351
|
Pashoutan Sarvar D, Shamsasenjan K, Akbarzadehlaleh P. Mesenchymal Stem Cell-Derived Exosomes: New Opportunity in Cell-Free Therapy. Adv Pharm Bull 2016; 6:293-299. [PMID: 27766213 DOI: 10.15171/apb.2016.041] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are involved in tissue homeostasis through direct cell-to-cell interaction, as well as secretion of soluble factors. Exosomes are the sort of soluble biological mediators that obtained from MSCs cultured media in vitro. MSC-derived exosomes (MSC-DEs) which produced under physiological or pathological conditions are central mediators of intercellular communications by conveying proteins, lipids, mRNAs, siRNA, ribosomal RNAs and miRNAs to the neighbor or distant cells. MSC-DEs have been tested in various disease models, and the results have revealed that their functions are similar to those of MSCs. They have the supportive functions in organisms such as repairing tissue damages, suppressing inflammatory responses, and modulating the immune system. MSC-DEs are of great interest in the scope of regenerative medicine because of their unique capacity to the regeneration of the damaged tissues, and the present paper aims to introduce MSC-DEs as a novel hope in cell-free therapy.
Collapse
Affiliation(s)
- Davod Pashoutan Sarvar
- Umbilical Cord Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Umbilical Cord Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
352
|
Masters AR, Haynes L, Su DM, Palmer DB. Immune senescence: significance of the stromal microenvironment. Clin Exp Immunol 2016; 187:6-15. [PMID: 27529161 DOI: 10.1111/cei.12851] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
The immune system undergoes age-associated changes known as immunosenescence, resulting in increased susceptibility to infections, cancers and autoimmunity in the aged. The basis of our understanding of immunosenescence has been derived primarily from studies examining intrinsic defects within many of the cells of the immune system. While these studies have provided insight into the mechanisms of immunosenescence, a picture is now emerging that the stromal microenvironment within lymphoid organs also contributes significantly to the age-associated decline of immune function. These extrinsic defects appear to impact the functional activity of immune cells and may offer a potential target to recover immune activity. Indeed, rejuvenation studies which have targeted the stromal niche have restored immune function in aged successfully, highlighting the impact of the microenvironment towards the aetiology of immunosenescence.
Collapse
Affiliation(s)
- A R Masters
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA.,Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - L Haynes
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA.,Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - D-M Su
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| | - D B Palmer
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, UK
| |
Collapse
|
353
|
Su X, Yao X, Sun Z, Han Q, Zhao RC. Optimization of Reference Genes for Normalization of Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction Results in Senescence Study of Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1355-65. [PMID: 27484587 DOI: 10.1089/scd.2016.0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recently, it has been suggested that cellular senescence is associated with stem cell exhaustion, which reduces the regenerative potential of tissues and contributes to aging and age-related diseases. Mesenchymal stem cells (MSCs) attract a large amount of attention in stem cell research and regeneration medicine because they possess multiple advantages and senescent MSCs could be one of the most useful stem cell models in aging studies. It is important to quantitatively evaluate senescence markers to both identify and study the mechanisms involved in MSC senescence. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is currently the most widely used tool to quantify the mRNA levels of markers. However, no report has demonstrated the optimal reference genes that should be used to normalize RT-qPCR in senescence studies of MSCs. In this study, we compared 16 commonly used reference genes (GAPDH, ACTB, RPL13A, TBP, B2M, GUSB, RPLPO, YWHAZ, RPS18, EEF1A1, ATP5F1, HPRT1, PGK1, TFRC, UBC, and PPIA) in proliferating or replicative-senescent human adipose-derived MSCs (hAD-MSCs) that were isolated from seven healthy donors aged 29-59 years old. Three algorithms (geNorm, NormFinder, and BestKeeper) were used to determine the most optimal reference gene. The results showed that PPIA exhibited the most stable expression during senescence, while the widely used ACTB exhibited the lowest stability. We also confirmed that different reference genes lead to different evaluations of senescence markers. Our work ensures that results obtained from senescence studies of hAD-MSCs will be appropriately evaluated in both basic research and clinical trials.
Collapse
Affiliation(s)
- Xiaodong Su
- 1 Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences , Beijing, People's Republic of China
| | - Xinglei Yao
- 1 Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences , Beijing, People's Republic of China .,2 State Key Laboratory of Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, People's Republic of China
| | - Zhao Sun
- 3 Department of Oncology, School of Basic Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing, People's Republic of China
| | - Qin Han
- 1 Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences , Beijing, People's Republic of China
| | - Robert Chunhua Zhao
- 1 Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences , Beijing, People's Republic of China
| |
Collapse
|
354
|
LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun 2016; 7:12719. [PMID: 27596364 PMCID: PMC5025878 DOI: 10.1038/ncomms12719] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022] Open
Abstract
Haematopoietic stem cells (HSCs) can differentiate into cells of all lineages in the blood. However, the mechanisms by which cytokines in the blood affect HSC homeostasis remain largely unknown. Here we show that leukocyte cell-derived chemotaxin 2 (LECT2), a multifunctional cytokine, induces HSC expansion and mobilization. Recombinant LECT2 administration results in HSC expansion in the bone marrow and mobilization to the blood via CD209a. The effect of LECT2 on HSCs is reduced after specific depletion of macrophages or reduction of osteolineage cells. LECT2 treatment reduces the tumour necrosis factor (TNF) expression in macrophages and osteolineage cells. In TNF knockout mice, the effect of LECT2 on HSCs is reduced. Moreover, LECT2 induces HSC mobilization in irradiated mice, while granulocyte colony-stimulating factor does not. Our results illustrate that LECT2 is an extramedullar cytokine that contributes to HSC homeostasis and may be useful to induce HSC mobilization.
Collapse
|
355
|
Vezzani B, Pierantozzi E, Sorrentino V. Not All Pericytes Are Born Equal: Pericytes from Human Adult Tissues Present Different Differentiation Properties. Stem Cells Dev 2016; 25:1549-1558. [PMID: 27549576 DOI: 10.1089/scd.2016.0177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pericytes (PCs) have been recognized for a long time only as structural cells of the blood vessels. The identification of tight contacts with endothelial cells and the ability to interact with surrounding cells through paracrine signaling revealed additional functions of PCs in maintaining the homeostasis of the perivascular environment. PCs got the front page, in the late 1990s, after the identification and characterization of a new embryonic cell population, the mesoangioblasts, from which PCs present in the adult organism are thought to derive. From these studies, it was clear that PCs were also endowed with multipotent mesodermal abilities. Furthermore, their ability to cross the vascular wall and to reconstitute skeletal muscle tissue after systemic injection opened the way to a number of studies aimed to develop therapeutic protocols for a cell therapy of muscular dystrophy. This has resulted in a major effort to characterize pericytic cell populations from skeletal muscle and other adult tissues. Additional studies also addressed their relationship with other cells of the perivascular compartment and with mesenchymal stem cells. These data have provided initial evidence that PCs from different adult tissues might be endowed with distinctive differentiation abilities. This would suggest that the multipotent mesenchymal ability of PCs might be restrained within different tissues, likely depending on the specific cell renewal and repair requirements of each tissue. This review presents current knowledge on human PCs and highlights recent data on the differentiation properties of PCs isolated from different adult tissues.
Collapse
Affiliation(s)
- Bianca Vezzani
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| |
Collapse
|
356
|
Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat Cell Biol 2016; 18:917-29. [PMID: 27479603 PMCID: PMC5007193 DOI: 10.1038/ncb3394] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 06/30/2016] [Indexed: 12/16/2022]
Abstract
Bone marrow-derived skeletal stem/stromal cell (SSC) self-renewal and function are critical to skeletal development, homeostasis and repair. Nevertheless, the mechanisms controlling SSC behavior, particularly bone formation, remain ill-defined. Using knockout mouse models that target the zinc-finger transcription factors, Snail, Slug or Snail and Slug combined, a regulatory axis has been uncovered wherein Snail and Slug cooperatively control SSC self-renewal, osteoblastogenesis and bone formation. Mechanistically, Snail/Slug regulate SSC function by forming complexes with the transcriptional co-activators, YAP and TAZ, in tandem with the inhibition of the Hippo pathway-dependent regulation of YAP/TAZ signaling cascades. In turn, the Snail/Slug-YAP/TAZ axis activates a series of YAP/TAZ/TEAD and Runx2 downstream targets that control SSC homeostasis and osteogenesis. Together, these results demonstrate that SSCs mobilize Snail/Slug-YAP/TAZ complexes to control stem cell function.
Collapse
|
357
|
Cigognini D, Gaspar D, Kumar P, Satyam A, Alagesan S, Sanz-Nogués C, Griffin M, O'Brien T, Pandit A, Zeugolis DI. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis. Sci Rep 2016; 6:30746. [PMID: 27478033 PMCID: PMC4967872 DOI: 10.1038/srep30746] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/07/2016] [Indexed: 01/03/2023] Open
Abstract
Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes.
Collapse
Affiliation(s)
- Daniela Cigognini
- Regenerative, Modular &Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular &Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Pramod Kumar
- Regenerative, Modular &Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Abhigyan Satyam
- Regenerative, Modular &Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Senthilkumar Alagesan
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Matthew Griffin
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Timothy O'Brien
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular &Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| |
Collapse
|
358
|
Sui BD, Hu CH, Zheng CX, Jin Y. Microenvironmental Views on Mesenchymal Stem Cell Differentiation in Aging. J Dent Res 2016; 95:1333-1340. [PMID: 27302881 DOI: 10.1177/0022034516653589] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging is characterized by common environmental changes, such as hormonal, immunologic, and metabolic disorders. These pathologic factors impair the capability of mesenchymal stem cells (MSCs) to generate and maintain functionalized tissue components, contributing to age-related tissue degeneration (e.g., osteoporosis). However, in organismal aging, whether the microenvironmental signals induce common or differential MSC compromise and how they interact at the molecular level in mediating the functional decline of MSCs are not fully understood. In this review, we discuss the respective contribution of microenvironmental pathologic factors to age-related MSC dysfunction-particularly, the shifted differentiation from osteoblasts to adipocytes of bone marrow-derived MSCs. The authors summarize recent works regarding mechanisms underlying MSC-biased differentiation under altered microenvironments, which involve the activation of key signaling pathways, intracellular oxidative stress, and posttranscriptional regulations. In addition, we compare the differential influences of systemic and local microenvironments on MSC differentiation based on our findings. The authors also propose strategies to rescue differentiation disorders of MSCs in aging via modulating microenvironments, by using signaling modulators, anti-inflammatory agents, antioxidants, and metabolic regulators and by promoting mobilization of systemic MSCs to local injury sites. The authors hope that these insights contribute to MSC-based organismal aging research and treatments.
Collapse
Affiliation(s)
- B D Sui
- 1 State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China.,2 Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - C H Hu
- 1 State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China.,2 Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - C X Zheng
- 1 State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China.,2 Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Y Jin
- 1 State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China.,2 Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| |
Collapse
|
359
|
Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol Rev 2016; 96:1127-68. [PMID: 27335447 PMCID: PMC6345247 DOI: 10.1152/physrev.00019.2015] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
360
|
Long-term survival of donor bone marrow multipotent mesenchymal stromal cells implanted into the periosteum of patients with allogeneic graft failure. Int J Hematol 2016; 104:403-7. [DOI: 10.1007/s12185-016-2014-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
361
|
Ferroni L, Tocco I, De Pieri A, Menarin M, Fermi E, Piattelli A, Gardin C, Zavan B. Pulsed magnetic therapy increases osteogenic differentiation of mesenchymal stem cells only if they are pre-committed. Life Sci 2016; 152:44-51. [DOI: 10.1016/j.lfs.2016.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/12/2016] [Accepted: 03/10/2016] [Indexed: 01/19/2023]
|
362
|
Kitazawa K, Hikichi T, Nakamura T, Mitsunaga K, Tanaka A, Nakamura M, Yamakawa T, Furukawa S, Takasaka M, Goshima N, Watanabe A, Okita K, Kawasaki S, Ueno M, Kinoshita S, Masui S. OVOL2 Maintains the Transcriptional Program of Human Corneal Epithelium by Suppressing Epithelial-to-Mesenchymal Transition. Cell Rep 2016; 15:1359-68. [PMID: 27134177 DOI: 10.1016/j.celrep.2016.04.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 01/12/2016] [Accepted: 03/31/2016] [Indexed: 11/29/2022] Open
Abstract
In development, embryonic ectoderm differentiates into neuroectoderm and surface ectoderm using poorly understood mechanisms. Here, we show that the transcription factor OVOL2 maintains the transcriptional program of human corneal epithelium cells (CECs), a derivative of the surface ectoderm, and that OVOL2 may regulate the differential transcriptional programs of the two lineages. A functional screen identified OVOL2 as a repressor of mesenchymal genes to maintain CECs. Transduction of OVOL2 with several other transcription factors induced the transcriptional program of CECs in fibroblasts. Moreover, neuroectoderm derivatives were found to express mesenchymal genes, and OVOL2 alone could induce the transcriptional program of CECs in neural progenitors by repressing these genes while activating epithelial genes. Our data suggest that the difference between the transcriptional programs of some neuroectoderm- and surface ectoderm-derivative cells may be regulated in part by a reciprocally repressive mechanism between epithelial and mesenchymal genes, as seen in epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Koji Kitazawa
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan; Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan; Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan; CREST (Core Research for Evolutional Science and Technology), JST (Japan Science and Technology Agency), Honcho 4-1-8 Kawaguchi, Saitama 332-0012, Japan
| | - Takafusa Hikichi
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Takahiro Nakamura
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan; Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan
| | - Kanae Mitsunaga
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Azusa Tanaka
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Nakamura
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuya Yamakawa
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Shiori Furukawa
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Mieko Takasaka
- JBIC Research Institute, Japan Biological Informatics Consortium, TIME24 Building 10F 2-4-32 Aomi Koto-ku, Tokyo 135-8073, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Waterfront Bio-IT Research Building, 2-4-7 Aomi Koto-ku, Tokyo 135-0064, Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoshi Kawasaki
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan; Department of Ophthalmology, Osaka University, 2-2 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan
| | - Shigeru Kinoshita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan; Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan.
| | - Shinji Masui
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan; CREST (Core Research for Evolutional Science and Technology), JST (Japan Science and Technology Agency), Honcho 4-1-8 Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
363
|
Doulames VM, Plant GW. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury. Int J Mol Sci 2016; 17:530. [PMID: 27070598 PMCID: PMC4848986 DOI: 10.3390/ijms17040530] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023] Open
Abstract
Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury.
Collapse
Affiliation(s)
- Vanessa M Doulames
- Stanford Partnership for Spinal Cord Injury and Repair, Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive Stanford, California, CA 94305, USA.
| | - Giles W Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive Stanford, California, CA 94305, USA.
| |
Collapse
|
364
|
Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells. Cell Tissue Res 2016; 366:89-99. [PMID: 27053247 DOI: 10.1007/s00441-016-2399-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/17/2016] [Indexed: 12/11/2022]
Abstract
Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming.
Collapse
|
365
|
Lu K, Nakagawa MM, Thummar K, Rathinam CV. Slicer Endonuclease Argonaute 2 Is a Negative Regulator of Hematopoietic Stem Cell Quiescence. Stem Cells 2016; 34:1343-53. [PMID: 26850790 DOI: 10.1002/stem.2302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) are capable of both self-renewing throughout the lifetime of an organism and differentiating into all lineages of the blood system. A proper balance between quiescence and proliferation is critical for the self-renewal and functions of HSCs. The choice of HSCs to remain quiescent or to enter proliferation has been tightly regulated by a variety of cell intrinsic and extrinsic pathways. Identifying molecular players that control HSC quiescence and proliferation may lead to new treatment strategies and therapeutic interventions for hematologic disorders. To identify the functions of the slicer endonuclease Argonaute (Ago) 2 in the physiology of HSCs, we generated Ago2(Hem-KO) mice, that are deficient for Ago2 in HSCs and in their progeny. Analysis of Ago2(Hem-KO) mice indicated that a loss of Ago2 results in reduced HSC pool size and altered frequencies of hematopoietic progenitors. Ago2 deficient HSCs exhibit defective multilineage differentiation capacities and diminished repopulation abilities, in a cell intrinsic manner. Interestingly, Ago2 mutant HSCs remain largely quiescent and show reduced entry into cell cycle. Genome-wide transcriptome studies and gene set enrichment analysis revealed that Ago2 deficient HSCs downregulate the "HSC signature" and upregulate the "lineage signature." Moreover, our analysis on transcription factors (TFs) identified that a loss of Ago2 is sufficient to alter the "molecular signature" and "TF networks" that control the quiescent and proliferative states of HSCs. In essence, our study identified Ago2 as a key determinant of quiescence exit in HSCs. Stem Cells 2016;34:1343-1353.
Collapse
Affiliation(s)
- Kenneth Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | | | - Keyur Thummar
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | - Chozha Vendan Rathinam
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA.,Columbia Stem Cell Initiative, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
366
|
Emmons R, Niemiro GM, Owolabi O, De Lisio M. Acute exercise mobilizes hematopoietic stem and progenitor cells and alters the mesenchymal stromal cell secretome. J Appl Physiol (1985) 2016; 120:624-32. [DOI: 10.1152/japplphysiol.00925.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/02/2016] [Indexed: 12/20/2022] Open
Abstract
Transplantation of hematopoietic stem and progenitor cells (HSPC), collected from peripheral blood, is the primary treatment for many hematological malignancies; however, variable collection efficacy with current protocols merits further examination into factors responsible for HSPC mobilization. HSPCs primarily reside within the bone marrow and are regulated by mesenchymal stromal cells (MSC). Exercise potently and transiently mobilizes HSPCs from the bone marrow into peripheral circulation. Thus the purpose of the present study was to evaluate potential factors in the bone marrow responsible for HSPC mobilization, investigate potential sites of HSPC homing, and assess changes in bone marrow cell populations following exercise. An acute exercise bout increased circulating HSPCs at 15 min (88%, P < 0.001) that returned to baseline at 60 min. Gene expression for HSPC homing factors (CXCL12, vascular endothelial growth factor-a, and angiopoietin-1) were increased at 15 min in skeletal muscle and HSPC content was increased in the spleen 48 h postexercise (45%, P < 0.01). Acute exercise did not alter HSPCs or MSCs quantity in the bone marrow; however, proliferation of HSPCs (40%, P < 0.001), multipotent progenitors (40%, P < 0.001), short-term hematopoietic stem cells (61%, P < 0.001), long-term hematopoietic stem cells (55%, P = 0.002), and MSCs (20%, P = 0.01) increased postexercise. Acute exercise increased the content of the mobilization agent granulocyte-colony stimulating factor, as well as stem cell factor, interleukin-3, and thrombopoeitin in conditioned media collected from bone marrow stromal cells 15 min postexercise. These findings suggest that the MSC secretome is responsible for HSPC mobilization and proliferation; concurrently, HSPCs are homing to extramedullary sites following exercise.
Collapse
Affiliation(s)
- Russell Emmons
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Grace M. Niemiro
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Olatomide Owolabi
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
367
|
Maeda K, Enomoto A, Hara A, Asai N, Kobayashi T, Horinouchi A, Maruyama S, Ishikawa Y, Nishiyama T, Kiyoi H, Kato T, Ando K, Weng L, Mii S, Asai M, Mizutani Y, Watanabe O, Hirooka Y, Goto H, Takahashi M. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells. Sci Rep 2016; 6:22288. [PMID: 26924503 PMCID: PMC4770287 DOI: 10.1038/srep22288] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/11/2016] [Indexed: 01/14/2023] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo.
Collapse
Affiliation(s)
- Keiko Maeda
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akitoshi Hara
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Naoya Asai
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Kobayashi
- Department of Physiology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Asuka Horinouchi
- Department of Nephrology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shoichi Maruyama
- Department of Nephrology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, , 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takahiro Nishiyama
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, , 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, , 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takuya Kato
- Tumour Cell Biology Laboratory, The Francis-Crick Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, United Kingdom
| | - Kenju Ando
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Liang Weng
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinji Mii
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masato Asai
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Osamu Watanabe
- Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hidemi Goto
- Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masahide Takahashi
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
368
|
Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience 2016; 320:129-39. [PMID: 26851773 DOI: 10.1016/j.neuroscience.2016.01.061] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) obtained from bone marrow (BM) have been shown to promote neuronal growth and survival. However, the comparative effects of MSCs of different sources, including menstrual MSCs (MenSCs), BM, umbilical cord and chorion stem cells on neurite outgrowth have not yet been explored. Moreover, the modulatory effects of MSCs may be mediated by paracrine mechanisms, i.e. by molecules contained in the MSC secretome that includes soluble factors and extracellular vesicles such as microvesicles and/or exosomes. The biogenesis of microvesicles, characterized by a vesicle diameter of 50 to 1000 nm, involves membrane shedding while exosomes, of 30 to 100 nm in diameter, originate in the multivesicular bodies within cells. Both vesicle types, which can be harvested from the conditioned media of cell cultures by differential centrifugation steps, regulate the function of target cells due to their molecular content of microRNA, mRNA, proteins and lipids. Here, we compared the effect of human menstrual MSCs (MenSCs) mediated by cell-cell contact, by their total secretome or by secretome-derived extracellular vesicles on neuritic outgrowth in primary neuronal cultures. The contact of MenSCs with cortical neurons inhibited neurite outgrowth while their total secretome enhanced it. The extracellular vesicle fractions showed a distinctive effect: while the exosome-enriched fraction enhanced neurite outgrowth, the microvesicle-enriched fraction displayed an inhibitory effect. When we compared exosome fractions of different human MSC sources, MenSC exosomes showed superior effects on the growth of the longest neurite in cortical neurons and had a comparable effect to BM-SC exosomes on neurite outgrowth in dorsal root ganglia neurons. Thus, the growth-stimulating effects of exosomes derived from MenSCs as well as the opposing effects of both extracellular vesicle fractions provide important information regarding the potential use of MenSCs as therapeutic conveyors in neurodegenerative pathologies.
Collapse
|
369
|
Prockop DJ. Inflammation, fibrosis, and modulation of the process by mesenchymal stem/stromal cells. Matrix Biol 2016; 51:7-13. [PMID: 26807758 DOI: 10.1016/j.matbio.2016.01.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fibrosis and scarring are the end stage of many disease processes. In effect, the collagen fibers that initially provide a necessary strength during the repair of injured tissues are frequently synthesized in excessive amounts and become irreversible fibrotic deposits that limit regeneration of the endogenous cells of a tissue. This review will focus on the potential of mesenchymal stem/stromal cells for treatment of fibrotic diseases, with emphasis on the role of TSG-6 as a mediator of anti-inflammatory effects.
Collapse
Affiliation(s)
- Darwin J Prockop
- Institute for Regenerative Medicine, Texas A&M University, College of Medicine, Temple, TX, USA.
| |
Collapse
|
370
|
Yang ZH, Wu BL, Ye C, Jia S, Yang XJ, Hou R, Lei DL, Wang L. Targeting P38 Pathway Regulates Bony Formation via MSC Recruitment during Mandibular Distraction Osteogenesis in Rats. Int J Med Sci 2016; 13:783-789. [PMID: 27766028 PMCID: PMC5069414 DOI: 10.7150/ijms.16663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
Distraction osteogenesis (DO) is a widely used self-tissue engineering. However, complications and discomfort due to the long treatment period are still the bottleneck of DO. Novel strategies to accelerate bone formation in DO are still needed. P38 is capable of regulating the osteogenic differentiation of both mesenchymal stem cells (MSCs) and osteoblasts, which are crucial to bone regeneration. However, it is not clear whether targeting p38 could regulate bony formation in DO. The purpose of the current work was to investigate the effects of local application of either p38 agonist anisomycin or p38 inhibitor SB203580 in a rat model of DO. 30 adult rats were randomly divided into 3 groups: (A) rats injected with DMSO served as the control group; (B) rats injected with p38 agonist anisomycin; (C) rats injected with p38 inhibitor SB203580. All the rats were subjected to mandibular distraction and the injection was performed daily during this period. The distracted mandibles were harvested on days 15 and 30 after surgery and subjected to the following analysis. Micro-computed tomography and histological evaluation results showed that local application of p38 agonist anisomycin increased new bone formation in DO, whereas p38 inhibitor SB203580 decreased it. Immunohistochemical analysis suggested that anisomycin promoted MSC recruitment in the distraction gap. In conclusion, this study demonstrated that local application of p38 agonist anisomycin can increase new bone formation during DO. This study may lead to a novel cell-based strategy for the improvement of bone regeneration.
Collapse
Affiliation(s)
- Zi-Hui Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China
| | - Bao-Lei Wu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China
| | - Chen Ye
- Shanghai Key Laboratory of Stomatology, Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Sen Jia
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China
| | - Xin-Jie Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China
| | - Rui Hou
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China
| | - De-Lin Lei
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China
| | - Lei Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China.; Shanghai Key Laboratory of Stomatology, Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
371
|
Prospective isolation of resident adult human mesenchymal stem cell population from multiple organs. Int J Hematol 2015; 103:138-44. [PMID: 26676805 DOI: 10.1007/s12185-015-1921-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) have the potential to form colonies in culture and reside in adult tissues. Because MSCs have been defined using cells cultured in vitro, discrepancies have arisen between studies concerning their properties. There are also differences between populations obtained using different isolation methods. This review article focuses on recent developments in the identification of novel MSC markers for the in vivo localization and prospective isolation of human MSCs. The prospective isolation method described in this study represents an important strategy for the isolation of MSCs in a short period of time, and may find applications for regenerative medicine. Purified MSCs can be tailored according to their intended clinical therapeutic applications. Lineage tracing methods define the MSC phenotype and can be used to investigate the physiological roles of MSCs in vivo. These findings may facilitate the development of effective stem cell treatments.
Collapse
|
372
|
Guo M, Dou J. Advances and perspectives of colorectal cancer stem cell vaccine. Biomed Pharmacother 2015; 76:107-20. [PMID: 26653557 DOI: 10.1016/j.biopha.2015.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is essentially an environmental and genetic disease featured by uncontrolled cell growth and the capability to invade other parts of the body by forming metastases, which inconvertibly cause great damage to tissues and organs. It has become one of the leading causes of cancer-related mortality in the developed countries such as United States, and approximately 1.2 million new cases are yearly diagnosed worldwide, with the death rate of more than 600,000 annually and incidence rates are increasing in most developing countries. Apart from the generally accepted theory that pathogenesis of colorectal cancer consists of genetic mutation of a certain target cell and diversifications in tumor microenvironment, the colorectal cancer stem cells (CCSCs) theory makes a different explanation, stating that among millions of colon cancer cells there is a specific and scanty cellular population which possess the capability of self-renewal, differentiation and strong oncogenicity, and is tightly responsible for drug resistance and tumor metastasis. Based on these characteristics, CCSCs are becoming a novel target cells both in the clinical and the basic studies, especially the study of CCSCs vaccines due to induced efficient immune response against CCSCs. This review provides an overview of CCSCs and preparation technics and targeting factors related to CCSCs vaccines in detail.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
373
|
|
374
|
Christ B, Brückner S, Winkler S. The Therapeutic Promise of Mesenchymal Stem Cells for Liver Restoration. Trends Mol Med 2015; 21:673-686. [PMID: 26476857 DOI: 10.1016/j.molmed.2015.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022]
Abstract
Hepatocyte transplantation aims to provide a functional substitution of liver tissue lost due to trauma or toxins. Chronic liver diseases are associated with inflammation, deterioration of tissue homeostasis, and deprivation of metabolic capacity. Recent advances in liver biology have focused on the pro-regenerative features of mesenchymal stem cells (MSCs). We argue that MSCs represent an attractive therapeutic option to treat liver disease. Indeed, their pleiotropic actions include the modulation of immune reactions, the stimulation of cell proliferation, and the attenuation of cell death responses. These characteristics are highly warranted add-ons to their capacity for hepatocyte differentiation. Undoubtedly, the elucidation of the regenerative mechanisms of MSCs in different liver diseases will promote their versatile and disease-specific therapeutic use.
Collapse
Affiliation(s)
- Bruno Christ
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany.
| | - Sandra Brückner
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Sandra Winkler
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| |
Collapse
|
375
|
Veiseh M, Leith SJ, Tolg C, Elhayek SS, Bahrami SB, Collis L, Hamilton S, McCarthy JB, Bissell MJ, Turley E. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells. Front Cell Dev Biol 2015; 3:63. [PMID: 26528478 PMCID: PMC4606125 DOI: 10.3389/fcell.2015.00063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022] Open
Abstract
The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies.
Collapse
Affiliation(s)
- Mandana Veiseh
- Life Sciences Division, Lawrence Berkeley National Laboratories Berkeley, CA, USA ; Palo Alto Research Center (a Xerox Company) Palo Alto, CA, USA
| | - Sean J Leith
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western University London, ON, Canada
| | - Cornelia Tolg
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western University London, ON, Canada
| | - Sallie S Elhayek
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western University London, ON, Canada
| | - S Bahram Bahrami
- Life Sciences Division, Lawrence Berkeley National Laboratories Berkeley, CA, USA
| | - Lisa Collis
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western University London, ON, Canada
| | - Sara Hamilton
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western University London, ON, Canada
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, University of Minnesota Minneapolis, MN, USA
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratories Berkeley, CA, USA
| | - Eva Turley
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western University London, ON, Canada
| |
Collapse
|
376
|
Asada N, Sato M, Katayama Y. Communication of bone cells with hematopoiesis, immunity and energy metabolism. BONEKEY REPORTS 2015; 4:748. [PMID: 26512322 DOI: 10.1038/bonekey.2015.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022]
Abstract
The bone contains the bone marrow. The functional communication between bone cells and hematopoiesis has been extensively studied in the past decade or so. Osteolineage cells and their modulators, such as the sympathetic nervous system, macrophages and osteoclasts, form a complex unit to maintain the homeostasis of hematopoiesis, called the 'microenvironment'. Recently, bone-embedded osteocytes, the sensors of gravity and mechanical stress, have joined the microenvironment, and they are demonstrated to contribute to whole body homeostasis through the control of immunity and energy metabolism. The inter-organ communication orchestrated by the bone is summarized in this article.
Collapse
Affiliation(s)
- Noboru Asada
- Division of Hematology, Department of Medicine, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Mari Sato
- Division of Hematology, Department of Medicine, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Yoshio Katayama
- Division of Hematology, Department of Medicine, Kobe University Graduate School of Medicine , Kobe, Japan ; Department of Hematology, Kobe University Hospital , Kobe, Japan ; PRESTO, Japan Science and Technology Agency , Kawaguchi, Japan
| |
Collapse
|
377
|
Sui B, Hu C, Jin Y. Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells. Biogerontology 2015; 17:267-79. [DOI: 10.1007/s10522-015-9609-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
|
378
|
Abstract
Stem cells are remarkable, and stem cell-based tissue engineering is an emerging field of biomedical science aiming to restore damaged tissue or organs. In dentistry and reconstructive facial surgery, it is of great interest to restore lost teeth or craniofacial bone defects using stem cell-mediated therapy. In the craniofacial region, various stem cell populations have been identified with regeneration potential. In this review, we provide an overview of the current knowledge concerning the various types of tooth- and craniofacial bone-related stem cells and discuss their in vivo identities and regulating mechanisms.
Collapse
Affiliation(s)
- H Zhao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Y Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
379
|
Ruvolo PP. Galectin 3 as a guardian of the tumor microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:427-437. [PMID: 26264495 DOI: 10.1016/j.bbamcr.2015.08.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 01/12/2023]
Abstract
Galectin 3 is a member of a family of β-galactoside binding proteins and has emerged as an important regulator of diverse functions critical in cancer biology including apoptosis, metastasis, immune surveillance, molecular trafficking, mRNA splicing, gene expression, and inflammation. Galectin 3's ability to support cancer cell survival by intra-cellular and extra-cellular mechanisms suggests this molecule is an important component of the tumor microenvironment that potentially could be targeted for therapy. Data is emerging that Galectin 3 is elevated in many cancers including solid tumors and the cancers of the blood. Galectin 3 also appears to be a key molecule produced by tumor microenvironment support cells including mesenchymal stromal cells (MSC) to suppress immune surveillance by killing T cells and interfering with NK cell function and by supporting metastasis. Levels of Galectin 3 increase in the MSC of aging mice and perhaps this contributes to the development of cancer in the elderly. Galectin 3 modulates surface protein expression of a diverse set of glycoproteins including CD44 by regulating endocytosis of these proteins. In addition, Galectin 3 binding to receptor kinases such as CD45 and the T cell receptor is critical in the regulation of their function. In this review I will examine the various mechanisms how Galectin 3 supports chemoresistance and metastasis in solid tumors and in leukemia and lymphoma. I will also discuss possible therapeutic strategies to target this Galectin for cancer therapy. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, United States.
| |
Collapse
|
380
|
Stem Cell Differentiation and Therapeutic Use. Stem Cells Int 2015; 2015:308128. [PMID: 26345125 PMCID: PMC4539486 DOI: 10.1155/2015/308128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 12/30/2022] Open
|
381
|
Ardjomandi N, Henrich A, Huth J, Klein C, Schweizer E, Scheideler L, Rupp F, Reinert S, Alexander D. Coating of ß-tricalcium phosphate scaffolds—a comparison between graphene oxide and poly-lactic-co-glycolic acid. Biomed Mater 2015; 10:045018. [DOI: 10.1088/1748-6041/10/4/045018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
382
|
Montesi M, Panseri S, Iafisco M, Adamiano A, Tampieri A. Coupling Hydroxyapatite Nanocrystals with Lactoferrin as a Promising Strategy to Fine Regulate Bone Homeostasis. PLoS One 2015; 10:e0132633. [PMID: 26148296 PMCID: PMC4492779 DOI: 10.1371/journal.pone.0132633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022] Open
Abstract
Lactoferrin (LF) is an interesting glycoprotein in the field of bone biology for its regulatory effect on cells involved in bone remodeling, that results compromised in several pathological conditions, as osteoporosis. In a previous study we observed that the coupling of LF and biomimetic hydroxyapatite nanocrystals (HA), a material well-known for its bioactivity and osteoconductive properties, leads to a combined effect in the induction of osteogenic differentiation of mesenchymal stem cells. On the basis of this evidence, the present study is an extension of our previous work aiming to investigate the synergistic effect of the coupling of HA and LF on bone homeostasis. Biomimetic HA nanocrystals were synthesized and functionalized with LF (HA-LF) and then pre-osteoblasts (MC3T3-E1) and monocyte/macrophage cells lines (RAW 264.7), using as osteoclastogenesis in vitro model, were cultured separately or in co-culture in presence of HA-LF. The results clearly revealed that HA and LF act in synergism in the regulation of the bone homeostasis, working as anabolic factor for osteoblasts differentiation and bone matrix deposition, and as inhibitor of the osteoclast formation and activity.
Collapse
Affiliation(s)
- Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna, Italy
- * E-mail:
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna, Italy
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna, Italy
| |
Collapse
|
383
|
Mesenchymal stromal cells and hematopoietic stem cell transplantation. Immunol Lett 2015; 168:215-21. [PMID: 26116911 DOI: 10.1016/j.imlet.2015.06.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and culture-expanded ex vivo for clinical use. Due to their immunoregulatory properties and their ability to secrete growth factors, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs) and to prevent graft failure, as well as to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe. Moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials, especially in the treatment of acute GvHD. In this review we critically discuss recent advances in MSC therapy by reporting on the most relevant studies in the field of HSCT.
Collapse
|
384
|
Soares da Costa D, Márquez-Posadas MDC, Araujo AR, Yang Y, Merino S, Groth T, Reis RL, Pashkuleva I. Adhesion of adipose-derived mesenchymal stem cells to glycosaminoglycan surfaces with different protein patterns. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10034-10043. [PMID: 25902379 DOI: 10.1021/acsami.5b02479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteins and glycosaminoglycans (GAGs) are the main constituents of the extracellular matrix (ECM). They act in synergism and are equally critical for the development, growth, function, or survival of an organism. In this work, we developed surfaces that display these two classes of biomacromolecules, namely, GAGs and proteins, in a spatially controlled fashion. The generated surfaces can be used as a minimalistic but straightforward model aiding the elucidation of cell-ECM interactions. GAGs (hyaluronic acid and heparin) were covalently bound to amino functionalized surfaces, and albumin or fibronectin was patterned by microcontact printing on top of them. We demonstrate that adipose-derived stem cells (ASCs) can adhere either on the protein or on the GAG pattern as a function of the patterned molecules. ASCs found on the GAG pattern had different morphology and expressed different surface markers than the cells adhered on the protein pattern. ASCs morphology and spreading were also dependent on the size of the pattern. These results show that the developed supports can also be used for ASCs differentiation into different lineages.
Collapse
Affiliation(s)
- Diana Soares da Costa
- †3B's Research Group, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ‡ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria del Carmen Márquez-Posadas
- §IK4-Tekniker, Micro and Nano Manufacture Unit, Polo Tecnológico De Eibar, C/Iñaki Goenaga 5, 20600 Eibar, Gipuzkoa Spain
- ∥CIC microGUNE, Polo de Innovación Garaia, Goiru kalea 9, 20500 Arrasate-Mondragón, Gipuzkoa Spain
| | - Ana R Araujo
- †3B's Research Group, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ‡ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Yuan Yang
- ⊥Biomedical Materials Group, Martin Luther University, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Saxony-Anhalt, Germany
| | - Santos Merino
- §IK4-Tekniker, Micro and Nano Manufacture Unit, Polo Tecnológico De Eibar, C/Iñaki Goenaga 5, 20600 Eibar, Gipuzkoa Spain
- ∥CIC microGUNE, Polo de Innovación Garaia, Goiru kalea 9, 20500 Arrasate-Mondragón, Gipuzkoa Spain
| | - Thomas Groth
- ⊥Biomedical Materials Group, Martin Luther University, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Saxony-Anhalt, Germany
| | - Rui L Reis
- †3B's Research Group, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ‡ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Iva Pashkuleva
- †3B's Research Group, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ‡ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|