351
|
Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J. TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 2001; 3:400-8. [PMID: 11283614 DOI: 10.1038/35070086] [Citation(s) in RCA: 393] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transforming growth factor-beta (TGFbeta) is a cytokine that arrests epithelial cell division by switching off the proto-oncogene c-myc and rapidly switching on cyclin-dependent kinase (CDK) inhibitors such as p15INK4b. Gene responses to TGFbeta involve Smad transcription factors that are directly activated by the TGFbeta receptor. Why downregulation of c-myc expression by TGFbeta is required for rapid activation of p15INK4b has remained unknown. Here we provide evidence that TGFbeta signalling prevents recruitment of Myc to the p15INK4b transcriptional initiator by Myc-interacting zinc-finger protein 1 (Miz-1). This relieves repression and enables transcriptional activation by a TGFbeta-induced Smad protein complex that recognizes an upstream p15INK4b promoter region and contacts Miz-1. Thus, two separate TGFbeta-dependent inputs - Smad-mediated transactivation and relief of repression by Myc - keep tight control over p15INK4b activation.
Collapse
Affiliation(s)
- J Seoane
- Cell Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
352
|
Yang SH, Vickers E, Brehm A, Kouzarides T, Sharrocks AD. Temporal recruitment of the mSin3A-histone deacetylase corepressor complex to the ETS domain transcription factor Elk-1. Mol Cell Biol 2001; 21:2802-14. [PMID: 11283259 PMCID: PMC86910 DOI: 10.1128/mcb.21.8.2802-2814.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional status of eukaryotic genes is determined by a balance between activation and repression mechanisms. The nuclear hormone receptors represent classical examples of transcription factors that can regulate this balance by recruiting corepressor and coactivator complexes in a ligand-dependent manner. Here, we demonstrate that the equilibrium between activation and repression via a single transcription factor, Elk-1, is altered following activation of the Erk mitogen-activated protein kinase cascade. In addition to its C-terminal transcriptional activation domain, Elk-1 contains an N-terminal transcriptional repression domain that can recruit the mSin3A-histone deacetylase 1 corepressor complex. Recruitment of this corepressor is enhanced in response to activation of the Erk pathway in vivo, and this recruitment correlates kinetically with the shutoff of one of its target promoters, c-fos. Elk-1 therefore undergoes temporal activator-repressor switching and contributes to both the activation and repression of target genes following growth factor stimulation.
Collapse
Affiliation(s)
- S H Yang
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
353
|
Abstract
Transforming growth factor beta (TGF-beta) is an effective and ubiquitous mediator of cell growth. The significance of this cytokine in cancer susceptibility, cancer development and progression has become apparent over the past few years. TGF-beta plays various roles in the process of malignant progression. It is a potent inhibitor of normal stromal, hematopoietic, and epithelial cell growth. However, at some point during cancer development the majority of transformed cells become either partly or completely resistant to TGF-beta growth inhibition. There is growing evidence that in the later stages of cancer development TGF-beta is actively secreted by tumor cells and not merely acts as a bystander but rather contributes to cell growth, invasion, and metastasis and decreases host-tumor immune responses. Subtle alteration of TGF-beta signaling may also contribute to the development of cancer. These various effects are tissue and tumor dependent. Identifying and understanding TGF-beta signaling pathway abnormalities in various malignancies is a promising avenue of study that may yield new modalities to both prevent and treat cancer. The nature, prevalence, and significance of TGF-beta signaling pathway alterations in various forms of human cancer as well as potential preventive and therapeutic interventions are discussed in this review.
Collapse
Affiliation(s)
- B Pasche
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, 710 North Fairbanks, Room 8410, Chicago, IL 60611, USA.
| |
Collapse
|
354
|
Affiliation(s)
- A Hata
- Molecular Cardiology Research Institute, New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| |
Collapse
|
355
|
Abstract
TGFbeta signaling plays a central role in regulating a broad range of cellular responses in a variety of organisms. TGFbeta signaling from the cell membrane to the nucleus is mediated by the Smad family of proteins. During the past five years of intense investigation, key events in TGFbeta signaling have been documented at the molecular and cellular level. Recent structural studies have improved our understanding of how specificity is generated in the TGFbeta signaling pathways. Despite this progress, significant questions remain regarding the precise mechanisms of signaling and point to the urgent need for well-controlled biochemical studies. Rather than giving a comprehensive review on Smad-mediated TGFbeta signaling, this review focuses on functional insights provided by recent structural studies and discusses several existing controversies.
Collapse
Affiliation(s)
- Y Shi
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
356
|
Akiyoshi S, Ishii M, Nemoto N, Kawabata M, Aburatani H, Miyazono K. Targets of transcriptional regulation by transforming growth factor-beta: expression profile analysis using oligonucleotide arrays. Jpn J Cancer Res 2001; 92:257-68. [PMID: 11267935 PMCID: PMC5926719 DOI: 10.1111/j.1349-7006.2001.tb01090.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor-betas (TGF-betas) are potent inhibitors of cell proliferation, and disruption of components of the TGF-beta signaling pathway leads to tumorigenesis. Mutations of transmembrane receptors and Smads mediating intracellular signaling have been reported in various cancers. To identify transcriptional targets of TGF-beta, we conducted an expression profile analysis. HaCaT cells derived from human keratinocytes and highly sensitive to TGF-beta were treated with TGF-beta in the absence or presence of cycloheximide (CHX). mRNAs extracted from the HaCaT cells were used for hybridization of oligonucleotide arrays representing approximately 5600 human genes. TGF-beta increased the expression of PAI-1, junB, p21 cdk inhibitor, Smad7, betaIG-H3, and involucrin that have been reported to be up-regulated by TGF-beta, validating the usefulness of this approach. The induction of betaIG-H3 by TGF-beta was completely abolished by CHX, suggesting that the transcription of betaIG-H3 is not directly regulated by TGF-beta. Unexpectedly, we identified more genes down-regulated by TGF-beta than up-regulated ones. TGF-beta repressed the expression of epithelial specific Ets that may be involved in breast and lung tumorigenesis, which could contribute to tumor suppression by TGF-beta. Among a panel of cell cycle regulators, TGF-beta induced the expression of p21 cdk inhibitor; however, the induction of other cdk inhibitors was not significant in the present study. Taken together, the results suggest that TGF-beta may suppress tumorigenesis through positive and negative regulation of transcription.
Collapse
Affiliation(s)
- S Akiyoshi
- Department of Biochemistry, The Cancer Institute of Japanese Foundation for Cancer Research (JFCR), and Research for the Future Program, the Japan Society for the Promotion of Science, Toshima-ku, Tokyo 170-8455, Japan
| | | | | | | | | | | |
Collapse
|
357
|
Abstract
Members of the transforming growth factor-beta (TGF-beta) family bind to type II and type I serine/threonine kinase receptors, which initiate intracellular signals through activation of Smad proteins. Receptor-regulated Smads (R-Smads) are anchored to the cell membrane by interaction with membrane-bound proteins, including Smad anchor for receptor activation (SARA). Upon ligand stimulation, R-Smads are phosphorylated by the receptors and form oligomeric complexes with common-partner Smads (Co-Smads). The oligomeric Smad complexes then translocate into the nucleus, where they regulate the transcription of target genes by direct binding to DNA, interaction with various DNA-binding proteins, and recruitment of transcriptional coactivators or corepressors. A third class of Smads, inhibitory Smads (I-Smads), inhibits the signals from the serine/threonine kinase receptors. Since the expression of I-Smads is induced by the TGF-beta superfamily proteins, Smads constitute an autoinhibitory signaling pathway. The functions of Smads are regulated by other signaling pathways, such as the MAP kinase pathway. Moreover, Smads interact with and modulate the functions of various transcription factors which are downstream targets of other signaling pathways. Loss of function of certain Smads is involved in tumorigenesis, e.g., pancreatic and colorectal cancers. Analyses by gene targeting revealed pivotal roles of Smads in early embryogenesis, angiogenesis, and immune functions in vivo.
Collapse
Affiliation(s)
- K Miyazono
- Department of Biochemistry, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | |
Collapse
|
358
|
Abstract
Transforming growth factor (TGF-beta) is a multifunctional polypeptide implicated in the regulation of a variety of cellular processes including growth, differentiation, apoptosis, adhesion, and motility. Abnormal activation or inhibition of these TGF-beta regulated processes is implicated in many diseases, including cancer. Cancers can develop through selective exploitation of defects in TGF-beta signaling that occur at several different levels in the pathway. The TGF-beta signal transduction cascade is initiated when TGF-beta binds to transmembrane receptors. The TGF-beta receptors then phosphorylate and activate Smad proteins, which transduce the signal from the cytoplasm to the nucleus. In the nucleus, Smads can bind directly to DNA and cooperate with other transcription factors to induce transcription of TGF-beta target genes. Mutations in target genes, Smads, or the TGF-beta receptor are associated with certain human cancers.
Collapse
Affiliation(s)
- J Rich
- Division of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
359
|
Gwack Y, Byun H, Hwang S, Lim C, Choe J. CREB-binding protein and histone deacetylase regulate the transcriptional activity of Kaposi's sarcoma-associated herpesvirus open reading frame 50. J Virol 2001; 75:1909-17. [PMID: 11160690 PMCID: PMC115137 DOI: 10.1128/jvi.75.4.1909-1917.2001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2000] [Accepted: 11/13/2000] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) open reading frame 50 (ORF50) encodes a viral transcriptional activator, which binds to the KSHV promoter and stimulates the transcription of viral early and late genes, thus activating the lytic cycle of KSHV. We report here that KSHV ORF50 binds to the cellular proteins CREB-binding protein (CBP) and histone deacetylase (HDAC) and these binding events modulate ORF50-activated viral transcription. Binding of ORF50 to CBP and HDAC activates and represses, respectively, ORF50-mediated viral transcription. KSHV ORF50 was shown to bind to the C/H3 domain and the C-terminal transcriptional activation domain of CBP, while CBP bound to the amino-terminal basic domain and the carboxyl-terminal transactivation domain of ORF50. The LXXLL motif within the transcriptional activation domain of ORF50 is reminiscent of the CBP-binding sequence found in nuclear receptor proteins. The adenovirus E1A protein, which also binds to the C/H3 domain of CBP, repressed the transcriptional activation activity of ORF50. The cellular protein c-Jun, which binds to the kinase-induced activation domain of ORF50, stimulated ORF50-mediated viral transcription. The HDAC1-interacting domain of ORF50 was shown to be a central proline-rich sequence. Our data provide a framework for delineating the regulatory mechanisms used by KSHV to modulate its transcription and replication through interaction with both histone acetyltransferases and HDACs.
Collapse
Affiliation(s)
- Y Gwack
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
| | | | | | | | | |
Collapse
|
360
|
Abstract
Transforming growth factor beta (TGF-beta) is an effective and ubiquitous mediator of cell growth. The significance of this cytokine in cancer susceptibility, cancer development and progression has become apparent over the past few years. TGF-beta plays various roles in the process of malignant progression. It is a potent inhibitor of normal stromal, hematopoietic, and epithelial cell growth. However, at some point during cancer development the majority of transformed cells become either partly or completely resistant to TGF-beta growth inhibition. There is growing evidence that in the later stages of cancer development TGF-beta is actively secreted by tumor cells and not merely acts as a bystander but rather contributes to cell growth, invasion, and metastasis and decreases host-tumor immune responses. Subtle alteration of TGF-beta signaling may also contribute to the development of cancer. These various effects are tissue and tumor dependent. Identifying and understanding TGF-beta signaling pathway abnormalities in various malignancies is a promising avenue of study that may yield new modalities to both prevent and treat cancer. The nature, prevalence, and significance of TGF-beta signaling pathway alterations in various forms of human cancer as well as potential preventive and therapeutic interventions are discussed in this review.
Collapse
Affiliation(s)
- B Pasche
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, 710 North Fairbanks, Room 8410, Chicago, IL 60611, USA.
| |
Collapse
|
361
|
Chen CR, Kang Y, Massagué J. Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci U S A 2001; 98:992-9. [PMID: 11158583 PMCID: PMC14697 DOI: 10.1073/pnas.98.3.992] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2000] [Indexed: 01/07/2023] Open
Abstract
Loss of growth inhibitory responses to the cytokine transforming growth factor beta (TGF-beta) in cancer cells may result from mutational inactivation of TGF-beta receptors or their signal transducers, the Smad transcription factors. In breast cancer, however, loss of TGF-beta growth inhibition often occurs without a loss of these signaling components. A genome-wide analysis of rapid TGF-beta gene responses in MCF-10A human mammary epithelial cells and MDA-MB-231 breast cancer cells shows that c-myc repression, a response that is key to the TGF-beta program of cell cycle arrest, is selectively lost in the cancer cell line. Transformation of MCF-10A cells with c-Ha-ras and c-erbB2 oncogenes also led to a selective loss of c-myc repression and cell cycle arrest response. TGF-beta stimulation of epithelial cells rapidly induces the formation of a Smad complex that specifically recognizes a TGF-beta inhibitory element in the c-myc promoter. Formation of this complex is deficient in the oncogenically transformed breast cells. These results suggest that a Smad complex that specifically mediates c-myc repression is a target of oncogenic signals in breast cancer.
Collapse
Affiliation(s)
- C R Chen
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center and Howard Hughes Medical Institute, New York, NY 10021, USA
| | | | | |
Collapse
|
362
|
Lo RS, Wotton D, Massagué J. Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. EMBO J 2001; 20:128-36. [PMID: 11226163 PMCID: PMC140192 DOI: 10.1093/emboj/20.1.128] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Smad transcription factors mediate the actions of transforming growth factor-beta (TGF-beta) cytokines during development and tissue homeostasis. TGF-beta receptor-activated Smad2 regulates gene expression by associating with transcriptional co-activators or co-repressors. The Smad co-repressor TGIF competes with the co-activator p300 for Smad2 association, such that TGIF abundance helps determine the outcome of a TGF-beta response. Small alterations in the physiological levels of TGIF can have profound effects on human development, as shown by the devastating brain and craniofacial developmental defects in heterozygotes carrying a hypomorphic TGIF mutant allele. Here we show that TGIF levels modulate sensitivity to TGF-beta-mediated growth inhibition, that TGIF is a short-lived protein and that epidermal growth factor (EGF) signaling via the Ras-Mek pathway causes the phosphorylation of TGIF at two Erk MAP kinase sites, leading to TGIF stabilization and favoring the formation of Smad2-TGIF co-repressor complexes in response to TGF-beta. These results identify the first mechanism for regulating TGIF levels and suggest a potential link for Smad and Ras pathway convergence at the transcriptional level.
Collapse
Affiliation(s)
| | - David Wotton
- Cell Biology Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
Present address: Center for Cell Signaling, Box 800577, Hospital West, HSC, University of Virginia, Charlottesville, VA 22908, USA Corresponding author e-mail:
| | - Joan Massagué
- Cell Biology Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
Present address: Center for Cell Signaling, Box 800577, Hospital West, HSC, University of Virginia, Charlottesville, VA 22908, USA Corresponding author e-mail:
| |
Collapse
|
363
|
Abstract
Since the identification of the first histone deacetylase (Taunton et al., Science 272, 408-411), several new members have been isolated. They can loosely be separated into entities on the basis of their similarity to various yeast histone deacetylases. The first class is represented by its closeness to the yeast Rpd3-like proteins, and the second most recently discovered class has similarities to yeast Hda1-like proteins. However, due to the fact that several different research groups isolated the Hda1-like histone deacetylases independently, there have been various different nomenclatures used to describe the various members, which can lead to confusion in the interpretation of this family's functions and interactions. With the discovery of another novel murine histone deacetylase, homologous to yeast Sir2, the number of members of this family is set to increase, as 7 human homologues of this gene have been isolated. In the light of these recent discoveries, we have examined the literature data and conducted a database analysis of the isolated histone deacetylases and potential candidates. The results obtained suggest that the number of histone deacetylases within the human genome may be as high as 17 and are discussed in relation to their homology to the yeast histone deacetylases.
Collapse
Affiliation(s)
- S G Gray
- Laboratory for Molecular Development and Tumor Biology, Centre for Molecular Medicine (CMM), Stockholm, S-171 76, Sweden.
| | | |
Collapse
|
364
|
Choi J, Krushel LA, Crossin KL. NF-kappaB activation by N-CAM and cytokines in astrocytes is regulated by multiple protein kinases and redox modulation. Glia 2001; 33:45-56. [PMID: 11169791 DOI: 10.1002/1098-1136(20010101)33:1<45::aid-glia1005>3.0.co;2-a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interaction of the neural cell adhesion molecule (N-CAM) with astrocytes activates a transcription factor, NF-kappaB, that mediates inflammatory responses after neural injury. Here we describe intracellular signaling events that link N-CAM binding to NF-kappaB-mediated transcription. Addition of the third immunoglobulin domain of N-CAM (Ig III), which mimics the activity of intact N-CAM, or of cytokines (interleukin-1beta or tumor necrosis factor-alpha), increased transcription from an NF-kappaB-responsive luciferase reporter gene construct that had been transiently transfected into neonatal rat forebrain astrocytes. NF-kappaB activity induced by Ig III or cytokines was decreased by inhibition of nonreceptor protein tyrosine kinases (PTKs), phospholipase C, protein kinase C (PKC), calcium/calmodulin-dependent protein kinase II (CaMKII), or oxidative stress. Inhibition of PKC blocked nuclear translocation of NF-kappaB protein while binding of NF-kappaB to DNA was decreased by modulation of redox homeostasis. In contrast, inhibition of CaMKII and nonreceptor PTKs altered neither nuclear translocation nor DNA binding, suggesting that these kinases affect NF-kappaB transactivation. A number of agents that inhibit NF-kappaB activation in other cell types did not affect activation in astrocytes. These findings suggest that activation of NF-kappaB by N-CAM and cytokines in astrocytes involves multiple signals that differentially affect NF-kappaB nuclear translocation, DNA binding, and transactivation.
Collapse
Affiliation(s)
- J Choi
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
365
|
Rooke HM, Crosier KE. The smad proteins and TGFβ signalling: uncovering a pathway critical in cancer. Pathology 2001. [DOI: 10.1080/00313020123383] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
366
|
Hullinger TG, Pan Q, Viswanathan HL, Somerman MJ. TGFbeta and BMP-2 activation of the OPN promoter: roles of smad- and hox-binding elements. Exp Cell Res 2001; 262:69-74. [PMID: 11120606 DOI: 10.1006/excr.2000.5074] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Members of the transforming growth factor superfamily are known to transduce signals via the activation of Smad proteins. Ligand binding to transmembrane cell surface receptors triggers the phosphorylation of pathway-specific Smads. These Smads then complex with Smad 4 and are translocated to the nucleus where they effect gene transcription. Smads 1 and 4 were recently demonstrated to mediate BMP activation of the OPN promoter by inhibiting the interaction of Hoxc-8 protein with a Hox-binding element. While previous studies have indicated that specific DNA sequences are recognized by Smad complexes in several promoters, the role of Smad-binding elements (SBEs) in activation of the OPN promoter by members of the TGFbeta superfamily has not been previously evaluated. In this study we tested the hypothesis that a putative Smad-binding region containing the sequence AGACTGTCTGGAC is involved in the activation of the OPN promoter by members of the TGFbeta superfamily. Functional analyses demonstrated that the both the HBE- and Smad-binding region were involved in BMP-2-induced activation of the promoter, whereas, the HBE appeared to be the primary region involved in activation by TGFbeta. Deletion of the first 9 bases in the Smad-binding region substantially reduced BMP-2-mediated activation of the promoter. These results strongly suggest that both the Hox- and the Smad-binding regions play a role in BMP-2-induced activation of the OPN promoter.
Collapse
Affiliation(s)
- T G Hullinger
- Cardiovascular Therapeutics, Pfizer Inc., Ann Arbor, Michigan, 48105, USA
| | | | | | | |
Collapse
|
367
|
Wotton D, Massagué J. Smad Transcriptional Corepressors in TGFβ Family Signaling. Curr Top Microbiol Immunol 2001. [DOI: 10.1007/978-3-662-10595-5_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
368
|
Jayaraman L, Massague J. Distinct oligomeric states of SMAD proteins in the transforming growth factor-beta pathway. J Biol Chem 2000; 275:40710-7. [PMID: 11018029 DOI: 10.1074/jbc.m005799200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein interactions are critical for the function of SMADs as mediators of transforming growth factor-beta (TGF-beta) signals. TGF-beta receptor phosphorylation of SMAD2 or SMAD3 causes their association with SMAD4 and accumulation in the nucleus where the SMAD complex binds cofactors that determine the choice of target genes. We provide evidence that in the basal state, SMADs 2, 3, and 4 form separate, strikingly different complexes. SMAD2 is found mostly as monomer, whereas the closely related SMAD3 exists in multiple oligomeric states. This difference is due to a unique structural element in the MH1 domain of SMAD2 that inhibits protein-protein interactions in the basal state. In contrast to SMAD2 and SMAD3, SMAD4 in the basal state is found mostly as a homo-oligomer, most likely a trimer. Upon cell stimulation with TGF-beta, SMAD proteins become engaged in a multitude of complexes ranging in size from SMAD2-SMAD4 heterodimers to assemblies of >650 kDa. The latter display the highest DNA binding affinity for the TGF-beta-response elements of JUNB and collagen 7. These observations, all validated with endogenous SMAD proteins, modify previous models regarding the assembly and activity of SMAD complexes in the TGF-beta pathway.
Collapse
Affiliation(s)
- L Jayaraman
- Cell Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
369
|
Jakubowiak A, Pouponnot C, Berguido F, Frank R, Mao S, Massague J, Nimer SD. Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J Biol Chem 2000; 275:40282-7. [PMID: 11032826 DOI: 10.1074/jbc.c000485200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The t(8;21) translocation, found in adult acute myelogenous leukemia, results in the formation of an AML1/ETO chimeric transcription factor. AML1/ETO expression leads to alterations in hematopoietic progenitor cell differentiation, although its role in leukemic transformation is not clear. The N-terminal portion of AML1, which is retained in AML1/ETO, contains a region of homology to the FAST proteins, which cooperate with Smads to regulate transforming growth factor beta1 (TGF-beta1) target genes. We have demonstrated the physical association of Smad proteins with AML1 and AML1/ETO by immunoprecipitation and have mapped the region of interaction to the runt homology domain in these AML1 proteins. Using confocal microscopy, we demonstrated that AML1, and ETO and/or AML1/ETO, colocalize with Smads in the nucleus of t(8;21)-positive Kasumi-1 cells, in the presence but not the absence of TGF-beta1. Using transient transfection assays and a reporter gene construct that contains both Smad and AML1 consensus binding sequences, we demonstrated that overexpression of AML1B cooperates with TGF-beta1 in stimulating reporter gene activity, whereas AML1/ETO represses basal promoter activity and blocks the response to TGF-beta1. Considering the critical role of TGF-beta1 in the growth and differentiation of hematopoietic cells, interference with TGF-beta1 signaling by AML1/ETO may contribute to leukemogenesis.
Collapse
Affiliation(s)
- A Jakubowiak
- Laboratory of Molecular Aspects of Hematopoiesis, Division of Hematologic Oncology, and Department of Medicine and the Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
370
|
Melhuish TA, Wotton D. The interaction of the carboxyl terminus-binding protein with the Smad corepressor TGIF is disrupted by a holoprosencephaly mutation in TGIF. J Biol Chem 2000; 275:39762-6. [PMID: 10995736 DOI: 10.1074/jbc.c000416200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homeodomain protein TGIF represses transcription in part by recruiting histone deacetylases. TGIF binds directly to DNA to repress transcription or interacts with TGF-beta-activated Smads, thereby repressing genes normally activated by TGF-beta. Loss of function mutations in TGIF result in holoprosencephaly (HPE) in humans. One HPE mutation in TGIF results in a single amino acid substitution in a conserved PLDLS motif within the amino-terminal repression domain. We demonstrate that TGIF interacts with the corepressor carboxyl terminus-binding protein (CtBP) via this motif. CtBP, which was first identified by its ability to bind the adenovirus E1A protein, interacts both with gene-specific transcriptional repressors and with a subset of polycomb proteins. Efficient repression of TGF-beta-activated gene responses by TGIF is dependent on interaction with CtBP, and we show that TGIF is able to recruit CtBP to a TGF-beta-activated Smad complex. Disruption of the PLDLS motif in TGIF abolishes the interaction of CtBP with TGIF and compromises the ability of TGIF to repress transcription. Thus, at least one HPE mutation in TGIF appears to prevent CtBP-dependent transcriptional repression by TGIF, suggesting an important developmental role for the recruitment of CtBP by TGIF.
Collapse
Affiliation(s)
- T A Melhuish
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
371
|
Abstract
Smads transduce intracellular signals initiated by members of the transforming growth factor beta (TGF beta) family, including activins, TGF betas, and bone morphogenetic proteins. Recently, various models concerning the mechanism of Smad action have been proposed; however, these models are basically qualitative. Quantitative verification of the validity of the models requires significant amounts of purified Smad proteins, but purification of full-length Smad protein has not been straightforward even using recombinant protein expression systems. Here, we report purification of Smad proteins expressed in E. coli as glutathione S-transferase-fused proteins. By glutathione-Sepharose affinity purification, ATP treatment, DEAE-Sepharose and hydroxylapatite columns, expressed Smads were purified to near homogeneity as judged by SDS-PAGE; protein recovery was ca. 1 mg/l culture for Smad2 and 100 microg/l culture for Smad4. The purified Smad proteins had three known in vitro activities: Smad2 phosphorylation by TGF beta receptor complexes immunoprecipitated from COS7 cells, Smad4 binding to Smad-binding DNA element, and Smad2 interaction with calmodulin. The data suggest that purified proteins could be useful for biochemical analyses to evaluate the current models quantitatively.
Collapse
Affiliation(s)
- M Funaba
- Department of Biological Chemistry, University of Michigan, 1301 Catherine Road, Ann Arbor, Michigan 48109-0606, USA.
| | | |
Collapse
|
372
|
Itoh S, Itoh F, Goumans MJ, Ten Dijke P. Signaling of transforming growth factor-beta family members through Smad proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6954-67. [PMID: 11106403 DOI: 10.1046/j.1432-1327.2000.01828.x] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Smads are pivotal intracellular nuclear effectors of transforming growth factor-beta (TGF-beta) family members. Ligand-induced activation of TGF-beta family receptors with intrinsic serine/threonine kinase activity trigger phosphorylation of receptor-regulated Smads (R-Smads), whereas Smad2 and Smad3 are phosphorylated by TGF-beta, and activin type I receptors, Smad1, Smad5 and Smad8, act downstream of BMP type I receptors. Activated R-Smads form heteromeric complexes with common-partner Smads (Co-Smads), e.g. Smad4, which translocate efficiently to the nucleus, where they regulate, in co-operation with other transcription factors, coactivators and corepressors, the transcription of target genes. Inhibitory Smads act in most cases in an opposite manner from R- and Co-Smads. Like other components in the TGF-beta family signaling cascade, Smad activity is intricately regulated. The multifunctional and context dependency of TGF-beta family responses are reflected in the function of Smads as signal integrators. Certain Smads are somatically mutated at high frequency in particular types of human cancers. Gene ablation of Smads in the mouse has revealed their critical roles during embryonic development. Here we review the latest advances in our understanding of the Smad mechanism of action and their in vivo functions.
Collapse
Affiliation(s)
- S Itoh
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
373
|
Abstract
Cell proliferation, differentiation and death are controlled by a multitude of cell-cell signals, and loss of this control has devastating consequences. Prominent among these regulatory signals is the transforming growth factor-beta (TGF-beta) family of cytokines, which can trigger a bewildering diversity of responses, depending on the genetic makeup and environment of the target cell. What are the networks of cell-specific molecules that mould the TGF-beta response to each cell's needs?
Collapse
Affiliation(s)
- J Massagué
- Cell Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, Box 116, 1275 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
374
|
Böttner M, Krieglstein K, Unsicker K. The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 2000; 75:2227-40. [PMID: 11080174 DOI: 10.1046/j.1471-4159.2000.0752227.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor-betas (TGF-betas) are among the most widespread and versatile cytokines. Here, we first provide a brief overview of their molecular biology, biochemistry, and signaling. We then review distribution and functions of the three mammalian TGF-beta isoforms, beta1, beta2, and beta3, and their receptors in the developing and adult nervous system. Roles of TGF-betas in the regulation of radial glia, astroglia, oligodendroglia, and microglia are addressed. Finally, we review the current state of knowledge concerning the roles of TGF-betas in controlling neuronal performances, including the regulation of proliferation of neuronal precursors, survival/death decisions, and neuronal differentiation.
Collapse
Affiliation(s)
- M Böttner
- Neuroanatomy and Center for Neuroscience, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
375
|
Lin X, Liang M, Feng XH. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 2000; 275:36818-22. [PMID: 11016919 DOI: 10.1074/jbc.c000580200] [Citation(s) in RCA: 384] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smads are important intracellular signaling effectors for transforming growth factor-beta (TGF-beta) and related factors. Proper TGF-beta signaling requires precise control of Smad functions. In this study, we have identified a novel HECT class ubiquitin E3 ligase, designated Smurf2, that negatively regulates Smad2 signaling. In both yeast two-hybrid and in vitro binding assays, we found that Smurf2 could interact with receptor-activated Smads (R-Smads), including Smad1, Smad2, and Smad3 but not Smad4. Ectopic expression of Smurf2 was sufficient to reduce the steady-state levels of Smad1 and Smad2 but not Smad3 or Smad4. Significantly, Smurf2 displayed preference to Smad2 as its target for degradation. Furthermore, Smurf2 exhibited higher binding affinity to activated Smad2 upon TGF-beta stimulation. The ability of Smurf2 to promote Smad2 destruction required the HECT catalytic activity of Smurf2 and depended on the proteasome-dependent pathway. Consistent with these results, Smurf2 potently reduced the transcriptional activity of Smad2. These data suggest that a ubiquitin/proteasome-dependent mechanism is important for proper regulation of TGF-beta signaling.
Collapse
Affiliation(s)
- X Lin
- Departments of Surgery and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
376
|
Liang CL, Tsai CN, Chung PJ, Chen JL, Sun CM, Chen RH, Hong JH, Chang YS. Transcription of Epstein-Barr virus-encoded nuclear antigen 1 promoter Qp is repressed by transforming growth factor-beta via Smad4 binding element in human BL cells. Virology 2000; 277:184-92. [PMID: 11062049 DOI: 10.1006/viro.2000.0582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Epstein-Barr virus (EBV)-infected BL cells, the oncogenic EBV-encoded nuclear antigen 1 (EBNA 1) gene is directed from the latent promoter Qp. Yeast one-hybrid screen analysis using the -50 to -37 sequence of Qp as the bait was carried out to identify transcriptional factors that may control Qp activity. Results showed that Smad4 binds the -50 to -37 sequence of Qp, indicating that this promoter is potentially regulated by TGF-beta. The association of Smad4 with Qp was further confirmed by supershift of EMSA complexes using Smad4-specific antibody. The transfection of a Qp reporter construct in two EBV(+) BL cell lines, Rael and WW2, showed that Qp activity is repressed in response to the TGF-beta treatment. This repression involves the interaction of a Smad3/Smad4 complex and the transcriptional repressor TGIF, as determined by cotransfection assay and coimmunoprecipitation analysis. Results suggest that TGF-beta may transcriptionally repress Qp through the Smad4-binding site in human BL cells.
Collapse
Affiliation(s)
- C L Liang
- Institute of Microbiology and Immunology, Taipei, Shih-Pai
| | | | | | | | | | | | | | | |
Collapse
|
377
|
Affiliation(s)
- J Massagué
- Cell Biology Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
378
|
Abstract
In the last 5 years, many co-repressors have been identified in eukaryotes that function in a wide range of species, from yeast to Drosophila and humans. Co-repressors are coregulators that are recruited by DNA-bound transcriptional silencers and play essential roles in many pathways including differentiation, proliferation, programmed cell death, and cell cycle. Accordingly, it has been shown that aberrant interactions of co-repressors with transcriptional silencers provide the molecular basis of a variety of human diseases. Co-repressors mediate transcriptional silencing by mechanisms that include direct inhibition of the basal transcription machinery and recruitment of chromatin-modifying enzymes. Chromatin modification includes histone deacetylation, which is thought to lead to a compact chromatin structure to which the accessibility of transcriptional activators is impaired. In a general mechanistic view, the overall picture suggests that transcriptional silencers and co-repressors act in analogy to transcriptional activators and coactivators, but with the opposite effect leading to gene silencing. We provide a comprehensive overview of the currently known higher eukaryotic co-repressors, their mechanism of action, and their involvement in biological and pathophysiological pathways. We also show the different pathways that lead to the regulation of co-repressor-silencer complex formation.
Collapse
Affiliation(s)
- L J Burke
- Genetic Institute, Justus Liebig University, Heinrich Buff Ring 58-62, D-35392 Giessen, Germany
| | | |
Collapse
|
379
|
Abstract
Holoprosencephaly (HPE) is the most common developmental defect of the forebrain and midface in humans. In holoprosencephaly the cerebral hemispheres of the brain fail to separate into distinct left and right hemispheres. This malformation is due to the improper specification and formation of the forebrain during early development. When one considers the great number and kinds of genetic interactions that must occur to properly pattern the developing forebrain, it is not surprising that HPE is extremely heterogeneous. In addition to teratogenic agents, several genes are implicated as the cause of HPE. At least 12 different loci have been associated with HPE and now several distinct human genes for holoprosencephaly have been identified. These genes include Sonic Hedgehog (SHH), ZIC2, SIX3, and TG-interacting factor (TGIF). Here we present an overview of the presently known genes causing human holoprosencephaly. We discuss their functional role in development of the forebrain and summarize the mutations and polymorphisms that have been identified within them. Hum Mutat 16:99-108, 2000. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- D Wallis
- Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
380
|
Imoto I, Pimkhaokham A, Watanabe T, Saito-Ohara F, Soeda E, Inazawa J. Amplification and overexpression of TGIF2, a novel homeobox gene of the TALE superclass, in ovarian cancer cell lines. Biochem Biophys Res Commun 2000; 276:264-70. [PMID: 11006116 DOI: 10.1006/bbrc.2000.3449] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Homeodomain transcription factors play important roles in directing cellular proliferation and differentiation. A TALE-superclass homeodomain protein, multifunctional repressor of TGFbeta-induced transcription. Here we report identification of TGIF2, a novel TALE-superclass homeodomain protein that shows distinct homology with TGIF, especially in its DNA-binding domain. TGIF2 is expressed ubiquitously in human tissues, with the highest levels being found in heart, kidney, and testis. The TGIF2 product contains a putative nuclear localization signal; translocation of the protein to the nucleus was confirmed by transfection of epitope-tagged cDNA. TGIF2 lies on chromosome 20q11.2-12. Since amplification of 20q is often observed among ovarian cancers, we determined the status of DNA copy-number and expression of TGIF2 in 14 ovarian-cancer cell lines. This gene was over-expressed in all lines that showed amplification by FISH analysis. The results suggested that TGIF2 may play an important role in the development and/or progression of some ovarian tumors through a mechanism of gene amplification.
Collapse
Affiliation(s)
- I Imoto
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo, 113-8510, Japan
| | | | | | | | | | | |
Collapse
|
381
|
López-Rovira T, Chalaux E, Rosa JL, Bartrons R, Ventura F. Interaction and functional cooperation of NF-kappa B with Smads. Transcriptional regulation of the junB promoter. J Biol Chem 2000; 275:28937-46. [PMID: 10874048 DOI: 10.1074/jbc.m909923199] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transforming growth factor-beta (TGF-beta) family of cytokines regulates diverse cellular processes through control of the expression of target genes. Smad proteins are a recently identified family of signal transducers for members of the TGF-beta family. Smads act as transcriptional regulators through binding to DNA and interacting with a variety of transcription factors. Here, we identified a kappaB site as a TGF-beta-responsive region in the 3'-downstream junB promoter region. We also demonstrate that kappaB sites alone are sufficient to mediate immediate transcriptional activation by TGF-beta. Transactivation of kappaB sites by TGF-beta requires an intact NF-kappaB pathway, cooperates with known activators of this pathway, and is mediated by Smad family members. Furthermore, we show that Smad3 interacts with p52 in vivo. These data expand the model in which Smad proteins undergo multiple interactions with several transcription factors that could induce either activation or repression of gene expression.
Collapse
Affiliation(s)
- T López-Rovira
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | | | | | | | | |
Collapse
|
382
|
Dennler S, Prunier C, Ferrand N, Gauthier JM, Atfi A. c-Jun inhibits transforming growth factor beta-mediated transcription by repressing Smad3 transcriptional activity. J Biol Chem 2000; 275:28858-65. [PMID: 10871633 DOI: 10.1074/jbc.m910358199] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) is a pleiotropic cytokine that exerts its effects through a heteromeric complex of transmembrane serine/threonine kinase receptors. At least two intracellular pathways are activated by TGF-beta as follows: the SAPK/JNK, involving the MEKK1, MKK4, and JNK cascade, and the Smad pathway. Here, we report that the SAPK/JNK pathway inhibits the Smad3 pathway. Expression of dominant negative or constitutively active mutants of kinases of the SAPK/JNK pathway, respectively, activates or represses a TGF-beta-induced reporter containing Smad3-binding sites. This effect is not dependent on blocking of Smad3 nuclear translocation but involves a functional interaction between Smad3 and c-Jun, a transcription factor activated by the SAPK/JNK pathway. Overexpression of constitutively active MEKK1 or MKK4 mutants stabilizes the physical interaction between Smad3 and c-Jun, whereas dominant negative mutants inhibit this interaction. Moreover, overexpression of wild-type c-Jun inhibits Smad3-dependent transcription. However, c-Jun does not inhibit Smad3 binding to DNA in vitro. The repression obtained with a c-Jun mutant unable to activate transcription through AP-1 sites indicates that the inhibitory mechanism does not rely on the induction of a Smad3 repressor by c-Jun, suggesting that c-Jun could act as a Smad3 co-repressor. The inhibition of the Smad3 pathway by the SAPK/JNK pathway, both triggered by TGF-beta, could participate in a negative feedback loop to control TGF-beta responses.
Collapse
Affiliation(s)
- S Dennler
- Laboratoire GlaxoWellcome, 25 Avenue du Québec, 91951 Les Ulis Cedex and INSERM U482, Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | | | | | | | | |
Collapse
|
383
|
Morén A, Itoh S, Moustakas A, Dijke P, Heldin CH. Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4. Oncogene 2000; 19:4396-404. [PMID: 10980615 DOI: 10.1038/sj.onc.1203798] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Smads, the intracellular effectors of transforming growth factor-beta (TGF-beta) family members, are somatically mutated at high frequency in particular types of human cancers. Certain of these mutations affect the Smad amino-terminal domain, which, in the case of Smad3 and Smad4, binds DNA. We investigated the functional consequences of four missense mutations in the Smad4 amino-terminal domain found in human tumors. The mutant proteins were found to have impaired abilities to bind DNA although they were fully capable of forming complexes with Smad3. All four Smad4 mutants showed decreased protein stability compared to wild-type Smad4. Two of the Smad4 mutants (G65V and P130S) were translocated to the nucleus and were capable of transactivating a Smad-dependent promoter in a ligand-dependent manner. In contrast, the L43S and R100T mutants were not translocated efficiently to the nucleus and consequently resulted in severely defective transcriptional responses to TGF-beta. Moreover, we demonstrate here the critical importance of two basic residues in the beta-hairpin loop of Smad3 or Smad4 for DNA binding, consistent with predictions from the Smad3 crystal structure. In addition, our results reveal that in the TGF-beta-induced heteromeric signaling complex, loss of DNA binding of Smad4 can be compensated by Smad3, however, both Smad3 and Smad4 are needed for efficient DNA binding and signaling. In conclusion, mutations in the amino-terminal domain of Smad4, that are found in cancer, show loss of multiple functional properties which may contribute to tumorigenesis.
Collapse
Affiliation(s)
- A Morén
- Ludwig Institute for Cancer Research, Box 595, S-751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
384
|
DiChiara MR, Kiely JM, Gimbrone MA, Lee ME, Perrella MA, Topper JN. Inhibition of E-selectin gene expression by transforming growth factor beta in endothelial cells involves coactivator integration of Smad and nuclear factor kappaB-mediated signals. J Exp Med 2000; 192:695-704. [PMID: 10974035 PMCID: PMC2193275 DOI: 10.1084/jem.192.5.695] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2000] [Accepted: 06/29/2000] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor (TGF)-beta(1) is a pleiotropic cytokine/growth factor that is thought to play a critical role in the modulation of inflammatory events. We demonstrate that exogenous TGF-beta(1) can inhibit the expression of the proinflammatory adhesion molecule, E-selectin, in vascular endothelium exposed to inflammatory stimuli both in vitro and in vivo. This inhibitory effect occurs at the level of transcription of the E-selectin gene and is dependent on the action of Smad proteins, a class of intracellular signaling proteins involved in mediating the cellular effects of TGF-beta(1). Furthermore, we demonstrate that these Smad-mediated effects in endothelial cells result from a novel competitive interaction between Smad proteins activated by TGF-beta(1) and nuclear factor kappaB (NFkappaB) proteins activated by inflammatory stimuli (such as cytokines or bacterial lipopolysaccharide) that is mediated by the transcriptional coactivator cyclic AMP response element-binding protein (CREB)-binding protein (CBP). Augmentation of the limited amount of CBP present in endothelial cells (via overexpression) or selective disruption of Smad-CBP interactions (via a dominant negative strategy) effectively antagonizes the ability of TGF-beta(1) to block proinflammatory E-selectin expression. These data thus demonstrate a novel mechanism of interaction between TGF-beta(1)-regulated Smad proteins and NFkappaB proteins regulated by inflammatory stimuli in vascular endothelial cells. This type of signaling mechanism may play an important role in the immunomodulatory actions of this cytokine/growth factor in the cardiovascular system.
Collapse
Affiliation(s)
- Maria R. DiChiara
- Cardiovascular Division, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | | | | | - Mu-En Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Mark A. Perrella
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - James N. Topper
- Cardiovascular Division, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
- COR Therapeutics, Incorporated, South San Francisco, California 94080
| |
Collapse
|
385
|
Abstract
The molecular genetic profiles that characterize pancreatic ductal neoplasia have taken shape recently with the help of immunohistochemistry and the establishment of the nomenclature describing pancreatic ductal tumorigenesis. K-ras mutations frequently occur early, changes in the expression and genetic integrity of the p16 gene appear in intermediate lesions, and the inactivation of the p53, DPC4, and BRCA2 genes occur late in the neoplastic progression. Tumor-suppressor genes inactivated in pancreatic cancer such as ALK5, TGFBR2, MKK4, and STK11/LKB1 have been identified, although their roles in tumor progression are not yet well defined. Additional discoveries in this tumor system may be on the horizon, will further refine the molecular genetic profiles for the disease, and should suggest some clinical uses for this fund of knowledge.
Collapse
Affiliation(s)
- G H Su
- The Oncology Center, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
386
|
Dou C, Lee J, Liu B, Liu F, Massague J, Xuan S, Lai E. BF-1 interferes with transforming growth factor beta signaling by associating with Smad partners. Mol Cell Biol 2000; 20:6201-11. [PMID: 10938097 PMCID: PMC86095 DOI: 10.1128/mcb.20.17.6201-6211.2000] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The winged-helix (WH) BF-1 gene, which encodes brain factor 1 (BF-1) (also known as foxg1), is essential for the proliferation of the progenitor cells of the cerebral cortex. Here we show that BF-1-deficient telencephalic progenitor cells are more apt to leave the cell cycle in response to transforming growth factor beta (TGF-beta) and activin. We found that ectopic expression of BF-1 in vitro inhibits TGF-beta mediated growth inhibition and transcriptional activation. Surprisingly, we found that the ability of BF-1 to function as a TGF-beta antagonist does not require its DNA binding activity. Therefore, we investigated whether BF-1 can inhibit Smad-dependent transcriptional responses by interacting with Smads or Smad binding partners. We found that BF-1 does not interact with Smads. Because the identities of the Smad partners mediating growth inhibition by TGF-beta are not clearly established, we examined a model reporter system which is known to be activated by activin and TGF-beta through Smads and the WH factor FAST-2. We demonstrate that BF-1 associates with FAST-2. This interaction is dependent on the same region of protein which mediates its ability to interfere with the antiproliferative activity of TGF-beta and with TGF-beta-dependent transcriptional activation. Furthermore, the interaction of FAST-2 with BF-1 is mediated by the same domain which is required for FAST-2 to interact with Smad2. We propose a model in which BF-1 interferes with transcriptional responses to TGF-beta by interacting with FAST-2 or with other DNA binding proteins which function as Smad2 partners and which have a common mode of interaction with Smad2.
Collapse
Affiliation(s)
- C Dou
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
387
|
Muenke M, Cohen MM. Genetic approaches to understanding brain development: holoprosencephaly as a model. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2000; 6:15-21. [PMID: 10899793 DOI: 10.1002/(sici)1098-2779(2000)6:1<15::aid-mrdd3>3.0.co;2-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Holoprosencephaly (HPE) is the most common major developmental defect of the forebrain in humans. Clinical expression is variable, ranging from a small brain with a single cerebral ventricle and cyclopia to clinically unaffected carriers in familial HPE. Significant etiologic heterogeneity exists in HPE and includes both genetic and environmental causes. Defects in the cell signaling pathway involving the Sonic Hedgehog (SHH) gene, as well as defects in the cholesterol biosynthesis have been shown to cause HPE in humans. More recently, HPE genes from additional signaling pathways have been identified. These discoveries and current genetic approaches serve as a paradigm for studying normal and abnormal brain morphogenesis. MRDD Research Reviews 6:15-21, 2000.
Collapse
Affiliation(s)
- M Muenke
- The Children's Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania.
| | | |
Collapse
|
388
|
Feinberg MW, Jain MK, Werner F, Sibinga NE, Wiesel P, Wang H, Topper JN, Perrella MA, Lee ME. Transforming growth factor-beta 1 inhibits cytokine-mediated induction of human metalloelastase in macrophages. J Biol Chem 2000; 275:25766-73. [PMID: 10825169 DOI: 10.1074/jbc.m002664200] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinases (MMP) have been identified in vulnerable areas of atherosclerotic plaques and may contribute to plaque instability through extracellular matrix degradation. Human metalloelastase (MMP-12) is a macrophage-specific MMP with broad substrate specificity and is capable of degrading proteins found in the extracellular matrix of atheromas. Despite its potential importance, little is known about the regulation of MMP-12 expression in the context of atherosclerosis. In this study, we report that in human peripheral blood-derived macrophages, MMP-12 mRNA was markedly up-regulated by several pro-atherosclerotic cytokines and growth factors including interleukin-1beta, tumor necrosis factor-alpha, macrophage colony-stimulating factor, vascular endothelial growth factor, and platelet-derived growth factor-BB. In contrast, the pleiotropic anti-inflammatory growth factor transforming growth factor-beta1 (TGF-beta1) inhibited cytokine-mediated induction of MMP-12 mRNA, protein, and enzymatic activity. Analyses of MMP-12 promoter through transient transfections and electrophoretic mobility shift assays indicated that both its induction by cytokines and its inhibition by TGF-beta1 depended on signaling through an AP-1 site at -81 base pairs. Moreover, the inhibitory effect of TGF-beta1 on MMP-12 was dependent on Smad3. Taken together, MMP-12 is induced by several factors implicated in atherosclerosis. The inhibition of MMP-12 expression by TGF-beta1 suggests that TGF-beta1, acting via Smad3, may promote plaque stability.
Collapse
Affiliation(s)
- M W Feinberg
- Program of Developmental Cardiovascular Biology, the Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
389
|
Volk SW, D'Angelo M, Diefenderfer D, Leboy PS. Utilization of bone morphogenetic protein receptors during chondrocyte maturation. J Bone Miner Res 2000; 15:1630-9. [PMID: 10934663 DOI: 10.1359/jbmr.2000.15.8.1630] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cartilage from the upper, cephalic portion of embryonic chick sternums undergoes hypertrophy, while the lower, caudal portion of the sternum remains as cartilage. Bone morphogenetic proteins (BMPs) induce type X collagen (colX) in cultured upper but not lower sternal chondrocytes (LSCs). We have examined the utilization of BMP receptors (BMPRs) by upper sternal chondrocytes (USCs) and LSCs both by analyzing receptor expression and by overexpressing mutant BMPRs. Reverse-transcription polymerase chain reaction (RT-PCR) analyses indicate that both upper and lower chondrocytes produce messenger RNA (mRNA) for all three receptors: BMPR type IA (BMPR-IA), BMPR type IB (BMPR-IB), and BMPR type II (BMPR-II). Infection of USC with retroviral vectors expressing constitutively active (CA) BMPRs showed that CA-BMPR-IB, like exogenous BMP-4, induced both colX mRNA and elevated alkaline phosphatase (AP), while CA-BMPR-IA was markedly less potent. However, expression of activated receptors in LSC cultures resulted in only minimal induction of hypertrophic markers. Consistent with the results seen for CA receptors, dominant negative (DN) BMPR-IB blocked BMP-induced hypertrophy in USCs more effectively than DN-BMPR-IA. These results imply that the major BMPR required for BMP induction of chondrocyte hypertrophy is BMPR-IB, and that difference between permanent and prehypertrophic chondrocytes is not caused by absence of receptors required for BMP signaling.
Collapse
Affiliation(s)
- S W Volk
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | | | | | | |
Collapse
|
390
|
Abstract
In cells, genes are contained within chromatin - a highly structured array of DNA wrapped around core histone proteins. Packaged genes are subject to a variety of regulatory modifications including, CpG methylation, histone acetylation and phosphorylation. These epigenetic mechanisms of gene regulation involve higher ordered protein complexes possessing enzymatic activities such as ATP hydrolysis and acetylation that are targeted to specific genes by transcription factors, coactivatorsand coreptessors. In this article, we endeavor to providean overview of current research on mechanisms of transcriptional regulation by chromatin remodeling of MHC and other genes that are of interest in reproductive immunology.
Collapse
Affiliation(s)
- W J Magner
- Department of Immunology, Roswell Park Cancer Institute, 14263, Buffalo, NY, USA
| | | |
Collapse
|
391
|
Youn HD, Grozinger CM, Liu JO. Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J Biol Chem 2000; 275:22563-7. [PMID: 10825153 DOI: 10.1074/jbc.c000304200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myocyte enhancer factor 2 (MEF2) consists of a family of transcription factors that play important roles in a number of physiological processes from muscle cell differentiation to neuronal survival and T cell apoptosis. MEF2 has been reported to be associated with several distinct repressors including Cabin1(cain), MEF2-interacting transcriptional repressor (MITR), and HDAC4. It has been previously shown that Cabin1 is associated with MEF2 in a calcium-sensitive manner; activated calmodulin binds to Cabin1 and releases it from MEF2. However, it was not known whether the binding of HDAC4 and MITR to MEF2 is also regulated by calcium. We report that HDAC4 and MITR contain calmodulin-binding domains that overlap with their MEF2-binding domains. Binding of calmodulin to HDAC4 leads to its dissociation from MEF2, relieving MEF2 from the transcriptional repression by HDAC4. Together, HDAC4, MITR, and Cabin1 constitute a family of calcium-sensitive transcriptional repressors of MEF2.
Collapse
Affiliation(s)
- H D Youn
- Center for Cancer Research, Department of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
392
|
Abstract
A key event in the regulation of eukaryotic gene expression is the posttranslational modification of nucleosomal histones, which converts regions of chromosomes into transcriptionally active or inactive chromatin. The most well studied posttranslational modification of histones is the acetylation of epsilon-amino groups on conserved lysine residues in the histones' amino-terminal tail domains. Significant advances have been made in the past few years toward the identification of histone acetyltransferases and histone deacetylases. Currently, there are over a dozen cloned histone acetyltransferases and at least eight cloned human histone deacetylases. Interestingly, many histone deacetylases can function as transcriptional corepressors and, often, they are present in multi-subunit complexes. More intriguing, at least some histone deacetylases are associated with chromatin-remodeling machines. In addition, several studies have pointed to the possible involvement of histone deacetylases in human cancer. The availability of the cloned histone deacetylase genes has provided swift progress in the understanding of the mechanisms of deacetylases, their role in transcription, and their possible role in health and disease.
Collapse
Affiliation(s)
- W D Cress
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida
| | | |
Collapse
|
393
|
Youn HD, Liu JO. Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity 2000; 13:85-94. [PMID: 10933397 DOI: 10.1016/s1074-7613(00)00010-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
TCR signaling leading to thymocyte apoptosis is mediated through the expression of the Nur77 family of orphan nuclear receptors. MEF2 has been shown to be the major transcription factor responsible for calcium-dependent Nur77 transcription. Cabin1 was recently identified as a transcriptional repressor of MEF2, which can be released from MEF2 in a calcium-dependent fashion. The molecular basis of repression of MEF2 by Cabin1, however, has remained unknown. We report that Cabin1 represses MEF2 by two distinct mechanisms. Cabin1 recruits mSin3 and its associated histone deacetylases 1 and 2; Cabin1 also competes with p300 for binding to MEF2. Thus, activation of MEF2 and the consequent transcription of Nur77 are controlled by the association of MEF2 with the histone deacetylases via the calcium-dependent repressor Cabin1.
Collapse
Affiliation(s)
- H D Youn
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
394
|
Kim RH, Wang D, Tsang M, Martin J, Huff C, de Caestecker MP, Parks WT, Meng X, Lechleider RJ, Wang T, Roberts AB. A novel Smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-β signal transduction. Genes Dev 2000. [DOI: 10.1101/gad.14.13.1605] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Members of the transforming growth factor-β superfamily play critical roles in controlling cell growth and differentiation. Effects of TGF-β family ligands are mediated by Smad proteins. To understand the mechanism of Smad function, we sought to identify novel interactors of Smads by use of a yeast two-hybrid system. A 396-amino acid nuclear protein termed SNIP1 was cloned and shown to harbor a nuclear localization signal (NLS) and a Forkhead-associated (FHA) domain. The carboxyl terminus of SNIP1 interacts with Smad1 and Smad2 in yeast two-hybrid as well as in mammalian overexpression systems. However, the amino terminus of SNIP1 harbors binding sites for both Smad4 and the coactivator CBP/p300. Interaction between endogenous levels of SNIP1 and Smad4 or CBP/p300 is detected in NMuMg cells as well as in vitro. Overexpression of full-length SNIP1 or its amino terminus is sufficient to inhibit multiple gene responses to TGF-β and CBP/p300, as well as the formation of a Smad4/p300 complex. Studies in Xenopus laevisfurther suggest that SNIP1 plays a role in regulating dorsomedial mesoderm formation by the TGF-β family member nodal. Thus, SNIP1 is a nuclear inhibitor of CBP/p300 and its level of expression in specific cell types has important physiological consequences by setting a threshold for TGF-β-induced transcriptional activation involving CBP/p300.
Collapse
|
395
|
Phillips RL, Ernst RE, Brunk B, Ivanova N, Mahan MA, Deanehan JK, Moore KA, Overton GC, Lemischka IR. The genetic program of hematopoietic stem cells. Science 2000; 288:1635-40. [PMID: 10834841 DOI: 10.1126/science.288.5471.1635] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Blood cell production originates from a rare population of multipotent, self-renewing stem cells. A genome-wide gene expression analysis was performed in order to define regulatory pathways in stem cells as well as their global genetic program. Subtracted complementary DNA libraries from highly purified murine fetal liver stem cells were analyzed with bioinformatic and array hybridization strategies. A large percentage of the several thousand gene products that have been characterized correspond to previously undescribed molecules with properties suggestive of regulatory functions. The complete data, available in a biological process-oriented database, represent the molecular phenotype of the hematopoietic stem cell.
Collapse
Affiliation(s)
- R L Phillips
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Hatini V, Bokor P, Goto-Mandeville R, DiNardo S. Tissue- and stage-specific modulation of Wingless signaling by the segment polarity gene lines. Genes Dev 2000. [DOI: 10.1101/gad.14.11.1364] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wnt signaling controls a variety of developmental programs but the mechanisms by which the same signal leads to distinct outputs remain unclear. To address this question, we identified stage-specific modulators of Wingless (Wg) signaling in the Drosophilaembryonic epidermis. We show that lines (lin) is essential for Wg-dependent patterning in dorsal epidermis. linencodes a novel protein that acts cell-autonomously, downstream or in parallel to Armadillo (Arm) and upstream of Wg-dependent target genes. Lin can accumulate in nuclei of cells signaled by Wg, suggesting that signaling promotes entry of Lin into the nucleus, where it cooperates with Arm and Pangolin. Thus, a stage-specific modulator is used to mediate Wg signaling activity in dorsal patterning. Hedgehog (Hh) controls half of the parasegmental pattern dorsally and antagonizes Wg function to do so. Lin can accumulate in the cytoplasm of cells signaled by Hh, suggesting that Hh antagonizes Wg function by prohibiting Lin from entering the nucleus.
Collapse
|
397
|
Ryan K, Garrett N, Bourillot P, Stennard F, Gurdon JB. The Xenopus eomesodermin promoter and its concentration-dependent response to activin. Mech Dev 2000; 94:133-46. [PMID: 10842065 DOI: 10.1016/s0925-4773(00)00300-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eomesodermin is an essential early gene in Xenopus mesoderm formation and shows a morphogen-like response to activin. Here we define the regions of the Eomesodermin promoter required for mesodermal expression and for concentration-dependent response to activin. We find an activin response element (ARE) located between -5.6 and -5.0 kb which contains two critical FAST2 binding sites. The ARE alone is necessary and sufficient for concentration-dependent response to activin. A 5.6 kb promoter recapitulates Eomes expression in normal mesoderm cells. A repressor element extinguishes Eomes expression in the endoderm. We relate our results to mesoderm patterning in early Xenopus development and to a mechanism of morphogen gradient response.
Collapse
Affiliation(s)
- K Ryan
- Wellcome CRC Institute, Cambridge, UK.
| | | | | | | | | |
Collapse
|
398
|
Gripp KW, Wotton D, Edwards MC, Roessler E, Ades L, Meinecke P, Richieri-Costa A, Zackai EH, Massagué J, Muenke M, Elledge SJ. Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat Genet 2000; 25:205-8. [PMID: 10835638 DOI: 10.1038/76074] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Holoprosencephaly (HPE) is the most common structural defect of the developing forebrain in humans (1 in 250 conceptuses, 1 in 16,000 live-born infants). HPE is aetiologically heterogeneous, with both environmental and genetic causes. So far, three human HPE genes are known: SHH at chromosome region 7q36 (ref. 6); ZIC2 at 13q32 (ref. 7); and SIX3 at 2p21 (ref. 8). In animal models, genes in the Nodal signalling pathway, such as those mutated in the zebrafish mutants cyclops (refs 9,10), squint (ref. 11) and one-eyed pinhead (oep; ref. 12), cause HPE. Mice heterozygous for null alleles of both Nodal and Smad2 have cyclopia. Here we describe the involvement of the TG-interacting factor (TGIF), a homeodomain protein, in human HPE. We mapped TGIF to the HPE minimal critical region in 18p11.3. Heterozygous mutations in individuals with HPE affect the transcriptional repression domain of TGIF, the DNA-binding domain or the domain that interacts with SMAD2. (The latter is an effector in the signalling pathway of the neural axis developmental factor NODAL, a member of the transforming growth factor-beta (TGF-beta) family.) Several of these mutations cause a loss of TGIF function. Thus, TGIF links the NODAL signalling pathway to the bifurcation of the human forebrain and the establishment of ventral midline structures.
Collapse
Affiliation(s)
- K W Gripp
- The Children's Hospital of Philadelphia, Departments of Pediatrics, Genetics and Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Abstract
Transforming growth factor beta is a multi-functional growth and differentiation factor responsible for regulating many diverse biological processes in both vertebrate and invertebrate species. Among the most dramatic of TGFbeta's effects are those associated with specification of cell fates during development and inhibition of cell cycle progression. The core TGFbeta signaling pathway has now been described using a synergistic combination of genetic and biochemical approaches. Transmembrane receptors with intrinsic protein serine kinase activity bind ligand in the extracellular milieu and then phosphorylate intracellular proteins known as Smads. Phosphorylated Smads form heterooligomers and translocate into the nucleus where they can modulate transcriptional responses. More recent studies indicate that many other proteins serve as modulators of Smad activity, and utimately define specific cellular responses to TGFbeta. Here we describe both the simplistic core TGFbeta signaling pathway and the growing number of proteins that impinge on this pathway at the level of Smad function to either enhance or inhibit TGFbeta responses.
Collapse
Affiliation(s)
- C M Zimmerman
- Department of Molecular Biology and Biochemistry, and the Cancer Institute of New Jersey, Rutgers University, Piscataway 08854-8020, USA
| | | |
Collapse
|
400
|
Choy L, Skillington J, Derynck R. Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. J Cell Biol 2000; 149:667-82. [PMID: 10791980 PMCID: PMC2174852 DOI: 10.1083/jcb.149.3.667] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TGF-beta inhibits adipocyte differentiation, yet is expressed by adipocytes. The function of TGF-beta in adipogenesis, and its mechanism of action, is unknown. To address the role of TGF-beta signaling in adipocyte differentiation, we characterized the expression of the TGF-beta receptors, and the Smads which transmit or inhibit TGF-beta signals, during adipogenesis in 3T3-F442A cells. We found that the cell-surface availability of TGF-beta receptors strongly decreased as adipogenesis proceeds. Whereas mRNA levels for Smads 2, 3, and 4 were unchanged during differentiation, mRNA levels for Smads 6 and 7, which are known to inhibit TGF-beta responses, decreased severely. Dominant negative interference with TGF-beta receptor signaling, by stably expressing a truncated type II TGF-beta receptor, enhanced differentiation and decreased growth. Stable overexpression of Smad2 or Smad3 inhibited differentiation and dominant negative inhibition of Smad3 function, but not Smad2 function, enhanced adipogenesis. Increased Smad6 and Smad7 levels blocked differentiation and enhanced TGF-beta-induced responses. The inhibitory effect of Smad7 on adipocyte differentiation and its cooperation with TGF-beta was associated with the C-domain of Smad7. Our results indicate that endogenous TGF-beta signaling regulates the rate of adipogenesis, and that Smad2 and Smad3 have distinct functions in this endogenous control of differentiation. Smad6 and Smad7 act as negative regulators of adipogenesis and, even though known to inhibit TGF-beta responses, enhance the effects of TGF-beta on these cells.
Collapse
Affiliation(s)
- Lisa Choy
- Department of Growth and Development, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143-0640
- Department of Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143-0640
| | - Jeremy Skillington
- Department of Growth and Development, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143-0640
- Department of Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143-0640
| | - Rik Derynck
- Department of Growth and Development, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143-0640
- Department of Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143-0640
| |
Collapse
|