
Djouad F, Bouffi C, Ghannam S, Noël D, Jorgensen C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol 2009; 5:392-9. [PMID: 19568253 DOI: 10.1038/nrrheum.2009.104] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs), or multipotent mesenchymal stromal cells as they are also known, have been identified in bone marrow as well as in other tissues of the joint, including adipose, synovium, periosteum, perichondrium, and cartilage. These cells are characterized by their phenotype and their ability to differentiate into three lineages: chondrocytes, osteoblasts and adipocytes. Importantly, MSCs also potently modulate immune responses, exhibit healing capacities, improve angiogenesis and prevent fibrosis. These properties might be explained at least in part by the trophic effects of MSCs through the secretion of a number of cytokines and growth factors. However, the mechanisms involved in the differentiation potential of MSCs, and their immunomodulatory and paracrine properties, are currently being extensively studied. These unique properties of MSCs confer on them the potential to be used for therapeutic applications in rheumatic diseases, including rheumatoid arthritis, osteoarthritis, genetic bone and cartilage disorders as well as bone metastasis.
Collapse
|
383
|
Abstract
PURPOSE OF REVIEW This review presents the recent results of a decade's experience with hematopoietic stem cell transplantation for treating severe autoimmune disease, with special reference to new insights into pathophysiology. In addition, the newly evolving field of mesenchymal stem cell therapy of autoimmune disease is introduced. RECENT FINDINGS Phase I/II studies in several major autoimmune disease have shown a satisfactory benefit risk ratio. Over one-third of patients achieve a durable remission with a treatment-related mortality of around 5%. Treatment-related mortality is less for some diseases (2% for multiple sclerosis). Phase III randomized controlled trials are advanced in systemic sclerosis, multiple sclerosis and Crohn's disease. In systemic sclerosis, data of the past 12 months suggest remodeling of collagen and normalization of microvasculature after hematopoietic stem cell transplantation, a new finding. Mesenchymal stem cells have shown promise in exerting an immediate anti-inflammatory immunomodulatory role in some autoimmune disease with little evidence of acute toxicity. SUMMARY Hematopoietic stem cell transplantation for severe autoimmune disease has been shown to be feasible, and definitive phase III randomized trials are now in progress. Durable remission after immune reconstitution and tissue remodeling suggests an effect beyond profound immunosuppression. Mesenchymal stem cells show promise as immunomodulatory agents in autoimmune disease with low acute toxicity and no requirement for ablation of the recipient immune system.
Collapse
|
384
|
McIntosh KR, Lopez MJ, Borneman JN, Spencer ND, Anderson PA, Gimble JM. Immunogenicity of allogeneic adipose-derived stem cells in a rat spinal fusion model. Tissue Eng Part A 2009; 15:2677-86. [PMID: 19207041 PMCID: PMC2746330 DOI: 10.1089/ten.tea.2008.0566] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 02/09/2009] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived stem cells (ASCs) express a nonimmunogenic profile as shown by in vitro studies that demonstrate a lack of T cell proliferation to allogeneic ASCs as well as ASC-mediated suppression of mixed lymphocyte reactions. To determine whether these observations would translate in vivo, immune monitoring studies were carried out in conjunction with a rat spinal fusion study. ASCs derived from Fischer or ACI strain rats were loaded onto scaffolds and implanted in Fischer recipients that had undergone the following treatments: (1) No treatment; (2) Scaffold only; (3) Syngeneic ASCs+Scaffold; or (4) Allogeneic ASCs+Scaffold. Half of each group was sacrificed at 4 weeks postimplantation, and the remaining animals were sacrificed at 8 weeks. As determined in a separate study, allogeneic and syngeneic ASCs were equally efficacious in accelerating spinal fusion compared to No treatment and Scaffold only control groups. To determine whether donor ASCs induced an immune response in recipient rats, lymph nodes were harvested for T cell proliferation studies and serum was collected to assess antibody responses. Although T cell priming was not detected to donor alloantigens in recipients at either time point, significant antibody responses were detected to ACI ASCs in animals implanted with syngeneic or allogeneic ASCs. Antibodies were of the IgG isotype, noncytotoxic in the presence of complement, and reactive to fetal bovine serum. These results support the use of allogeneic ASCs for spinal fusion.
Collapse
Affiliation(s)
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | | | - Nakia D. Spencer
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Paul A. Anderson
- Department of Orthopedic Surgery and Rehabilitation, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Jeffrey M. Gimble
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
385
|
Kuo TK, Ho JH, Lee OK. Mesenchymal Stem Cell Therapy for Nonmusculoskeletal Diseases: Emerging Applications. Cell Transplant 2009; 18:1013-28. [DOI: 10.3727/096368909x471206] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases.
Collapse
Affiliation(s)
- Tom K. Kuo
- Stem Cell Research Center, National Yang-Ming University, Taiwan
| | - Jennifer H. Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taiwan
- Department of Ophthalmology, Taipei Medical University-Wan Fang Hospital, Taiwan
| | - Oscar K. Lee
- Stem Cell Research Center, National Yang-Ming University, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taiwan
| |
Collapse
|
386
|
Bocelli-Tyndall C, Bracci L, Schaeren S, Feder-Mengus C, Barbero A, Tyndall A, Spagnoli GC. Human bone marrow mesenchymal stem cells and chondrocytes promote and/or suppress the in vitro proliferation of lymphocytes stimulated by interleukins 2, 7 and 15. Ann Rheum Dis 2009; 68:1352-9. [PMID: 18647856 DOI: 10.1136/ard.2008.094003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To investigate whether human bone marrow-derived mesenchymal stem cells (BM-MSCs) and articular chondrocytes (ACs) affect the in vitro proliferation of T lymphocytes and peripheral blood mononuclear cells (PBMCs) driven by the homeostatic interleukin (IL)2, IL7 and IL15 cytokines binding to the common cytokine receptor gamma-chain (gamma(c)) in the absence of T cell receptor (TCR) triggering. METHODS PBMCs, total T cells and T cell subsets (CD4+ and CD8+) were stimulated with IL2, IL7 or IL15 and exposed to cultured BM-MSCs and ACs at varying cell:cell ratio either in contact or in transwell conditions. Lymphocyte proliferation was measured by (3)H-thymidine uptake or by flow cytometry of carboxyfluorescein succinimidyl ester (CFSE)-labelled lymphocytes. RESULTS MSCs and ACs enhanced and inhibited lymphocyte proliferation depending on the extent of lymphocyte baseline proliferation and on the MSC/AC to lymphocyte ratio. Enhancement was significant on poorly proliferating lymphocytes and mostly at lower MSC/AC to lymphocyte ratio. Suppression occurred only on actively proliferating lymphocytes and at high MSC/AC to lymphocyte ratio. Neither enhancement nor inhibition required cell-cell contact. CONCLUSIONS There is a dichotomous effect of MSCs/ACs on lymphocytes proliferating in response to the homeostatic IL2, IL7 and IL15 cytokines likely to be encountered in homeostatic and autoimmune inflammatory conditions. The effect is determined by baseline lymphocyte proliferation, cell:cell ratio and is dependent on soluble factor(s). This should be taken into account when planning cellular therapy for autoimmune disease (AD) using stromal-derived cells such as MSCs.
Collapse
Affiliation(s)
- C Bocelli-Tyndall
- Institute of Surgical Research and Hospital Management and Department of Biomedicine, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
387
|
Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 2009; 58:1797-806. [PMID: 19509016 PMCID: PMC2712800 DOI: 10.2337/db09-0317] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) are known to be capable of suppressing immune responses, but the molecular mechanisms involved and the therapeutic potential of MSCs remain to be clarified. RESEARCH DESIGN AND METHODS We investigated the molecular mechanisms underlying the immunosuppressive effects of MSCs in vitro and in vivo. RESULTS Our results demonstrate that matrix metalloproteinases (MMPs) secreted by MSCs, in particular MMP-2 and MMP-9, play an important role in the suppressive activity of MSCs by reducing surface expression of CD25 on responding T-cells. Blocking the activity of MMP-2 and MMP-9 in vitro completely abolished the suppression of T-cell proliferation by MSCs and restored T-cell expression of CD25 as well as responsiveness to interleukin-2. In vivo, administration of MSCs significantly reduced delayed-type hypersensitivity responses to allogeneic antigen and profoundly prolonged the survival of fully allogeneic islet grafts in transplant recipients. Significantly, these MSC-mediated protective effects were completely reversed by in vivo inhibition of MMP-2 and MMP-9. CONCLUSIONS We demonstrate that MSCs can prevent islet allograft rejection leading to stable, long-term normoglycemia. In addition, we provide a novel insight into the mechanism underlying the suppressive effects of MSCs on T-cell responses to alloantigen.
Collapse
Affiliation(s)
- Yunchuan Ding
- Transplantation Research Immunology Group, Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
388
|
Madec AM, Mallone R, Afonso G, Abou Mrad E, Mesnier A, Eljaafari A, Thivolet C. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia 2009; 52:1391-9. [PMID: 19421731 DOI: 10.1007/s00125-009-1374-z] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 03/25/2009] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Displaying immunomodulatory capacities, mesenchymal stem cells (MSCs) are considered as beneficial agents for autoimmune diseases. The aim of this study was to examine the ability of MSCs to prevent autoimmune diabetes in the NOD mouse model. METHODS Prevention of spontaneous insulitis or of diabetes was evaluated after a single i.v. injection of MSCs in 4-week-old female NOD mice, or following the co-injection of MSCs and diabetogenic T cells in irradiated male NOD recipients, respectively. The frequency of CD4(+)FOXP3(+) cells and Foxp3 mRNA levels in the spleen of male NOD recipients were also quantified. In vivo cell homing was assessed by monitoring 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE)-labelled T cells or MSCs. In vitro, cell proliferation and cytokine production were assessed by adding graded doses of irradiated MSCs to insulin B9-23 peptide-specific T cell lines in the presence of irradiated splenocytes pulsed with the peptide. RESULTS MSCs reduced the capacity of diabetogenic T cells to infiltrate pancreatic islets and to transfer diabetes. This protective effect was not associated with the modification of diabetogenic T cell homing, but correlated with a preferential migration of MSCs to pancreatic lymph nodes. While injection of diabetogenic T cells resulted in a decrease in levels of FOXP3(+) regulatory T cells, this decrease was inhibited by MSC co-transfer. Moreover, MSCs were able to suppress both allogeneic and insulin-specific proliferative responses in vitro. This suppressive effect was associated with the induction of IL10-secreting FOXP3(+) T cells. CONCLUSIONS/INTERPRETATION MSCs prevent autoimmune beta cell destruction and subsequent diabetes by inducing regulatory T cells. MSCs may thus offer a novel cell-based approach for the prevention of autoimmune diabetes and for islet cell transplantation.
Collapse
MESH Headings
- Animals
- Cell Movement/immunology
- Cells, Cultured
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Disease Models, Animal
- Female
- Flow Cytometry
- Forkhead Transcription Factors/metabolism
- Insulin-Secreting Cells/immunology
- Interleukin-10/metabolism
- Lymphocyte Culture Test, Mixed
- Male
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/cytology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Prediabetic State/immunology
- Prediabetic State/therapy
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- A M Madec
- INSERM U870/INRA 1235, Faculté de Médecine Lyon-Sud, 165 chemin du Grand-Revoyet, Oullins, France.
| | | | | | | | | | | | | |
Collapse
|
389
|
Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, Selig M, Godwin J, Law K, Placidi C, Smith RN, Capella C, Rodig S, Adra CN, Atkinson M, Sayegh MH, Abdi R. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. THE JOURNAL OF IMMUNOLOGY 2009; 183:993-1004. [PMID: 19561093 DOI: 10.4049/jimmunol.0900803] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human clinical trials in type 1 diabetes (T1D) patients using mesenchymal stem cells (MSC) are presently underway without prior validation in a mouse model for the disease. In response to this void, we characterized bone marrow-derived murine MSC for their ability to modulate immune responses in the context of T1D, as represented in NOD mice. In comparison to NOD mice, BALB/c-MSC mice were found to express higher levels of the negative costimulatory molecule PD-L1 and to promote a shift toward Th2-like responses in treated NOD mice. In addition, transfer of MSC from resistant strains (i.e., nonobese resistant mice or BALB/c), but not from NOD mice, delayed the onset of diabetes when administered to prediabetic NOD mice. The number of BALB/c-MSC trafficking to the pancreatic lymph nodes of NOD mice was higher than in NOD mice provided autologous NOD-MSC. Administration of BALB/c-MSC temporarily resulted in reversal of hyperglycemia in 90% of NOD mice (p = 0.002). Transfer of autologous NOD-MSC imparted no such therapeutic benefit. We also noted soft tissue and visceral tumors in NOD-MSC-treated mice, which were uniquely observed in this setting (i.e., no tumors were present with BALB/c- or nonobese resistant mice-MSC transfer). The importance of this observation remains to be explored in humans, as inbred mice such as NOD may be more susceptible to tumor formation. These data provide important preclinical data supporting the basis for further development of allogeneic MSC-based therapies for T1D and, potentially, for other autoimmune disorders.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Bouffi C, Djouad F, Mathieu M, Noël D, Jorgensen C. Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit? Rheumatology (Oxford) 2009; 48:1185-9. [PMID: 19561159 DOI: 10.1093/rheumatology/kep162] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have raised interest mainly because of cartilage/bone differentiation potential which is now partly eclipsed by their capacity to counteract inflammation and suppress host immune responses as well as to prevent fibrosis. MSCs have been identified within joint tissues including synovium, cartilage, subchondral bone, periosteum or adipose tissue. They are characterized by their phenotype and their ability to differentiate into three lineages, chondrocytes, osteoblasts and adipocytes. MSCs have also paracrine effects through the secretion of a number of cytokines and growth factors. This may explain the trophic effects that may be of therapeutic value for rheumatic diseases including OA and RA. On the other hand, MSCs have been associated with tumour growth. MSCs migrate to the tumour stroma, express chemokines involved in the attraction of carcinoma cells in metastasis. Indeed, the aim of this review is not only to focus on new potential therapeutic applications in osteo-articular diseases, but also to assess the potential risk of MSC-based cell therapy.
Collapse
Affiliation(s)
- Carine Bouffi
- Inserm U844, CHU Saint-Eloi, Bâtiment INM, 80 avenue Augustin Fliche, Montpellier F-34295, France
| | | | | | | | | |
Collapse
|
391
|
González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2009; 60:1006-19. [PMID: 19333946 DOI: 10.1002/art.24405] [Citation(s) in RCA: 384] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic autoimmune disease caused by loss of immunologic self tolerance and characterized by chronic joint inflammation. Adult mesenchymal stem cells (MSCs) were recently found to suppress effector T cell responses and to have beneficial effects in various immune disorders. The purpose of this study was to examine a new therapeutic strategy for RA based on the administration of human adipose-derived MSCs (AD-MSCs). METHODS DBA/1 mice with collagen-induced arthritis were treated with human AD-MSCs after disease onset, and clinical scores were determined. Inflammatory response was determined by measuring the levels of different mediators of inflammation in the joints and serum. The Th1-mediated autoreactive response was evaluated by determining the proliferative response and cytokine profile of draining lymph node cells stimulated with the autoantigen. The number of Treg cells and the suppressive capacity on self-reactive Th1 cells were also determined. RESULTS Systemic infusion of human AD-MSCs significantly reduced the incidence and severity of experimental arthritis. This therapeutic effect was mediated by down-regulating the 2 deleterious disease components: the Th1-driven autoimmune and inflammatory responses. Human AD-MSCs decreased the production of various inflammatory cytokines and chemokines, decreased antigen-specific Th1/Th17 cell expansion, and induced the production of antiinflammatory interleukin-10 in lymph nodes and joints. Human AD-MSCs also induced de novo generation of antigen-specific CD4+CD25+FoxP3+ Treg cells with the capacity to suppress self-reactive T effector responses. CONCLUSION Human AD-MSCs emerge as key regulators of immune tolerance by inducing the generation/activation of Treg cells and are thus attractive candidates for a cell-based therapy for RA.
Collapse
Affiliation(s)
- Manuel A González
- Cellerix SA, Tres Cantos, and Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | | | | | | | | |
Collapse
|
392
|
Abstract
Mesenchymal stem cells (MSC) are a type of multipotent progenitor cell, originally isolated from the bone marrow. In addition to multilineage differentiation and participation in the hematopoietic niche, they exert powerful immunomodulatory effects, which include inhibition of proliferation and function of T cells, B cells, and natural killer cells. These unique properties make MSC of great interest for clinical applications in tissue engineering and immunosuppression. Underlying the MSC-mediated immunomodulatory mechanisms is a nonspecific antiproliferative effect, which is the consequence of cyclin D2 inhibition. Of special interest are the molecular mechanisms, by which MSC influence their target cells. Several studies have been conducted in this field, and the current data suggest roles for indoleamine 2,3-dioxygenase, prostaglandin E2, nitric oxide, histocompatibility locus antigen-G, insulin-like growth factor-binding proteins, and tolerogenic antigen-presenting cells. Understanding these mechanisms is crucial for future use of MSC in research and clinical applications.
Collapse
Affiliation(s)
- Georg Siegel
- Institute of Clinical and Experimental Transfusion Medicine (IKET), Eberhard Karls University Tübingen, Germany
| | | | | |
Collapse
|
393
|
Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S. Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 2009; 219:667-76. [PMID: 19160415 DOI: 10.1002/jcp.21710] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue engineering utilizing periodontal ligament stem cells (PDLSCs) has recently been proposed for the development of new periodontal regenerative therapies. Although the use of autologous PDLSC transplantation eliminates the potential of a significant host immune response against the donor cells, it is often difficult to generate enough PDLSCs from one donor source due to the variation of stem cell potential between donors and disease state of each patient. In this study, we examined the immunomodulatory properties of PDLSCs as candidates for new allogeneic stem cell-based therapies. Human PDLSCs displayed cell surface marker characteristics and differentiation potential similar to bone marrow stromal stem cells (BMSSCs) and dental pulp stem cells (DPSCs). PDLSCs, BMSSCs, and DPSCs inhibited peripheral blood mononuclear cell (PBMNC) proliferation stimulated with mitogen or in an allogeneic mixed lymphocyte reaction (MLR). Interestingly, gingival fibroblasts (GFs) also suppressed allogeneic PBMNC proliferation under both assay conditions. PDLSCs, BMSSCs, DPSCs, and GFs exhibited non-cell contact dependent suppression of PBMNC proliferation in co-cultures using transwells. Furthermore, conditioned media (CM) derived from each cell type pretreated with IFN-gamma partially suppressed PBMNC proliferation when compared to CMs without IFN-gamma stimulation. In all of these mesenchymal cell types cultured with activated PBMNCs, the expression of TGF-beta1, hepatocyte growth factor (HGF) and indoleamine 2, 3-dioxygenase (IDO) was upregulated while IDO expression was upregulated following stimulation with IFN-gamma. These results suggest that PDLSCs, BMSSCs, DPSCs, and GFs possess immunosuppressive properties mediated, in part, by soluble factors, produced by activated PBMNCs. J. Cell. Physiol. 219: 667-676, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Naohisa Wada
- Mesenchymal Stem Cell Group, Division of Haematology, Institute of Medical and Veterinary Science/Hanson Institute/CSCR, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
394
|
English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol 2009; 156:149-60. [PMID: 19210524 PMCID: PMC2673753 DOI: 10.1111/j.1365-2249.2009.03874.x] [Citation(s) in RCA: 535] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2008] [Indexed: 12/13/2022] Open
Abstract
Adult human mesenchymal stromal or stem cells (MSC) can differentiate into a variety of cell types and are candidate cellular therapeutics in regenerative medicine. Surprisingly, these cells also display multiple potent immunomodulatory capabilities, including allosuppression, making allogeneic cell therapy a possibility. The exact mechanisms involved in regulatory T cell induction by allogeneic human MSC was examined, using purified CD4+ populations and well-characterized bone marrow-derived adult human MSC. Allogeneic MSC were shown to induce forkhead box P3 (FoxP3)+ and CD25+ mRNA and protein expression in CD4+ T cells. This phenomenon required direct contact between MSC and purified T cells, although cell contact was not required for MSC induction of FoxP3 expression in an unseparated mononuclear cell population. In addition, through use of antagonists and neutralizing antibodies, MSC-derived prostaglandins and transforming growth factor (TGF)-beta1 were shown to have a non-redundant role in the induction of CD4+CD25+FoxP3+ T cells. Purified CD4+CD25+ T cells induced by MSC co-culture expressed TGF-beta1 and were able to suppress alloantigen-driven proliferative responses in mixed lymphocyte reaction. These data clarify the mechanisms of human MSC-mediated allosuppression, supporting a sequential process of regulatory T cell induction involving direct MSC contact with CD4+ cells followed by both prostaglandin E(2) and TGF-beta1 expression. Overall, this study provides a rational basis for ongoing clinical studies involving allogeneic MSC.
Collapse
Affiliation(s)
- K English
- Institute of Immunology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
395
|
Tyndall A, Uccelli A. Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks. Bone Marrow Transplant 2009; 43:821-8. [DOI: 10.1038/bmt.2009.63] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
396
|
Cellules souches mésenchymateuses et immunomodulation : vers de nouvelles stratégies immunosuppressives pour le traitement des maladies auto-immunes ? Rev Med Interne 2009; 30:287-99. [DOI: 10.1016/j.revmed.2008.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 08/27/2008] [Accepted: 08/29/2008] [Indexed: 12/29/2022]
|
397
|
González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 2009; 136:978-89. [PMID: 19135996 DOI: 10.1053/j.gastro.2008.11.041] [Citation(s) in RCA: 483] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 11/10/2008] [Accepted: 11/20/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Crohn's disease is a chronic disease characterized by severe T-helper (Th)1 cell-driven inflammation of the colon partially caused by a loss of immune tolerance against mucosal antigens. Mesenchymal stem cells were recently described to suppress effector T-cell responses and have therapeutic effects in some immune disorders. Here, we investigated the potential therapeutic effects of human adipose-derived mesenchymal stem cells (hASCs) in a model of inflammatory bowel disease. METHODS Mice with trinitrobenzene sulfonic acid-induced colitis were treated with hASCs after onset of disease and clinical scores were evaluated. Inflammatory response was determined by measuring the levels of different inflammatory mediators in colon and serum. Th1-mediated effector responses were evaluated by determining the proliferation and cytokine profile of activated mesenteric lymph node cells. The number of regulatory T cells and the suppressive capacity on Th1 cell responses was determined. RESULTS Systemic infusion of hASCs or murine ASCs ameliorated the clinical and histopathologic severity of colitis, abrogating body weight loss, diarrhea, and inflammation and increasing survival (P < .001). This therapeutic effect was mediated by down-regulating both Th1-driven autoimmune and inflammatory responses. ASCs decreased a wide panel of inflammatory cytokines and chemokines and increased interleukin-10 levels (P < .001), directly acting on activated macrophages. hASCs also impaired Th1 cell expansion and induced/activated CD4(+)CD25(+)FoxP3(+) regulatory T cells with suppressive capacity on Th1 effector responses in vitro and in vivo (P < .001). CONCLUSIONS hASCs emerge as key regulators of immune tolerance and as attractive candidates for a cell-based therapy for Crohn's disease.
Collapse
Affiliation(s)
- Manuel A González
- Cellerix SA, Tres Cantos (Madrid), Madrid, Spain; Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
398
|
Zhong Z, Patel AN, Ichim TE, Riordan NH, Wang H, Min WP, Woods EJ, Reid M, Mansilla E, Marin GH, Drago H, Murphy MP, Minev B. Feasibility investigation of allogeneic endometrial regenerative cells. J Transl Med 2009; 7:15. [PMID: 19232091 PMCID: PMC2649897 DOI: 10.1186/1479-5876-7-15] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 02/20/2009] [Indexed: 01/08/2023] Open
Abstract
Endometrial Regenerative Cells (ERC) are a population of mesenchymal-like stem cells having pluripotent differentiation activity and ability to induce neoangiogenesis. In vitro and animal studies suggest ERC are immune privileged and in certain situations actively suppress ongoing immune responses. In this paper we describe the production of clinical grade ERC and initial safety experiences in 4 patients with multiple sclerosis treated intravenously and intrathecally. The case with the longest follow up, of more than one year, revealed no immunological reactions or treatment associated adverse effects. These preliminary data suggest feasibility of clinical ERC administration and support further studies with this novel stem cell type.
Collapse
|
399
|
Abstract
Mesenchymal stem cells (MSCs) are a heterogeneous subset of stromal stem cells that can be isolated from many adult tissues. They can differentiate into cells of the mesodermal lineage, such as adipocytes, osteocytes and chondrocytes, as well as cells of other embryonic lineages. MSCs can interact with cells of both the innate and adaptive immune systems, leading to the modulation of several effector functions. After in vivo administration, MSCs induce peripheral tolerance and migrate to injured tissues, where they can inhibit the release of pro-inflammatory cytokines and promote the survival of damaged cells. This Review discusses the targets and mechanisms of MSC-mediated immunomodulation and the possible translation of MSCs to new therapeutic approaches.
Collapse
|
400
|
Haniffa MA, Collin MP, Buckley CD, Dazzi F. Mesenchymal stem cells: the fibroblasts' new clothes? Haematologica 2009; 94:258-63. [PMID: 19109217 PMCID: PMC2635401 DOI: 10.3324/haematol.13699] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/10/2008] [Accepted: 09/30/2008] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells are adherent stromal cells, initially isolated from the bone marrow, characterized by their ability to differentiate into mesenchymal tissues such as bone, cartilage and fat. They have also been shown to suppress immune responses in vitro. Because of these properties, mesenchymal stem cells have recently received a very high profile. Despite the dramatic benefits reported in early phase clinical trials, their functions remain poorly understood. Particularly, several questions remain concerning the origin of mesenchymal stem cells and their relationship to other stromal cells such as fibroblasts. Whereas clear gene expression signatures are imprinted in stromal cells of different anatomical origins, the anti-proliferative effects of mesenchymal stem cells and fibroblasts and their potential to differentiate appear to be common features between these two cell types. In this review, we summarize recent studies in the context of historical and often neglected stromal cell literature, and present the evidence that mesenchymal stem cells and fibroblasts share much more in common than previously recognized.
Collapse
Affiliation(s)
- Muzlifah A. Haniffa
- Hematological Sciences
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne
| | | | - Christopher D. Buckley
- Rheumatology Research Group, Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham and
| | - Francesco Dazzi
- Stem Cell Biology Section, Kennedy Institute and Division of Investigative Sciences, Hammersmith Hospital, London, UK
| |
Collapse
|