352
|
Gut Microbiota and Mucosal Immunity in the Neonate. Med Sci (Basel) 2018; 6:medsci6030056. [PMID: 30018263 PMCID: PMC6163169 DOI: 10.3390/medsci6030056] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Gut microbiota colonization is a complex, dynamic, and step-wise process that is in constant development during the first years of life. This microbial settlement occurs in parallel with the maturation of the immune system, and alterations during this period, due to environmental and host factors, are considered to be potential determinants of health-outcomes later in life. Given that host–microbe interactions are mediated by the immune system response, it is important to understand the close relationship between immunity and the microbiota during birth, lactation, and early infancy. This work summarizes the evidence to date on early gut microbiota colonization, and how it influences the maturation of the infant immune system and health during the first 1000 days of life. This review will also address the influence of perinatal antibiotic intake and the importance of delivery mode and breastfeeding for an appropriate development of gut immunity.
Collapse
|
353
|
Benavides-Ward A, Vasquez-Achaya F, Silva-Caso W, Aguilar-Luis MA, Mazulis F, Urteaga N, Del Valle-Mendoza J. Helicobacter pylori and its relationship with variations of gut microbiota in asymptomatic children between 6 and 12 years. BMC Res Notes 2018; 11:468. [PMID: 30005690 PMCID: PMC6043948 DOI: 10.1186/s13104-018-3565-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Objective To determine the variations in the composition of the intestinal microbiota in asymptomatic children infected with Helicobacter pylori in comparison with children without the infection. Results Children infected with H. pylori doubled their probability of presenting 3 of 9 genera of bacteria from the gut microbiota, including: Proteobacteria (p = 0.008), Clostridium (p = 0.040), Firmicutes (p = 0.001) and Prevotella (p = 0.006) in comparison to patients without the infection. We performed a nutritional assessment and found that growth stunting was statistically significantly higher in patients infected with H. pylori (p = 0.046). Electronic supplementary material The online version of this article (10.1186/s13104-018-3565-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Araceli Benavides-Ward
- School of Nutrition, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.
| | - Fernando Vasquez-Achaya
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Wilmer Silva-Caso
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Instituto de Investigación Nutricional, Lima, Peru.,Instituto de Investigación de Enfermedades Infecciosas, Lima, Peru
| | - Fernando Mazulis
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Numan Urteaga
- Puesto de Salud Callancas, Dirección Regional de Salud Cajamarca, Cajamarca, Peru
| | - Juana Del Valle-Mendoza
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru. .,Instituto de Investigación Nutricional, Lima, Peru.
| |
Collapse
|
354
|
Song R, Yao J, Shi Q, Wei R. Nanocomposite of Half-Fin Anchovy Hydrolysates/Zinc Oxide Nanoparticles Exhibits Actual Non-Toxicity and Regulates Intestinal Microbiota, Short-Chain Fatty Acids Production and Oxidative Status in Mice. Mar Drugs 2018; 16:E23. [PMID: 29324644 PMCID: PMC5793071 DOI: 10.3390/md16010023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023] Open
Abstract
The nanocomposite of half-fin anchovy hydrolysates (HAHp) and zinc oxide nanoparticles (ZnO NPs) (named as HAHp(3.0)/ZnO NPs) demonstrated increased antibacterial activity compared to either HAHp(3.0) or ZnO NPs as per our previous studies. Also, reactive oxygen species (ROS) formation was detected in Escherichia coli cells after treatment with HAHp(3.0)/ZnO NPs. The aim of the present study was to evaluate the acute toxicity of this nanocomposite and to investigate its effect on intestinal microbiota composition, short-chain fatty acids (SCFAs) production, and oxidative status in healthy mice. The limit test studies show that this nanoparticle is non-toxic at the doses tested. The administration of HAHp(3.0)/ZnO NPs, daily dose of 1.0 g/kg body weight for 14 days, increased the number of goblet cells in jejunum. High-throughput 16S ribosomal RNA gene sequencing of fecal samples revealed that HAHp(3.0)/ZnO NPs increased Firmicutes and reduced Bacteriodetes abundances in female mice. Furthermore, the microbiota for probiotic-type bacteria, including Lactobacillus and Bifidobacterium, and SCFAs-producing bacteria in the Clostridia class, e.g., Lachnospiraceae_unclassified and Lachnospiraceae_UCG-001, were enriched in the feces of female mice. Increases of SCFAs, especially statistically increased propionic and butyric acids, indicated the up-regulated anti-inflammatory activity of HAHp(3.0)/ZnO NPs. Additionally, some positive responses in liver, like markedly increased glutathione and decreased malonaldehyde contents, indicated the improved oxidative status. Therefore, our results suggest that HAHp(3.0)/ZnO NPs could have potential applications as a safe regulator of intestinal microbiota or also can be used as an antioxidant used in food products.
Collapse
Affiliation(s)
- Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Jianbin Yao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Qingqing Shi
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Rongbian Wei
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
355
|
Moossavi S, Miliku K, Sepehri S, Khafipour E, Azad MB. The Prebiotic and Probiotic Properties of Human Milk: Implications for Infant Immune Development and Pediatric Asthma. Front Pediatr 2018; 6:197. [PMID: 30140664 PMCID: PMC6095009 DOI: 10.3389/fped.2018.00197] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
The incidence of pediatric asthma has increased substantially in recent decades, reaching a worldwide prevalence of 14%. This rapid increase may be attributed to the loss of "Old Friend" microbes from the human microbiota resulting in a less diverse and "dysbiotic" gut microbiota, which fails to optimally stimulate immune development during infancy. This hypothesis is supported by observations that the gut microbiota is different in infants who develop asthma later in life compared to those who remain healthy. Thus, early life exposures that influence gut microbiota play a crucial role in asthma development. Breastfeeding is one such exposure; it is generally considered protective against pediatric asthma, although conflicting results have been reported, potentially due to variations in milk composition between individuals and across populations. Human milk oligosaccharides (HMOs) and milk microbiota are two major milk components that influence the infant gut microbiota and hence, development of the immune system. Among their many immunomodulatory functions, HMOs exert a selective pressure within the infant gut microbial niche, preferentially promoting the proliferation of specific bacteria including Bifidobacteria. Milk is also a source of viable bacteria originating from the maternal gut and infant oral cavity. As such, breastmilk has prebiotic and probiotic properties that can modulate two of the main forces controlling the gut microbial community assembly, i.e., dispersal and selection. Here, we review the latest evidence, mechanisms and hypotheses for the synergistic and/or additive effects of milk microbiota and HMOs in protecting against pediatric asthma.
Collapse
Affiliation(s)
- Shirin Moossavi
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.,Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.,Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kozeta Miliku
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.,Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.,Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Shadi Sepehri
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Ehsan Khafipour
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Meghan B Azad
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.,Developmental Origins of Chronic Diseases in Children Network (DEVOTION), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.,Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
356
|
Mayo-Muñoz D. Viral Genome Isolation from Human Faeces for Succession Assessment of the Human Gut Virome. Methods Mol Biol 2018; 1838:97-108. [PMID: 30128992 DOI: 10.1007/978-1-4939-8682-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the important role of the microbiota in the human gastrointestinal tract (GIT) and its impact on life-long health, the successional process through which this microbial community develops during infancy is still poorly understood. Specially, little is known about how the amount and type of viruses present in the GIT, i.e., the virome, varies throughout this period and about the role this collection of viruses may play in the assembly of the GIT microbiota.The patterns of taxonomic change of the GIT viral community can be analyzed in a birth cohort of infants during the first year of life. The present chapter presents a detailed protocol for the isolation and extraction of viral nucleic acids from collected human faecal samples, whole genome amplification (WGA) using phi29 DNA polymerase and preparation for sequencing through high-throughput 454 pyrosequencing. The sequencing data can be posteriorly used for taxonomic classification in order to establish the composition of the virome present in each sample and to assess the process of viral dynamics through time.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Capital Region, Denmark.
| |
Collapse
|