351
|
Abstract
DNA damage is implicated in cancer and aging, and several DNA repair mechanisms exist that safeguard the genome from these deleterious consequences. Nucleotide excision repair (NER) removes a wide diversity of lesions, the main of which include UV-induced lesions, bulky chemical adducts and some forms of oxidative damage. The NER process involves the action of at least 30 proteins in a 'cut-and-paste'-like mechanism. The consequences of a defect in one of the NER proteins are apparent from three rare recessive syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and the photosensitive form of the brittle hair disorder trichothiodystrophy (TTD). Sun-sensitive skin is associated with skin cancer predisposition in the case of XP, but remarkably not in CS and TTD. Moreover, the spectrum of clinical symptoms differs considerably between the three syndromes. CS and TTD patients exhibit a spectrum of neurodevelopmental abnormalities and, in addition, TTD is associated with ichthyosis and brittle hair. These typical CS and TTD abnormalities are difficult to comprehend as a consequence of defective NER. This review briefly describes the biochemistry of the NER process, summarizes the clinical features of the NER disorders and speculates on the molecular basis underlying these pleitropic syndromes.
Collapse
Affiliation(s)
- J de Boer
- Medical Genetics Centre, Department of Cell Biology and Genetics, Centre for Biomedical Genetics, Erasmus University, PO Box 1738, 3000DR Rotterdam, The Netherlands
| | | |
Collapse
|
352
|
Abstract
Protein kinase CK2 is a ubiquitous and pleiotropic seryl/threonyl protein kinase which is highly conserved in evolution indicating a vital cellular role for this kinase. The holoenzyme is generally composed of two catalytic (alpha and/or alpha') and two regulatory (beta) subunits, but the free alpha/alpha' subunits are catalytically active by themselves and can be present in cells under some circumstances. Special attention has been devoted to phosphorylation status and structure of these enzymic molecules, however, their regulation and roles remain intriguing. Until recently, CK2 was believed to represent a kinase especially required for cell cycle progression in non-neural cells. At present, with respect to recent findings, four essential features suggest potentially important roles for this enzyme in specific neural functions: (1) CK2 is much more abundant in brain than in any other tissue; (2) there appear to be a myriad of substrates for CK2 in both synaptic and nuclear compartments that have clear implications in development, neuritogenesis, synaptic transmission, synaptic plasticity, information storage and survival; (3) CK2 seems to be associated with mechanisms underlying long-term potentiation in hippocampus; and (4) neurotrophins stimulate activity of CK2 in hippocampus. In addition, some data are suggestive that CK2 might play a role in processes underlying progressive disorders due to Alzheimer's disease, ischemia, chronic alcohol exposure or immunodeficiency virus HIV. The present review focuses mainly on the latest data concerning the regulatory mechanisms and the possible neurophysiological functions of this enzyme.
Collapse
Affiliation(s)
- P R Blanquet
- Unité de Recherche de Physiopharmacologie du Système Nerveux, U-161 INSERM, Paris, France.
| |
Collapse
|
353
|
Balajee AS, Proietti De Santis L, Brosh RM, Selzer R, Bohr VA. Role of the ATPase domain of the Cockayne syndrome group B protein in UV induced apoptosis. Oncogene 2000; 19:477-89. [PMID: 10698517 DOI: 10.1038/sj.onc.1203372] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cockayne syndrome (CS) is a human autosomal recessive disorder characterized by many neurological and developmental abnormalities. CS cells are defective in the transcription coupled repair (TCR) pathway that removes DNA damage from the transcribed strand of active genes. The individuals suffering from CS do not generally develop cancer but show increased neurodegeneration. Two genetic complementation groups (CS-A and CS-B) have been identified. The lack of cancer formation in CS may be due to selective elimination of cells containing DNA damage by a suicidal pathway. In this study, we have evaluated the role of the CSB gene in UV induced apoptosis in human and hamster cells. The hamster cell line UV61 carries a mutation in the homolog of the human CSB gene. We show that both human CS-B and hamster UV61 cells display increased apoptotic response following UV exposure compared with normal cells. The increased sensitivity of UV61 cells to apoptosis is complemented by the transfection of the wild type human CSB gene. In order to determine which functional domain of the CSB gene participates in the apoptotic pathway, we constructed stable cell lines with different CSB domain disruptions. UV61 cells were stably transfected with the human CSB cDNA containing a point mutation in the highly conserved glutamic acid residue in ATPase motif II. This cell line (UV61/ pc3.1-CSBE646Q) showed the same increased apoptosis as the UV61 cells. In contrast, cells containing a deletion in the acidic domain at the N-terminal end of the CSB protein had no effect on apoptosis. This indicates that the integrity of the ATPase domain of CSB protein is critical for preventing the UV induced apoptotic pathway. In primary human CS-B cells, the induction and stabilization of the p53 protein seems to correlate with their increased apoptotic potential. In contrast, no change in the level of either p53 or activation of mdm2 protein by p53 was observed in hamster UV61 cells after UV exposure. This suggests that the CSB dependent apoptotic pathway can occur independently of the transactivation potential of p53 in hamster cells.
Collapse
Affiliation(s)
- A S Balajee
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
354
|
Itoh T, Yamaizumi M. UVs syndrome: establishment and characterization of fibroblastic cell lines transformed with simian virus 40 DNA. J Invest Dermatol 2000; 114:101-6. [PMID: 10620123 DOI: 10.1046/j.1523-1747.2000.00843.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ultraviolet-sensitive syndrome (UVsS) is a newly established photosensitive disorder. Patients with UVsS showed mild clinical manifestations similar to classical types of xeroderma pigmentosum, and had biochemical phenotypes of Cockayne syndrome but not those of xeroderma pigmentosum. Fibroblasts from a UVsS patient were treated with simian virus 40 DNA containing the large T antigen with a defective origin of DNA replication to establish a transformed cell line. We obtained two independent transformed cell lines (Kps3SVY and Kps3SVI3) and report their initial characterization. These cells showed the same pattern in variable number of tandem repeat analyses as a primary fibroblast cell strain, Kps3, and retain the UVsS phenotype as demonstrated by increased UV sensitivity (three to four times more sensitive to UV than normal cells) and by reduced recovery of RNA synthesis after UV irradiation (20% - 30% of that of normal cells). These cells, however, showed different phenotypes as regards plating efficiency, doubling time, and transfection efficiency in spite of the fact that the same method was used to transform the cells. Kps3SVY cells were closer in phenotype to Kps3 cells than Kps3SVI3 cells. As a variable number of tandem repeat analyses also showed that Kps3SVI3 cells have lost one of the two alleles in some chromosomes, this may explain the different phenotypes between Kps3SVY and Kps3SVI3 cells. Moreover, these cells were distinct from cells with Cockayne syndrome group A or B. Thus, these cell lines provide the opportunity to conduct transfection studies on cells with the UVsS defect in DNA repair and transcription.
Collapse
Affiliation(s)
- T Itoh
- Deaprtment of Cell Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto, Japan.
| | | |
Collapse
|
355
|
Jiang C, Liao D. Striking bimodal methylation of the repeat unit of the tandem array encoding human U2 snRNA (the RNU2 locus). Genomics 1999; 62:508-18. [PMID: 10644450 DOI: 10.1006/geno.1999.6052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genes encoding human U2 small nuclear RNA are arrayed in tandem (the RNU2 locus) and have undergone concerted evolution for >35 Myr. Tandem organization of repetitive sequences may facilitate recombination that underlies concerted evolution, but could risk instability. Since DNA methylation plays a crucial role in genome stability, we investigated the methylation status of the RNU2 locus to understand the forces maintaining array stability and homogeneity. We found that a region of approximately 1.5 kb spanning the U2 promoter, U2 gene sequence, and CT microsatellite is completely unmethylated, whereas the rest of the repeat is heavily methylated. Since the U2 transcription enhancer DSE and CT microsatellite mark the boundaries between methylated and unmethylated domains, they might function as cis-acting elements for establishing and maintaining proper methylation at the RNU2 locus. Interestingly, the RNU2 locus in human fibrosarcoma line HT1080 is hypomethylated, and de novo methylation did not occur in an artificial U2 tandem array introduced by stable transfection. The observed bimodal methylation pattern may be important for both efficient transcription of U2 gene and maintenance of nearly perfect tandem arrays in somatic cells.
Collapse
Affiliation(s)
- C Jiang
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | | |
Collapse
|
356
|
Brosh RM, Balajee AS, Selzer RR, Sunesen M, Proietti De Santis L, Bohr VA. The ATPase domain but not the acidic region of Cockayne syndrome group B gene product is essential for DNA repair. Mol Biol Cell 1999; 10:3583-94. [PMID: 10564257 PMCID: PMC25641 DOI: 10.1091/mbc.10.11.3583] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA and CSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, the CSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.
Collapse
Affiliation(s)
- R M Brosh
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
357
|
Yasuhira S, Morimyo M, Yasui A. Transcription dependence and the roles of two excision repair pathways for UV damage in fission yeast Schizosaccharomyces pombe. J Biol Chem 1999; 274:26822-7. [PMID: 10480889 DOI: 10.1074/jbc.274.38.26822] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fission yeasts Schizosaccharomyces pombe possess two types of excision repair systems for UV-induced DNA damage, nucleotide excision repair (NER) and UV-damaged DNA endonuclease (UVDE)-dependent excision repair (UVER). Despite its high efficiency in damage removal, UVER defects have less effect on UV survival than NER defects. To understand the differential roles of two pathways, we examined strand-specific damage removal at the myo2 and rpb2 loci. Although NER removes cyclobutane pyrimidine dimers from the transcribed strand more rapidly than from the nontranscribed strand, UVER repairs cyclobutane pyrimidine dimers equally on both strands and at a much higher rate than NER. The low rate of damage removal from the nontranscribed strand in the absence of UVER indicates inefficient global genome repair (GGR) in this organism and a possible function of UVER as an alternative to GGR. Disruption of rhp26, the S. pombe homolog of CSB/RAD26, eliminated the strand bias of NER almost completely and resulted in a significant increase of UV sensitivity of cells in a uvdeDelta background. We suggest that the combination of transcription-coupled repair of NER and rapid UVER contributes to UV survival in growing S. pombe cells, which is accomplished by transcription-coupled repair and GGR in other organisms.
Collapse
Affiliation(s)
- S Yasuhira
- Institute of Development, Aging, and Cancer, Tohoku University, Seiryomachi 4-1, Aoba-Ku, Sendai 980-8575, Japan.
| | | | | |
Collapse
|
358
|
Hara R, Selby CP, Liu M, Price DH, Sancar A. Human transcription release factor 2 dissociates RNA polymerases I and II stalled at a cyclobutane thymine dimer. J Biol Chem 1999; 274:24779-86. [PMID: 10455150 DOI: 10.1074/jbc.274.35.24779] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II stalled at a lesion in the transcribed strand is thought to constitute a signal for transcription-coupled repair. Transcription factors that act on RNA polymerase in elongation mode potentially influence this mode of repair. Previously, it was shown that transcription elongation factors TFIIS and Cockayne's syndrome complementation group B protein did not disrupt the ternary complex of RNA polymerase II stalled at a thymine cyclobutane dimer, nor did they enable RNA polymerase II to bypass the dimer. Here we investigated the effect of the transcription factor 2 on RNA polymerase II and RNA polymerase I stalled at thymine dimers. Transcription factor 2 is known to release transcripts from RNA polymerase II early elongation complex generated by pulse-transcription. We found that factor 2 (which is also called release factor) disrupts the ternary complex of RNA polymerase II at a thymine dimer and surprisingly exerts the same effect on RNA polymerase I. These findings show that in mammalian cells a RNA polymerase I or RNA polymerase II transcript truncated by a lesion in the template strand may be discarded unless repair is accomplished rapidly by a mechanism that does not displace stalled RNA polymerases.
Collapse
Affiliation(s)
- R Hara
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
359
|
Villard L, Fontès M, Ewbank JJ. Characterization of xnp-1, a Caenorhabditis elegans gene similar to the human XNP/ATR-X gene. Gene 1999; 236:13-9. [PMID: 10433961 DOI: 10.1016/s0378-1119(99)00279-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the characterization of a new Caenorhabditis elegans gene, xnp-1, that encodes the closest known non-mammalian relative of the human XNP/ATR-X protein. Mutations in the corresponding gene lead to mental retardation in humans. The nematode gene is composed of 10 exons, and we show that a 4.3kb transcript is produced from the xnp-1 locus. The 1359 residue XNP-1 protein is 33.6% identical and 52.2% similar to the human XNP/ATR-X protein. In two regions of more than 250 amino acids, the proteins display 70% identity. The human and nematode proteins are putative DNA helicases and contain the seven characteristic domains of this family of proteins. In addition to the fact that similar proteins are encoded by the nematode and human gene, they share a partially identical genomic structure. These data indicate that xnp-1 and XNP/ATR-X have diverged from the same ancestral DNA helicase gene and may therefore have conserved similar functions at the cellular level.
Collapse
Affiliation(s)
- L Villard
- INSERM U491, Faculté de Médecine La Timone, 27 Bd. Jean Moulin, 13385, Marseille Cedex 5, France.
| | | | | |
Collapse
|
360
|
Day RS, Rasouli-Nia A, Meservy J, Lari SU, Dobler K, Tsunoda S, Miyakoshi J, Takebe H, Murray D. Decreased Host-Cell Reactivation of UV-lrradiated Adenovirus in Human Colon Tumor Cell Lines that Have Normal Post-UV Survival. Photochem Photobiol 1999. [DOI: 10.1111/j.1751-1097.1999.tb07992.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
361
|
Abstract
Recently, there has been a convergence of fields studying the processing of DNA, such as transcription, replication, and repair. This convergence has been centered around the packaging of DNA in chromatin. Chromatin structure affects all aspects of DNA processing because it modulates access of proteins to DNA. Therefore, a central theme has become the mechanism(s) for accessing DNA in chromatin. It seems likely that mechanisms involved in one of these processes may also be used in others. For example, the discovery of transcriptional coactivators with histone acetyltransferase activity and chromatin remodeling complexes has provided possible mechanisms required for efficient repair of DNA in chromatin.
Collapse
Affiliation(s)
- M Meijer
- Department of Biochemistry and biophysics, Washington State University, Pullman, USA
| | | |
Collapse
|
362
|
Schoor M, Schuster-Gossler K, Roopenian D, Gossler A. Skeletal dysplasias, growth retardation, reduced postnatal survival, and impaired fertility in mice lacking the SNF2/SWI2 family member ETL1. Mech Dev 1999; 85:73-83. [PMID: 10415348 DOI: 10.1016/s0925-4773(99)00090-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The mouse Etl1 gene encodes a nuclear protein belonging to the rapidly growing SNF2/SWI2 family. Members of this family are related to helicases and nucleic-acid-dependent ATPases and have functions in essential cellular processes such as transcriptional regulation, maintenance of chromosome stability and various aspects of DNA repair. The ETL1 protein is expressed from the two-cell stage onwards, throughout embryogenesis in a dynamic pattern with particularly high levels in the thymus, epithelia and the nervous system and in most adult tissues. As a first step to address the role of ETL1 in cells and during development, we inactivated the gene by homologous recombination. ES cells and mice lacking detectable ETL1 protein were viable, indicating that ETL1 is not essential for cell survival or for embryonic development. However, mutant mice showed retarded growth, peri/post natal lethality, reduced fertility and various defects in the sternum and vertebral column. Expressivity and penetrance of all observed phenotypes were influenced by the genetic background. Isogenic 129Sv(Pas) mice lacking ETL1 had a severely reduced thoracic volume, which might lead to respiratory failure and could account for the high incidence of perinatal death on this genetic background.
Collapse
Affiliation(s)
- M Schoor
- Stanford University, School of Medicine, Department of Developmental Biology, Stanford, CA 94305-5427, USA.
| | | | | | | |
Collapse
|
363
|
Clever B, Schmuckli-Maurer J, Sigrist M, Glassner BJ, Heyer WD. Specific negative effects resulting from elevated levels of the recombinational repair protein Rad54p in Saccharomyces cerevisiae. Yeast 1999; 15:721-40. [PMID: 10398342 DOI: 10.1002/(sici)1097-0061(19990630)15:9<721::aid-yea414>3.0.co;2-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RAD54 is an important gene in the RAD52 group that controls recombinational repair of DNA damage in Saccharomyces cerevisiae. Rad54p is a DNA-dependent ATPase and shares seven conserved sequence motifs with proteins of the Swi2p/Snf2p family. Genetic analysis of mutations in motif IA, the putative ATP-binding fold of Rad54p, demonstrated the functional importance of this motif. Overexpression of these mutant proteins resulted in strong, dominant-negative effects on cell survival. High levels of full-length wild-type Rad54p or specific parts of Rad54p also resulted in negative effects, dependent on the ploidy of the host cell. This differential effect was not under a/alpha mating-type control. Deletion of the RAD54 gene led to a small but significant increase in the mutation rate. However, the negative overexpression effects in haploid cells could not be explained by an accumulation of (recessive) lethal mutations. All negative overexpression effects were found to be enhanced under genotoxic stress. We suggest that the negative overexpression effects are the result of unbalanced protein-protein interactions, indicating that Rad54p is involved in multiple interactions, dependent on the physiological situation. Diploid wild-type cells contained an estimated 7000 Rad54p molecules/cell, whereas haploid cells about 3500/cell. Rad54p levels were highest in actively growing cells compared to stationary phase cells. Rad54 protein levels were found to be elevated after DNA damage.
Collapse
Affiliation(s)
- B Clever
- Institute for General Microbiology, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
364
|
Reinberg D, Orphanides G, Ebright R, Akoulitchev S, Carcamo J, Cho H, Cortes P, Drapkin R, Flores O, Ha I, Inostroza JA, Kim S, Kim TK, Kumar P, Lagrange T, LeRoy G, Lu H, Ma DM, Maldonado E, Merino A, Mermelstein F, Olave I, Sheldon M, Shiekhattar R, Zawel L. The RNA polymerase II general transcription factors: past, present, and future. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:83-103. [PMID: 10384273 DOI: 10.1101/sqb.1998.63.83] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- D Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 0885, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Hiramoto T, Nakanishi T, Sumiyoshi T, Fukuda T, Matsuura S, Tauchi H, Komatsu K, Shibasaki Y, Inui H, Watatani M, Yasutomi M, Sumii K, Kajiyama G, Kamada N, Miyagawa K, Kamiya K. Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer. Oncogene 1999; 18:3422-6. [PMID: 10362364 DOI: 10.1038/sj.onc.1202691] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Association of breast tumor susceptibility gene products BRCA1 and BRCA2 with the RAD51 recombination protein suggested that cancer could arise through defects in recombination. The identification of NBS1, responsible for Nijmegen breakage syndrome, from the MRE11/RAD50 recombination protein complex also supports this hypothesis. However, our mutation analysis revealed that known members of the RAD52 epistasis group are rarely mutated in human primary cancer. Here we describe the isolation of a novel member of the SNF2 superfamily, characterized with sequence motifs similar to those in DNA and RNA helicases. The gene, designated RAD54B, is significantly homologous to the RAD54 recombination gene. The expression of RAD54B was high in testis and spleen, which are active in meiotic and mitotic recombination. These findings suggest that RAD54B may play an active role in recombination processes in concert with other members of the RAD52 epistasis group. RAD54B maps to human chromosome 8q21.3-q22 in a region associated with cancer-related chromosomal abnormalities. Homozygous mutations at highly conserved positions of RAD54B were observed in human primary lymphoma and colon cancer. These findings suggest that some cancers arise through alterations of the RAD54B function.
Collapse
Affiliation(s)
- T Hiramoto
- Department of Molecular Pathology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
366
|
Matsuda M, Miyagawa K, Takahashi M, Fukuda T, Kataoka T, Asahara T, Inui H, Watatani M, Yasutomi M, Kamada N, Dohi K, Kamiya K. Mutations in the RAD54 recombination gene in primary cancers. Oncogene 1999; 18:3427-30. [PMID: 10362365 DOI: 10.1038/sj.onc.1202692] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Association of a recombinational repair protein RAD51 with tumor suppressors BRCA1 and BRCA2 suggests that defects in homologous recombination are responsible for tumor formation. Also recent findings that a protein associated with the MRE11/RAD50 repair complex is mutated in Nijmegen breakage syndrome characterized by increased cancer incidence and ionizing radiation sensitivity strongly support this idea. However, the direct roles of BRCA proteins and the protein responsible for NBS in recombinational repair are not clear though they are associated with the recombinational repair complexes. Since RAD51 forms a complex with other members of the RAD52 epistasis group and with BRCA proteins, it is reasonable to ask if alterations of members of the RAD52 epistasis group lead to tumor development. Here we describe missense mutations at functional regions of RAD54 and the absence of the wild-type RAD54 expression resulting from aberrant splicing in primary cancers. Since RAD54 is a recombinational protein associated with RAD51, this is the first genetic evidence that cancer arises from a defect in repair processes involving homologous recombination.
Collapse
Affiliation(s)
- M Matsuda
- Department of Molecular Pathology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Leadon SA. Transcription-coupled repair of DNA damage: unanticipated players, unexpected complexities. Am J Hum Genet 1999; 64:1259-63. [PMID: 10205254 PMCID: PMC1377859 DOI: 10.1086/302390] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- S A Leadon
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC 27599-7512, USA.
| |
Collapse
|
368
|
Colella S, Nardo T, Mallery D, Borrone C, Ricci R, Ruffa G, Lehmann AR, Stefanini M. Alterations in the CSB gene in three Italian patients with the severe form of Cockayne syndrome (CS) but without clinical photosensitivity. Hum Mol Genet 1999; 8:935-41. [PMID: 10196384 DOI: 10.1093/hmg/8.5.935] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cockayne syndrome (CS) is a rare autosomal recessive disorder characterized by postnatal growth failure, mental retardation and otherwise clinically heterogeneous features which commonly include cutaneous photosensitivity. Cultured cells from sun-sensitive CS patients are hypersensitive to ultraviolet (UV) light and, following UV irradiation, are unable to restore RNA synthesis rates to normal levels. This has been attributed to a specific deficiency in CS cells in the ability to carry out preferential repair of damage in actively transcribed regions of DNA. We report here a cellular and molecular analysis of three Italian CS patients who were of particular interest because none of them was sun-sensitive, despite showing most of the features of the severe form of CS, including the characteristic cellular sensitivity to UV irradiation. They all were altered in the CSB gene. The genetically related patients CS1PV and CS3PV were homozygous for the C1436T transition resulting in the change Arg453opal. Patient CS2PV was a compound heterozygote for two new causative mutations, insertions of an A at position 1051 and of TGTC at 2053, leading to truncated proteins of 367 and 681 amino acids. These mutations result in severely truncated proteins, as do many of those that we previously identified in several sun-sensitive CS-B patients. These observations confirm that the CSB gene is not essential for viability and cell proliferation, an important issue to be considered in any speculation on the recently proposed additional function of the CSB protein in transcription. Our investigations provide data supporting the notion that other factors, besides the site of the mutation, influence the type and severity of the CS clinical features.
Collapse
Affiliation(s)
- S Colella
- Istituto di Genetica Biochimica ed Evoluzionistica CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
369
|
Harada YN, Shiomi N, Koike M, Ikawa M, Okabe M, Hirota S, Kitamura Y, Kitagawa M, Matsunaga T, Nikaido O, Shiomi T. Postnatal growth failure, short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene. Mol Cell Biol 1999; 19:2366-72. [PMID: 10022922 PMCID: PMC84028 DOI: 10.1128/mcb.19.3.2366] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The xeroderma pigmentosum group G (XP-G) gene (XPG) encodes a structure-specific DNA endonuclease that functions in nucleotide excision repair (NER). XP-G patients show various symptoms, ranging from mild cutaneous abnormalities to severe dermatological impairments. In some cases, patients exhibit growth failure and life-shortening and neurological dysfunctions, which are characteristics of Cockayne syndrome (CS). The known XPG protein function as the 3' nuclease in NER, however, cannot explain the development of CS in certain XP-G patients. To gain an insight into the functions of the XPG protein, we have generated and examined mice lacking xpg (the mouse counterpart of the human XPG gene) alleles. The xpg-deficient mice exhibited postnatal growth failure and underwent premature death. Since XPA-deficient mice, which are totally defective in NER, do not show such symptoms, our data indicate that XPG performs an additional function(s) besides its role in NER. Our in vitro studies showed that primary embryonic fibroblasts isolated from the xpg-deficient mice underwent premature senescence and exhibited the early onset of immortalization and accumulation of p53.
Collapse
Affiliation(s)
- Y N Harada
- The Genome Research Group, National Institute of Radiological Sciences, Inage-ku, Chiba 263, Osaka 565, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Scott AD, Neishabury M, Jones DH, Reed SH, Boiteux S, Waters R. Spontaneous mutation, oxidative DNA damage, and the roles of base and nucleotide excision repair in the yeast Saccharomyces cerevisiae. Yeast 1999; 15:205-18. [PMID: 10077187 DOI: 10.1002/(sici)1097-0061(199902)15:3<205::aid-yea361>3.0.co;2-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The OGG1 gene of Saccharomyces cerevisiae encodes a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine (8-OxoG). When compared to wild-type, ogg1 mutants show an increase in the frequency of GC to TA transversions, indicating a role for Ogg1 in the repair of 8-OxoG. Here we report an increased frequency of forward mutation to canavanine resistance in mutants defective in the nucleotide excision repair (NER) gene RAD14. This was not increased further in strains additionally defective in OGG1. However, when compared to strains solely defective in OGG1, ogg1radl4 mutants displayed an increase in spontaneous GC to TA transversions. Intriguingly, reversion of the lys1-1 ochre allele was not increased in rad14 mutants, suggesting that oxidative base damage may only represent a substrate for NER in certain regions of the genome. We also examined repair of oxidative DNA damage by transforming mutant strains with plasmid DNA treated with methylene blue plus visible light. Mutants defective in OGG1 showed no significant reduction in transformation efficiency compared with wild-type strains. In contrast, disruption of RAD14 reduced the efficiency of transformation, yet there was no further decrease in an ogg1rad14 mutant. This strongly supports a role for NER in the repair of oxidative base damage in yeast, and differs from similar experiments carried out in E. coli, where transformation efficiency is only reduced in mutants defective in both fpg and uvrA. Finally, the repair of Fpg-sensitive sites was examined at the MATalpha and HMLalpha mating type loci, and NER was found to play a role in their removal.
Collapse
Affiliation(s)
- A D Scott
- School of Biological Sciences, University of Wales Swansea, UK.
| | | | | | | | | | | |
Collapse
|
371
|
Bluyssen HA, Naus NC, van Os RI, Jaspers I, Hoeijmakers JH, de Klein A. Human and mouse homologs of the Schizosaccharomyces pombe rad17+ cell cycle checkpoint control gene. Genomics 1999; 55:219-28. [PMID: 9933569 DOI: 10.1006/geno.1998.5642] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Schizosaccharomyces pombe rad17+ cell cycle checkpoint control gene is required for S-phase and G2/M arrest in response to both DNA damage and incomplete DNA replication. We isolated and characterized the putative human (RAD17Sp) and mouse (mRAD17Sp) homologs of the S. pombe Rad17 (Rad17Sp) protein. The human RAD17Sp open reading frame (ORF) encodes a protein of 681 amino acids; the mRAD17Sp ORF codes for a protein of 688 amino acids. The mRAD17Sp messenger is highly expressed in the testis as a single 3-kb mRNA species. The human RAD17Sp and mRAD17Sp proteins are 24% identical and 46% similar to the S.pombe Rad17Sp protein. Sequence homology was also noted with the Saccharomyces cerevisiae Rad24Sc (which is the structural counterpart of S.pombe Rad17Sp) and structurally related polypeptides from Caenorhabditis elegans, Arabidopsis thaliana, Pyrococcus horikoshii, and Drosophila melanogaster. The degree of conservation between the mammalian RAD17Sp proteins and those of the other species is consistent with the evolutionary distance between the species, indicating that these proteins are most likely true counterparts. In addition, homology was found between the Rad17Sp homologs and proteins identified as components of mammalian replication factor C (RF-C)/activator 1, especially in several highly conserved RF-C-like domains including a "Walker A" motif. Using FISH and analysis of a panel of rodent-human cell hybrids, the human RAD17Sp gene (HGMW-approved symbol RAD17 could be localized on human chromosome 5q13-q14, a region implicated in the etiology of small cell lung carcinoma, non-small-cell lung carcinoma, duodenal adenocarcinoma, and head and neck squamous cell carcinoma. Our results suggest that the structure and function of the checkpoint "rad" genes in the G2/M checkpoint pathway are evolutionary conserved between yeast and higher eukaryotes.
Collapse
Affiliation(s)
- H A Bluyssen
- MGC-Department of Cell Biology and Genetics, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
372
|
Yin KJ, Sun FY. Effect of dextromethorphan, a NMDA antagonist, on DNA repair in rat photochemical thrombotic cerebral ischemia. Brain Res 1999; 815:29-35. [PMID: 9974119 DOI: 10.1016/s0006-8993(98)01071-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Photochemical thrombotic ischemia model was used to study the possible roles of excision repair cross-complementing group 6 (ERCC6), a DNA repair gene, in the neuroprotection of dextromethorphan (DM), a NMDA antagonist, in ischemic brain injury. The results showed that no obvious ERCC6 mRNA expression was found in the perifocal area of irradiated cerebral cortex before 24 h postischemia. Then, the number of ERCC6 mRNA positive cells gradually enhanced, and attained a peak value at 72 h after light irradiation, which followed a declined tendency at 7-day postlesion. These results suggest that DNA repair gene ERCC6 mRNA expression in the perifocal area may be involved in the pathophysiological processes following the photochemical thrombotic cerebral ischemia. By the administration of DM, we observed that it can significantly upregulate the expression of ERCC6 mRNA in the perifocal area at 48 h after ischemic event. The neuroprotective mechanisms of DM may be related to the upregulation of DNA repair gene ERCC6 mRNA.
Collapse
Affiliation(s)
- K J Yin
- Department of Neurobiology, Shanghai Medical University, China
| | | |
Collapse
|
373
|
Frit P, Bergmann E, Egly JM. Transcription factor IIH: a key player in the cellular response to DNA damage. Biochimie 1999; 81:27-38. [PMID: 10214907 DOI: 10.1016/s0300-9084(99)80035-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
TFIIH (transcription factor IIH) is a multiprotein complex consisting of nine subunits initially characterized as a basal transcription factor required for initiation of protein-coding RNA synthesis. TFIIH was the first transcription factor shown to harbor several enzymatic activities, likely indicative of functional complexity. This intricacy was further emphasized with the cloning of the genes encoding the different subunits which disclosed direct connections between transcription, DNA repair and cell cycle regulation. In this review, we emphasize those functions of TFIIH involved in DNA repair, as well as their relationship to TFIIH's roles in transcription, cell cycle control and apoptosis. These connections may prove to be essential for the cellular response to DNA damage.
Collapse
Affiliation(s)
- P Frit
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université Louis-Pasteur, Strasbourg, Illkirch, France
| | | | | |
Collapse
|
374
|
Abstract
Nucleotide excision repair is both a 'wide spectrum' DNA repair pathway and the sole system for repairing bulky damages such as UV lesions or benzo[a]pyrene adducts. The mechanisms of nucleotide excision repair are known in considerable detail in Escherichia coli. Similarly, in the past 5 years important advances have been made towards understanding the biochemical mechanisms of excision repair in humans. The overall strategy of the repair is the same in the two species: damage recognition through a multistep mechanism involving a molecular matchmaker and an ATP-dependent unwinding of the damaged duplex; dual incisions at both sides of the lesion by two different nucleases, the 3' incision being followed by the 5'; removal of the damaged oligomer; resynthesis of the repair patch, whose length matches the gap size. Despite these similarities, the two systems are biochemically different and do not even share structural homology. E. coli excinuclease employs three proteins in contrast to 16/17 polypeptides in man; the excised fragment is longer in man: the procaryotic excinuclease is not able by itself to remove the excised oligomer whereas the human enzyme does. Thus, the excinuclease mode of action is well conserved throughout evolution, but not the biochemical tools: this represents a case of evolutionary convergence.
Collapse
Affiliation(s)
- C Petit
- University of North Carolina at Chapel Hill, School of Medicine, Department of Biochemistry and Biophysics, 27599-7260, USA
| | | |
Collapse
|
375
|
Abstract
Some types of damage to cellular DNA have been shown to interfere with the essential transactions of replication and transcription. Not only may the translocation of the polymerase be arrested at the site of the lesion but the bound protein may encumber recognition of the lesion by repair enzymes. In the case of transcription a subpathway of excision repair, termed transcription-coupled repair (TCR) has been shown to operate on lesions in the transcribed strands of expressed genes in bacteria, yeast, mammalian cells and a number of other organisms. Certain genes in mammalian cells (e.g., CSA and CSB) have been uniquely implicated in TCR while others (e.g., XPC-HR23 and XPE) have been shown to operate in the global genomic pathway of nucleotide excision repair, but not in TCR. In order to understand the mechanism of TCR it is important to learn how an RNA polymerase elongation complex interacts with a damaged DNA template. That relationship is explored for different lesions and different RNA polymerase systems in this article.
Collapse
Affiliation(s)
- S Tornaletti
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA
| | | |
Collapse
|
376
|
Cappelli E, Carrozzino F, Abbondandolo A, Frosina G. The DNA helicases acting in nucleotide excision repair, XPD, CSB and XPB, are not required for PCNA-dependent repair of abasic sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:325-30. [PMID: 9914510 DOI: 10.1046/j.1432-1327.1999.00050.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA repair of abasic sites is accomplished in mammalian cells by two distinct base excision repair (BER) pathways: a single nucleotide insertion pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway involving a resynthesis patch of 2-10 nucleotides 3' to the lesion. The latter pathway shares some enzymatic components with the nucleotide excision repair (NER) pathway acting on damage induced by ultraviolet light: both pathways are strictly dependent on PCNA and several observations suggest that the polymerization and ligation phases may be carried out by common enzymatic activities (DNA polymerase delta/epsilon and DNA ligase I). Furthermore, it has been postulated that the transcription-NER coupling factor Cockayne syndrome B has a role in BER. We have investigated whether three NER proteins endowed with DNA helicase activities (the xeroderma pigmentosum D and B gene products and the Cockayne syndrome B gene product) may also be involved in repair of natural abasic sites, by using the Chinese hamster ovary mutant cell lines UV5, UV61 and 27-1. No defect of either the PCNA-dependent or the single nucleotide insertion pathways could be observed in UV5, UV61 or 27-1 mutant cell extracts, thus showing that the partial enzymatic overlap between PCNA-dependent BER and NER does not extend to DNA helicase activities.
Collapse
Affiliation(s)
- E Cappelli
- DNA Repair Unit, CSTA Laboratory - Instituto Nazionale Ricera Cancro, Genova, Italy
| | | | | | | |
Collapse
|
377
|
Abstract
The removal of DNA damage from the eukaryotic genome requires DNA repair enzymes to operate within the complex environment of chromatin. We review the evidence for chromatin rearrangements during nucleotide excision repair and discuss the extent and possible molecular mechanisms of these rearrangements, focusing on events at the nucleosome level of chromatin structure.
Collapse
Affiliation(s)
- J G Moggs
- Dynamique de la Chromatine, Institut Curie, Section de Recherche, UMR 144, Paris, France
| | | |
Collapse
|
378
|
Bluyssen HA, van Os RI, Naus NC, Jaspers I, Hoeijmakers JH, de Klein A. A human and mouse homolog of the Schizosaccharomyces pombe rad1+ cell cycle checkpoint control gene. Genomics 1998; 54:331-7. [PMID: 9828137 DOI: 10.1006/geno.1998.5582] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Schizosaccharomyces pombe rad1+ cell cycle checkpoint control gene is required for S-phase and G2/M arrest in response to both DNA damage and incomplete DNA replication. We isolated and characterized the putative human RAD1 (hRAD1) and mouse RAD1 (mRAD1) homologs of the S. pombe Rad1 (Rad1) protein. The human RAD1 open reading frame (ORF) encodes a protein of 282 amino acids; the mRAD1 ORF codes for a protein of 280 amino acids. The human RAD1 and mRAD1 messengers are highly expressed in the testis as different mRNA species (varying from 1.0, 1.4, 1.5, to 3.0 kb). The hRAD1 and mRAD1 proteins are 30% identical and 56% similar to the S. pombe Rad1 protein. Sequence homology was also noted with the Saccharomyces cerevisiae Rad17p, the putative 3'-5' exonuclease Rec1 from Ustilago maydis, and the structurally related polypeptides from Arabidopsis thaliana and Caenorhabditis elegans. The degree of conservation between the mammalian RAD1 proteins and those of the other species is consistent with the evolutionary distance between the species, implicating that these proteins are most likely true counterparts. Together, this suggests that the structure and function of the checkpoint "rad" genes in the G2/M checkpoint pathway are evolutionarily conserved between yeasts and higher eukaryotes. The human RAD1 gene could be localized on human chromosome 5p13, a region that has been implicated in the etiology of small cell lung carcinomas, squamous cell carcinomas, adenocarcinomas, and bladder cancer.
Collapse
Affiliation(s)
- H A Bluyssen
- MGC-Department of Cell Biology and Genetics, Erasmus University Rotterdam, Rotterdam, 3000 DR, The Netherlands.
| | | | | | | | | | | |
Collapse
|
379
|
Tantin D. RNA polymerase II elongation complexes containing the Cockayne syndrome group B protein interact with a molecular complex containing the transcription factor IIH components xeroderma pigmentosum B and p62. J Biol Chem 1998; 273:27794-9. [PMID: 9774388 DOI: 10.1074/jbc.273.43.27794] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor IIH (TFIIH) is involved both in transcription initiation by RNA polymerase II and in nucleotide excision-repair. Nucleotide excision-repair occurs at higher rates in transcriptionally active regions of the genome. Genetic studies indicate that this transcription-coupled repair is dependent on the Cockayne syndrome group A and B proteins, as well as TFIIH subunits. Previous work indicated that Cockayne syndrome group B interacts with RNA polymerase II molecules engaged in ternary complexes containing DNA and RNA. Evidence presented here indicates that this complex can interact with a factor containing the TFIIH core subunits p62 and xeroderma pigmentosum subunit B/excision repair cross-complementing 3. The targeting of TFIIH or a TFIIH-like repair factor to transcriptionally active DNA indicates a potential mechanism for transcription-coupled repair in human cells.
Collapse
Affiliation(s)
- D Tantin
- UCLA Molecular Biology Institute, Los Angeles, California 90095-1570, USA.
| |
Collapse
|
380
|
Guo ZM, Van Remmen H, Wu WT, Richardson A. Effect of cAMP-induced transcription on the repair of the phosphoenolpyruvate carboxykinase gene by hepatocytes isolated from young and old rats. Mutat Res 1998; 409:37-48. [PMID: 9806501 DOI: 10.1016/s0921-8777(98)00041-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The repair of UV-induced DNA damage in the phosphoenolpyruvate carboxykinase (PEPCK) gene was studied in primary cultures of hepatocytes isolated from young (6-month-old) and old (24-month-old) rats fed ad libitum and old rats fed a calorie-restricted diet. Incubation of the hepatocytes with cAMP rapidly induced PEPCK transcription and mRNA levels 4- to 5-fold. In absence of cAMP, the repair of the PEPCK fragment was similar in cultured hepatocytes isolated from young and old rats fed ad libitum. However, cAMP significantly increased the percentage of cyclobutane pyrimidine dimers (CPDs) removed from the PEPCK fragment 12 h after UV-irradiation in cultured hepatocytes isolated from young rats fed ad libitum. This increase was due to an increase in the repair of the transcribed strand of the PEPCK fragment. In contrast, cAMP did not increase the repair of the PEPCK fragment in cultured hepatocytes isolated from old rats fed ad libitum in spite of an increase in PEPCK transcription. Thus, it appears that the coupling of transcription and DNA repair is compromised in cultured hepatocytes isolated from old rats fed ad libitum. However, cultured hepatocytes isolated from old rats fed a calorie-restricted diet showed an induction in the rate of repair of the transcribed strand of the PEPCK fragment by cAMP that was similar to hepatocytes isolated from young rats fed ad libitum.
Collapse
Affiliation(s)
- Z M Guo
- Department of Physiology, University of Texas Health Science Center, San Antonio 78284, USA
| | | | | | | |
Collapse
|
381
|
Kobayashi T, Takeuchi S, Saijo M, Nakatsu Y, Morioka H, Otsuka E, Wakasugi M, Nikaido O, Tanaka K. Mutational analysis of a function of xeroderma pigmentosum group A (XPA) protein in strand-specific DNA repair. Nucleic Acids Res 1998; 26:4662-8. [PMID: 9753735 PMCID: PMC147903 DOI: 10.1093/nar/26.20.4662] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To analyze the function of the xeroderma pigmentosum group A (XPA) protein in strand-specific DNA repair, we examined repair of UV-induced cyclobutane pyrimidine dimer (CPD) in transcribed and non-transcribed strands of the dihydrofolate reductase gene of xeroderma pigmentosum group A (XP-A) cell line (XP12ROSV) which was transfected with various types of mutant XPA cDNA. The transfectant overexpressing mutant XPA with a defect in the interaction with either ERCC1, replication protein A (RPA), or general transcription factor TFIIH, showed more or less decreased repair of CPD in each strand in parallel, while in the transfectant overexpressing R207G (Arg207to Gly) mutant XPA derived from XP129, a UV-resistant XP12ROSV revertant, the rate of CPD repair was almost normal in each strand. We also examined the dose responses of the XPA protein on CPD repair in each strand by the modulation of the expression levels of wild-type or R207G mutant XPA using an inducible expression system, LacSwitchtrade mark promoter. There were good correlations between the rate of CPD repair in each strand and the amount of XPA protein produced in these Lac cells. Our results indicate that the XPA protein is equally important for the CPD repair in both transcribed and non-transcribed strands and that the R207G mutation found in XP129 may not be responsible for a selective defect in CPD repair in the non-transcribed strand in XP129.
Collapse
Affiliation(s)
- T Kobayashi
- Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
382
|
Liu M, Xie Z, Price DH. A human RNA polymerase II transcription termination factor is a SWI2/SNF2 family member. J Biol Chem 1998; 273:25541-4. [PMID: 9748214 DOI: 10.1074/jbc.273.40.25541] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We obtained protein sequence information from Drosophila factor 2, an ATP-dependent RNA polymerase II transcription termination factor, and discovered that it was identical to a SWI2/SNF2 family member called lodestar. Portions of putative human and Caenorhabditis elegans homologues were found in the sequence data bases and a complete cDNA for the human factor was generated using polymerase chain reaction techniques. Recombinant human factor 2 was produced in a baculovirus expression system, purified, and characterized. Similar to the authentic Drosophila factor, the human factor displayed a strong double-stranded DNA-dependent ATPase activity that was inhibited by single-stranded DNA and exhibited RNA polymerase II termination activity. Both factors were able to work on elongation complexes from either species. We discuss the mechanism of termination by factor 2 and the implications for the role of factor 2 in cellular activities.
Collapse
Affiliation(s)
- M Liu
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
383
|
Miyauchi-Hashimoto H, Akaeda T, Maihara T, Ikenaga M, Horio T. Cockayne syndrome without typical clinical manifestations including neurologic abnormalities. J Am Acad Dermatol 1998; 39:565-70. [PMID: 9777763 DOI: 10.1016/s0190-9622(98)70005-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although patients with mild symptoms of atypical Cockayne syndrome (CS) have been described, there has not been a report of a patient with CS whose only clinical manifestation was cutaneous photosensitivity. Cells from patients with CS show UV sensitivity, reduced recovery of RNA synthesis, but normal UV-induced unscheduled DNA synthesis. On the other hand, the patients with UV-sensitive syndrome have only cutaneous photosensitivity and skin freckles, whereas those cells respond to UV radiation in a similar fashion to the CS cells. We describe a patient with CS who showed only photosensitivity without typical clinical manifestations of CS, but his cells showed UV sensitivity, reduced recovery of RNA synthesis, and normal unscheduled DNA synthesis after UV radiation similar to CS cells. Furthermore, the patient was assigned to complementation group B of CS on the basis of the results of complementation analysis. The present report suggests that CS has a wider spectrum than that considered previously.
Collapse
|
384
|
Reed E. Platinum-DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treat Rev 1998; 24:331-44. [PMID: 9861196 DOI: 10.1016/s0305-7372(98)90056-1] [Citation(s) in RCA: 293] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clinical studies performed by several groups suggest that platinum-DNA adduct--measured in malignant or non-malignant cells from cancer patients--may be an important marker for clinical biological effect of platinum-based chemotherapy. DNA repair is clearly an important effector of resistance to platinum-based DNA-damaging agents in tissue culture, although its role in effecting clinical resistance to these agents is not completely clear. In recent years, it has become apparent that DNA repair is an extremely complex process. Processes within DNA repair that may contribute to one or more drug resistance phenotypes include 0-6-alkytransferase activity, base excision repair, mismatch repair, nucleotide excision repair (NER), and gene specific repair. Clearly, several of these processes may concurrently show increased activity within any single cell, or tumor, at any one time. For platinum compounds, in vitro data clearly show that NER is the DNA repair pathway responsible for the repair of cisplatin-DNA damage. One critical gene within NER is ERCC1. Data exist in human ovarian cancer and in human gastric cancer that ERCC1 may be a useful marker for clinical drug resistance when platinum-based systemic chemotherapy is utilized. Although the data suggest that the relative ERCC1 mRNA level may be a good marker for NER activity in human ovarian cancer, it is unclear whether expression of this gene has any relationship to other pathways of DNA repair.
Collapse
Affiliation(s)
- E Reed
- Medical Ovarian Cancer Section, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
385
|
Wang L, Hunt KE, Martin GM, Oshima J. Structure and function of the human Werner syndrome gene promoter: evidence for transcriptional modulation. Nucleic Acids Res 1998; 26:3480-5. [PMID: 9671808 PMCID: PMC147734 DOI: 10.1093/nar/26.15.3480] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Werner syndrome (WS) is an autosomal recessive segmental progeroid syndrome caused by mutations in a novel member ( WRN ) of the RecQ family of helicases. Somatic WS cells are hypermutable and have elongated S phases, suggesting possible defects in DNA replication and/or repair. As an initial approach to the investigation of how this locus might be responsive to DNA damage, we determined the structure of the human WRN promoter. The WRN promoter region has two transcription initiation sites and exhibits several features characteristic of so-called constitutive promoters, including the absence of TATA and CAAT boxes. A luciferase reporter assay revealed that the upstream promoter was used 2-10-fold less frequently than the downstream promoter, the variation being a function of cell type. The activity of the WRN promoter was dramatically reduced in cells from WS patients. The reduction of activity was not seen in three other promoters tested, including one TATA-less promoter and one TATA-containing promoter. This is consistent with the presence of a positive regulatory mechanism of WRN expression.
Collapse
Affiliation(s)
- L Wang
- Department of Genetics and Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
386
|
Jacobs H, Fukita Y, van der Horst GT, de Boer J, Weeda G, Essers J, de Wind N, Engelward BP, Samson L, Verbeek S, de Murcia JM, de Murcia G, te Riele H, Rajewsky K. Hypermutation of immunoglobulin genes in memory B cells of DNA repair-deficient mice. J Exp Med 1998; 187:1735-43. [PMID: 9607915 PMCID: PMC2212309 DOI: 10.1084/jem.187.11.1735] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1997] [Revised: 02/23/1998] [Indexed: 01/02/2023] Open
Abstract
To investigate the possible involvement of DNA repair in the process of somatic hypermutation of rearranged immunoglobulin variable (V) region genes, we have analyzed the occurrence, frequency, distribution, and pattern of mutations in rearranged Vlambda1 light chain genes from naive and memory B cells in DNA repair-deficient mutant mouse strains. Hypermutation was found unaffected in mice carrying mutations in either of the following DNA repair genes: xeroderma pigmentosum complementation group (XP)A and XPD, Cockayne syndrome complementation group B (CSB), mutS homologue 2 (MSH2), radiation sensitivity 54 (RAD54), poly (ADP-ribose) polymerase (PARP), and 3-alkyladenine DNA-glycosylase (AAG). These results indicate that both subpathways of nucleotide excision repair, global genome repair, and transcription-coupled repair are not required for somatic hypermutation. This appears also to be true for mismatch repair, RAD54-dependent double-strand-break repair, and AAG-mediated base excision repair.
Collapse
Affiliation(s)
- H Jacobs
- Basel Institute for Immunology, CH-4005 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Abstract
Werner's syndrome (WS) is an inherited disease with clinical symptoms which resemble premature aging. The Werner's syndrome gene (WRN), which is located on human chromosome 8p12, encodes a predicted protein of 1432 amino acids and shows significant similarity to DNA helicases. We have cloned the full-length mouse cDNA homologue of the human WRN gene encoding a predicted protein of 1320 amino acids and have obtained a full-length 70 kb genomic clone containing the moWRN gene. This gene has been mapped to chromosome 8A3 in mice. The expression of the moWRN gene was increased during apoptosis after IL-2 deprivation, and decreased in the spleen of aged mice. Lymphoid cells isolated from a patient with WS exhibited increased apoptosis after incubation with anti-Fas but not after incubation with the topoisomerase inhibitor VP16. RNase protection reviled dysregulation of the ICE family of apoptosis molecules in the WS cell line. These results indicate that the WS helicase is involved in certain pathways of apoptosis, and defective WS gene expression leads to accumulation of cells that are highly susceptibility to Fas-induced apoptosis.
Collapse
Affiliation(s)
- J Wu
- University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, 35294-0007, USA
| | | | | |
Collapse
|
388
|
Citterio E, Rademakers S, van der Horst GT, van Gool AJ, Hoeijmakers JH, Vermeulen W. Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein. J Biol Chem 1998; 273:11844-51. [PMID: 9565609 DOI: 10.1074/jbc.273.19.11844] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cockayne syndrome (CS) is a nucleotide excision repair disorder characterized by sun (UV) sensitivity and severe developmental problems. Two genes have been shown to be involved: CSA and CSB. Both proteins play an essential role in preferential repair of transcription-blocking lesions from active genes. In this study we report the purification and characterization of baculovirus-produced HA-His6-tagged CSB protein (dtCSB), using a highly efficient three-step purification protocol. Microinjection of dtCSB protein in CS-B fibroblasts shows that it is biologically functional in vivo. dtCSB exhibits DNA-dependent ATPase activity, stimulated by naked as well as nucleosomal DNA. Using structurally defined DNA oligonucleotides, we show that double-stranded DNA and double-stranded DNA with partial single-stranded character but not true single-stranded DNA act as efficient cofactors for CSB ATPase activity. Using a variety of substrates, no overt DNA unwinding by dtCSB could be detected, as found with other SNF2/SWI2 family proteins. By site-directed mutagenesis the invariant lysine residue in the NTP-binding motif of CSB was substituted with a physicochemically related arginine. As expected, this mutation abolished ATPase activity. Surprisingly, the mutant protein was nevertheless able to partially rescue the defect in recovery of RNA synthesis after UV upon microinjection in CS-B fibroblasts. These results indicate that integrity of the conserved nucleotide-binding domain is important for the in vivo function of CSB but that also other properties independent from ATP hydrolysis may contribute to CSB biological functions.
Collapse
Affiliation(s)
- E Citterio
- Medical Genetics Centre Department of Cell Biology and Genetics, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
389
|
Sack SZ, Liu Y, German J, Green NS. Somatic hypermutation of immunoglobulin genes is independent of the Bloom's syndrome DNA helicase. Clin Exp Immunol 1998; 112:248-54. [PMID: 9649187 PMCID: PMC1904964 DOI: 10.1046/j.1365-2249.1998.00575.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/1998] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin gene somatic mutation leads to antibody affinity maturation through the introduction of multiple point mutations in the antigen binding site. No genes have as yet been identified that participate in this process. Bloom's syndrome (BS) is a chromosomal breakage disorder with a mutator phenotype. Most affected individuals exhibit an immunodeficiency of undetermined aetiology. The gene for this disorder, BLM, has recently been identified as a DNA helicase. If this gene were to play a role in immunoglobulin mutation, then people with BS may lack normally mutated antibodies. Since germ-line, non-mutated immunoglobulin genes generally produce low affinity antibodies, impaired helicase activity might be manifested as the immunodeficiency found in BS. Therefore, we asked whether BLM is specifically involved in immunoglobulin hypermutation. Sequences of immunoglobulin variable (V) regions were analysed from small unsorted blood samples obtained from BS individuals and compared with germ-line sequences. BS V regions displayed the normal distribution of mutations, indicating that the defect in BS is not related to the mechanism of somatic mutation. These data strongly argue against BLM being involved in this process. The genetic approach to identifying the genes involved in immunoglobulin mutation will require further studies of DNA repair- and immunodeficient individuals.
Collapse
Affiliation(s)
- S Z Sack
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
390
|
You Z, Feaver WJ, Friedberg EC. Yeast RNA polymerase II transcription in vitro is inhibited in the presence of nucleotide excision repair: complementation of inhibition by Holo-TFIIH and requirement for RAD26. Mol Cell Biol 1998; 18:2668-76. [PMID: 9566886 PMCID: PMC110646 DOI: 10.1128/mcb.18.5.2668] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Saccharomyces cerevisiae transcription factor IIH (TFIIH) is essential both for transcription by RNA polymerase II (RNAP II) and for nucleotide excision repair (NER) of damaged DNA. We have established cell extracts which support RNAP II transcription from the yeast CYC1 promoter or NER of transcriptionally silent damaged DNA on independent plasmid templates and substrates. When plasmid templates and substrates for both processes are simultaneously incubated with these extracts, transcription is significantly inhibited. This inhibition is strictly dependent on active NER and can be complemented with purified holo-TFIIH. These results suggest that in the presence of active NER, TFIIH is preferentially mobilized from the basal transcription machinery for use in NER. Inhibition of transcription in the presence of active NER requires the RAD26 gene, the yeast homolog of the human Cockayne syndrome group B gene (CSB).
Collapse
Affiliation(s)
- Z You
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | |
Collapse
|
391
|
Sukhodolets MV, Jin DJ. RapA, a novel RNA polymerase-associated protein, is a bacterial homolog of SWI2/SNF2. J Biol Chem 1998; 273:7018-23. [PMID: 9507009 DOI: 10.1074/jbc.273.12.7018] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel Escherichia coli RNA polymerase (RNAP)-associated protein, an ATPase named RapA. Almost all of this 110-kDa protein in the cell copurifies with RNAP holoenzyme as a 1:1 complex. Purified to homogeneity, RapA also forms a stable complex with RNAP, as if it were a subunit of RNAP. The ATPase activity of RapA is stimulated by binding to RNAP, and thus, RapA and RNAP interact physically as well as functionally. Interestingly, RapA is a homolog of the SWI/SNF family of eukaryotic proteins whose members are involved in transcription activation, nucleosome remodeling, and DNA repair.
Collapse
Affiliation(s)
- M V Sukhodolets
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
392
|
Xu H, Swoboda I, Bhalla PL, Sijbers AM, Zhao C, Ong EK, Hoeijmakers JH, Singh MB. Plant homologue of human excision repair gene ERCC1 points to conservation of DNA repair mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:823-9. [PMID: 9681020 DOI: 10.1046/j.1365-313x.1998.00081.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nucleotide excision repair (NER), a highly versatile DNA repair mechanism, is capable of removing various types of DNA damage including those induced by UV radiation and chemical mutagens. NER has been well characterized in yeast and mammalian systems but its presence in plants has not been reported. Here it is reported that a plant gene isolated from male germline cells of lily (Lilium longiflorum) shows a striking amino acid sequence similarity to the DNA excision repair proteins human ERCC1 and yeast RAD10. Homologous genes are also shown to be present in a number of taxonomically diverse plant genera tested, suggesting that this gene may have a conserved function in plants. The protein encoded by this gene is able to correct significantly the sensitivity to the cross-linking agent mitomycin C in ERCC1-deficient Chinese hamster ovary (CHO) cells. These findings suggest that the NER mechanism is conserved in yeast, animals and higher plants.
Collapse
Affiliation(s)
- H Xu
- Plant Molecular Biology and Biotechnology Laboratory, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
393
|
Ratner JN, Balasubramanian B, Corden J, Warren SL, Bregman DB. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J Biol Chem 1998; 273:5184-9. [PMID: 9478972 DOI: 10.1074/jbc.273.9.5184] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have shown previously that UV radiation and other DNA-damaging agents induce the ubiquitination of a portion of the RNA polymerase II large subunit (Pol II LS). In the present study UV irradiation of repair-competent fibroblasts induced a transient reduction of the Pol II LS level; new protein synthesis restored Pol II LS to the base-line level within 16-24 h. In repair-deficient xeroderma pigmentosum cells, UV radiation-induced ubiquitination of Pol II LS was followed by a sustained reduction of Pol II LS level. In both normal and xeroderma pigmentosum cells, the ubiquitinated Pol II LS had a hyperphosphorylated COOH-terminal domain (CTD), which is characteristic of elongating Pol II. The portion of Pol II LS whose steady-state level diminished most quickly had a relatively hypophosphorylated CTD. The ubiquitinated residues did not map to the CTD. Importantly, UV-induced reduction of Pol II LS level in repair-competent or -deficient cells was inhibited by the proteasome inhibitors lactacystin or MG132. These data demonstrate that UV-induced ubiquitination of Pol II LS is followed by its degradation in the proteasome. These results suggest, contrary to a current model of transcription-coupled DNA repair, that elongating Pol II complexes which arrest at intragenic DNA lesions may be aborted rather than resuming elongation after repair takes place.
Collapse
Affiliation(s)
- J N Ratner
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
394
|
Mallery DL, Tanganelli B, Colella S, Steingrimsdottir H, van Gool AJ, Troelstra C, Stefanini M, Lehmann AR. Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome. Am J Hum Genet 1998; 62:77-85. [PMID: 9443879 PMCID: PMC1376810 DOI: 10.1086/301686] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cockayne syndrome is a multisystem sun-sensitive genetic disorder associated with a specific defect in the ability to perform transcription-coupled repair of active genes after UV irradiation. Two complementation groups (CS-A and CS-B) have been identified, and 80% of patients have been assigned to the CS-B complementation group. We have analyzed the sites of the mutations in the CSB gene in 16 patients, to determine the spectrum of mutations in this gene and to see whether the nature of the mutation correlates with the type and severity of the clinical symptoms. In nine of the patients, the mutations resulted in truncated products in both alleles, whereas, in the other seven, at least one allele contained a single amino acid change. The latter mutations were confined to the C-terminal two-thirds of the protein and were shown to be inactivating by their failure to restore UV-irradiation resistance to hamster UV61 cells, which are known to be defective in the CSB gene. Neither the site nor the nature of the mutation correlated with the severity of the clinical features. Severe truncations were found in different patients with either classical or early-onset forms of the disease.
Collapse
Affiliation(s)
- D L Mallery
- MRC Cell Mutation Unit, Sussex University, Falmer, Brighton BN1 9RR, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
395
|
Verhage RA, Tijsterman M, van de Putte P, Brouwer J. Transcription-Coupled and Global Genome Nucleotide Excision Repair. DNA Repair (Amst) 1998. [DOI: 10.1007/978-3-642-48770-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
396
|
|
397
|
Mountz JD, Wu J, Zhou T, Hsu HC. Cell death and longevity: implications of Fas-mediated apoptosis in T-cell senescence. Immunol Rev 1997; 160:19-30. [PMID: 9476662 DOI: 10.1111/j.1600-065x.1997.tb01024.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two prominent features of immune senescence are altered T-cell phenotype and reduced T-cell response. We have previously shown that T-cell senescence is greatly reduced in CD2-fas transgenic mice, in which the Fas apoptosis molecule is constantly expressed on T cells. Using a different experimental approach, the relationship between T-cell senescence and apoptosis was analyzed on human peripheral blood mononuclear cells. The results indicate that there was increased apoptosis of CD45RO- (CD45RA+) T cells upon activation. We propose that this could account for the increase in CD45RO+ "memory" T cells with aging in humans. T-cell responsiveness remained high in CD2-fas transgenic aged mice, but there was no increase in overall life span of these mice. Increased T-cell responsiveness was associated with an increased acute-phase response and serum amyloid A deposition in the glomerulus of aged CD2-fas transgenic mice. Therefore, restoration of the T-cell immune function using a CD2-fas transgene produced undesirable side-effects to aged transgenic mice. In addition to its role in activation-induced cell death, Fas-mediated apoptosis may be important in deleting T cells in response to DNA damage. It may also inhibit cell-cycle progression by cleaving various kinases and DNA repair enzymes. We observed that cell lines derived from human premature aging diseases have a higher sensitivity to Fas-mediated apoptosis. The implications of these observations are discussed.
Collapse
Affiliation(s)
- J D Mountz
- Department of Medicine, University of Alabama at Birmingham 35294-0007, USA.
| | | | | | | |
Collapse
|
398
|
Tantin D, Kansal A, Carey M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol Cell Biol 1997; 17:6803-14. [PMID: 9372911 PMCID: PMC232536 DOI: 10.1128/mcb.17.12.6803] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cockayne's syndrome (CS) is a disease characterized by developmental and growth defects, sunlight sensitivity, and a defect in transcription-coupled nucleotide excision repair. The two principle proteins involved in CS, CSA and CSB/ERCC6, have been hypothesized to bind RNA polymerase II (Pol II) and link transcription to DNA repair. We have tested CSA and CSB in assays designed to determine their role in transcription-coupled repair. Using a unique oligo(dC)-tailed DNA template, we provide biochemical evidence that CSB/ERCC6 interacts with Pol II molecules engaged in ternary complexes containing DNA and nascent RNA. CSB is a DNA-activated ATPase, and hydrolysis of the ATP beta-gamma phosphoanhydride bond is required for the formation of a stable Pol II-CSB-DNA-RNA complex. Unlike CSB, CSA does not directly bind Pol II.
Collapse
Affiliation(s)
- D Tantin
- Molecular Biology Institute, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | |
Collapse
|
399
|
Reagan MS, Friedberg EC. Recovery of RNA polymerase II synthesis following DNA damage in mutants of Saccharomyces cerevisiae defective in nucleotide excision repair. Nucleic Acids Res 1997; 25:4257-63. [PMID: 9336455 PMCID: PMC147034 DOI: 10.1093/nar/25.21.4257] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have measured the kinetics of the recovery of mRNA synthesis in the inducible GAL10 and RNR3 genes after exposure of yeast cells to ultraviolet (UV) radiation. Such recovery is abolished in mutant strains defective in nucleotide excision repair (NER) of DNA, including a rad23 mutant. Mutants defective in the RAD7 or RAD16 genes, which are required for the repair of the non-transcribed strand but not the transcribed strand of transcriptionally active genes, show slightly faster recovery of RNA synthesis than wild-type strains. A strain deleted of the RAD26 gene, which is known to be required for strand-specific NER in yeast, manifested delayed recovery of mRNA synthesis, whereas a rad28 mutant, which does not show defective strand-specific repair, showed normal kinetics of recovery. Measurement of the recovery of expression of selected individual yeast genes by Northern analysis following exposure of cells to UV radiation apparently correlates directly with the capacity of cells for strand-specific NER.
Collapse
Affiliation(s)
- M S Reagan
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA
| | | |
Collapse
|
400
|
Abstract
The tumor-suppressor gene product p53 is clearly a component in several biochemical pathways, including transcription, DNA repair, genomic stability, cell-cycle control and apoptosis, that are central to human carcinogenesis. The p53 is functionally inactivated by mutational, viral, and cellular mechanisms in the majority of human cancers. Analysis of the spectrum of p53 mutations provides clues to the etiology and molecular pathogenesis of cancer. Recent insight into the p53-mediated biochemical pathways of cell-cycle arrest and apoptosis has provided further understanding of the mechanisms related to p53-mediated tumor suppression. This insight in turn may provide the potential molecular targets for the development of rational multimodality cancer therapy, including chemo-, immuno-, and gene-therapeutic strategies. The convergence of previously parallel lines of basic, clinical, and epidemiologic investigation may provide an opportunity to transfer research findings rapidly from the laboratory to the clinic.
Collapse
Affiliation(s)
- X W Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | |
Collapse
|