351
|
β-Glucan as an encapsulating agent: Effect on probiotic survival in simulated gastrointestinal tract. Int J Biol Macromol 2015; 82:217-22. [PMID: 26562556 DOI: 10.1016/j.ijbiomac.2015.11.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022]
Abstract
Three strains of probiotics Lactobacillus casei, Lactobacillus brevis, and Lactobacillus plantarum were encapsulated in β-glucan matrix using emulsion technique. Further the encapsulated cells were studied for their tolerance in simulated gastrointestinal conditions and its storage stability. The average encapsulation efficiency of β-glucan-probiotic beads was found to be 74.01%. The surface morphology of β-glucan containing bacteria was studied using SEM. The noteworthy absorptions in the FT-IR spectra between 1300-900 cm(-1) and 2918-2925 cm(-1) corresponds to the presence of bacteria into the glucan matrix. Also, the thermal stability of β-glucan was evaluated using Differential Scanning Calorimeter. The efficiency of β-glucan in protecting the surviability of probiotic cells under simulated gastrointestinal conditions was studied. Results revealed significant (p<0.05) improvement to tolerance when the encapsulated cells were subjected to stresses like low pH, heat treatment, simulated intestinal conditions and storage.
Collapse
|
352
|
Zhang Q, Lin D, Yao S. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydr Polym 2015; 132:311-22. [DOI: 10.1016/j.carbpol.2015.06.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
|
353
|
Khurshid M, Aslam B, Nisar MA, Akbar R, Rahman H, Khan AA, Rasool MH. Bacterial munch for infants: potential pediatric therapeutic interventions of probiotics. Future Microbiol 2015; 10:1881-95. [PMID: 26515509 DOI: 10.2217/fmb.15.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Probiotics are viable microorganisms with the capacity to alter the gastrointestinal microbiota of the host. The recent scientific advancements and development of probiotic formulations have rekindled the importance of these clinical interpretations, underlining the starring role of the gut flora in host metabolism, defense and immune regulation. Despite encouraging preliminary results from randomized clinical trials of probiotics for various clinical conditions including irritable bowel syndrome, necrotizing enterocolitis, gastroenteritis, antibiotic-associated diarrhea, infantile colic, and improvement of digestion and immune function, further evidence is needed to determine the reproducibility of the findings and elucidate the underlying mechanisms. In this review, we have considered the postnatal development of gut flora and appraised the role of probiotics in health and disease condition among infants.
Collapse
Affiliation(s)
- Mohsin Khurshid
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan.,Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Rubab Akbar
- Health Biotechnology Division, National Institute for Biotechnology & Genetic Engineering, Faisalabad, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Kohat University of Science & Technology, Kohat, Pakistan
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
354
|
Khutoryanskiy VV. Supramolecular materials: Longer and safer gastric residence. NATURE MATERIALS 2015; 14:963-964. [PMID: 26395936 DOI: 10.1038/nmat4432] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
355
|
Mooranian A, Negrulj R, Arfuso F, Al-Salami H. Multicompartmental, multilayered probucol microcapsules for diabetes mellitus: Formulation characterization and effects on production of insulin and inflammation in a pancreatic β-cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1642-53. [DOI: 10.3109/21691401.2015.1069299] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
356
|
Sun Q, Shi Y, Wang F, Han D, Lei H, Zhao Y, Sun Q. Study on the effects of microencapsulated Lactobacillus delbrueckii on the mouse intestinal flora. J Microencapsul 2015; 32:669-76. [PMID: 26471401 DOI: 10.3109/02652048.2015.1057249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To evaluate the protective effects of microencapsulation on Lactobacillus delbrueckii by random, parallel experimental design. MATERIALS AND METHODS Lincomycin hydrochloride-induced intestinal malfunction mouse model was successfully established; then the L. delbrueckii microcapsule was given to the mouse. The clinical behaviour, number of intestinal flora, mucous IgA content in small intestine, IgG and IL-2 level in peripheral blood were monitored. The histological sections were also prepared. RESULTS The L. delbrueckii microcapsule could have more probiotic effects as indicated by higher bifidobacterium number in cecal contents. The sIgA content in microcapsule treated group was significantly higher than that in non-encapsulated L. delbrueckii treated group (p < 0.05). Intestine pathological damage of the L. delbrueckii microcapsule-treated group showed obvious restoration. CONCLUSION The L. delbrueckii microcapsules could relieve the intestinal tissue pathological damage and play an important role in curing antibiotic-induced intestinal flora dysfunction.
Collapse
Affiliation(s)
- Qingshen Sun
- a College of Life Science, University Key Laboratory of Microbiology, Heilongjiang University , Harbin , China and.,b Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education , Harbin , China
| | - Yue Shi
- a College of Life Science, University Key Laboratory of Microbiology, Heilongjiang University , Harbin , China and
| | - Fuying Wang
- a College of Life Science, University Key Laboratory of Microbiology, Heilongjiang University , Harbin , China and
| | - Dequan Han
- a College of Life Science, University Key Laboratory of Microbiology, Heilongjiang University , Harbin , China and.,b Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education , Harbin , China
| | - Hong Lei
- a College of Life Science, University Key Laboratory of Microbiology, Heilongjiang University , Harbin , China and
| | - Yao Zhao
- a College of Life Science, University Key Laboratory of Microbiology, Heilongjiang University , Harbin , China and.,b Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education , Harbin , China
| | - Quan Sun
- a College of Life Science, University Key Laboratory of Microbiology, Heilongjiang University , Harbin , China and
| |
Collapse
|
357
|
Viability and morphological evaluation of alginate-encapsulated Lactobacillus rhamnosus GG under simulated tilapia gastrointestinal conditions and its effect on growth performance, intestinal morphology and protection against Streptococcus agalactiae. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
358
|
Corstens MN, Berton-Carabin CC, de Vries R, Troost FJ, Masclee AAM, Schroën K. Food-grade micro-encapsulation systems that may induce satiety via delayed lipolysis: A review. Crit Rev Food Sci Nutr 2015; 57:2218-2244. [DOI: 10.1080/10408398.2015.1057634] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Meinou N. Corstens
- Department of Agrotechnology & Food Sciences, Food Process Engineering Group, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Claire C. Berton-Carabin
- Department of Agrotechnology & Food Sciences, Food Process Engineering Group, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Renko de Vries
- Department of Agrotechnology & Food Sciences, Physical Chemistry and Colloid Science Group, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Freddy J. Troost
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ad A. M. Masclee
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Karin Schroën
- Department of Agrotechnology & Food Sciences, Food Process Engineering Group, Wageningen University and Research Center, Wageningen, The Netherlands
| |
Collapse
|
359
|
Albadran HA, Chatzifragkou A, Khutoryanskiy VV, Charalampopoulos D. Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Res Int 2015; 74:208-216. [DOI: 10.1016/j.foodres.2015.05.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 01/28/2023]
|
360
|
Iravani S, Korbekandi H, Mirmohammadi SV. Technology and potential applications of probiotic encapsulation in fermented milk products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:4679-96. [PMID: 26243890 PMCID: PMC4519473 DOI: 10.1007/s13197-014-1516-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/28/2013] [Accepted: 08/06/2014] [Indexed: 11/25/2022]
Abstract
Fermented milk products containing probiotics and prebiotics can be used in management, prevention and treatment of some important diseases (e.g., intestinal- and immune-associated diseases). Microencapsulation has been used as an efficient method for improving the viability of probiotics in fermented milks and gastrointestinal tract. Microencapsulation of probiotic bacterial cells provides shelter against adverse conditions during processing, storage and gastrointestinal passage. Important challenges in the field include survival of probiotics during microencapsulation, stability of microencapsulated probiotics in fermented milks, sensory quality of fermented milks with microencapsulated probiotics, and efficacy of microencapsulation to deliver probiotics and their controlled or targeted release in the gastrointestinal tract. This study reviews the current knowledge, and the future prospects and challenges of microencapsulation of probiotics used in fermented milk products. In addition, the influence of microencapsulation on probiotics viability and survival is reviewed.
Collapse
Affiliation(s)
- Siavash Iravani
- />Biotechnology Department, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- />Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Korbekandi
- />Biotechnology Department, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Vahid Mirmohammadi
- />School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
361
|
de Barros JMS, Lechner T, Charalampopoulos D, Khutoryanskiy VV, Edwards AD. Enteric coated spheres produced by extrusion/spheronization provide effective gastric protection and efficient release of live therapeutic bacteria. Int J Pharm 2015; 493:483-94. [PMID: 26188314 DOI: 10.1016/j.ijpharm.2015.06.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 11/18/2022]
Abstract
We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid.
Collapse
Affiliation(s)
- João M S de Barros
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Tabea Lechner
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | | | | | - Alexander D Edwards
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| |
Collapse
|
362
|
Varankovich NV, Nickerson MT, Korber DR. Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Front Microbiol 2015; 6:685. [PMID: 26236287 PMCID: PMC4500982 DOI: 10.3389/fmicb.2015.00685] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/22/2015] [Indexed: 12/18/2022] Open
Abstract
Probiotic bacteria offer a number of potential health benefits when administered in sufficient amounts that in part include reducing the number of harmful organisms in the intestine, producing antimicrobial substances and stimulating the body's immune response. However, precisely elucidating the probiotic effect of a specific bacterium has been challenging due to the complexity of the gut's microbial ecosystem and a lack of definitive means for its characterization. This review provides an overview of widely used and recently described probiotics, their impact on the human's gut microflora as a preventative treatment of disease, human/animal models being used to help show efficacy, and discusses the potential use of probiotics in gastrointestinal diseases associated with antibiotic administration.
Collapse
Affiliation(s)
| | | | - Darren R. Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, SaskatoonSK, Canada
| |
Collapse
|
363
|
Silva C, Domingos-Lopes M, Magalhães V, Freitas D, Coelho M, Rosa H, Dapkevicius M. Short communication: Latin-style fresh cheese enhances lactic acid bacteria survival but not Listeria monocytogenes resistance under in vitro simulated gastrointestinal conditions. J Dairy Sci 2015; 98:4377-83. [DOI: 10.3168/jds.2015-9420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/15/2015] [Indexed: 01/01/2023]
|
364
|
Chen J, Wang Q, Liu CM, Gong J. Issues deserve attention in encapsulating probiotics: Critical review of existing literature. Crit Rev Food Sci Nutr 2015; 57:1228-1238. [DOI: 10.1080/10408398.2014.977991] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Qi Wang
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cheng-Mei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Joshua Gong
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
365
|
Kim BJ, Park T, Park SY, Han SW, Lee HS, Kim YG, Choi IS. Control of Microbial Growth in Alginate/Polydopamine Core/Shell Microbeads. Chem Asian J 2015; 10:2130-3. [DOI: 10.1002/asia.201500360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Beom Jin Kim
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 305-701 Korea
| | - Taegyun Park
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 305-701 Korea
| | - So-Young Park
- Department of Chemistry; Sungkyunkwan University; Suwon 440-746 Korea
| | - Sang Woo Han
- Molecular-Level Interface Research Center, Department of Chemistry; KAIST, Daejeon; 305-701 Korea
| | - Hee-Seung Lee
- Molecular-Level Interface Research Center, Department of Chemistry; KAIST, Daejeon; 305-701 Korea
| | - Yang-Gyun Kim
- Department of Chemistry; Sungkyunkwan University; Suwon 440-746 Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 305-701 Korea
| |
Collapse
|
366
|
García Gonzalez E, Serna Cock L. Viabilidad de una bacteria láctica encapsulada e incorporada en una matriz de cobertura de chocolate. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2015. [DOI: 10.15446/rev.colomb.biote.v17n1.44824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<strong>Título en ingles: Viability of encapsulated lactic bacteria added in a matrix of chocolate coverage</strong><p><strong>Título corto: Cobertura de chocolate probiótica</strong></p><p><strong>Resumen:</strong> Se evaluó la viabilidad durante el almacenamiento de <em>Weissella confusa</em> incorporada en una matriz de cobertura de chocolate. La bacteria probiótica se encapsuló empleando tres materiales de pared, gel de Aloe vera, gel Aloe vera + Almidón al 10 % y gel de Aloe vera + Almidón al 15 % y células libres como control. Posteriormente se liofilizó. La bacteria probiótica encapsulada, se incorporó en una matriz de cobertura de chocolate. Los chips se empacaron y almacenaron durante 5 semanas a 4 °C, cada semana se midieron cambios en la viabilidad de la bacteria probiótica y en la actividad de agua. En la quinta semana, los chips se sometieron a condiciones simuladas de jugos intestinales. Durante el almacenamiento los chips mantuvieron su carácter probiótico (>10<sup>6 </sup>UFC/g), sin embargo, cuando la bacteria probiótica se encapsuló en gel aloe vera, se obtuvo mayor número de bacterias probióticas vivas dentro de la matriz sólida (2,1x10<sup>8 </sup>UFC/g). La actividad de agua varió de 0,470 a 0,810. La bacteria probiótica permaneció viva por 2 horas en medios simulados de jugos intestinales, lo cual ratifica que la matriz sólida y los medios de encapsulación seleccionados son adecuados para el desarrollo de productos sólidos probióticos ricos en grasa vegetal.</p><p><strong>Palabras clave:</strong> probiótico, chip, encapsulación, Aloe, almidón, viabilidad celular.</p><p><strong>Abstract: </strong>Viability during storage of <em>Weissella confusa</em> incorporated in a chocolate coating matrix was evaluated. Probiotic bacteria was encapsulated using three wall materials, Aloe vera gel, Aloe vera gel + 10 % starch and aloe vera gel + 15 % starch and free cells as control. Subsequently lyophilized. Probiotic bacteria encapsulated, was incorporated into a chocolate coating matrix. The chips were packed and stored for 5 weeks at 4 °C, were measured weekly changes in viability of the probiotic bacteria and water activity. In the fifth week, the chips were subjected to simulated conditions of intestinal juices. During storage chips remained probiotic character (>10<sup>6</sup> CFU/g), however, if the probiotic bacteria are encapsulated in aloe vera gel, the greater number of living probiotic bacteria was obtained within the solid matrix (2,1x10<sup>8</sup> CFU/g ). Water activity ranged from 0.470-0,810. Probiotic bacteria remained alive for 2 hours in simulated intestinal fluid media, which confirms that the solid matrix and the selected encapsulation means are suitable for the development of solid product rich in vegetable fat probiotics.</p><p><strong>Key words:</strong> probiotic, chip, encapsulation, Aloe, starch, cellular viability.</p><p><strong>Recibido: </strong>septiembre 16 de 2014<strong> Aprobado: </strong>abril 20 de 2015</p>
Collapse
|
367
|
Pop OL, Vodnar DC, Suharoschi R, Mudura E, Socaciu C. L. plantarum
ATCC 8014 Entrapment with Prebiotics and Lucerne Green Juice and Their Behavior in Simulated Gastrointestinal Conditions. J FOOD PROCESS ENG 2015. [DOI: 10.1111/jfpe.12234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Oana L. Pop
- Faculty of Food Science and Technology; University of Agricultural Science and Veterinary Medicine Cluj-Napoca; 3-5 Calea Mănăştur Street Cluj-Napoca 400372 Romania
| | - Dan C. Vodnar
- Faculty of Food Science and Technology; University of Agricultural Science and Veterinary Medicine Cluj-Napoca; 3-5 Calea Mănăştur Street Cluj-Napoca 400372 Romania
| | - Ramona Suharoschi
- Faculty of Food Science and Technology; University of Agricultural Science and Veterinary Medicine Cluj-Napoca; 3-5 Calea Mănăştur Street Cluj-Napoca 400372 Romania
| | - Elena Mudura
- Faculty of Food Science and Technology; University of Agricultural Science and Veterinary Medicine Cluj-Napoca; 3-5 Calea Mănăştur Street Cluj-Napoca 400372 Romania
| | - Carmen Socaciu
- Faculty of Food Science and Technology; University of Agricultural Science and Veterinary Medicine Cluj-Napoca; 3-5 Calea Mănăştur Street Cluj-Napoca 400372 Romania
| |
Collapse
|
368
|
Kiran F, Mokrani M, Osmanagaoglu O. Effect of Encapsulation on Viability of Pediococcus pentosaceus OZF During Its Passage Through the Gastrointestinal Tract Model. Curr Microbiol 2015; 71:95-105. [DOI: 10.1007/s00284-015-0832-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/01/2015] [Indexed: 01/04/2023]
|
369
|
Larsen BE, Bjørnstad J, Pettersen EO, Tønnesen HH, Melvik JE. Rheological characterization of an injectable alginate gel system. BMC Biotechnol 2015; 15:29. [PMID: 25944125 PMCID: PMC4419456 DOI: 10.1186/s12896-015-0147-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 04/21/2015] [Indexed: 11/12/2022] Open
Abstract
Background This work investigates a general method for producing alginate gel matrices using an internal mode of gelation that depends solely on soluble alginate and alginate/gelling ion particles. The method involves the formulation of two-component kits comprised of soluble alginate and insoluble alginate/gelling ion particles. Gelling kinetics, elastic and Young’s moduli were investigated for selected parameters with regard to soluble alginate guluronate content, molecular weight, calcium or strontium gelling ions and alginate gelling ion particle sizes in the range between 25 and 125 micrometers. Results By mixing the two components and varying the parameters mentioned above, alginate gel matrices with tailor-made viscoelastic properties and gelling kinetics were obtained. Final gel elasticity depended on alginate type, concentration and gelling ion. The gelling rate could be manipulated, e.g. through selection of the alginate type and molecular weight, particle sizes and the concentration of non-gelling ions. Conclusions Formulations of the injectable and moldable alginate system presented have recently been used within specific medical applications and may have potential within regenerative medicine or other fields.
Collapse
Affiliation(s)
| | - Jorunn Bjørnstad
- FMC Biopolymer AS, Sandvika, Norway. .,Current address: Elopak AS, Spikkestad, Norway.
| | | | | | - Jan Egil Melvik
- FMC Biopolymer AS, Sandvika, Norway. .,Current address: Origomar AS, Oslo, Norway.
| |
Collapse
|
370
|
Würth R, Hörmannsperger G, Wilke J, Foerst P, Haller D, Kulozik U. Protective effect of milk protein based microencapsulation on bacterial survival in simulated gastric juice versus the murine gastrointestinal system. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
371
|
Favarin L, Laureano-Melo R, Luchese RH. Survival of free and microencapsulated Bifidobacterium: effect of honey addition. J Microencapsul 2015; 32:329-35. [PMID: 25775038 DOI: 10.3109/02652048.2015.1017620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study evaluated the effect of honey addition on the viability of free and emulsion encapsulated cells of two strains of Bifidobacterium that underwent simulation of human upper gastrointestinal transit. In the control condition, without honey, free cells were drastically reduced after exposure to gastrointestinal conditions. The reduction was more pronounced with Bifidobacterium J7 of human origin. On the other hand, when cells were encapsulated, the viability reduction was higher for strain Bifidobacterium Bb12. The microencapsulation improved the viability maintenance of both Bifidobacterium strains, in recommended amounts for probiotic activity, after exposure to simulated gastrointestinal conditions. Moreover, suspending free cells of both Bifidobacterium strains in honey solutions resulted in a protective effect, equivalent to the plain microencapsulation with sodium alginate 3%. It is concluded that microencapsulation and the addition of honey improved the ability of Bifidobacterium to tolerate gastrointestinal conditions in vitro.
Collapse
Affiliation(s)
- Luciana Favarin
- Post Graduate Program in Food Science and Technology, Department of Food Technology, Institute of Technology, University Federal Rural of Rio de Janeiro , Seropédica , Brazil and
| | | | | |
Collapse
|
372
|
Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 2015; 6:58. [PMID: 25741323 PMCID: PMC4330916 DOI: 10.3389/fmicb.2015.00058] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/17/2015] [Indexed: 12/13/2022] Open
Abstract
Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut–brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Georgia Zoumpopoulou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Benoit Foligné
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Bruno Pot
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| |
Collapse
|
373
|
Mooranian A, Negrulj R, Al-Sallami HS, Fang Z, Mikov M, Golocorbin-Kon S, Fakhoury M, Watts GF, Matthews V, Arfuso F, Lambros A, Al-Salami H. Probucol release from novel multicompartmental microcapsules for the oral targeted delivery in type 2 diabetes. AAPS PharmSciTech 2015; 16:45-52. [PMID: 25168450 DOI: 10.1208/s12249-014-0205-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022] Open
Abstract
In previous studies, we developed and characterised multicompartmental microcapsules as a platform for the targeted oral delivery of lipophilic drugs in type 2 diabetes (T2D). We also designed a new microencapsulated formulation of probucol-sodium alginate (PB-SA), with good structural properties and excipient compatibility. The aim of this study was to examine the stability and pH-dependent targeted release of the microcapsules at various pH values and different temperatures. Microencapsulation was carried out using a Büchi-based microencapsulating system developed in our laboratory. Using SA polymer, two formulations were prepared: empty SA microcapsules (SA, control) and loaded SA microcapsules (PB-SA, test), at a constant ratio (1:30), respectively. Microcapsules were examined for drug content, zeta potential, size, morphology and swelling characteristics and PB release characteristics at pH 1.5, 3, 6 and 7.8. The production yield and microencapsulation efficiency were also determined. PB-SA microcapsules had 2.6 ± 0.25% PB content, and zeta potential of -66 ± 1.6%, suggesting good stability. They showed spherical and uniform morphology and significantly higher swelling at pH 7.8 at both 25 and 37°C (p < 0.05). The microcapsules showed multiphasic release properties at pH 7.8. The production yield and microencapsulation efficiency were high (85 ± 5 and 92 ± 2%, respectively). The PB-SA microcapsules exhibited distal gastrointestinal tract targeted delivery with a multiphasic release pattern and with good stability and uniformity. However, the release of PB from the microcapsules was not controlled, suggesting uneven distribution of the drug within the microcapsules.
Collapse
|
374
|
Influence of Chitosan Coating on Mechanical Stability of Biopolymer Carriers with Probiotic Starter Culture in Fermented Whey Beverages. INT J POLYM SCI 2015. [DOI: 10.1155/2015/732858] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to improve the mechanical stability of biopolymer carriers and cell viability with addition of chitosan coating during fermentation process and product storage. Dairy starter culture (1% (w/v)) was diluted in whey and mixed with sodium alginate solution and the beads were made using extrusion technique. The mechanical stability of coated and uncoated beads, the release behavior, and the viability of encapsulated probiotic dairy starter culture in fermented whey beverages were analyzed. The mechanical properties of the beads were determined according to force-displacement and engineering stress-strain curves obtained after compression testing. It was observed that addition of chitosan as a coating on the beads as well as the fermentation process increased the elastic modulus of the calcium alginate-whey beads and cell survival. The current study revealed that the coating did not significantly improve the viability of probiotics during the fermentation but had an important influence on preservation of the strength of the carrier during storage. Our results indicate that whey-based substrate has positive effect on the mechanical stability of biopolymer beads with encapsulated probiotics.
Collapse
|
375
|
Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
376
|
Fredua-Agyeman M, Gaisford S. Comparative survival of commercial probiotic formulations: tests in biorelevant gastric fluids and real-time measurements using microcalorimetry. Benef Microbes 2015; 6:141-51. [DOI: 10.3920/bm2014.0051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The large number of probiotic products now available makes the decision about which product to choose difficult both for the consumer and for the specialist providing dietary/nutritional advice. Data on the viability of the bacteria in these products, in an in vivo situation, are therefore important. This study was designed to explore the comparative health and survival of probiotic species in various commercial formulations, using more realistic test systems. This might allow further understanding of factors that must be controlled to optimise the delivery of live healthy bacteria to the lower gut. A total of eight commercially available probiotic preparations were selected for enumeration tests and in vitro gastric tolerance tests. Tolerance assays were conducted in porcine gastric fluid (PGF) fed and fasted state (pH 3.4±0.04), simulated gastric fluid (SGF, pH adjusted to 1.2 and 3.4) and fasted state simulated gastric fluid (FaSSGF, pH adjusted to 1.6 and 3.4). Isothermal microcalorimetry was also used to measure real-time growth of probiotics after exposure to simulated gastric fluid. Results from the enumeration tests indicated that recovery of viable organisms per dose is the same as or better than the stated label claims for liquid-based formulations, but lower than the stated claim for freeze-dried products. Results from the in vitro tolerance tests overall suggest that the PGF provided a harsher environment than the simulated systems at similar pH. In general, liquid-based products tested tended to give superior results in terms of survival compared with the freeze-dried products tested. Results from tests in the fed state in PGF suggested that food greatly affects viability. Microcalorimetric data showed that for some products probiotic species were able to grow following exposure to gastric fluid, suggesting that viable bacteria reach the gut in vivo.
Collapse
Affiliation(s)
- M. Fredua-Agyeman
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - S. Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| |
Collapse
|
377
|
Marzorati M, Possemiers S, Verhelst A, Cadé D, Madit N, Van de Wiele T. A novel hypromellose capsule, with acid resistance properties, permits the targeted delivery of acid-sensitive products to the intestine. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
378
|
Abstract
OBJECTIVE Triggered by the growing knowledge on the link between the intestinal microbiome and human health, the interest in probiotics is ever increasing. The authors aimed to review the recent literature on probiotics, from definitions to clinical benefits, with emphasis on children. SOURCES Relevant literature from searches of PubMed, CINAHL, and recent consensus statements were reviewed. SUMMARY OF THE FINDINGS While a balanced microbiome is related to health, an imbalanced microbiome or dysbiosis is related to many health problems both within the gastro-intestinal tract, such as diarrhea and inflammatory bowel disease, and outside the gastro-intestinal tract such as obesity and allergy. In this context, a strict regulation of probiotics with health claims is urgent, because the vast majority of these products are commercialized as food (supplements), claiming health benefits that are often not substantiated with clinically relevant evidence. The major indications of probiotics are in the area of the prevention and treatment of gastro-intestinal related disorders, but more data has become available on extra-intestinal indications. At least two published randomized controlled trials with the commercialized probiotic product in the claimed indication are a minimal condition before a claim can be sustained. Today, Lactobacillus rhamnosus GG and Saccharomyces boulardii are the best-studied strains. Although adverse effects have sporadically been reported, these probiotics can be considered as safe. CONCLUSIONS Although regulation is improving, more stringent definitions are still required. Evidence of clinical benefit is accumulating, although still missing in many areas. Misuse and use of products that have not been validated constitute potential drawbacks.
Collapse
Affiliation(s)
- Yvan Vandenplas
- UZ Brussel, Department of Pediatrics, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Geert Huys
- Laboratory of Microbiology & BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Georges Daube
- Faculté de Médecine Vétérinaire, Département des Sciences des Denrées Alimentaires, University of Liège, Liège, Belgium
| |
Collapse
|
379
|
Sousa S, Gomes AM, Pintado MM, Silva JP, Costa P, Amaral MH, Duarte AC, Rodrigues D, Rocha-Santos TA, Freitas AC. Characterization of freezing effect upon stability of, probiotic loaded, calcium-alginate microparticles. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2013.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
380
|
|
381
|
Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014; 7:17-44. [PMID: 25545101 PMCID: PMC4303825 DOI: 10.3390/nu7010017] [Citation(s) in RCA: 940] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
There is growing recognition of the role of diet and other environmental factors in modulating the composition and metabolic activity of the human gut microbiota, which in turn can impact health. This narrative review explores the relevant contemporary scientific literature to provide a general perspective of this broad area. Molecular technologies have greatly advanced our understanding of the complexity and diversity of the gut microbial communities within and between individuals. Diet, particularly macronutrients, has a major role in shaping the composition and activity of these complex populations. Despite the body of knowledge that exists on the effects of carbohydrates there are still many unanswered questions. The impacts of dietary fats and protein on the gut microbiota are less well defined. Both short- and long-term dietary change can influence the microbial profiles, and infant nutrition may have life-long consequences through microbial modulation of the immune system. The impact of environmental factors, including aspects of lifestyle, on the microbiota is particularly poorly understood but some of these factors are described. We also discuss the use and potential benefits of prebiotics and probiotics to modify microbial populations. A description of some areas that should be addressed in future research is also presented.
Collapse
Affiliation(s)
- Michael A Conlon
- CSIRO Food and Nutrition Flagship, Kintore Ave, Adelaide, SA 5000, Australia.
| | - Anthony R Bird
- CSIRO Food and Nutrition Flagship, Kintore Ave, Adelaide, SA 5000, Australia.
| |
Collapse
|
382
|
Ilha EC, da Silva T, Lorenz JG, de Oliveira Rocha G, Sant’Anna ES. Lactobacillus paracasei isolated from grape sourdough: acid, bile, salt, and heat tolerance after spray drying with skim milk and cheese whey. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2402-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
383
|
Kim BJ, Park T, Moon HC, Park SY, Hong D, Ko EH, Kim JY, Hong JW, Han SW, Kim YG, Choi IS. Cytoprotective Alginate/Polydopamine Core/Shell Microcapsules in Microbial Encapsulation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
384
|
Kim BJ, Park T, Moon HC, Park SY, Hong D, Ko EH, Kim JY, Hong JW, Han SW, Kim YG, Choi IS. Cytoprotective Alginate/Polydopamine Core/Shell Microcapsules in Microbial Encapsulation. Angew Chem Int Ed Engl 2014; 53:14443-6. [DOI: 10.1002/anie.201408454] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/27/2014] [Indexed: 12/28/2022]
|
385
|
Probiotic bacteria in infant formula and follow-up formula: Microencapsulation using milk and pea proteins to improve microbiological quality. Food Res Int 2014; 64:567-576. [DOI: 10.1016/j.foodres.2014.07.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/27/2014] [Accepted: 07/20/2014] [Indexed: 11/18/2022]
|
386
|
Argin S, Kofinas P, Lo YM. The cell release kinetics and the swelling behavior of physically crosslinked xanthan–chitosan hydrogels in simulated gastrointestinal conditions. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.02.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
387
|
Pan Q, Zhou B, Liu L, Wang L, Yuan F, Gao Y. The aggregation of soy protein isolate on the surface of Bifidobacterium. Food Res Int 2014; 64:323-328. [DOI: 10.1016/j.foodres.2014.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/05/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
|
388
|
Soukoulis C, Yonekura L, Gan HH, Behboudi-Jobbehdar S, Parmenter C, Fisk I. Probiotic edible films as a new strategy for developing functional bakery products: The case of pan bread. Food Hydrocoll 2014; 39:231-242. [PMID: 25089068 PMCID: PMC4007592 DOI: 10.1016/j.foodhyd.2014.01.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/14/2014] [Indexed: 11/27/2022]
Abstract
In the present paper, a novel approach for the development of probiotic baked cereal products is presented. Probiotic pan bread constructed by the application of film forming solutions based either on individual hydrogels e.g. 1% w/w sodium alginate (ALG) or binary blends of 0.5% w/w sodium alginate and 2% whey protein concentrate (ALG/WPC) containing Lactobacillus rhamnosus GG, followed by an air drying step at 60 °C for 10 min or 180 °C for min were produced. No visual differences between the bread crust surface of control and probiotic bread were observed. Microstructural analysis of bread crust revealed the formation of thicker films in the case of ALG/WPC. The presence of WPC improved significantly the viability of L. rhamnosus GG throughout air drying and room temperature storage. During storage there was a significant reduction in L. rhamnosus GG viability during the first 24 h, viable count losses were low during the subsequent 2-3 days of storage and growth was observed upon the last days of storage (day 4-7). The use of film forming solutions based exclusive on sodium alginate improved the viability of L. rhamnosus GG under simulated gastro-intestinal conditions, and there was no impact of the bread crust matrix on inactivation rates. The presence of the probiotic edible films did not modify cause major shifts in the mechanistic pathway of bread staling - as shown by physicochemical, thermal, texture and headspace analysis. Based on our calculations, an individual 30-40 g bread slice can deliver approx. 7.57-8.98 and 6.55-6.91 log cfu/portion before and after in-vitro digestion, meeting the WHO recommended required viable cell counts for probiotic bacteria to be delivered to the human host.
Collapse
Affiliation(s)
- Christos Soukoulis
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Lina Yonekura
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Heng-Hui Gan
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Solmaz Behboudi-Jobbehdar
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Christopher Parmenter
- Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Ian Fisk
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
389
|
de Barros JM, Scherer T, Charalampopoulos D, Khutoryanskiy VV, Edwards AD. A Laminated Polymer Film Formulation for Enteric Delivery of Live Vaccine and Probiotic Bacteria. J Pharm Sci 2014; 103:2022-2032. [DOI: 10.1002/jps.23997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/04/2014] [Accepted: 04/09/2014] [Indexed: 01/12/2023]
|
390
|
Soukoulis C, Fisk ID, Bohn T. Ice Cream as a Vehicle for Incorporating Health-Promoting Ingredients: Conceptualization and Overview of Quality and Storage Stability. Compr Rev Food Sci Food Saf 2014; 13:627-655. [DOI: 10.1111/1541-4337.12083] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/07/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Christos Soukoulis
- Environment and Agro-biotechnologies Dept; Public Research Centre - Gabriel Lippmann; 41, rue du Brill L-4422 Belvaux Luxembourg
| | - Ian D. Fisk
- Div. of Food Sciences, School of Biosciences, Univ. of Nottingham; Sutton Bonington Campus; Leicestershire Loughborough LE12 5RD UK
| | - Torsten Bohn
- Environment and Agro-biotechnologies Dept; Public Research Centre - Gabriel Lippmann; 41, rue du Brill L-4422 Belvaux Luxembourg
| |
Collapse
|
391
|
Akin Evingür G, Kaygusuz H, Bedia Erim F, Pekcan Ö. Effect of Calcium Ion Concentration on Small Molecule Desorption from Alginate Beads. J MACROMOL SCI B 2014. [DOI: 10.1080/00222348.2014.895625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
392
|
Bosnea LA, Moschakis T, Biliaderis CG. Complex Coacervation as a Novel Microencapsulation Technique to Improve Viability of Probiotics Under Different Stresses. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1317-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
393
|
Mei L, He F, Zhou RQ, Wu CD, Liang R, Xie R, Ju XJ, Wang W, Chu LY. Novel intestinal-targeted Ca-alginate-based carrier for pH-responsive protection and release of lactic acid bacteria. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5962-5970. [PMID: 24684476 DOI: 10.1021/am501011j] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel intestinal-targeted carrier for pH-responsive protection of lactic acid bacteria in stomach and rapid release of lactic acid bacteria in small intestine is successfully developed. The proposed carrier is composed of a Ca-alginate/protamine (CAP) composite shell and a Lactobacillus-casei-encapsulated Ca-alginate (CA) core. The carriers are prepared simply by a coextrusion minifluidic and subsequent adsorption method. The CAP composite shell offers not only improved protection for Lactobacillus casei to guarantee the endurance and survival in the stomach but also satisfactory intestinal-targeted characteristics to guarantee the rapid release of Lactobacillus casei in the small intestine. In the stomach, where there is an acidic environment, the diffusion channels delineated by the CA networks in the CAP composite shell of the carriers are choked with protamine molecules; as a result, it is hard for the gastric acid to diffuse across the CAP composite shell and thus the encapsulated Lactobacillus casei inside carriers can be efficiently protected. However, when they come to the small intestine, where there is a neutral environment, the carriers dissolve rapidly because of the cooperation between protamine and trypsin; consequently, the encapsulated Lactobacillus casei can be quickly released. The proposed CAP composite carrier provides a novel mode for developing efficient protection systems, responsive controlled-release systems, and intestinal-targeted drug delivery systems.
Collapse
Affiliation(s)
- Li Mei
- School of Chemical Engineering, §School of Light Industry, Textile and Food Engineering, and ⊥State Key Laboratory of Polymer Materials Engineering, and Collaborative Innovation Center for Biomaterials Science and Technology, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
394
|
Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels. Int J Pharm 2014; 466:400-8. [PMID: 24657143 DOI: 10.1016/j.ijpharm.2014.03.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/19/2022]
Abstract
Probiotic bacteria have gained popularity as a defence against disorders of the bowel. However, the acid sensitivity of these cells results in a loss of viability during gastric passage and, consequently, a loss of efficacy. Probiotic treatment can be supplemented using 'prebiotics', which are carbohydrates fermented specifically by probiotic cells in the body. This combination of probiotic and prebiotic is termed a 'synbiotic'. Within this article a multiparticulate dosage form has been developed, consisting of poly(d,l-lactic-co-glycolic acid) (PLGA) microcapsules containing prebiotic Bimuno™ incorporated into an alginate-chitosan matrix containing probiotic Bifidobacterium breve. The aim of this multiparticulate was that, in vivo, the probiotic would be protected against gastric acid and the release of the prebiotic would occur in the distal colon. After microscopic investigation, this synbiotic multiparticulate was shown to control the release of the prebiotic during in vitro gastrointestinal transit, with the release of galacto-oligosaccharides (GOS) initially occurred over 6h, but with a triphasic release pattern giving further release over 288 h. Encapsulation of B. breve in multiparticulates resulted in a survival of 8.0 ± 0.3 logCFU/mL cells in acid, an improvement over alginate-chitosan microencapsulation of 1.4 logCFU/mL. This was attributed to increased hydrophobicity by the incorporation of PLGA particles.
Collapse
Affiliation(s)
- Michael T Cook
- School of Pharmacy, University of Reading, Reading, RG6 6AD, United Kingdom
| | - George Tzortzis
- Clasado Research Services Ltd, Science and Technology Centre, University of Reading, Earley Gate, Whiteknights Road, Reading, RG6 6BZ, United Kingdom
| | - Dimitris Charalampopoulos
- Department of Food and Nutritional Sciences, University of Reading, Reading, RG6 6AD, United Kingdom
| | | |
Collapse
|
395
|
Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chem 2014; 159:302-8. [PMID: 24767059 PMCID: PMC4008938 DOI: 10.1016/j.foodchem.2014.03.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/26/2014] [Accepted: 03/02/2014] [Indexed: 02/02/2023]
Abstract
The concept of prebiotic gelatine based edible films containing probiotics is presented. Prebiotic edible films effectively protected L. rhamnosus GG. Inulin and wheat fibre improved the storage stability of L. rhamnosus GG. Glucose-oligosaccharides and polydextrose reduced lethality during air drying. Prebiotics resulted in a more compact, less porous and reticular film structure.
The concept of prebiotic edible films as effective vehicles for encapsulating probiotic living cells is presented. Four soluble fibres (inulin, polydextrose, glucose-oligosaccharides and wheat dextrin) were selected as prebiotic co-components of gelatine based matrices plasticised with glycerol and used for the immobilisation of Lactobacillusrhamnosus GG. The addition of prebiotics was associated with a more compact and uniform film structure, with no detectable interspaces or micropores; probiotic inclusion did not significantly change the structure of the films. Glucose-oligosaccharides and polydextrose significantly enhanced L. rhamnosus GG viability during air drying (by 300% and 75%, respectively), whilst a 33% and 80% reduction in viable counts was observed for inulin and wheat dextrin. Contrarily, inulin was the most effective at controlling the sub-lethal effects on L. rhamnosus GG during storage. However, in all cases the supplementation of edible films with prebiotics ameliorated the storage stability of L. rhamnosus GG.
Collapse
|
396
|
Laelorspoen N, Wongsasulak S, Yoovidhya T, Devahastin S. Microencapsulation of Lactobacillus acidophilus in zein–alginate core–shell microcapsules via electrospraying. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
397
|
Govender M, Choonara YE, Kumar P, du Toit LC, van Vuuren S, Pillay V. A review of the advancements in probiotic delivery: Conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech 2014; 15:29-43. [PMID: 24222267 DOI: 10.1208/s12249-013-0027-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/20/2013] [Indexed: 12/26/2022] Open
Abstract
Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in effectiveness to exert health benefits for a patient. Probiotic delivery systems can be categorized into conventional, pharmaceutical formulations, and non-conventional, mainly commercial food-based, products. The degree of health benefits provided by these probiotic formulations varies in their ability to deliver viable, functional bacteria in large enough numbers (effectiveness), to provide protection against the harsh effects of the gastric environment and intestinal bile (in vivo protection), and to survive formulation processes (viability). This review discusses the effectiveness of these probiotic delivery systems to deliver viable functional bacteria focusing on the ability to protect the encapsulated probiotics during formulation process as well as against harsh physiological conditions through formulation enhancements using coatings and polymer enhancements. A brief overview on the health benefits of probiotics, current formulation, patient and legal issues facing probiotic delivery, and possible recommendations for the enhanced delivery of probiotic bacteria are also provided. Newer advanced in vitro analyses that can accurately determine the effectiveness of a probiotic formulation are also discussed with an ideal probiotic delivery system hypothesized through a combination of the two probiotic delivery systems described.
Collapse
|
398
|
Petreska Ivanovska T, Jurhar Pavlova M, Mladenovska K, Petrushevska-Tozi L. Probiotics, prebiotics, synbiotics in prevention and treatment of inflammatory bowel diseases. MAKEDONSKO FARMACEVTSKI BILTEN 2014. [DOI: 10.33320/maced.pharm.bull.2014.60.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Probiotics, prebiotics, and synbiotics are functional components able to exert positive effects on human health. Numerous medical conditions lack effective and safe approaches for prevention or treatment, thus usage of probiotics, prebiotics, and synbiotics is an alternative. Further, the benefit related to the consumption of these compounds is associated with lower morbidity of chronic diseases and reduced health-care costs. Various types of mediums to deliver probiotics/synbiotics to the human GIT are used. Although capsules and tablets are frequently applied as delivery systems for probiotics, the major challenge of the commercial sector is to market new functional
foods containing probiotics and/or prebiotics. Discovering of new probiotic/synbiotic functional foods is connected to the interest of the food industry to revitalize continuously through introduction of products with improved nutritional value and pleasant taste, but also with health benefit for the consumers. The review provides insights and new perspectives in respect to usage of functional components and foods
in prevention and treatment of inflammatory bowel diseases (IBD) that are highly correlated with the modern lifestyle. The therapeutic and safety properties of probiotics and prebiotics, their role in pathogenesis of IBD, potential to prevent and treat these diseases as well as postulated mechanisms of action will be discussed, highlighting the main areas in which further research is an emergence.
Collapse
|
399
|
Yonekura L, Sun H, Soukoulis C, Fisk I. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. J Funct Foods 2014; 6:205-214. [PMID: 24748900 PMCID: PMC3989054 DOI: 10.1016/j.jff.2013.10.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 10/05/2013] [Accepted: 10/15/2013] [Indexed: 11/15/2022] Open
Abstract
We evaluated sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC) as co-encapsulants for spray dried Lactobacillus acidophilus NCIMB 701748 by assessing their impact on cell viability and physicochemical properties of the dried powders, viability over 35 days of storage at 25 °C and survival after simulated digestion. Fibres were added to a control carrier medium containing whey protein concentrate, d-glucose and maltodextrin. Sodium alginate and HPMC did not affect cell viability but chitosan reduced viable counts in spray dried powders, as compared to the control. Although chitosan caused large losses of viability during spray-drying, these losses were counteracted by the excellent storage stability compared to control, sodium alginate and HPMC, and the overall effect became positive after the 35-day storage. Chitosan also improved survival rates in simulated GI conditions, however no single fibre could improve L. acidophilus NCIMB 701748 viability in all steps from production through storage and digestion.
Collapse
Affiliation(s)
- Lina Yonekura
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Han Sun
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Christos Soukoulis
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Ian Fisk
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
400
|
Poorbaghi SL, Dadras H, Gheisari HR, Mosleh N, Firouzi S, Roohallazadeh H. Effects of Lactobacillus acidophilus and inulin on faecal viral shedding and immunization against H9 N2 Avian influenza virus. J Appl Microbiol 2013; 116:667-76. [PMID: 24206196 DOI: 10.1111/jam.12390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/12/2013] [Accepted: 11/07/2013] [Indexed: 12/24/2022]
Abstract
AIMS The aims of this investigation were to compare the effects of Lactobacillus acidophilus addition as simple or microencapsulated (ME) probiotic and inulin as prebiotic to the broiler diet on the faecal viral shedding and immunization against avian influenza virus (AIV) with or without H9 N2 vaccination. METHODS AND RESULTS Simple or ME forms of Lact. acidophilus, inulin and combination of them as synbiotic were analysed for their ability to enhance immunity against H9 N2 AIV and to decrease faecal viral shedding in Cobb-500 broiler chicks. Our results indicated that probiotic as ME form can decrease haemagglutination inhibition (HI) titre significantly on days 34 in vaccinated trial (P < 0·05). Also, the effects of ME form of probiotic are more remarkable on reduction of viral faecal shedding detected by RT-PCR. CONCLUSIONS The study shows the significant role of microencapsulation on probiotic effects against H9 N2 AIV. SIGNIFICANCE AND IMPACT OF THE STUDY The application of probiotics especially in the ME form could have the potential for stimulating the immune system, preventing influenza infection and consequently reduce faecal viral shedding of H9 N2 AIV.
Collapse
Affiliation(s)
- S L Poorbaghi
- Department of Avian Medicine, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | | | | | | | |
Collapse
|