351
|
Pruett-Miller SM, Davis GD. Donor plasmid design for codon and single base genome editing using zinc finger nucleases. Methods Mol Biol 2015; 1239:219-229. [PMID: 25408408 DOI: 10.1007/978-1-4939-1862-1_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, CompoZr zinc finger nuclease (ZFN) technology has matured to the point that a user-defined double strand break (DSB) can be placed at virtually any location in the human genome within 50 bp of a desired site. Such high resolution ZFN engineering is well within the conversion tract limitations demarcated by the mammalian DNA repair machinery, resulting in a nearly universal ability to create point mutations throughout the human genome. Additionally, new architectures for targeted nuclease engineering have been rapidly developed, namely transcription activator like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems, further expanding options for placement of DSBs. This new capability has created a need to explore the practical limitations of delivering plasmid-based information to the sites of chromosomal double strand breaks so that nuclease-donor methods can be widely deployed in fundamental and therapeutic research. In this chapter, we explore a ZFN-compatible donor design in the context of codon changes at an endogenous locus encoding the human RSK2 kinase.
Collapse
Affiliation(s)
- Shondra M Pruett-Miller
- Department of Genetics, Genome Engineering and iPSC Center, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
352
|
Robinson M, Yau SY, Sun L, Gabers N, Bibault E, Christie BR, Willerth SM. Optimizing Differentiation Protocols for Producing Dopaminergic Neurons from Human Induced Pluripotent Stem Cells for Tissue Engineering Applications: Supplementary Issue: Stem Cell Biology. Biomark Insights 2015; 10 Suppl 1:61-70. [PMID: 36876191 PMCID: PMC9980910 DOI: 10.4137/bmi.s20064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that results when the dopaminergic neurons (DNs) present in the substantia nigra necessary for voluntary motor control are depleted, making patients with this disorder ideal candidates for cell replacement therapy. Human induced pluripotent stem cells (hiPSCs), obtained by reprogramming adult cells, possess the properties of pluripotency and immortality while enabling the possibility of patient-specific therapies. An effective cell therapy for PD requires an efficient, defined method of DN generation, as well as protection from the neuroinflammatory environment upon engraftment. Although similar in pluripotency to human embryonic stem cells (hESCs), hiPSCs differentiate less efficiently into neuronal subtypes. Previous work has shown that treatment with guggulsterone can efficiently differentiate hESCs into DNs. Our work shows that guggulsterone is able to derive DNs from hiPSCs with comparable efficiency, and furthermore, this differentiation can be achieved inside three-dimensional fibrin scaffolds that could enhance cell survival upon engraftment.
Collapse
Affiliation(s)
| | - Suk-Yu Yau
- Department of Neuroscience, Division of Medical Sciences
| | - Lin Sun
- Department of Neuroscience, Division of Medical Sciences
| | - Nicole Gabers
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | | | - Stephanie M Willerth
- Department of Biomedical Engineering.,Department of Neuroscience, Division of Medical Sciences.,Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
353
|
Singh AM, Adjan Steffey VV, Yeshi T, Allison DW. Gene Editing in Human Pluripotent Stem Cells: Choosing the Correct Path. JOURNAL OF STEM CELL AND REGENERATIVE BIOLOGY 2015; 1:http://www.ommegaonline.org/article-details/Gene-Editing-in-Human-Pluripotent-Stem-Cells---Choosing-the-Correct-Path/630. [PMID: 26702451 PMCID: PMC4686154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The recent emergence of targeted nucleases has opened up new opportunities for performing genetic modifications with human pluripotent stem cells (hPSCs). These modifications can range from the creation of a routine knock-out to the more challenging single point-mutation. For both the new and established user, deciding on the best approach for the specific modification of interest can be an arduous task, as new and improved technologies are rapidly and continuously being developed. The choices between the reagents and methodologies depends entirely on the end-goal of the experiments and the locus to be modified. Investigators need to decide on the best nuclease to use for each experiment from among Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 that would result in the highest likelihood of success with the fewest pitfalls. Furthermore, there have been significant improvements over the first-generation nucleases, such as the development of the dimeric CRISPR RNA-guided Fok1 nucleases (RFNs, marketed as NextGEN™ CRISPR) that reduces the "off-target" mutation rate, providing further options for investigators. Should researchers need to perform a point mutation, then considerations must be made between using single-stranded oligo-deoxynucleotides (ssODN) as the donor for homology-directed repair or utilizing a selection cassette within a donor vector in combination with an excision-only piggyBac™ transposase to leave a seamless edit. In this review, we will provide a general overview of the current technologies, along with methodologies for generating point mutations, while considering both their pros and cons.
Collapse
Affiliation(s)
- Amar M. Singh
- Transposagen Biopharmaceuticals, Kentucky, USA,Corresponding Author: Singh, A.M. or Allison, D.W. Transposagen Biopharmaceuticals, Inc., 535 W. Second Street, Suite 10, Lexington, KY 40508; Tel: 859-428-8561; ;
| | | | | | - Daniel W. Allison
- Transposagen Biopharmaceuticals, Kentucky, USA,Corresponding Author: Singh, A.M. or Allison, D.W. Transposagen Biopharmaceuticals, Inc., 535 W. Second Street, Suite 10, Lexington, KY 40508; Tel: 859-428-8561; ;
| |
Collapse
|
354
|
|
355
|
Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, Kwok SM, Feldman DA, Bateup HS, Gao Q, Hockemeyer D, Mitalipova M, Lewis CA, Vander Heiden MG, Sur M, Young RA, Jaenisch R. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 2014; 13:446-58. [PMID: 24094325 DOI: 10.1016/j.stem.2013.09.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/12/2013] [Accepted: 09/06/2013] [Indexed: 01/15/2023]
Abstract
Rett syndrome (RTT) is caused by mutations of MECP2, a methyl CpG binding protein thought to act as a global transcriptional repressor. Here we show, using an isogenic human embryonic stem cell model of RTT, that MECP2 mutant neurons display key molecular and cellular features of this disorder. Unbiased global gene expression analyses demonstrate that MECP2 functions as a global activator in neurons but not in neural precursors. Decreased transcription in neurons was coupled with a significant reduction in nascent protein synthesis and lack of MECP2 was manifested as a severe defect in the activity of the AKT/mTOR pathway. Lack of MECP2 also leads to impaired mitochondrial function in mutant neurons. Activation of AKT/mTOR signaling by exogenous growth factors or by depletion of PTEN boosted protein synthesis and ameliorated disease phenotypes in mutant neurons. Our findings indicate a vital function for MECP2 in maintaining active gene transcription in human neuronal cells.
Collapse
Affiliation(s)
- Yun Li
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Brändl B, Schneider SA, Loring JF, Hardy J, Gribbon P, Müller FJ. Stem cell reprogramming: basic implications and future perspective for movement disorders. Mov Disord 2014; 30:301-12. [PMID: 25546831 DOI: 10.1002/mds.26113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/03/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022] Open
Abstract
The introduction of stem cell-associated molecular factors into human patient-derived cells allows for their reprogramming in the laboratory environment. As a result, human induced pluripotent stem cells (hiPSC) can now be reprogrammed epigenetically without disruption of their overall genomic integrity. For patients with neurodegenerative diseases characterized by progressive loss of functional neurons, the ability to reprogram any individual's cells and drive their differentiation toward susceptible neuronal subtypes holds great promise. Apart from applications in regenerative medicine and cell replacement-based therapy, hiPSCs are increasingly used in preclinical research for establishing disease models and screening for drug toxicities. The rapid developments in this field prompted us to review recent progress toward the applications of stem cell technologies for movement disorders. We introduce reprogramming strategies and explain the critical steps in the differentiation of hiPSCs to clinical relevant subtypes of cells in the context of movement disorders. We summarize and discuss recent discoveries in this field, which, based on the rapidly expanding basic science literature as well as upcoming trends in personalized medicine, will strongly influence the future therapeutic options available to practitioners working with patients suffering from such disorders.
Collapse
Affiliation(s)
- Björn Brändl
- Center for Psychiatry, University Hospital Schleswig Holstein, Campus Kiel, Germany
| | | | | | | | | | | |
Collapse
|
357
|
Yu DX, Marchetto MC, Gage FH. Therapeutic translation of iPSCs for treating neurological disease. Cell Stem Cell 2014; 12:678-88. [PMID: 23746977 DOI: 10.1016/j.stem.2013.05.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Somatic cellular reprogramming is a fast-paced and evolving field that is changing the way scientists approach neurological diseases. For the first time in the history of neuroscience, it is feasible to study the behavior of live neurons from patients with neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, and neuropsychiatric diseases, such as autism and schizophrenia. In this Perspective, we will discuss reprogramming technology in the context of its potential use for modeling and treating neurological and psychiatric diseases and will highlight areas of caution and opportunities for improvement.
Collapse
Affiliation(s)
- Diana X Yu
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
358
|
Merkle FT, Eggan K. Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 2014; 12:656-68. [PMID: 23746975 DOI: 10.1016/j.stem.2013.05.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mechanistic insights into human disease may enable the development of treatments that are effective in broad patient populations. The confluence of gene-editing technologies, induced pluripotent stem cells, and genome-wide association as well as DNA sequencing studies is enabling new approaches for illuminating the molecular basis of human disease. We discuss the opportunities and challenges of combining these technologies and provide a workflow for interrogating the contribution of disease-associated candidate genetic variants to disease-relevant phenotypes. Finally, we discuss the potential utility of human pluripotent stem cells for placing disease-associated genetic variants into molecular pathways.
Collapse
Affiliation(s)
- Florian T Merkle
- The Howard Hughes Medical Institute, the Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
359
|
Pluripotent stem cell-based models of spinal muscular atrophy. Mol Cell Neurosci 2014; 64:44-50. [PMID: 25511182 DOI: 10.1016/j.mcn.2014.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/03/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
Abstract
Motor neuron diseases, as the vast majority of neurodegenerative disorders in humans, are incurable conditions that are challenging to study in vitro, owing to the obstacles in obtaining the cell types majorly involved in the pathogenesis. Recent advances in stem cell research, especially in the development of induced pluripotent stem cell (iPSC) technology, have opened up the possibility of generating a substantial amount of disease-specific neuronal cells, including motor neurons and glial cells. The present review analyzes the practical implications of iPSCs, generated from fibroblasts of patients affected by spinal muscular atrophy (SMA), and discusses the challenges in the development and optimization of in vitro disease models. Research on patient-derived disease-specific cells may shed light on the pathological processes behind neuronal dysfunction and death in SMA, thus providing new insights for the development of novel effective therapies.
Collapse
|
360
|
Bachoud-Lévi AC, Perrier A. Regenerative medicine in Huntington's disease: Current status on fetal grafts and prospects for the use of pluripotent stem cell. Rev Neurol (Paris) 2014; 170:749-62. [DOI: 10.1016/j.neurol.2014.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 12/27/2022]
|
361
|
Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 2014; 4:143-154. [PMID: 25434822 PMCID: PMC4297888 DOI: 10.1016/j.stemcr.2014.10.013] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-degenerative disease caused by a mutation in the dystrophin gene. Genetic correction of patient-derived induced pluripotent stem cells (iPSCs) by TALENs or CRISPR-Cas9 holds promise for DMD gene therapy; however, the safety of such nuclease treatment must be determined. Using a unique k-mer database, we systematically identified a unique target region that reduces off-target sites. To restore the dystrophin protein, we performed three correction methods (exon skipping, frameshifting, and exon knockin) in DMD-patient-derived iPSCs, and found that exon knockin was the most effective approach. We further investigated the genomic integrity by karyotyping, copy number variation array, and exome sequencing to identify clones with a minimal mutation load. Finally, we differentiated the corrected iPSCs toward skeletal muscle cells and successfully detected the expression of full-length dystrophin protein. These results provide an important framework for developing iPSC-based gene therapy for genetic disorders using programmable nucleases. A unique k-mer database was used to identify unique targetable regions in human genome A dystrophin frameshift was corrected using TALENs or CRISPR-sgRNAs in iPSCs Genomic integrity tests identified minimum off-target mutagenesis by the nucleases Dystrophin protein was detected by myogenic differentiation in the corrected iPSCs
Collapse
Affiliation(s)
- Hongmei Lisa Li
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Naoko Fujimoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; iCeMS, Kyoto University, Kyoto 606-8501, Japan
| | - Noriko Sasakawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Saya Shirai
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Tokiko Ohkame
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Michihiro Tanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Naoki Amano
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; iCeMS, Kyoto University, Kyoto 606-8501, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Akitsu Hotta
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; iCeMS, Kyoto University, Kyoto 606-8501, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan.
| |
Collapse
|
362
|
Affiliation(s)
- Charles A Gersbach
- Department of Biomedical Engineering and at the Center for Genomic and Computational Biology, Duke University, and in the Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
363
|
Umegaki-Arao N, Pasmooij AMG, Itoh M, Cerise JE, Guo Z, Levy B, Gostyński A, Rothman LR, Jonkman MF, Christiano AM. Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med 2014; 6:264ra164. [PMID: 25429057 DOI: 10.1126/scitranslmed.3009342] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Revertant mosaicism is a naturally occurring phenomenon involving spontaneous correction of a pathogenic gene mutation in a somatic cell. It has been observed in several genetic diseases, including epidermolysis bullosa (EB), a group of inherited skin disorders characterized by blistering and scarring. Induced pluripotent stem cells (iPSCs), generated from fibroblasts or keratinocytes, have been proposed as a treatment for EB. However, this requires genome editing to correct the mutations, and, in gene therapy, efficiency of targeted gene correction and deleterious genomic modifications are still limitations of translation. We demonstrate the generation of iPSCs from revertant keratinocytes of a junctional EB patient with compound heterozygous COL17A1 mutations. These revertant iPSCs were then differentiated into naturally genetically corrected keratinocytes that expressed type XVII collagen (Col17). Gene expression profiling showed a strong correlation between gene expression in revertant iPSC-derived keratinocytes and the original revertant keratinocytes, indicating the successful differentiation of iPSCs into the keratinocyte lineage. Revertant-iPSC keratinocytes were then used to create in vitro three-dimensional skin equivalents and reconstitute human skin in vivo in mice, both of which expressed Col17 in the basal layer. Therefore, revertant keratinocytes may be a viable source of spontaneously gene-corrected cells for developing iPSC-based therapeutic approaches in EB.
Collapse
Affiliation(s)
| | - Anna M G Pasmooij
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, the Netherlands
| | - Munenari Itoh
- Department of Dermatology, Columbia University, New York, NY 10032, USA. Department of Dermatology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Jane E Cerise
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| | - Zongyou Guo
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Antoni Gostyński
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, the Netherlands
| | - Lisa R Rothman
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, the Netherlands
| | - Angela M Christiano
- Department of Dermatology, Columbia University, New York, NY 10032, USA. Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
364
|
Araki M, Ishii T. International regulatory landscape and integration of corrective genome editing into in vitro fertilization. Reprod Biol Endocrinol 2014; 12:108. [PMID: 25420886 PMCID: PMC4251934 DOI: 10.1186/1477-7827-12-108] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
Genome editing technology, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas, has enabled far more efficient genetic engineering even in non-human primates. This biotechnology is more likely to develop into medicine for preventing a genetic disease if corrective genome editing is integrated into assisted reproductive technology, represented by in vitro fertilization. Although rapid advances in genome editing are expected to make germline gene correction feasible in a clinical setting, there are many issues that still need to be addressed before this could occur. We herein examine current status of genome editing in mammalian embryonic stem cells and zygotes and discuss potential issues in the international regulatory landscape regarding human germline gene modification. Moreover, we address some ethical and social issues that would be raised when each country considers whether genome editing-mediated germline gene correction for preventive medicine should be permitted.
Collapse
Affiliation(s)
- Motoko Araki
- Office of Health and Safety, Hokkaido University, Sapporo, 060-0808 Japan
| | - Tetsuya Ishii
- Office of Health and Safety, Hokkaido University, Sapporo, 060-0808 Japan
| |
Collapse
|
365
|
Kim HS, Bernitz JM, Lee DF, Lemischka IR. Genomic editing tools to model human diseases with isogenic pluripotent stem cells. Stem Cells Dev 2014; 23:2673-86. [PMID: 25075441 PMCID: PMC4216528 DOI: 10.1089/scd.2014.0167] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) are considered a versatile resource in the field of biomedicine. As iPSCs are generated on an individual basis, iPSCs may be the optimal cellular material to use for disease modeling, drug discovery, and the development of patient-specific cellular therapies. Recently, to gain an in-depth understanding of human pathologies, patient-specific iPSCs have been used to model human diseases with some iPSC-derived cells recapitulating pathological phenotypes in vitro. However, complex multigenic diseases generally have not resulted in concise conclusions regarding the underlying mechanisms of disease, in large part due to genetic variations between disease-state and control iPSCs. To circumvent this, the use of genomic editing tools to generate perfect isogenic controls is gaining momentum. To date, DNA binding domain-based zinc finger nucleases and transcription activator-like effector nucleases have been utilized to create genetically defined conditions in patient-specific iPSCs, with some examples leading to the successful identification of novel mechanisms of disease. As the feasibility and utility of genomic editing tools in iPSCs improve, along with the introduction of the clustered regularly interspaced short palindromic repeat system, understanding the features and limitations of genomic editing tools and their applications to iPSC technology is critical to expending the field of human disease modeling.
Collapse
Affiliation(s)
- Huen Suk Kim
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute , Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | |
Collapse
|
366
|
Yao J, Huang J, Hai T, Wang X, Qin G, Zhang H, Wu R, Cao C, Xi JJ, Yuan Z, Zhao J. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci Rep 2014; 4:6926. [PMID: 25370805 PMCID: PMC4220281 DOI: 10.1038/srep06926] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/17/2014] [Indexed: 12/31/2022] Open
Abstract
Pigs are ideal organ donors for xenotransplantation and an excellent model for studying human diseases, such as neurodegenerative disease. Transcription activator-like effector nucleases (TALENs) are used widely for gene targeting in various model animals. Here, we developed a strategy using TALENs to target the GGTA1, Parkin and DJ-1 genes in the porcine genome using Large White porcine fibroblast cells without any foreign gene integration. In total, 5% (2/40), 2.5% (2/80), and 22% (11/50) of the obtained colonies of fibroblast cells were mutated for GGTA1, Parkin, and DJ-1, respectively. Among these mutant colonies, over 1/3 were bi-allelic knockouts (KO), and no off-target cleavage was detected. We also successfully used single-strand oligodeoxynucleotides to introduce a short sequence into the DJ-1 locus. Mixed DJ-1 mutant colonies were used as donor cells for somatic cell nuclear transfer (SCNT), and three female piglets were obtained (two were bi-allelically mutated, and one was mono-allelically mutated). Western blot analysis showed that the expression of the DJ-1 protein was disrupted in KO piglets. These results imply that a combination of TALENs technology with SCNT can efficiently generate bi-allelic KO pigs without the integration of exogenous DNA. These DJ-1 KO pigs will provide valuable information for studying Parkinson's disease.
Collapse
Affiliation(s)
- Jing Yao
- State Key laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
| | - Jiaojiao Huang
- State Key laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
| | - Tang Hai
- State Key laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
| | - Xianlong Wang
- State Key laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
| | - Guosong Qin
- State Key laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
| | - Hongyong Zhang
- State Key laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
| | - Rong Wu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China, 100101
| | - Chunwei Cao
- State Key laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
| | - Jianzhong Jeff Xi
- Biomedical Engineering Department, College of Engineering, Peking University, Beijing, P. R. China, 100871
| | - Zengqiang Yuan
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China, 100101
| | - Jianguo Zhao
- State Key laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, P. R. China, 100101
| |
Collapse
|
367
|
Wiley LA, Burnight ER, Songstad AE, Drack AV, Mullins RF, Stone EM, Tucker BA. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res 2014; 44:15-35. [PMID: 25448922 DOI: 10.1016/j.preteyeres.2014.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 12/26/2022]
Abstract
Vision is the sense that we use to navigate the world around us. Thus it is not surprising that blindness is one of people's most feared maladies. Heritable diseases of the retina, such as age-related macular degeneration and retinitis pigmentosa, are the leading cause of blindness in the developed world, collectively affecting as many as one-third of all people over the age of 75, to some degree. For decades, scientists have dreamed of preventing vision loss or of restoring the vision of patients affected with retinal degeneration through drug therapy, gene augmentation or a cell-based transplantation approach. In this review we will discuss the use of the induced pluripotent stem cell technology to model and develop various treatment modalities for the treatment of inherited retinal degenerative disease. We will focus on the use of iPSCs for interrogation of disease pathophysiology, analysis of drug and gene therapeutics and as a source of autologous cells for cell transplantation and replacement.
Collapse
Affiliation(s)
- Luke A Wiley
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Erin R Burnight
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Allison E Songstad
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Arlene V Drack
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA; Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
368
|
Neurodegenerative diseases in a dish: the promise of iPSC technology in disease modeling and therapeutic discovery. Neurol Sci 2014; 36:21-7. [PMID: 25354658 PMCID: PMC4282683 DOI: 10.1007/s10072-014-1989-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
The study of stem-cell biology has been a flourishing research area because of its multi-differentiation potential. The emergence of induced pluripotent stem cells (iPSCs) open up the possibility of addressing obstructs, such as the limited cell source, inherent complexity of the human brain, and ethical constrains. Though still at its infancy phase, reprogramming of somatic cells has been demonstrating the ability to enhance in vitro study of neurodegenerative diseases and potential treatment. However, iPSCs would not thoroughly translate to the clinic before limitations are addressed. In this review, by summarizing the recent development of iPSC-based models, we will discuss the feasibility of iPSC technology on relevant diseases depth and illustrate how this new tool applies to drug screening and celluar therapy.
Collapse
|
369
|
Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers. Biochem J 2014; 462:397-413. [PMID: 25145439 DOI: 10.1042/bj20140400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcription factors control the fate of a cell by regulating the expression of genes and regulatory networks. Recent successes in inducing pluripotency in terminally differentiated cells as well as directing differentiation with natural transcription factors has lent credence to the efforts that aim to direct cell fate with rationally designed transcription factors. Because DNA-binding factors are modular in design, they can be engineered to target specific genomic sequences and perform pre-programmed regulatory functions upon binding. Such precision-tailored factors can serve as molecular tools to reprogramme or differentiate cells in a targeted manner. Using different types of engineered DNA binders, both regulatory transcriptional controls of gene networks, as well as permanent alteration of genomic content, can be implemented to study cell fate decisions. In the present review, we describe the current state of the art in artificial transcription factor design and the exciting prospect of employing artificial DNA-binding factors to manipulate the transcriptional networks as well as epigenetic landscapes that govern cell fate.
Collapse
|
370
|
Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 2014; 124:4154-61. [PMID: 25271723 DOI: 10.1172/jci72992] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The past decade has been one of rapid innovation in genome-editing technology. The opportunity now exists for investigators to manipulate virtually any gene in a diverse range of cell types and organisms with targeted nucleases designed with sequence-specific DNA-binding domains. The rapid development of the field has allowed for highly efficient, precise, and now cost-effective means by which to generate human and animal models of disease using these technologies. This review will outline the recent development of genome-editing technology, culminating with the use of CRISPR-Cas9 to generate novel mammalian models of disease. While the road to using this same technology for treatment of human disease is long, the pace of innovation over the past five years and early successes in model systems build anticipation for this prospect.
Collapse
|
371
|
Abstract
Epileptic encephalopathies represent a group of devastating epileptic disorders that occur early in life and are often characterized by pharmaco-resistant epilepsy, persistent severe electroencephalographic abnormalities, and cognitive dysfunction or decline. Next generation sequencing technologies have increased the speed of gene discovery tremendously. Whereas ion channel genes were long considered to be the only significant group of genes implicated in the genetic epilepsies, a growing number of non-ion-channel genes are now being identified. As a subgroup of the genetically mediated epilepsies, epileptic encephalopathies are complex and heterogeneous disorders, making diagnosis and treatment decisions difficult. Recent exome sequencing data suggest that mutations causing epileptic encephalopathies are often sporadic, typically resulting from de novo dominant mutations in a single autosomal gene, although inherited autosomal recessive and X-linked forms also exist. In this review we provide a summary of the key features of several early- and mid-childhood onset epileptic encephalopathies including Ohtahara syndrome, Dravet syndrome, Infantile spasms and Lennox Gastaut syndrome. We review the recent next generation sequencing findings that may impact treatment choices. We also describe the use of conventional and newer anti-epileptic and hormonal medications in the various syndromes based on their genetic profile. At a biological level, developments in cellular reprogramming and genome editing represent a new direction in modeling these pediatric epilepsies and could be used in the development of novel and repurposed therapies.
Collapse
Affiliation(s)
- Sahar Esmaeeli Nieh
- Departments of Neurology and Pediatrics, University of California, San Francisco, CA USA
| | - Elliott H. Sherr
- Departments of Neurology and Pediatrics, University of California, San Francisco, CA USA
| |
Collapse
|
372
|
Abstract
There have been considerable advances in uncovering the complex genetic mechanisms that underlie nervous system disease pathogenesis, particularly with the advent of exome and whole genome sequencing techniques. The emerging field of epigenetics is also providing further insights into these mechanisms. Here, we discuss our understanding of the interplay that exists between genetic and epigenetic mechanisms in these disorders, highlighting the nascent field of epigenetic epidemiology-which focuses on analyzing relationships between the epigenome and environmental exposures, development and aging, other health-related phenotypes, and disease states-and next-generation research tools (i.e., those leveraging synthetic and chemical biology and optogenetics) for examining precisely how epigenetic modifications at specific genomic sites affect disease processes.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- />Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- />Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- />Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- />Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461 USA
| | - Mark F. Mehler
- />Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- />Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- />Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- />Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- />Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- />Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461 USA
- />Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- />Ruth L. and David S. Gottesman Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- />Center for Epigenomics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- />Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
373
|
Induced pluripotent stem cell (iPSC)-derived dopaminergic models of Parkinson's disease. Biochem Soc Trans 2014; 41:1503-8. [PMID: 24256244 DOI: 10.1042/bst20130194] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
iPSCs (induced pluripotent stem cells) are the newest tool used to model PD (Parkinson's disease). Fibroblasts from patients carrying pathogenic mutations that lead to PD have been reprogrammed into iPSCs, which can subsequently be differentiated into important cell types. Given the characteristic loss of dopaminergic neurons in the substantia nigra pars compacta of PD patients, iPSC-derived midbrain dopaminergic neurons have been generated to investigate pathogenic mechanisms in this important cell type as a means of modelling PD. iPSC-derived cultures studied so far have been made from patients carrying mutations in LRRK2 (leucine-rich repeat kinase 2), PINK1 [PTEN (phosphatase and tensin homologue deleted on chromosome 10)-induced putative kinase 1], PARK2 (encodes parkin) or GBA (β-glucocerebrosidase), in addition to those with SNCA (α-synuclein) multiplication and idiopathic PD. In some cases, isogenic control lines have been created to minimize inherent variability between lines from different individuals. Disruptions in autophagy, mitochondrial function and dopamine biology at the synapse have been described. Future applications for iPSC-derived models of PD beyond modelling include drug testing and the ability to investigate the genetic diversity of PD.
Collapse
|
374
|
Horii T, Hatada I. Genome engineering using the CRISPR/Cas system. World J Med Genet 2014; 4:69-76. [DOI: 10.5496/wjmg.v4.i3.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/12/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Recently, an epoch-making genome engineering technology using clustered regularly at interspaced short palindromic repeats (CRISPR) and CRISPR associated (Cas) nucleases, was developed. Previous technologies for genome manipulation require the time-consuming design and construction of genome-engineered nucleases for each target and have, therefore, not been widely used in mouse research where standard techniques based on homologous recombination are commonly used. The CRISPR/Cas system only requires the design of sequences complementary to a target locus, making this technology fast and straightforward. In addition, CRISPR/Cas can be used to generate mice carrying mutations in multiple genes in a single step, an achievement not possible using other methods. Here, we review the uses of this technology in genetic analysis and manipulation, including achievements made possible to date and the prospects for future therapeutic applications.
Collapse
|
375
|
Down syndrome-associated haematopoiesis abnormalities created by chromosome transfer and genome editing technologies. Sci Rep 2014; 4:6136. [PMID: 25159877 PMCID: PMC4145315 DOI: 10.1038/srep06136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/28/2014] [Indexed: 12/27/2022] Open
Abstract
Infants with Down syndrome (DS) are at a high risk of developing transient abnormal myelopoiesis (TAM). A GATA1 mutation leading to the production of N-terminally truncated GATA1 (GATA1s) in early megakaryocyte/erythroid progenitors is linked to the onset of TAM and cooperated with the effect of trisomy 21 (Ts21). To gain insights into the underlying mechanisms of the progression to TAM in DS patients, we generated human pluripotent stem cells harbouring Ts21 and/or GATA1s by combining microcell-mediated chromosome transfer and genome editing technologies. In vitro haematopoietic differentiation assays showed that the GATA1s mutation blocked erythropoiesis irrespective of an extra chromosome 21, while Ts21 and the GATA1s mutation independently perturbed megakaryopoiesis and the combination of Ts21 and the GATA1s mutation synergistically contributed to an aberrant accumulation of skewed megakaryocytes. Thus, the DS model cells generated by these two technologies are useful in assessing how GATA1s mutation is involved in the onset of TAM in patients with DS.
Collapse
|
376
|
Canet-Aviles R, Lomax GP, Feigal EG, Priest C. Proceedings: cell therapies for Parkinson's disease from discovery to clinic. Stem Cells Transl Med 2014; 3:979-91. [PMID: 25150264 DOI: 10.5966/sctm.2014-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In March 2013, the California Institute for Regenerative Medicine, in collaboration with the NIH Center for Regenerative Medicine, held a 2-day workshop on cell therapies for Parkinson's disease (PD), with the goals of reviewing the state of stem cell research for the treatment of PD and discussing and refining the approach and the appropriate patient populations in which to plan and conduct new clinical trials using stem cell-based therapies for PD. Workshop participants identified priorities for research, development, and funding; discussed existing resources and initiatives; and outlined a path to the clinic for a stem cell-based therapy for PD. A consensus emerged among participants that the development of cell replacement therapies for PD using stem cell-derived products could potentially offer substantial benefits to patients. As with all stem cell-based therapeutic approaches, however, there are many issues yet to be resolved regarding the safety, efficacy, and methodology of transplanting cell therapies into patients. Workshop participants agreed that designing an effective stem cell-based therapy for PD will require further research and development in several key areas. This paper summarizes the meeting.
Collapse
Affiliation(s)
- Rosa Canet-Aviles
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - Geoffrey P Lomax
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - Ellen G Feigal
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - Catherine Priest
- California Institute for Regenerative Medicine, San Francisco, California, USA
| |
Collapse
|
377
|
Enhanced gene disruption by programmable nucleases delivered by a minicircle vector. Gene Ther 2014; 21:921-30. [PMID: 25142139 DOI: 10.1038/gt.2014.76] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 12/21/2022]
Abstract
Targeted genetic modification using programmable nucleases such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) is of great value in biomedical research, medicine and biotechnology. Minicircle vectors, which lack extraneous bacterial sequences, have several advantages over conventional plasmids for transgene delivery. Here, for the first time, we delivered programmable nucleases into human cells using transient transfection of a minicircle vector and compared the results with those obtained using a conventional plasmid. Surrogate reporter assays and T7 endonuclease analyses revealed that cells in the minicircle vector group displayed significantly higher mutation frequencies at the target sites than those in the conventional plasmid group. Quantitative PCR and reverse transcription-PCR showed higher vector copy number and programmable nuclease transcript levels, respectively, in 293T cells after minicircle versus conventional plasmid vector transfection. In addition, tryphan blue staining and flow cytometry after annexin V and propidium iodide staining showed that cell viability was also significantly higher in the minicircle group than in the conventional plasmid group. Taken together, our results show that gene disruption using minicircle vector-mediated delivery of ZFNs and TALENs is a more efficient, safer and less toxic method than using a conventional plasmid, and indicate that the minicircle vector could serve as an advanced delivery method for programmable nucleases.
Collapse
|
378
|
Tardiff DF, Khurana V, Chung CY, Lindquist S. From yeast to patient neurons and back again: powerful new discovery platform. Mov Disord 2014; 29:1231-40. [PMID: 25131316 DOI: 10.1002/mds.25989] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/27/2022] Open
Abstract
No disease-modifying therapies are available for synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA). The lack of therapies has been impeded by a paucity of validated drug targets and problematic cell-based model systems. New approaches are therefore needed to identify genes and compounds that directly target the underlying cellular pathologies elicited by the pathological protein, α-synuclein (α-syn). This small, lipid-binding protein impinges on evolutionarily conserved processes such as vesicle trafficking and mitochondrial function. For decades, the genetically tractable, single-cell eukaryote, budding yeast, has been used to study nearly all aspects of cell biology. More recently, yeast has revealed key insights into the underlying cellular pathologies caused by α-syn. The robust cellular toxicity caused by α-syn expression facilitates unbiased high-throughput small-molecule screening. Critically, one must validate the discoveries made in yeast in disease-relevant neuronal models. Here, we describe two recent reports that together establish yeast-to-human discovery platforms for synucleinopathies. In this exemplar, genes and small molecules identified in yeast were validated in patient-derived neurons that present the same cellular phenotypes initially discovered in yeast. On validation, we returned to yeast, where unparalleled genetic approaches facilitated the elucidation of a small molecule's mode of action. This approach enabled the identification and neuronal validation of a previously unknown "druggable" node that interfaces with the underlying, precipitating pathologies caused by α-syn. Such platforms can provide sorely needed leads and fresh ideas for disease-modifying therapy for these devastating diseases.
Collapse
Affiliation(s)
- Daniel F Tardiff
- Whitehead Institute for Biomedical Research (WIBR), Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
379
|
Xin X, Jiang X, Wang L, Stover ML, Zhan S, Huang J, Goldberg AJ, Liu Y, Kuhn L, Reichenberger EJ, Rowe DW, Lichtler AC. A Site-Specific Integrated Col2.3GFP Reporter Identifies Osteoblasts Within Mineralized Tissue Formed In Vivo by Human Embryonic Stem Cells. Stem Cells Transl Med 2014; 3:1125-37. [PMID: 25122686 DOI: 10.5966/sctm.2013-0128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) for study and treatment of bone diseases or traumatic bone injuries requires efficient protocols to differentiate hESCs/iPSCs into cells with osteogenic potential and the ability to isolate differentiated osteoblasts for analysis. We have used zinc finger nuclease technology to deliver a construct containing the Col2.3 promoter driving GFPemerald to the AAVS1 site (referred to as a "safe harbor" site), in human embryonic stem cells (H9Zn2.3GFP), with the goal of marking the cells that have become differentiated osteoblasts. In teratomas formed using these cells, we identified green fluorescent protein (GFP)-positive cells specifically associated with in vivo bone formation. We also differentiated the cells into a mesenchymal stem cell population with osteogenic potential and implanted them into a mouse calvarial defect model. We observed GFP-positive cells associated with alizarin complexone-labeled newly formed bone surfaces. The cells were alkaline phosphatase-positive, and immunohistochemistry with human specific bone sialoprotein (BSP) antibody indicates that the GFP-positive cells are also associated with the human BSP-containing matrix, demonstrating that the Col2.3GFP construct marks cells in the osteoblast lineage. Single-cell cloning generated a 100% Col2.3GFP-positive cell population, as demonstrated by fluorescence in situ hybridization using a GFP probe. The karyotype was normal, and pluripotency was demonstrated by Tra1-60 immunostaining, pluripotent low density reverse transcription-polymerase chain reaction array and embryoid body formation. These cells will be useful to develop optimal osteogenic differentiation protocols and to isolate osteoblasts from normal and diseased iPSCs for analysis.
Collapse
Affiliation(s)
- Xiaonan Xin
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Xi Jiang
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Liping Wang
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Mary Louise Stover
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Shuning Zhan
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jianping Huang
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - A Jon Goldberg
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Yongxing Liu
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Liisa Kuhn
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - David W Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Alexander C Lichtler
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
380
|
Zhang W, Chen H, Zheng X, Wang D, Ji H, Xia H, Mao Q. Targeted genome correction by a single adenoviral vector simultaneously carrying an inducible zinc finger nuclease and a donor template. J Biotechnol 2014; 188:1-6. [PMID: 25116362 DOI: 10.1016/j.jbiotec.2014.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 01/24/2023]
Abstract
Zinc finger nuclease (ZFN) technology, which can be used to induce targeted genome correction in the presence of a DNA donor template, is becoming an attractive strategy for treating monogenic diseases. This strategy requires efficient delivery of ZFN and donor template into cells, ideally, in a single viral vector to achieve efficient genome editing and to avoid unwanted mutagenesis. In this study, we successfully produced a single adenoviral (Ad) vector with high titer that carried a ZFN expression cassette and a donor template simultaneously. We then demonstrated that this single Ad system could mediate efficient site-specific genome correction in vitro and ex vivo. The gene correction efficiency of the single Ad was significantly higher than that of the double Ad system. This novel vector will be a promising ZFN and donor delivery system for treatment of monogenic diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China
| | - Hao Chen
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China
| | - Xiaojing Zheng
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China
| | - Dongyang Wang
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China
| | - Haiyan Ji
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China
| | - Haibin Xia
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China.
| | - Qinwen Mao
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
381
|
Agustín-Pavón C, Isalan M. Synthetic biology and therapeutic strategies for the degenerating brain: Synthetic biology approaches can transform classical cell and gene therapies, to provide new cures for neurodegenerative diseases. Bioessays 2014; 36:979-90. [PMID: 25100403 PMCID: PMC4312882 DOI: 10.1002/bies.201400094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthetic biology is an emerging engineering discipline that attempts to design and rewire biological components, so as to achieve new functions in a robust and predictable manner. The new tools and strategies provided by synthetic biology have the potential to improve therapeutics for neurodegenerative diseases. In particular, synthetic biology will help design small molecules, proteins, gene networks, and vectors to target disease-related genes. Ultimately, new intelligent delivery systems will provide targeted and sustained therapeutic benefits. New treatments will arise from combining ‘protect and repair’ strategies: the use of drug treatments, the promotion of neurotrophic factor synthesis, and gene targeting. Going beyond RNAi and artificial transcription factors, site-specific genome modification is likely to play an increasing role, especially with newly available gene editing tools such as CRISPR/Cas9 systems. Taken together, these advances will help develop safe and long-term therapies for many brain diseases in human patients.
Collapse
|
382
|
Chen YE, Xie C, Yang B. Stem cells for vascular engineering. BIOMATERIALS AND REGENERATIVE MEDICINE 2014:621-639. [DOI: 10.1017/cbo9780511997839.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
383
|
Broccoli V, Giannelli SG, Mazzara PG. Modeling physiological and pathological human neurogenesis in the dish. Front Neurosci 2014; 8:183. [PMID: 25104921 PMCID: PMC4109586 DOI: 10.3389/fnins.2014.00183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/10/2014] [Indexed: 01/19/2023] Open
Abstract
New advances in directing the neuronal differentiation of human embryonic and induced pluripotent stem cells (hPSCs, abbreviation intended to convey both categories of pluripotent stem cells) have promoted the development of culture systems capable of modeling early neurogenesis and neural specification at some of their critical milestones. The hPSC-derived neural rosette can be considered the in vitro counterpart of the developing neural tube, since both structures share a virtually equivalent architecture and related functional properties. Epigenetic stimulation methods can modulate the identity of the rosette neural progenitors in order to generate authentic neuronal subtypes, as well as a full spectrum of neural crest derivatives. The intrinsic capacity of induced pluripotent cell-derived neural tissue to self-organize has become fully apparent with the emergence of innovative in vitro systems that are able to shape the neuronal differentiation of hPSCs into organized tissues that develop in three dimensions. However, significant hurdles remain that must be completely solved in order to facilitate the use of hPSCs in modeling (e.g., late-onset disorders) or in building therapeutic strategies for cell replacement. In this direction, new procedures have been established to promote the maturation and functionality of hPSC-derived neurons. Meanwhile, new methods to accelerate the aging of in vitro differentiating cells are still in development. hPSC-based technology has matured enough to offer a significant and reliable model system for early and late neurogenesis that could be extremely informative for the study of the physiological and pathological events that occur during this process. Thus, full exploitation of this cellular system can provide a better understanding of the physiological events that shape human brain structures, as well as a solid platform to investigate the pathological mechanisms at the root of human diseases.
Collapse
Affiliation(s)
- Vania Broccoli
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy
| | - Serena G Giannelli
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy
| | - Pietro G Mazzara
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy
| |
Collapse
|
384
|
Stein JL, de la Torre-Ubieta L, Tian Y, Parikshak NN, Hernández IA, Marchetto MC, Baker DK, Lu D, Hinman CR, Lowe JK, Wexler EM, Muotri AR, Gage FH, Kosik KS, Geschwind DH. A quantitative framework to evaluate modeling of cortical development by neural stem cells. Neuron 2014; 83:69-86. [PMID: 24991955 PMCID: PMC4277209 DOI: 10.1016/j.neuron.2014.05.035] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2014] [Indexed: 01/19/2023]
Abstract
Neural stem cells have been adopted to model a wide range of neuropsychiatric conditions in vitro. However, how well such models correspond to in vivo brain has not been evaluated in an unbiased, comprehensive manner. We used transcriptomic analyses to compare in vitro systems to developing human fetal brain and observed strong conservation of in vivo gene expression and network architecture in differentiating primary human neural progenitor cells (phNPCs). Conserved modules are enriched in genes associated with ASD, supporting the utility of phNPCs for studying neuropsychiatric disease. We also developed and validated a machine learning approach called CoNTExT that identifies the developmental maturity and regional identity of in vitro models. We observed strong differences between in vitro models, including hiPSC-derived neural progenitors from multiple laboratories. This work provides a systems biology framework for evaluating in vitro systems and supports their value in studying the molecular mechanisms of human neurodevelopmental disease.
Collapse
Affiliation(s)
- Jason L Stein
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Luis de la Torre-Ubieta
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuan Tian
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neelroop N Parikshak
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Israel A Hernández
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Maria C Marchetto
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Dylan K Baker
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daning Lu
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cassidy R Hinman
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jennifer K Lowe
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric M Wexler
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alysson R Muotri
- School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kenneth S Kosik
- Molecular, Cellular and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
385
|
Jang J, Quan Z, Yum YJ, Song HS, Paek S, Kang HC. Induced pluripotent stem cells for modeling of pediatric neurological disorders. Biotechnol J 2014; 9:871-81. [PMID: 24838856 DOI: 10.1002/biot.201400010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/29/2014] [Accepted: 05/15/2014] [Indexed: 12/14/2022]
Abstract
The pathophysiological mechanisms underlying childhood neurological disorders have remained obscure due to a lack of suitable disease models reflecting human pathogenesis. Using induced pluripotent stem cell (iPSC) technology, various neurological disorders can now be extensively modeled. Specifically, iPSC technology has aided the study and treatment of early-onset pediatric neurodegenerative diseases such as Rett syndrome, Down syndrome, Angelman syndrome. Prader-Willi syndrome, Friedreich's ataxia, spinal muscular atrophy (SMA), fragile X syndrome, X-linked adrenoleukodystrophy (ALD), and SCN1A gene-related epilepsies. In this paper, we provide an overview of various gene delivery systems for generating iPSCs, the current state of modeling early-onset neurological disorders and the ultimate application of these in vitro models in cell therapy through the correction of disease-specific mutations.
Collapse
Affiliation(s)
- Jiho Jang
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
386
|
Chen W, Liu J, Zhang L, Xu H, Guo X, Deng S, Liu L, Yu D, Chen Y, Li Z. Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique. Sci Rep 2014; 4:5404. [PMID: 24953032 PMCID: PMC4066246 DOI: 10.1038/srep05404] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/03/2014] [Indexed: 01/19/2023] Open
Abstract
Human induced pluripotent stem cells (iPSC) can be used to understand the pathological mechanisms of human disease. These cells are a promising source for cell-replacement therapy. However, such studies require genetically defined conditions. Such genetic manipulations can be performed using the novel Transcription Activator-Like Effector Nucleases (TALENs), which generate site-specific double-strand DNA breaks (DSBs) with high efficiency and precision. Combining the TALEN and iPSC methods, we developed two iPS cell lines by generating the point mutation A5768G in the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1 α subunit. The engineered iPSC maintained pluripotency and successfully differentiated into neurons with normal functional characteristics. The two cell lines differ exclusively at the epilepsy-susceptibility variant. The ability to robustly introduce disease-causing point mutations in normal hiPS cell lines can be used to generate a human cell model for studying epileptic mechanisms and for drug screening.
Collapse
Affiliation(s)
- Wanjuan Chen
- 1] The School of Life Sciences, Anhui University, Hefei 230027 [2]
| | - Jingxin Liu
- 1] The School of Life Sciences, University of Science and Technology of China, Hefei 230027 [2]
| | - Longmei Zhang
- The School of Life Sciences, University of Science and Technology of China, Hefei 230027
| | - Huijuan Xu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaogang Guo
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Sihao Deng
- Xiang-Ya School of Medicine, Central South University
| | - Lipeng Liu
- Xiang-Ya Boai Hospital, Changsha 410013, China
| | - Daiguan Yu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yonglong Chen
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiyuan Li
- 1] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China [2] Xiang-Ya School of Medicine, Central South University
| |
Collapse
|
387
|
Zhao P, Luo Z, Tian W, Yang J, Ibáñez DP, Huang Z, Tortorella MD, Esteban MA, Fan W. Solving the puzzle of Parkinson's disease using induced pluripotent stem cells. Exp Biol Med (Maywood) 2014; 239:1421-32. [PMID: 24939824 DOI: 10.1177/1535370214538588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The prevalence and incidence of Parkinson's disease (PD) is increasing due to a prolonged life expectancy. This highlights the need for a better mechanistic understanding and new therapeutic approaches. However, traditional in vitro and in vivo experimental models to study PD are suboptimal, thus hampering the progress in the field. The epigenetic reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) offers a unique way to overcome this problem, as these cells share many properties of embryonic stem cells (ESCs) including the potential to be transformed into different lineages. PD modeling with iPSCs is nowadays facilitated by the growing availability of high-efficiency neural-specific differentiation protocols and the possibility to correct or induce mutations as well as creating marker cell lines using designer nucleases. These technologies, together with steady advances in human genetics, will likely introduce profound changes in the way we interpret PD and develop new treatments. Here, we summarize the different PD iPSCs reported so far and discuss the challenges for disease modeling using these cell lines.
Collapse
Affiliation(s)
- Ping Zhao
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Zhiwei Luo
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Weihua Tian
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Jiayin Yang
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - David P Ibáñez
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Zhijian Huang
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Micky D Tortorella
- Drug Discovery Pipeline Group, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Miguel A Esteban
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China Guangdong Stem Cell and Regenerative Medicine Research Centre, University of Hong Kong, Hong Kong 999077, and Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Wenxia Fan
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| |
Collapse
|
388
|
González F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV, Huangfu D. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 2014; 15:215-226. [PMID: 24931489 DOI: 10.1016/j.stem.2014.05.018] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/06/2014] [Accepted: 05/28/2014] [Indexed: 12/26/2022]
Abstract
Human pluripotent stem cells (hPSCs) offer a unique platform for elucidating the genes and molecular pathways that underlie complex traits and diseases. To realize this promise, methods for rapid and controllable genetic manipulations are urgently needed. By combining two newly developed gene-editing tools, the TALEN and CRISPR/Cas systems, we have developed a genome-engineering platform in hPSCs, which we named iCRISPR. iCRISPR enabled rapid and highly efficient generation of biallelic knockout hPSCs for loss-of-function studies, as well as homozygous knockin hPSCs with specific nucleotide alterations for precise modeling of disease conditions. We further demonstrate efficient one-step generation of double- and triple-gene knockout hPSC lines, as well as stage-specific inducible gene knockout during hPSC differentiation. Thus the iCRISPR platform is uniquely suited for dissection of complex genetic interactions and pleiotropic gene functions in human disease studies and has the potential to support high-throughput genetic analysis in hPSCs.
Collapse
Affiliation(s)
- Federico González
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| | - Zengrong Zhu
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| | - Katherine Lelli
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA.,Weill Graduate School of Medical Sciences at Cornell University/The Rockefeller University/Sloan-Kettering Institute Tri-Institutional M.D.-Ph.D. Program, 1300 York Avenue, New York, NY 10065, USA
| | - Qing V Li
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
389
|
Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells. Stem Cell Reports 2014; 2:838-52. [PMID: 24936470 PMCID: PMC4050346 DOI: 10.1016/j.stemcr.2014.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 01/09/2023] Open
Abstract
Genetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many applications are limited due to the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. Here, using an endogenous LGR5-GFP reporter, we derived adult stem cells from hPSCs that gave rise to functional human intestinal tissue comprising all major cell types of the intestine. Histological and functional analyses revealed that such human organoid cultures could be derived with high purity and with a composition and morphology similar to those of cultures obtained from human biopsies. Importantly, hPSC-derived organoids responded to the canonical signaling pathways that control self-renewal and differentiation in the adult human intestinal stem cell compartment. This adult stem cell system provides a platform for studying human intestinal disease in vitro using genetically engineered hPSCs. We isolate intestinal organoid cultures from hPSCs through teratoma differentiation Organoids comprise all cell types of the intestinal epithelium RNA-seq reveals a high similarity to organoids isolated form primary tissue Organoids can respond to pathways that control self-renewal and differentiation
Collapse
|
390
|
Steentoft C, Bennett EP, Schjoldager KTBG, Vakhrushev SY, Wandall HH, Clausen H. Precision genome editing: a small revolution for glycobiology. Glycobiology 2014; 24:663-80. [PMID: 24861053 DOI: 10.1093/glycob/cwu046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precise and stable gene editing in mammalian cell lines has until recently been hampered by the lack of efficient targeting methods. While different gene silencing strategies have had tremendous impact on many biological fields, they have generally not been applied with wide success in the field of glycobiology, primarily due to their low efficiencies, with resultant failure to impose substantial phenotypic consequences upon the final glycosylation products. Here, we review novel nuclease-based precision genome editing techniques enabling efficient and stable gene editing, including gene disruption, insertion, repair, modification and deletion. The nuclease-based techniques comprised of homing endonucleases, zinc finger nucleases, transcription activator-like effector nucleases, as well as the RNA-guided clustered regularly interspaced short palindromic repeat/Cas nuclease system, all function by introducing single or double-stranded breaks at a defined genomic sequence. We here compare and contrast the different techniques and summarize their current applications, highlighting cases from the field of glycobiology as well as pointing to future opportunities. The emerging potential of precision gene editing for the field is exemplified by applications to xenotransplantation; to probing O-glycoproteomes, including differential O-GalNAc glycoproteomes, to decipher the function of individual polypeptide GalNAc-transferases, as well as for engineering Chinese Hamster Ovary host cells for production of improved therapeutic biologics.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Katrine T-B G Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
391
|
Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Reports 2014; 2:866-80. [PMID: 24936472 PMCID: PMC4050353 DOI: 10.1016/j.stemcr.2014.03.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 12/17/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a fatal inherited lipid storage disorder causing severe neurodegeneration and liver dysfunction with only limited treatment options for patients. Loss of NPC1 function causes defects in cholesterol metabolism and has recently been implicated in deregulation of autophagy. Here, we report the generation of isogenic pairs of NPC patient-specific induced pluripotent stem cells (iPSCs) using transcription activator-like effector nucleases (TALENs). We observed decreased cell viability, cholesterol accumulation, and dysfunctional autophagic flux in NPC1-deficient human hepatic and neural cells. Genetic correction of a disease-causing mutation rescued these defects and directly linked NPC1 protein function to impaired cholesterol metabolism and autophagy. Screening for autophagy-inducing compounds in disease-affected human cells showed cell type specificity. Carbamazepine was found to be cytoprotective and effective in restoring the autophagy defects in both NPC1-deficient hepatic and neuronal cells and therefore may be a promising treatment option with overall benefit for NPC disease. Generation of Niemann-Pick type C (NPC) disease patient-specific iPSCs NPC1 hepatic and neuronal cells show defects in cholesterol and autophagic flux TALEN-mediated genetic correction rescues the cholesterol and autophagy defects Autophagy inducers can restore functional autophagy and increase cell viability
Collapse
|
392
|
Cell death-inducing DFFA-like effector b is required for hepatitis C virus entry into hepatocytes. J Virol 2014; 88:8433-44. [PMID: 24829338 DOI: 10.1128/jvi.00081-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The molecular mechanism of the hepatic tropism of hepatitis C virus (HCV) remains incompletely defined. In vitro hepatic differentiation of pluripotent stem cells produces hepatocyte-like cells (HLCs) permissive for HCV infection, providing an opportunity for studying liver development and host determinants of HCV susceptibility. We previously identified the transition stage of HCV permissiveness and now investigate whether a host protein whose expression is induced during this transition stage is important for HCV infection. We suppressed the expression of a liver-specific protein, cell death-inducing DFFA-like effector b (CIDEB), and performed hepatocyte function and HCV infection assays. We also used a variety of cell-based assays to dissect the specific step of the HCV life cycle that potentially requires CIDEB function. We found CIDEB to be an essential cofactor for HCV entry into hepatocytes. Genetic interference with CIDEB in stem cells followed by hepatic differentiation leads to HLCs that are refractory to HCV infection, and infection time course experiments revealed that CIDEB functions in a late step of HCV entry, possibly to facilitate membrane fusion. The role of CIDEB in mediating HCV entry is distinct from those of the well-established receptors, as it is not required for HCV pseudoparticle entry. Finally, HCV infection effectively downregulates CIDEB protein through a posttranscriptional mechanism. IMPORTANCE This study identifies a hepatitis C virus (HCV) entry cofactor that is required for HCV infection of hepatocytes and potentially facilitates membrane fusion between viral and host membranes. CIDEB and its interaction with HCV may open up new avenues of investigation of lipid droplets and viral entry.
Collapse
|
393
|
Ross CA, Akimov SS. Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet 2014; 23:R17-26. [PMID: 24824217 DOI: 10.1093/hmg/ddu204] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The cell biology of human neurodegenerative diseases has been difficult to study till recently. The development of human induced pluripotent stem cell (iPSC) models has greatly enhanced our ability to model disease in human cells. Methods have recently been improved, including increasing reprogramming efficiency, introducing non-viral and non-integrating methods of cell reprogramming, and using novel gene editing techniques for generating genetically corrected lines from patient-derived iPSCs, or for generating mutations in control cell lines. In this review, we highlight accomplishments made using iPSC models to study neurodegenerative disorders such as Huntington's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Fronto-Temporal Dementia, Alzheimer's disease, Spinomuscular Atrophy and other polyglutamine diseases. We review disease-related phenotypes shown in patient-derived iPSCs differentiated to relevant neural subtypes, often with stressors or cell "aging", to enhance disease-specific phenotypes. We also discuss prospects for the future of using of iPSC models of neurodegenerative disorders, including screening and testing of therapeutic compounds, and possibly of cell transplantation in regenerative medicine. The new iPSC models have the potential to greatly enhance our understanding of pathogenesis and to facilitate the development of novel therapeutics.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Neuroscience and Pharmacology, and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | | |
Collapse
|
394
|
Ebrahimkhani MR, Young CL, Lauffenburger DA, Griffith LG, Borenstein JT. Approaches to in vitro tissue regeneration with application for human disease modeling and drug development. Drug Discov Today 2014; 19:754-62. [PMID: 24793141 DOI: 10.1016/j.drudis.2014.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 01/08/2023]
Abstract
Reliable in vitro human disease models that capture the complexity of in vivo tissue behaviors are crucial to gain mechanistic insights into human disease and enable the development of treatments that are effective across broad patient populations. The integration of stem cell technologies, tissue engineering, emerging biomaterials strategies and microfabrication processes, as well as computational and systems biology approaches, is enabling new tools to generate reliable in vitro systems to study the molecular basis of human disease and facilitate drug development. In this review, we discuss these recently developed tools and emphasize opportunities and challenges involved in combining these technologies toward regenerative science.
Collapse
Affiliation(s)
- Mohammad R Ebrahimkhani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carissa L Young
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey T Borenstein
- Department of Biomedical Engineering, Charles Stark Draper Laboratory, Cambridge, MA 02139, USA.
| |
Collapse
|
395
|
|
396
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease leading to selective death of upper and lower motoneurons. Clinically, the ALS syndrome is linked to pathogenic mutations in superoxide dismutase 1 (SOD1), though actual molecular mechanisms remain ill understood. Two papers recently published in Cell Stem Cell and Cell Reports employ syngenic, iPSC-derived cell lines of one of the most severe SOD1 mutations to report mitochondrial and ER stress as causal for perturbed electrical activity in ALS neurons (Kiskinis et al, 2014; Wainger et al, 2014).
Collapse
Affiliation(s)
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany Biochemistry, Adolf Butenandt Institute Ludwig-Maximilians University Munich, Munich, Germany Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
397
|
Wijshake T, Baker DJ, van de Sluis B. Endonucleases: new tools to edit the mouse genome. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1942-1950. [PMID: 24794718 DOI: 10.1016/j.bbadis.2014.04.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/26/2022]
Abstract
Mouse transgenesis has been instrumental in determining the function of genes in the pathophysiology of human diseases and modification of genes by homologous recombination in mouse embryonic stem cells remains a widely used technology. However, this approach harbors a number of disadvantages, as it is time-consuming and quite laborious. Over the last decade a number of new genome editing technologies have been developed, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas). These systems are characterized by a designed DNA binding protein or RNA sequence fused or co-expressed with a non-specific endonuclease, respectively. The engineered DNA binding protein or RNA sequence guides the nuclease to a specific target sequence in the genome to induce a double strand break. The subsequent activation of the DNA repair machinery then enables the introduction of gene modifications at the target site, such as gene disruption, correction or insertion. Nuclease-mediated genome editing has numerous advantages over conventional gene targeting, including increased efficiency in gene editing, reduced generation time of mutant mice, and the ability to mutagenize multiple genes simultaneously. Although nuclease-driven modifications in the genome are a powerful tool to generate mutant mice, there are concerns about off-target cleavage, especially when using the CRISPR/Cas system. Here, we describe the basic principles of these new strategies in mouse genome manipulation, their inherent advantages, and their potential disadvantages compared to current technologies used to study gene function in mouse models. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Tobias Wijshake
- Molecular Genetics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, 200 First St SW, Rochester, MN 55905, USA
| | - Bart van de Sluis
- Molecular Genetics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
398
|
Isobe KI, Cheng Z, Nishio N, Suganya T, Tanaka Y, Ito S. iPSCs, aging and age-related diseases. N Biotechnol 2014; 31:411-21. [PMID: 24784583 DOI: 10.1016/j.nbt.2014.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023]
Abstract
Human histocompatibility antigens are quite heterogeneous and promote the rejection of transplanted tissue. Recent advances in stem cell research that enable the use of a patient's own stem cells for transplantation are very important because rejection could be avoided. In particular, Yamanaka's group in Japan gave new hope to patients with incurable diseases when they developed induced murine pluripotent stem cells (iPSCs) in 2006 and human iPSCs in 2007. Whereas embryonic stem cells (ESCs) are derived from the inner cell mass and are supported in culture by LIF, iPSCs are derived from fetal or adult somatic cells. Through the application of iPSC technology, adult somatic cells can develop a pluripotent state. One advantage of using iPSCs instead of ESCs in regenerative medicine is that (theoretically) immune rejection could be avoided, although there is some debate about immune rejection of a patient's own iPSCs. Many diseases occur in elderly patients. In order to use regenerative medicine with the elderly, it is important to demonstrate that iPSCs can indeed be generated from older patients. Recent findings have shown that iPSCs can be established from aged mice and aged humans. These iPSCs can differentiate to cells from all three germ layers. However, it is not known whether iPSCs from aged mice or humans show early senescence. Before clinical use of iPSCs, issues related to copy number variation, tumorigenicity and immunogenicity must be resolved. It is particularly important that researchers have succeeded in generating iPSCs that have differentiated to somatic cells related to specific diseases of the elderly, including atherosclerosis, diabetes, Alzheimer's disease and Parkinson's disease. These efforts will facilitate the use of personalized stem cell transplantation therapy for currently incurable diseases.
Collapse
Affiliation(s)
- Ken-Ichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Zhao Cheng
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Naomi Nishio
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Thanasegan Suganya
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuriko Tanaka
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Sachiko Ito
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
399
|
Garate Z, Davis BR, Quintana-Bustamante O, Segovia JC. New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells. Hum Gene Ther 2014; 24:571-83. [PMID: 23675640 DOI: 10.1089/hum.2012.251] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Advances in cell and gene therapy are opening up new avenues for regenerative medicine. Because of their acquired pluripotency, human induced pluripotent stem cells (hiPSCs) are a promising source of autologous cells for regenerative medicine. They show unlimited self-renewal while retaining the ability, in principle, to differentiate into any cell type of the human body. Since Yamanaka and colleagues first reported the generation of hiPSCs in 2007, significant efforts have been made to understand the reprogramming process and to generate hiPSCs with potential for clinical use. On the other hand, the development of gene-editing platforms to increase homologous recombination efficiency, namely DNA nucleases (zinc finger nucleases, TAL effector nucleases, and meganucleases), is making the application of locus-specific gene therapy in human cells an achievable goal. The generation of patient-specific hiPSC, together with gene correction by homologous recombination, will potentially allow for their clinical application in the near future. In fact, reports have shown targeted gene correction through DNA-Nucleases in patient-specific hiPSCs. Various technologies have been described to reprogram patient cells and to correct these patient hiPSCs. However, no approach has been clearly more efficient and safer than the others. In addition, there are still significant challenges for the clinical application of these technologies, such as inefficient differentiation protocols, genetic instability resulting from the reprogramming process and hiPSC culture itself, the efficacy and specificity of the engineered DNA nucleases, and the overall homologous recombination efficiency. To summarize advances in the generation of gene corrected patient-specific hiPSCs, this review focuses on the available technological platforms, including their strengths and limitations regarding future therapeutic use of gene-corrected hiPSCs.
Collapse
Affiliation(s)
- Zita Garate
- Differentiation and Cytometry Unit, Hematopoiesis and Gene Therapy Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | | | | | | |
Collapse
|
400
|
Tardiff DF, Lindquist S. Phenotypic screens for compounds that target the cellular pathologies underlying Parkinson's disease. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e121-8. [PMID: 24050240 DOI: 10.1016/j.ddtec.2012.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease that affects over one million patients in the US. Yet, no disease modifying drugs exist, only those that temporarily alleviate symptoms. Because of its poorly defined and highly complex disease etiology, it is essential to embrace unbiased and innovative approaches for identifying new chemical entities that target the underlying toxicities associated with PD. Traditional target-based drug discovery paradigm can suffer from a bias toward a small number of potential targets. Phenotypic screening of both genetic and pharmacological PD models offers an alternative approach to discover compounds that target the initiating causes and effectors of cellular toxicity. The relative paucity of reported phenotypic screens illustrates the intrinsic difficulty in establishing model systems that are both biologically meaningful and adaptable to high-throughput screening. Parallel advances in PD models and in vivo screening technologies will help create opportunities for identifying new therapeutic leads with unanticipated, breakthrough mechanisms of action.
Collapse
|